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Fig. 1. Globe: Our method is able to reconstruct the texture of a globe seen through a bell jar in this interior scene with complex materials and interreflection.
Starting from a di�erent initialization (Mars), it a�empts to match a reference rendering by di�erentiating scene parameters with respect to L2 image distance.
The plot on the right shows convergence over time for prior work [Nimier-David et al. 2019] and multiple variants of radiative backpropagation. Our method
removes the severe overheads of di�erentiation compared to ordinary rendering, and we demonstrate speedups of up to ∼1000× compared to prior work.

Physically based di�erentiable rendering has recently evolved into a power-

ful tool for solving inverse problems involving light. Methods in this area per-

form a di�erentiable simulation of the physical process of light transport and

scattering to estimate partial derivatives relating scene parameters to pixels

in the rendered image. Together with gradient-based optimization, such al-

gorithms have interesting applications in diverse disciplines, e.g., to improve

the reconstruction of 3D scenes, while accounting for interre�ection and

transparency, or to design meta-materials with speci�ed optical properties.

Authors’ addresses: Merlin Nimier-David, École Polytechnique Fédérale de Lausanne

(EPFL), merlin.nimier-david@ep�.ch; Sébastien Speierer, École Polytechnique Fédérale

de Lausanne (EPFL), sebastien.speierer@ep�.ch; Benoît Ruiz, École Polytechnique

Fédérale de Lausanne (EPFL), benoit.ruiz@ep�.ch; Wenzel Jakob, École Polytechnique

Fédérale de Lausanne (EPFL), wenzel.jakob@ep�.ch.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

0730-0301/2020/7-ART146 $15.00

https://doi.org/10.1145/3386569.3392406

The most versatile di�erentiable rendering algorithms rely on reverse-

mode di�erentiation to compute all requested derivatives at once, enabling

optimization of scene descriptions with millions of free parameters. How-

ever, a severe limitation of the reverse-mode approach is that it requires

a detailed transcript of the computation that is subsequently replayed to

back-propagate derivatives to the scene parameters. The transcript of typical

renderings is extremely large, exceeding the available system memory by

many orders of magnitude, hence current methods are limited to simple

scenes rendered at low resolutions and sample counts.

We introduce radiative backpropagation, a fundamentally di�erent ap-

proach to di�erentiable rendering that does not require a transcript, greatly

improving its scalability and e�ciency. Our main insight is that reverse-

mode propagation through a rendering algorithm can be interpreted as the

solution of a continuous transport problem involving the partial derivative of

radiance with respect to the optimization objective. This quantity is “emitted”

by sensors, “scattered” by the scene, and eventually “received” by objects

with di�erentiable parameters. Di�erentiable rendering then decomposes

into two separate primal and adjoint simulation steps that scale to complex

scenes rendered at high resolutions. We also investigated biased variants

of this algorithm and �nd that they considerably improve both runtime

and convergence speed. We showcase an e�cient GPU implementation of

radiative backpropagation and compare its performance and the quality of

its gradients to prior work.
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1 INTRODUCTION
Consider the task of determining the material or shape of an object

from a set of images. This is a surprisingly di�cult problem, since

the pixel values encode a complex superposition of indirect e�ects:

for instance, a part of the object could appear brighter because a

neighboring object re�ects light towards it, or it could appear darker

because another object casts a shadow. To solve this task, it is there-

fore not enough to focus on the object of interest alone–we need to

understand its relationship to the surrounding environment as well.

In the context of rendering, this type of radiative coupling be-

tween objects has been a crucial ingredient in the quest for photore-

alism, and a great variety of physically-based methods that simulate

the underlying principles of light transport and scattering have been

proposed in the past decades [Pharr et al. 2016]. These methods

solve an integral equation describing the energy balance of light

and tend to be fairly expensive–hours of rendering time for a single

image are not uncommon.

At a high level, a rendering algorithm can be interpreted as a func-

tion f : X → Y, whose input encodes the shape and materials of

objects. Evaluating y = f (x) yields a rendered image that accounts

for e�ects such as shadowing, specular interre�ection, or subsurface

scattering. Such interactions obscure the individual properties of

objects, hence an inverse f −1(y) to recover scene parameters x from
an image y is normally not available.

This paper is concerned with di�erentiable rendering techniques,

which are increasingly relevant in systems that perform such an in-

version. The main distinction of di�erentiable rendering compared

to “ordinary” rendering methods is the availability of derivatives

∂y/∂x relating inputs and outputs of the simulation. Combined with

a �rst-order optimization algorithm, a di�erentiable renderer is then

able to navigate the parameter space to �nd solutions to di�erent

types of inverse problems. This is not a panacea: optimization ob-

jectives can be highly non-convex, requiring signi�cant attention

to initial guesses and regularization to obtain satisfactory results. In

this article, we focus primarily on the mechanics of di�erentiation

in the context of rendering rather than general optimization-related

challenges. Our implementation of Radiative Backpropagation cur-

rently targets shading and emission-related parameters and does not

support gradients that arise due to visibility-related discontinuities.

That said, we believe that our technique could be extended to such

cases and include a discussion in Section 3.6.

Note that the spaces X and Y are generally high-dimensional

(10
5
–10

8
D), hence direct evaluation of the Jacobian Jf B ∂f (x)/∂x is

infeasible
1
. Instead, all previously proposed rendering techniques

1
The Jacobian also lacks sparsity: due to interre�ection, scene parameters tend to

have a nonzero e�ect on many pixels.

compute simpler matrix-vector products that fall into one of two

categories: forward-mode methods evaluate δy = Jf δx to deter-

mine how an in�nitesimal perturbation δx of the scene parameters

changes the output image. In contrast, reverse-mode approaches

use a transpose product δx = JTf δy to determine how the scene

parameters should be updated (to �rst order) to realize a desired

change δy to the output image. While most di�erentiable rendering

techniques proposed so far are in the former category, the latter

approach is preferable for solving inverse problems, especially when

the parameter X space has more than a few dimensions
2
.

However, one major downside of the reverse-mode approach is

that it requires a detailed transcript of intermediate computation

steps to back-propagate derivatives to the scene parameters. For

an hour-long rendering, this data structure would be staggeringly

large, exceeding the available system memory by many orders of

magnitude. Simple scenes rendered at low resolutions and sample

counts can �t, though transcript-related memory tra�c remains a

severe performance bottleneck even in such cases.

This article introduces radiative backpropagation, a new technique

for di�erentiable rendering that addresses these limitations. Despite

operating in reverse mode, our method does not require a transcript

of intermediate steps, allowing it to scale to complex and long-

running simulations. Our key observation is that back-propagating

derivatives through a rendering algorithm can be re-cast as the

solution of a modi�ed light transport problem involving the partial

derivative of radiance with respect to the optimization objective. Im-

portantly, this new problem can be solved separately from the origi-

nal rendering problem, i.e., without retaining intermediate state.

Following a theoretical discussion, we propose a practical and

e�cient way of implementing our algorithm. Building on top of

Mitsuba 2, we use its tracing just-in-time compiler and automatic

di�erentiation backend to produce OptiX “derivative shaders” of

individual system components (e.g. BSDFs, light sources, volumes,

etc.) that can be attached to scene objects to enable e�cient GPU-

accelerated radiative backpropagation. We conclude with a demon-

stration of the superior performance and scalability of our method

compared to prior work on di�erentiable rendering. An open source

implementation of our method will be released at https://rgl.ep�.ch/

publications/NimierDavid2020Radiative.

2 BACKGROUND AND RELATED WORK
We now review relevant background material and related work.

Di�erentiation of numerical algorithms. The forward and reverse

modes mentioned in the introduction are standard techniques used

to transform primal computations into programs that evaluate cor-

responding derivatives. This can be done manually (i.e. with hand-

written derivative code), or using software-assisted code transforma-

tions that are collectively known as automatic di�erentiation (AD).

We refer to the excellent book of Griewank and Walther [2008]

for a thorough review of AD. In the following, we brie�y con-

trast forward- and reverse-mode di�erentiation of a simple example

function f (x0,x1,x2) B x0 · x1 + x2.

2
The runtime of forward-mode methods grows linearly with the dimension of X.
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• Forward mode propagates derivatives from inputs to outputs by

repeated application of the chain rule. Below, it propagates a

perturbation δx0 along edges, resulting in the partial derivative

∂f/∂x0 = x1. More generally, it can evaluate arbitrary directional

derivatives Jf δx using a single pass, but separate derivatives

with respect to individual inputs require multiple passes and are

therefore costly.

x0

yx1 +

x2

× δx0·x1

δx0·x1

δx0

0

0

• Reverse mode (or backpropagation in the context of neural net-

works) evaluates the chain rule in reverse, from outputs to inputs,

and is ideal for optimization of functions with one output and

many inputs. Below, it computes gradf (x) = (x1,x0, 1).

x0

yx1 +

x2

×

Phase 1 (primal)

x0

yx1 +

x2

×

Phase 2 (adjoint)

δy·x1

δy

δy
δy

δy·x0

When f is multi-valued, reverse mode can evaluate arbitrary

directional derivatives JTf δy with respect to perturbations of the

outputs δy in a single pass.

The program execution order must be reversed during the propa-

gation of derivatives, which is generally accomplished by record-

ing a transcript of operations (also known Wengert tape [1964] or
computation graph) during the primal phase that is replayed in

a subsequent adjoint phase. As part of this process, each primal

variable is associated with a corresponding adjoint variable (e.g.
δx0 = δy · x1) that tracks its sensitivity with regard to perturba-

tions of the output.

Maintenance and traversal of the transcript adds considerable ad-

ditional runtime cost, which can be amortized by di�erentiating

multiple coherent evaluations of f at the same time—Griewank and

Walther [2008] refer to this as vector mode.
Similar to thework of Li et al. [2018] andNimier-David et al. [2019]

our method also operates in reverse mode. However, whereas these

prior works di�erentiated the entire rendering algorithm using vec-

tor mode AD, our proposed implementation applies a scalar form of

AD to the individual scene elements (e.g. BSDFs, emitters, etc.). This

process furthermore occurs symbolically during a pre-process step,

transforming primal shaders into derivative shaders that are used as

part of radiative backpropagation. Importantly, derivative shaders

store primal and adjoint variables in processor registers, removing

the need for a costly transcript data structure.

Reducing AD memory overheads. For long-running computations,

the memory requirements of reverse-mode di�erentiation are pro-

hibitive. Checkpointing strategies [Volin and Ostrovskii 1985] re-

duce storage overheads by discarding information that can be recov-

ered later on by repeating parts of the computation, but this intro-

duces considerable additional complexity. Furthermore, the size of

the checkpoints themselves can be problematic in vector-mode dif-

ferentiable renderers, which normally propagate large wavefronts

consisting of many millions of rays.

It is interesting to note that an explicit reversal of the execution or-

der may be possible in certain problems, entirely removing the need

for a transcript. The adjoint sensitivity method [Pontryagin 1962; An-

dersson 2013] is a well-known example of this idea from the area of

optimal control. Here, an ordinary di�erential equation is integrated

up to a certain time in the primal phase. The adjoint phase then

solves the same equation once more backwards in time to propagate
sensitivities with respect to an optimization objective to parameters

of the model. This idea has been applied in computer graphics to

control the behavior of �uid simulations [McNamara et al. 2004], to

retarget motion to elastic robots while minimizing vibration [Hosh-

yari et al. 2019], and to reduce the cost of training neural residual

networks [Chen et al. 2018] in the area of machine learning. At

a high level, our approach resembles the adjoint method in that

it also transforms derivative propagation from a discrete problem

into a continuous formulation that can be sampled in reverse. The

speci�cs of the two approaches are very di�erent, since steady-state

light transport lacks a natural time variable.

Di�erentiable rendering. Beginning with the work on OpenDR by

Loper et al. [2014], a number of approximate di�erentiable rendering

techniques have been proposed in the �eld of computer vision.

Relying on smooth rasterization of meshes or volumes [Rhodin et al.

2015; Kato et al. 2017; Liu et al. 2019; Petersen et al. 2019], these

methods focus on primary visibility without accounting for indirect

e�ects (shadows, interre�ection, etc.).

Early uses of di�erentiation in rendering algorithms include the

estimation of spatial and directional gradients for adaptive sam-

pling and interpolation [Ramamoorthi et al. 2007]. Later work has

focused on parametric derivatives of physically based simulations

to optimize the material properties of volumes [Che et al. 2018;

Velinov et al. 2018; Gkioulekas et al. 2016, 2013; Khungurn et al.

2015; Zhao et al. 2016] or surfaces [Li et al. 2018; Azinović et al.

2019]. Geometric derivatives are challenging in this context be-

cause surface boundaries introduce discontinuities that can lead

to incorrect gradients if precautions are not taken. Li et al. [2018]

introduced the �rst method to correctly account for this e�ect in

the context of physically-based rendering using a novel silhouette

edge sampling strategy. Recently, Loubet et al. [2019] proposed an

alternative way of dealing with visibility via re-parameterization

of light transport integrals, and Zhang et al. [2019] introduced a

uni�ed framework for di�erentiating surfaces and volumes in the

presence of discontinuities.

Only two physically based rendering systems proposed thus far

perform reverse-mode di�erentiation: Redner [Li et al. 2018], which

is based on hand-written derivative code, and Mitsuba 2 [Nimier-

David et al. 2019], which uses AD. Our implementation builds on

the latter and signi�cantly improves the runtime and memory cost

of derivative propagation.

3 METHOD
Before delving into the speci�cs of our method, we brie�y review

the relevant radiative transfer equations and their di�erential for-

mulations. The former roughly follows the notation of Veach [1997],

and the latter is a subset of the framework proposed by Zhang et

ACM Trans. Graph., Vol. 39, No. 4, Article 146. Publication date: July 2020.
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al. [2019], which we include here for completeness. To keep the dis-

cussion simple, we initially focus on a simpli�ed problem without

volumetric e�ects, and we furthermore ignore derivatives that arise

due to parameter-dependent silhouette boundaries. The ideas un-

derlying radiative backpropagation are orthogonal to these aspects,

and we refer the reader to Zhang et al. [2019] for a full de�nition of

the di�erential quantities with all terms. The volumetric analog of

radiative backpropagation is derived in the appendix.

Rendering algorithms estimate sets of measurements I1, . . . , In
corresponding to pixels in an image. These measurements are de-

�ned as inner products on ray space A × S2 involving the incident
radiance Li and the importance functionWk of pixels k = 1, . . . ,n:

Ik = 〈Wk ,Li 〉 (Measurement)

=

∫
A

∫
S2

Wk (p,ω)Li (p,ω) dω⊥
dp.

where dω⊥
indicates integration with respect to projected solid

angle at p. Radiance is invariant along unoccluded rays, relating Li
to the outgoing radiance at the nearest surface r(p,ω) visible along

the ray (p,ω):

Li (p,ω) = Lo (r(p,ω),−ω). (Transport)

At surfaces, radiance satis�es an energy balance condition relating

sources and sinks, speci�cally emission Le (p,ω), and absorption or

re�ection of incident illumination modeled via fs (p,ω,ω ′), the Bidi-
rectional Scattering Distribution Function (BSDF) of the surface at p:

Lo (p,ω) = Le (p,ω) +

∫
S2

Li (p,ω′) fs (p,ω,ω′) dω′⊥. (Scattering)

Monte Carlo rendering techniques such as path tracing [Kajiya

1986] recursively sample the above equations using sophisticated

importance sampling strategies to obtain unbiased estimates of the

measurements I1, . . . , In .

3.1 Di�erential radiative transfer
We now turn to di�erential radiative transfer by di�erentiating the

left and right hand sides of the preceding three equations with re-

spect to all scene parameters x = (x1, . . . ,xm ), resulting in vectorial

equations. For notational convenience, we de�ne ∂x B ∂/∂x and
assume component-wise multiplication of vector quantities. The

resulting equations will relate di�erential incident, outgoing, and
emitted radiance ∂xLi , ∂xLo , and ∂xLe . Di�erential radiance in many

ways resembles “ordinary” radiance, and we will simply think of it

as another type of radiation that can be transported and scattered.

To start, a di�erential measurement of pixel k involves a ray-

space inner product involving di�erential incident radiance ∂xLi
and importanceWk :

∂xIk =

∫
A

∫
S2

Wk (p,ω)∂xLi (p,ω) dω⊥
dp. (Di�. Measurement)

Here, we have assumed a static sensor
3
, hence ∂xWk = 0. Di�er-

entiating the transport equation yields no surprises: di�erential

radiance is transported in the same manner as normal radiance:

∂xLi (p,ω) = ∂xLo (r(p,ω),−ω). (Di�. Transport)

The derivative of the scattering equation is more interesting:

∂xLo (p,ω) = ∂xLe (p,ω)︸       ︷︷       ︸
Term 1

(Di�. Scattering)

+

∫
S2

[
∂xLi (p,ω ′) fs (p,ω,ω ′)︸                         ︷︷                         ︸

Term 2

+ Li (p,ω ′) ∂x fs (p,ω,ω ′)︸                         ︷︷                         ︸
Term 3

]
dω ′⊥.

The above can be interpreted as another kind of energy balance

equation. In particular,

• Term 1. Di�erential radiance is “emitted” by light sources whose

brightness changes when perturbing the scene parameters x.
• Term 2. Di�erential radiance “scatters” in the same way as nor-

mal radiance, i.e., according to the BSDF of the underlying surface.

• Term 3. Di�erential radiance is additionally “emitted” when the

material at p changes as a function of the scene parameters.

In the following, we will develop tools to sample these equations in

reverse mode.

3.2 Optimization using di�erential transport
Applications of di�erentiable rendering to optimization problems

(e.g. inverse rendering) require an objective functionд : Y → R that
measures the quality of tentative solutions. This objective could be a

simple pixel-wise L1 or L2 error or a function with a more complex

dependence, such as a Wasserstein metric or a convolutional neural

network. Given д, we seek to minimize the concatenation д(f (x))
using an iterative gradient-based optimization technique, bearing in

mind that evaluations are necessarily noisy due to the underlying

Monte Carlo integration.

It is interesting to note that gradients are a major asset in this con-

text: Jamieson et al. [2012] showed that derivative free optimization
(DFO) methods can never achieve an optimization error better than

Ω(1/
√
l) when optimizing noisy objectives, where l is the iteration

count, and this even applies to methods that estimate derivatives

using �nite di�erences. In contrast, the error of gradient-basedmeth-

ods always decreases proportional to Θ(1/l) when the function is

strongly convex
4
.

It is tempting to perform di�erentiable rendering by simply eval-

uating the composition д(f (x)) and recording a transcript, followed

by reverse-mode propagation. The �rst issue with this approach was

noted by Azinović et al. [2019] and can be observed after rewriting

the gradient as a product of the Jacobians via the chain rule:

∂x д(f (x)) = Jд◦f (x) = Jд(f (x)) Jf (x).

In practice, both factors above are estimated using Monte Carlo in-

tegration. Since this occurs simultaneously using the same samples,

the resulting random variables are correlated, meaning that the iden-

tity E[XY ] = E[X ]E[Y ] no longer holds, and the resulting gradients
are thus biased. The second problem is that the transcript of д ◦ f is

even longer than the already problematic rendering step, especially

when the objective function is nontrivial. In contrast, our approach

3
Compatibility of our approach with existing methods which compute visibility-

related gradients is discussed in Section 3.6.

4
A standard assumption made to analyze the asymptotic behavior of such methods.
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Gradient of objective 
w.r.t. each pixel

Primal rendering

Objective function

Reference image

Scene parameters

Backpropagate Adjoint rendering

Radiative backpropagation

Fig. 2. Our method e�iciently computes gradients of an arbitrary objective function д(f (x)) with respect to scene parameters x. At each iteration, it performs
a fast primal (i.e. non-di�erentiable) rendering step producing an image y = f (x). The second step di�erentiates the objective function to compute an “adjoint
rendering” δy that expresses the sensitivity of individual image pixels with respect to the optimization task. Radiative backpropagation is the final step
and main contribution of this article. It consists of a physical simulation, in which adjoint radiance δy is emi�ed by the sensor, sca�ered by the scene, and
eventually received by objects with di�erentiable parameters. Its output are parameter gradients δx.

splits di�erentiation into three steps: rendering, di�erentiation of

the objective, and radiative backpropagation. In pseudocode:

def grad(x):
# 1. Ordinary rendering (no AD)

y = f(x)
# 2. Differentiate objective at y (manually or w/ AD)

δy = JTд (y)
# Estimate δx = JTf δy using radiative backpropagation

return radiative_backprop(x, δy)

We refer to δy ∈ Rn as the adjoint rendering5. It encodes the sen-
sitivity of pixels with respect to the objective, i.e., how the rendered

image should change to optimally improve the objective locally. The

algorithm’s main steps are illustrated in Figure 2.

3.3 Adjoint radiance
We now turn to the stochastic evaluation of JTf δy. Recall that the
rows of the Jacobian Jf are the parametric derivatives of pixel mea-

surements, i.e.

JTf =
[
∂xI0, . . . , ∂xIn

]
.

Substituting the di�erential measurement equation yields

JTf δy =
n∑

k=1

δy,k ∂xIk

=

∫
A

∫
S2

[ n∑
k=1

δy,kWk (p,ω)

]
︸                    ︷︷                    ︸

CAe (p,ω)

∂xLi (p,ω) dω⊥
dp,

5
Unless noted otherwise, we use the quali�er “adjoint” in the AD sense throughout

this article, i.e., indicating sensitivity with regards to an optimization objective. The

terminological overlap with bidirectional light transport techniques is unfortunate.

where we have de�ned the emitted adjoint radiance Ae (p,ω) and

δy,k refers to pixel k of δy. With this substitution, the desired

gradient JTf δy turns into an inner product on ray space:

= 〈Ae , ∂xLi 〉.

We think of Ae as an emitted quantity—for instance, in the case of

a pinhole camera, it can be interpreted as a textured “spot light”

that projects the adjoint rendering into the scene. Whereas a primal

renderer might, e.g., estimate an inner product of emitted impor-

tance and incident radiance, radiative backpropagation replaces

these with di�erential quantities: emitted adjoint radiance, and the

incident di�erential radiance.

3.4 Operator formulation
The previous expression is reminiscent of the starting point of the

operator formulation developed by Arvo [1995] and Veach [1997].

We wish to follow a similar approach here and begin by de�ning an

e�ective emission term Q(p,ω) that includes terms 1 and 3 of the

di�erential scattering equation from the previous page. Recall that

the latter is nonzero when the scattered radiance at p changes as a

function of the material parameters.

Q(p,ω) B ∂xLe (p,ω) +

∫
S2

Li (p,ω ′) ∂x fs (p,ω,ω ′) dω ′⊥,

We then de�ne a scattering operator K , and a propagation operator G :

(K h)(p,ω) B

∫
S2

h(p,ω ′) fs (p,ω,ω ′) dω ′⊥,

(Gh)(p,ω) B h(r(p,ω),−ω),

reducing the di�erential transport and scattering equations to

∂xLi = G∂xLo , and ∂xLo = Q + K ∂xLi .

Di�erential radiance scatters and propagates like “ordinary” radi-

ance, hence K and G are identical to Veach’s operators, allowing us

ACM Trans. Graph., Vol. 39, No. 4, Article 146. Publication date: July 2020.
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to immediately state the solution of outgoing di�erential radiance:

∂xLo = Q + KG ∂xLo

= (I − KG)−1︸       ︷︷       ︸
CS

Q =
∞∑
i=0

(KG)iQ

via the solution operator S given in terms of a Neumann series

expansion of K and G . Veach also showed that G , K , and GS
are self-adjoint6 linear operators when the scene satis�es elemen-

tary physical constraints—in particular, energy-conserving and re-

ciprocal BSDFs. Self-adjoint operators O have the property that

〈O v1,v2〉 = 〈v1,O v2〉, meaning that

JTδy = 〈Ae , ∂xLi 〉 = 〈Ae ,GSQ〉 = 〈GSAe ,Q〉.

This equation encapsulates the key idea of radiative backpropaga-

tion. It states that instead of scattering and propagating di�erential

radiance we can also start “from the other side” and scatter and

propagate adjoint radiance instead. This is a vastly easier problem:

Ae is scalar-valued, whileQ is a vectorial function whose dimension

matches that of the parameter space X (i.e. potentially millions).

3.5 Sampling strategies for di�erential rendering
To complete the symmetry, we can �nally de�ne analogous incident

and outgoing variants of adjoint radiance satisfying

Ai = GAo , and Ao = Ae + KAi

In the next section, we present a simple path tracing-style integrator

that samples adjoint incident radiance Ai at surface locations to
compute its inner product 〈Ai ,Q〉 with the e�ective di�erential

emission. At speci�c surface positions, the Q term is extremely

sparse
7
, admitting a highly e�cient integration procedure.

A great variety of alternative sampling schemes are conceivable:

for instance, certain scene parameters may have a signi�cant e�ect

on the scene’s local radiance distribution (corresponding to very

large component values in the e�ective emission term Q). Scene
locations a�ected by this could be sampled in a more targeted fash-

ion to create an additional connection strategy akin to next event
estimation in the context of path tracing.

The bene�ts of such a connection strategywill be marginal if most

of the generated samples cannot be connected to the adjoint subpath

sampled from the camera end (e.g. due to occlusion). Analogous to

bidirectional path tracing [Veach and Guibas 1995], it may be helpful

to scatter and transport these samples multiple times through the

scene to increase the probability of a successful connection, creating

a family of bidirectional connection strategies.

One of the main contributions of our work is that it casts the

problem of reverse-mode di�erentiable rendering into familiar light

transport terms, enabling the application of a large toolbox of algo-

rithms and sampling strategies developed in the last decades.

6
In the sense of functional analysis.

7
On a surface with a textured di�use BSDF, it will e.g. be zero except for compo-

nents corresponding to texels that are interpolated during BSDF evaluations at p.

3.6 Loose ends
Dependence on primal radiance. One potential stumbling block

is that the e�ective emission term Q contains the primal incident

radiance Li . In our implementation, sampling Q therefore involves

a recursive invocation of a classical path tracer. We perform this

recursive estimate at every interaction with di�erentiable param-

eters, which can be costly (quadratic complexity) when sampling

long light paths with many interactions. The same issue was also

reported by Zhang et al. [2019] in the context of forward-mode di�er-

entiation. Interactions with objects whose properties are not being

di�erentiated do not trigger any additional computation compared

to a standard path tracer.

When the scene involves very long light paths and many di�er-

entiable objects, it might therefore be preferable to precompute a

data structure that enables cheap approximate queries of Li . For
instance, a path guiding technique [Müller et al. 2017] could be used

to accelerate rendering in the primal phase. The resulting spatio-

directional tree storing an interpolant of Li could subsequently be

used to perform radiance queries in the adjoint phase.

Volumetric scattering. Radiative backpropagation also supports

participating media. The theoretical derivation is somewhat techni-

cal and can be found in Appendix A.1. Section 5 showcases several

results involving optimization of heterogeneous media.

Visibility. Although our prototype implementation of radiative

backpropagation does not currently compute visibility-related gra-

dients, we believe that they can be integrated into our framework.

Two very di�erent high-level approaches for di�erentiating dis-

continuous light transport integrals have been studied in prior work:

Li et al. [2018] propose a new sampling strategy for silhouette edges

that accounts for their e�ect on derivatives. This strategy could in

principle also be used during radiative backpropagation, but this

would require modi�cations to the previous theoretical discussion

(e.g. extra boundary terms).

Loubet et al. [2019] observed that the problem of incorrect gradi-

ents can also be addressed by performing a change of variables in all

light transport integrals. In particular, the new coordinates must be

carefully chosen so that the discontinuities remain static when per-

turbing the scene parameters x—naturally, the re-parameterization

must itself depend on x to achieve this. Loubet et al. also propose

a simple ray-tracing based query to estimate suitable parameter-

izations with controllable bias. Such a change of variables could

be performed during radiative backpropagation, which requires no

modi�cations of our previous derivations.

3.7 Radiative backpropagation path tracing
Listings 1 and 2 provide the pseudocode of a simple path tracing-

style variant of radiative backpropagation. Note that all scene el-

ements (BSDFs, emitters) in these listing are assumed to have an

implicit dependence on the scene parameters x. For simplicity, we

omit a number of optimizations that are standard in path tracers, and

which are similarly straightforward to implement in our method—in

particular: russian roulette, direct illumination sampling strategies

for emitters, and multiple importance sampling to combine BSDF

and emitter sampling strategies—our prototype implementation
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def radiative_backprop(x, δy):

# Initialize parameter gradient(s) to zero

δx = 0

for _ in range(num_samples):

# Importance sample a ray from the sensor

p, ω, weight = sensor.sample_ray()

# Evaluate the adjoint emitted radiance

weight *= Ae (δy, p, ω) / num_samples

# Propagate adjoint radiance into the scene

δx += radiative_backprop_sample(x, p, ω, weight)

# Finished, return gradients

return δx

Listing 1. Radiative backpropagation takes scene parameters x and an ad-
joint rendering δy as input. It samples a large set of camera rays and propa-
gates the associated adjoint radianceAe (depending on δy ) into the scene.

does use these optimizations, however. One interesting optimiza-

tion opportunity that we currently do not exploit is that many pixels

may be associated with a relatively small amount of adjoint radi-

ance (i.e.Ae (p,ω) ≈ 0), in which case rays (p,ω) should be sampled

directly from Ae instead of the sensor’s importance function.

Two lines in Listing 2 of the form

grad += adjoint([[ q(z) ]], δ)

deserve further explanation. This syntax indicates an evaluation

of the adjoint of q: we wish to propagate the gradient δ from the

outputs of the function q evaluated at (x, z) to its di�erentiable pa-

rameters x ∈ X by evaluating JTq(x, z)δ . The function adjoint then

returns the derivative with respect to the scene parameters i.e. a

vector of size dimX. Note that adjoints of typical components of ren-

dering systems yield extremely sparse gradient vectors: for instance,
evaluations of a textured BSDFwill only depend on a few parameters

that correspond to nearby texels. Adding million-dimensional vec-

tors with only a few nonzero entries at every interaction would be

very wasteful, hence it is crucial that adjoint() exploits the underly-

ing sparsity pattern. The next section discusses our implementation

of this important operation.

3.8 Worse is be�er: acceleration using biased gradients
The previous subsection introduced an unbiased algorithm for esti-

mating parametric derivatives using an optical analog of reverse-

mode propagation. We now turn to a counter-intuitive aspect of our

method—that a naïve formulation with biased gradients could be

preferable! We propose two approximations: the �rst replaces the

e�ective emission

Q(p,ω) = ∂xLe (p,ω) +

∫
S2

Li (p,ω ′) ∂x fs (p,ω,ω ′) dω ′⊥,

by a simpli�ed expression

Qapprox(p,ω) B ∂xLe (p,ω) +

∫
S2

∂x fs (p,ω,ω ′) dω ′⊥,

where we have substituted the primal radiance term Li with the

value 1. In this case, gradients of individual material parameters still

def radiative_backprop_sample(x, p, ω, weight):

# Find an intersection with the scene geometry

p′ = r(p, ω)

# Backpropagate to parameters of emitter, if any

δx = adjoint([[ Le (p′, −ω) ]], weight)

# Sample a ray from the BSDF

ω′, bsdf_value, bsdf_pdf = sample fs (p′, −ω, ·)

# Backpropagate to parameters of BSDF, if any

δx += adjoint([[ fs (p′, −ω, ω′) ]],

weight * Li (p, ω′) / bsdf_pdf)

# Recurse

return δx + radiative_backprop_sample(

x, p′, ω′, weight * bsdf_value / bsdf_pdf)

Listing 2. Simplified pseudocode of the propagation operation for surfaces.
The two adjoint() operations correspond to the two terms of the e�ective
di�erential emission Q and propagate adjoint radiance to parameters of the
emi�ers and material models (see Section 3.7 for details on their semantics).

record the correct sign (namely, whether the parameter should in-

crease or decrease), but their magnitude will generally be incorrect.

This change was originally motivated from an e�ciency perspec-

tive: using Qapprox, radiative backpropagation no longer requires

recursive invocations of the primal integrator, and the quadratic

time complexity thus becomes linear. However, in our experiments,

we found that biased gradients are not only faster to compute, but

that they paradoxically lead to improved convergence per iteration

even when accounting for their di�erent overall scale.

To try to understand potential reasons for this e�ect, we refer to a

recent study of sign-based gradient descent techniques by Balles and

Henning [2018]. Comparing SGD to stochastic sign descent, which

only uses the sign of computed gradients, the authors report: “On

the well-conditioned problem, gradient descent vastly outperforms

the sign-based method in the noise-free case, but the di�erence

is evened out when noise is added.” In our case, Qapprox removes

a signi�cant source of variance in the radiative backpropagation

procedure, which we believe to be responsible for this counter-

intuitive improvement. In the remainder of this article, results using

this simpli�cation are labeled Biased (I).
Our second approximation builds on the observation that the

adjoint phase computes many quantities found in normal path trac-

ers: samples from the BSDF and direct illumination strategies, MIS

weights, etc. At negligible additional cost, we can therefore render

an image of the scene while propagating gradients. This suggests the
following iterative scheme with a joint primal and adjoint phase:

1 y = f(x)
2 while not converged:

3 δy = Jд y
4 y, δx = radiative_backprop(x, δy)
5 # .. gradient step ..

The above iteration now contains an intentional “o�-by-1 error”:

iteration i propagates the adjoint rendering from iteration i − 1
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through the Jacobian of iteration i .

δ (i)x = JTf
(
x(i)

)
δ (i−1)y

which can be a good approximation if the Jacobian changes slowly

from iteration to iteration. In the context of neural networks, this

optimization is known as pipelining [Petrowski et al. 1993]. In the re-

mainder of this article, results using pipelining are labeled Biased (II),
and results that also use Qapprox are labeled Biased (I + II).

4 IMPLEMENTATION
We have implemented radiative backpropagation on top of Mit-

suba 2 [Nimier-David et al. 2019], a retargetable rendering system

with several di�erent computational backends and spectral modes.

We build on its “gpu_autodiff_rgb” target, which performs di�er-

entiable simulation on the GPU via CUDA, using OptiX [Parker et al.

2010] for ray tracing along with an RGB-based color representation.

The original codebase propagates wavefronts (typically a few

million rays) through the scene one bounce at a time, while keeping

a transcript of the underlying calculation in large GPU-allocated

arrays to enable reverse-mode automatic di�erentiation. A key issue

with this approach is that rendering simple scenes can easily exhaust

the memory capacity of currently available GPUs (we use a NVIDIA

RTX 2080 Ti card with 12 GiB of RAM) depending on the resolution

and number of samples per pixel (e.g. 512×512 rendered at more

than 16 spp for the Globe scene shown in Figure 1). However, scenes

with complex radiative transport may require many more samples

to obtain reasonably converged gradients. Even when everything

�ts, memory latency and bandwidth become critical bottlenecks

due to the large amount of data transfer that is needed to write and

later read the transcript during di�erentiation. To achieve reason-

able convergence without exhausting memory, it is necessary to

average the gradients of many short rendering passes. Alternatively,

the optimizer can be adjusted to work with very noisy gradients

obtained at low sample counts by taking a larger number of tiny

gradient descent steps. In either case, performance su�ers due to

the limits in memory capacity and bandwidth.

We address these problems by discarding the wavefront approach

altogether and instead implement radiative backpropagation as a

megakernel, which requires no extra memory apart from a single

array that is used to store gradients. This megakernel evaluates

adjoints of shaders (BSDFs, light sources, etc.) that are automatically

extracted from the their primal counterparts.

4.1 Wavefronts versus Megakernels
Seen from a high level, wavefront-based rendering systems propa-

gate a set of rays in lockstep, using large memory regions to record

their current state during this process. Separate steps of the algo-

rithm (ray tracing, scattering, direct illumination sampling, etc.) are

implemented as small independent kernels that parallelize over the

wavefront and mutate its state in global memory.

As the name suggests, a megakernel instead consists of a single

large kernel that includes all components of the original rendering

algorithm. This kernel processes one light path at a time, generally

using processor registers rather than global memory to record its

state. Many instances of this megakernel execute concurrently and

asynchronously. Wavefront and megakernel-based rendering each

have distinct advantages and disadvantages—we refer to Laine et

al. [2013] for a thorough discussion. The recent emergence of GPUs

with hardware-accelerated ray tracing functionality has tipped the

scales towards the latter approach, since they are highly optimized

for megakernels.

Note that Mitsuba 2’s previous approach to di�erentiable render-

ing would not have been practical to implement as a megakernel due

to the need to maintain and traverse a transcript, which involves a

graph and numerous auxiliary data structures including red-black-

trees and multiple hash tables. The original system used wavefronts,

i.e. vectorial AD precisely to amortize the runtime cost of main-

taining these data structures, which is impossible in a megakernel

because each element is processed individually.

4.2 Transitioning to a megakernel
Turning again to radiative backpropagation in the context of these

constraints, we observe that the method mostly behaves like a path

tracer, where all remaining challenges related to di�erentiable ren-

dering have been pushed into the e�ective emission term Q. If this
function could somehow be turned into a “shader” that requires no

access to dynamic AD-related data structures, then standard tools

for megakernel-based rendering (e.g. OptiX) would be applicable.

Motivated by this idea, we decided to convert Mitsuba 2 from a

wavefront architecture into a megakernel, while at the same time

adding adjoints of all relevant system components referenced in Q
(emitters, BSDFs, participating media). If carried out manually, both

are complex changes that would require a substantial redesign of

the system
8
. We instead build on the just-in-time (JIT) compilation

approach used by Mitsuba 2 and the underlying Enoki library [Jakob

2019] to automatically perform this transformation. A brief review

of this JIT compiler is provided in Appendix B.

In its normal mode of operation, the JIT compiler records a sym-

bolic representation of each instruction until a synchronization

point triggers evaluation, at which point queued computations are

compiled and executed on the GPU. Our approach is based on a

simple modi�cation of this scheme: we simply interrupt the process

following code generation and return a string representation the

generated program (using NVIDIA’s PTX intermediate representa-

tion) rather than executing it. These functions can then be attached

to scene objects and will trigger computation following ray intersec-

tions (in OptiX terminology, this is called a “closest hit program”).

In the end, the only manual CUDA implementation remaining is the

radiative backpropagation code itself which pulls these fragments

together, representing less than a thousand lines of code for the

surface case. Listing 3 shows how the primal evaluation routine of

a BSDF can be extracted using this simple recording mechanism.

Listing 4 shows how adjoints can be extracted using the same

mechanism, which entails four additional steps:

(1) Declaration of an additional input: the gradient of the output of
the primal function.

8
We note that source transformation-based AD tools such as ADIFOR [Bischof

et al. 1992] or Tapenade [Hascoet and Pascual 2013] could in principle perform the latter

step, but their restriction to FORTRAN / plain C fragments makes them challenging to

reconcile with the highly object-oriented nature of modern renderers.
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1 // Declare inputs that act as placeholders

2 SurfaceInteraction3f si = enoki::zero<SurfaceInteraction3f>();

3 Vector3f wo = enoki::zero<Vector3f>();

4

5 enoki::start_recording("bsdf_eval");

6

7 // Execute BSDF sampling routine *symbolically*

8 Spectrum result = bsdf.eval(si, wo);

9

10 // Declare inputs and outputs. The PTX string will then expose

11 // the recorded computation as a function with these arguments

12 enoki::set_inputs(si, wo);

13 enoki::set_outputs(result);

14 enoki::stop_recording();

15

16 // ... record other functions ...

17

18 const char *ptx_string = enoki::ptx_module();

Listing 3. We automatically transform Mitsuba 2 from a wavefront ren-
derer into a megakernel-based architecture. To do so, we make a small
modification to Enoki’s lazy just-in-time compiler that allows it to briefly
pause execution while recording all operations involving GPU arrays into
a PTX instruction sequence. This sequence can subsequently be extracted
and a�ached to scene objects. The above example extracts the evaluation
routine of a BSDF.

(2) Declaration of di�erentiable parameters, causing subsequent arith-

metic in bsdf.eval() to be recorded onto the AD transcript.

(3) Reverse-mode traversal via enoki::backward(). This step is also
symbolic and appends further instructions to the recording.

(4) Recording of an atomic instruction (enoki::scatter_add())
that will accumulate the resulting gradient(s) into the vector δx.

The resulting code fragment provides an e�cient sparse implemen-

tation of the δx += adjoint([[ q(z) ]], gradient) operation
discussed in Section 3. Importantly, the machinery of reverse-mode

AD is used during code generation, but is no longer needed at eval-

uation time.

Limitations. There are several limitations to our approach: when

components of the renderer execute loops, we can only extract a

correct instruction trace if the length of this loop is known or can be

bounded. Fortunately, this is the case for standard loop constructs

found in renderers: for instance, the number of steps needed for

hierarchical sample warping or bisection of a discrete CDF is related

to the resolution of the underlying distribution and thus exactly

known, and root-�nding techniques such as Newton iterations can

be bounded with a conservative iteration count.

Since we e�ectively unroll all computations, our approach is sub-

optimal for long-running loops. In fact, the heterogeneous volume

sampling code of Mitsuba 2, which relies on a ray marching loop,

generated an unrolled kernel of more than 10MiB of PTX source.

When added to the OptiX megakernel, compilation exhausted the

system memory and eventually led to a crash. As a workaround, we

selectively re-implemented the relevant loop in CUDA while still

relying on automatic extraction of the remaining heterogeneous

medium-related functionality (trilinearly interpolation of medium

parameters like σt ).

1 // Declare inputs that act as placeholders

2 SurfaceInteraction3f si = enoki::zero<SurfaceInteraction3f>();

3 Vector3f wo = enoki::zero<Vector3f>();

4

5 // The gradient of the function's output

6 // is an input of the adjoint

7 Spectrum grad_output = enoki::zero<Spectrum>();

8

9 // Reference to a BSDF parameter (e.g. roughness)

10 Float &param = /* .. */;

11

12 enoki::start_recording("bsdf_eval_d");

13

14 // We want to keep track of derivatives wrt 'param'

15 enoki::set_requires_gradient(param);

16

17 // Evaluate the BSDF symbolically & record a transcript

18 Spectrum result = bsdf.eval(si, wo);

19

20 // Backpropagate 'grad_output' to 'param'

21 enoki::set_gradient(result, grad_output);

22 enoki::backward<Float>();

23

24 // The derivative shader only has inputs and accumulates

25 // its outputs into a global array storing parameter gradients

26 enoki::set_inputs(si, wo, grad_output)

27 enoki::scatter_add(/* |δ x| entry */, enoki::gradient(param));

28

29 enoki::stop_recording();

Listing 4. We furthermore use Enoki to di�erentiate components of the
renderer via reverse-mode AD, recording the resulting instruction sequence
symbolically. The resulting “adjoint shaders” operate without access to AD-
related data structures and atomically accumulate gradients with respect
to inputs into a global array.

Like normal rendering, radiative backpropagation is “embarrass-

ingly parallel”, and can thus be parallelized over many cores of

CPUs/GPUs or even multiple machines. One potential issue in this

context is that adjoints of shaders atomically accumulate gradients

into a set of global variables, which can lead to memory contention.

Allocating dedicated memory regions for each core that are merged

at the end of the adjoint phase could potentially alleviate such re-

source con�icts.

5 RESULTS
We now analyze the performance and correctness of radiative back-

propagation in a number of di�erent settings.

Validation. To test the correctness of the computed gradients, we

selected several simple cases (di�use RGB coe�cients, heteroge-

neousmedium density, di�use texture), and compare the gradients of

these parameters with respect to the loss generated by our method,

Mitsuba 2 (which uses automatic di�erentiation), as well as �nite

di�erences in Figure 3. We generally �nd good agreement with a

small amount of residual noise.

Texture optimization. The following experiments focus on the

solution of inverse problems using gradient-based optimization. We
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Fig. 3. Validation of gradients comparing radiative backpropagation to Mitsuba 2’s existing implementation of automatic di�erentiation, and finite di�erences
when practical. We plot the partial derivative of the loss w.r.t. each parameter. (a): Gradients of the RGB colors of objects in the Cornell box. (b): Derivatives
with respect to extinction in a 3 × 3 heterogeneous volume lit by an environment map. (c): Gradients of a di�use texture of a wooden table lit by an area light.
In all cases, we find close agreement.

present results for unbiased radiative backpropagation and the two

approximations presented in Section 3.8: biased gradients (“biased

I”), pipelining (“biased II”), and both (“biased I + II”). As before, the

main focus of our work is on e�cient di�erentiation rather than

solving speci�c optimization problems. Additional techniques such

as multi-resolution, multi-view and hyper-parameter adjustments

are orthogonal to our method and could be used to further improve

convergence.

Figure 1 showcases the reconstruction of the texture of a globe

encased in a curved sheet glass modeled using two interfaces. This

scene involves �ne detail, and the underlying simulation accounts

for paths with up to 24 scattering events including specular-di�use-

specular interre�ection. In such a setting where high resolution and

sample count are both required, the AD-based approach of Mitsuba 2

rapidly exhausts the available GPU memory. As a consequence,

rendering and di�erentiationmust be split inmultiple smaller passes,

which negatively impacts the overall running time.

We use a simple L2 objective function, adding a total variations
regularizer to promote smoothness of the texture. Note that any dif-

ferentiable loss can be used in combination with radiative backprop-

agation, including more complex ones built from convolutional neu-

ral networks. We render each iteration at a resolution of 1280 × 720

pixels and double the sample count every 40 iterations starting at 4

samples per pixel. Figure 4 compares the convergence of all methods,

both with respect to iteration count and runtime. The optimized

texture is displayed at equal time, and corresponding renderings are

shown in Figure 1.

In principle, there should be no major di�erence in convergence

per iteration when comparing gradients that are obtained using

di�erent techniques. Surprisingly, we observe that biased gradi-

ents signi�cantly improve convergence although they are clearly

“less correct”. We believe that the primal radiance estimates per-

formed during our method’s adjoint phase introduce large amounts

of variance into gradient estimates that impede convergence. Pri-

mal radiance estimates are also implicitly used when a complete

simulation is di�erentiated using AD, as is the case in the current im-

plementation of di�erentiable rendering in Mitsuba 2. By removing

this source of variance, faster progress can be achieved.

Volume optimization. Next, we reproduce the volume albedo and

density optimization experiments of Nimier-David et al. [2019]. The

former optimizes the spatially-varying albedo of a homogeneous

volume to match the appearance of a speci�ed texture. This is useful

in the context of 3D printing, where the scattering of the material

leads to blurring and a loss of contrast. Optimization can be used to

determinewhich color should be used at each point of themedium to

maximize contrast and �delity. This problem was studied in depth in

previous work [Elek et al. 2017; Sumin et al. 2019], andwemerely use

it here as an illustrative example. The second problem reconstructs

density values σt of a high-resolution smoke plume from an image

of the volume itself. Inverting such complex transport e�ects would

be extremely challenging without di�erentiable rendering.

In both cases, Mitsuba 2 must maintain the transcript of the entire

volumetric transport simulation before being able to perform a

reverse-mode traversal. This transcript becomes staggeringly large

for any non-trivial volume resolution due to a long sequence of

trilinear lookups. Despite being rendered at 256 × 256 resolution,

these examples exhaust GPU memory with as few as 1 sample

per pixel
9
. In contrast, radiative backpropagation uses a minimal

amount of memory and never requires multiple passes. Its memory

usage is essentially independent of the volume resolution, as only

the volume and its gradients must be stored.

Performance. To quantify the e�ect of approximate gradients (“bi-

ased I”) and pipelining (“biased II”) optimizations, we measure the

runtime of the primal, adjoint or combined primal / adjoint phases in

three types of scenes. The breakdown is plotted in Figure 7. Given

a scene where all interactions involve di�erentiable parameters,

approximate gradients will help most since they eliminate a compo-

nent of the runtime that is quadratic in path length. On the other

hand, scenes with costly primal rendering phases may bene�t most

from pipelining.

We then compare our algorithm’s runtime to Mitsuba 2 on four

typical applications of di�erentiable rendering in Figure 8. For a

given sample count, we run at least 10 iterations and measure the

9
For this application, we were not able to complete more than 5 iterations with

Mitsuba 2 due to a crash. These few iterations took several times longer than the

complete runs of our methods combined.
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we show the reconstructed textures a�er 8.5 minutes. Regions that are not visible (even indirectly) remain close to the initial state. A variant of our technique
(“Biased I”) removes a significant source of variance by approximating incident radiance with a constant, improving convergence at equal iteration count.
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Fig. 5. We reproduce the albedo optimization experiment of Nimier-David et al. [2019], in which the spatially-varying albedo of a homogeneous sca�ering
slab must be modified to match the appearance of a di�use texture while accounting for subsurface sca�ering. Starting from a constant gray slab, our method
achieves convergence a�er a single minute of optimization. The resulting media are shown on the le� at equal time (74 seconds). In this example, using biased
gradients (“Biased I”) avoids costly recursive estimation of incident radiance, which dramatically reduces the runtime cost per iteration.
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convergence at equal time (2.5 minutes), or at the end of the first iteration in case of Mitsuba 2 (26 minutes).
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median runtime. We then report the relative speedup of each variant

over Mitsuba 2. Both techniques rely on OptiX for ray tracing.

We observe two performance regimes: at low sample counts, even

though the full wavefront and AD transcript �t in memory, a con-

stant performance o�set arises due to architectural characteristics

described in Section 4.1 (wavefront versus megakernel). At higher

sample counts, Mitsuba 2’s AD approach quickly saturates the avail-

able GPU memory, and its computation must therefore be split into

several passes. In that regime, we obtain a linear speedup of up to

three orders of magnitude. As was shown before, biased variants

of our method achieve the highest speedup per iteration, while

simultaneously improving convergence in most cases.

These benchmarks were run on an NVIDIA 2080 Ti GPU with

12GiB of RAM.While we do not compare to the Redner di�erentiable

renderer [Li et al. 2018], we expect similar conclusions as it was

reported to have performance comparable to Mitsuba 2 [Nimier-

David et al. 2019].

6 CONCLUSION
Recent advances have revealed the tremendous potential of di�eren-

tiable rendering as a tool for solving inverse problems in a variety of

scienti�c disciplines. However, existing approaches to di�erentiable

rendering remain hamstrung by a fundamental performance and

scalability bottleneck: reverse-mode di�erentiation produces vast

amounts of intermediate state that rapidly exhausts the memory of

even the largest available computing platforms. This currently limits

the scope of this technology to relatively simple scenes rendered at

low resolutions.

Our article conclusively addresses these limitations. Our main

contribution is a new approach to di�erentiable simulation of light

that does not require a transcript of intermediate state, thus avoiding

burdensome storage overheads and improving performance by up

to three orders of magnitude. This is remarkable because transcript-

less di�erentiation of simulation code was previously only possible

in rare cases, one famous example being the adjoint sensitivity

method, which relies on the ability to reverse the �ow of time.

We show that a di�erent kind of adjoint can also be constructed

for steady-state light transport simulations that lack a time dimen-

sion. In our case, the adjoint phase emits two di�erential quantities

from sensors and objects that propagate towards each other akin

to ordinary light. Their eventual encounter yields a gradient mea-

surement that turns the chain rule from a discrete sum over partial

derivatives into a continuous integral on ray space. Another con-

tribution of our work is that it casts the adjoint phase into familiar

light transport terms, enabling the application of a large body of

prior work on sampling transport integrals.

One current limitation of our work is that the unbiased version

of our algorithm has a time complexity that is quadratic in the path

length which could become prohibitive (e.g. in highly scattering

participating media with light paths involving thousands of interac-

tions). We propose a biased variant that addresses this performance

concern and, oddly, appears to generally improve convergence per

iteration. Our approach admits an e�cient GPU implementation

using standard toolkits for megakernel-based rendering, and we

demonstrate the automated creation of adjoint shaders building on

Mitsuba 2’s tracing JIT compiler.

There are many interesting avenues for future work: it would be

interesting to see if radiative backpropagation enables simpli�ca-

tions in existing approaches for visibility-related derivatives. Our

method currently resembles an ordinary path tracer with multiple

importance sampling, and smarter adjoint-speci�c sampling strate-

gies could be bene�cial. Finally, our work focused speci�cally on the

evaluation of gradients, but the underlying optimization problem

might be challenging even if perfect gradients were freely available.

Further work on techniques to regularize the energy landscape of

di�erentiable rendering is therefore imperative.
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Fig. 7. We break down the running time of radiative backpropagation into primal and adjoint phases. Using biased gradients (“biased I”) drastically reduces
the cost of the adjoint phase when many di�erentiable objects are present in the scene (a & c), while pipelining (“biased II”) combines the primal and adjoint
phases into a single step (b).
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Fig. 8. We evaluate the relative performance of our method to Mitsuba 2’s autodi�-based backend. For each sample count, we time at least 10 iterations of a
realistic optimization. We then report the ratio of median iteration runtimes. Radiative backpropagation is up to three orders of magnitude faster.
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A APPENDIX

A.1 Volumetric transport
To analyze the volumetric case, we import the operator formulation

of Jakob [2013]. Its generalized scattering operator is given by

(K̄ h)(p,ω) B


∫
S2

h(p,ω′) fs (p,ω,ω′) dω ′⊥, p ∈ A

σs (p)
∫
S2

h(p,ω′) fp (p,−ω,ω′) dω′, p < A

which turns incident radiance into either outgoing radiance on

surfaces, and into outgoing radiance per unit length in volumes.

Here, σs is the medium’s scattering coe�cient and fp is the phase

function
10
. The propagation operator reads

(Ḡh)(p,ω) B

∫ r(p,ω)

p
T (p, p′)h(p′,−ω) dp′+T (p, r(p,ω))h(r(p,ω),−ω),

and returns incident radiance due to both outgoing surface radiance

and outgoing radiance per unit length in volumes. The function T
is the volumetric transmittance de�ned as

T (a, b) = e−
∫ b
a σt (p) dp,

and references the extinction coe�cient σt . Using the above de�ni-

tions, the generalized equilibrium equation
11

reads

Li = Ḡ(K̄ Li + Le ).

Di�erentiating the operators with respect to scene parameters via

the product rule yields the following sum of terms:

∂x(K̄ h)(p,ω) =



∫
S2

[
∂xh(p,ω′) fs (p,ω,ω′)

+h(p,ω′) ∂x fs (p,ω,ω′)
]
dω ′⊥, p ∈ A∫

S2

[
∂xh(p,ω′)σs (p) fp (p,−ω,ω′)

+h(p,ω′) ∂xσs (p) fp (p,−ω,ω′)

+h(p,ω′)σs (p) ∂x fp (p,−ω,ω′)
]
dω′, p < A

and the derivative of the propagation operator is given by

∂x(Ḡh)(p,ω) =

∫ r(p,ω)

p
[∂xT (p, p′)h(p′,−ω)+T (p, p′) ∂xh(p′,−ω)]dp′

+ ∂xT (p, r(p,ω))h(r(p,ω),−ω)

+T (p, r(p,ω)) ∂xh(r(p,ω),−ω).

We observe that both equations contain certain terms with the factor

∂xh, and that the removal of all other terms would yield expressions

that the match ordinary scattering and propagation operators ap-

plied to the function ∂xh. These other terms only depend on primal

quantities (in particular, h) and derivatives of material properties

(e.g. ∂xσs (p)), and the di�erential form of the operators can thus be

cast into the form

∂xK̄ h = K̄ ∂xh + Q̄ 1h

∂xḠh = Ḡ∂xh + Q̄ 2h

where the operators Q̄ 1 and Q̄ 2 model di�erential radiance that is

emitted because optical properties depend on scene parameters x.
10
Note that its incident argument follows a di�erent sign convention than the BSDF.

11
The order of operators is reversed compared to the surface case. Details can be

found in Jakob’s Ph.D. thesis [2013], page 57.
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More speci�cally, Q̄ 1 describes di�erential emission due to pertur-

bations in BSDFs, phase functions, and the scattering coe�cient,

and Q̄ 2 contains di�erential emission due to perturbations in trans-

mission along ray segments:

(Q̄ 1h)(p,ω) =



∫
S2

h(p,ω′) ∂x fs (p,ω,ω′) dω ′⊥, p ∈ A∫
S2

[
h(p,ω′) ∂xσs (p) fp (p,−ω,ω′)

+h(p,ω′)σs (p) ∂x fp (p,−ω,ω′)
]
dω′, p < A

(Q̄ 2h)(p,ω) =

∫ r(p,ω)

p
∂xT (p, p′)h(p′,−ω) dp′

+ ∂xT (p, r(p,ω))h(r(p,ω),−ω).

Both terms can be e�ciently sampled using standard volumetric

path tracing techniques. We can now derive the di�erential equilib-

rium equation:

∂xLi = ∂xḠ(K̄ Li + Le )

= Ḡ∂x(K̄ Li + Le ) + Q̄ 2(K̄ Li + Le )

= Ḡ(K̄ ∂xLi + ∂xLe + Q̄ 1Li ) + Q̄ 2(K̄ Li + Le )

= ḠK̄ ∂xLi + Ḡ∂xLe + ḠQ̄ 1Li + Q̄ 2(K̄ Li + Le )︸                                       ︷︷                                       ︸
CQ̄= (I − ḠK̄ )−1︸        ︷︷        ︸

= S̄

Q̄.

where S̄ is the generalized solution operator and Q̄ is an e�ective

emission term that accounts for all sources of emitted di�erential

radiance. As before, di�erential radiative transfer can thus be un-

derstood as the solution of an ordinary transport problem with a

modi�ed emission term. The volumetric form of radiative back-

propagation then exploits the self-adjoint nature of S̄ to e�ciently

compute the following inner product:

JTδy = 〈Ae , ∂xLi 〉 = 〈Ae , S̄Q̄〉 = 〈S̄Ae , Q̄〉.

B REVIEW OF THE LAZY JIT AND AD IN MITSUBA 2
Mitsuba’s GPU targets perform arithmetic via Enoki’s CUDAArray<T>

type, which lazily fuses operations into larger kernels for later exe-

cution on the GPU. For example, line 3 of the C++ fragment:

1 using Float = enoki::CUDAArray<float>;

2 Float a = /* .. */, b = /* .. */;

3 Float c = a * b;

does not immediately perform a multiplication but rather records

that a multiplication should take place when its evaluation can no

longer be postponed. Note that a, b, c would typically have millions

of entries—one per wavefront element.

Certain operations create barriers that force the system to emit a

fused kernel using NVIDIA’s PTX intermediate assembly language

that is then compiled to machine instructions and executed. An

example of this is ray tracing via the OptiX framework, which

requires concrete ray origins and directions rather than symbolic

descriptions. Communication between separate kernels occurs by

reading and writing large GPU-allocated arrays.

In Mitsuba’s AD-based targets, the arithmetic types are further-

morewrapped into DiffArray<T>, which realizes forward- and reverse-

mode di�erentiation on top of T. In the following example,

using Float = enoki::DiffArray<enoki::CUDAArray<float>>;

Float a = /* .. */, b = /* .. */;

Float c = a * b;

enoki::backward(c);

operations involving Float variables are recorded in a transcript

used for reverse-mode traversal in enoki::backward(). Because
DiffArray<T> carries out its arithmetic via the underlying type T, ad-

ditional AD-related arithmetic is also fused into PTX kernels. While

the above examples were extremely simple, the same principles

hold for larger system components: when the system evaluates a

rough dielectric microfacet model or samples a direction from an

environment map, the implementations return immediately, having

recorded their operations symbolically in both AD transcript and

fused PTX.

One serious problem with this approach is that the reverse-mode

propagation via enoki::backward() must occur all the way at the

end of di�erentiable rendering, and the transcript thus becomes very

long. Furthermore, ray tracing and virtual function calls constitute

two sources of frequent barriers that require �ushing queued opera-

tions. As a consequence, temporaries and other variables required by

enoki::backward() can no longer retain their symbolic form—they

are evaluated and stored in GPU-resident arrays. Nimier-David et

al. [2019] propose to periodically simplify parts of the transcript

to reduce memory usage due to these arrays, which helps to a cer-

tain extent but ultimately does not solve the issues with memory

capacity and bandwidth. Section 4.2 proposes a small modi�cation

to Enoki’s JIT compiler enabling generation of functions that are

usable in a megakernel setting, and which avoid the memory-related

issues described above.
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