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Fig. 1. Image-based shape and texture reconstruction of a statue given 32 (synthetic) reference images (a) and known environment illumination. We use
differentiable rendering to jointly optimize a signed distance representation of the geometry and albedo texture by minimizing the 𝐿1 loss between the
rendered and the reference images. Our method correctly accounts for discontinuities and we therefore do not require ad-hoc object mask or silhouette
supervision. We visualize the reconstructed surface (b) and the re-rendered textured object (c). The view and illumination condition in (b) and (c) are different
from the ones used during optimization. In (d) we render the ground truth triangle mesh.

Physically-based differentiable rendering has recently emerged as an attrac-

tive new technique for solving inverse problems that recover complete 3D

scene representations from images. The inversion of shape parameters is of

particular interest but also poses severe challenges: shapes are intertwined

with visibility, whose discontinuous nature introduces severe bias in com-

puted derivatives unless costly precautions are taken. Shape representations

like triangle meshes suffer from additional difficulties, since the continuous

optimization of mesh parameters cannot introduce topological changes.

One common solution to these difficulties entails representing shapes

using signed distance functions (SDFs) and gradually adapting their zero

level set during optimization. Previous differentiable rendering of SDFs did

not fully account for visibility gradients and required the use of mask or

silhouette supervision, or discretization into a triangle mesh.

In this article, we show how to extend the commonly used sphere tracing

algorithm so that it additionally outputs a reparameterization that provides

the means to compute accurate shape parameter derivatives. At a high level,

this resembles techniques for differentiable mesh rendering, though we show

that the SDF representation admits a particularly efficient reparameterization
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that outperforms prior work. Our experiments demonstrate the reconstruc-

tion of (synthetic) objects without complex regularization or priors, using

only a per-pixel RGB loss.
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1 INTRODUCTION
Methods for physically-based differentiable rendering (PBDR) are

of increasing interest due to their ability to solve previously in-

tractable inverse problems involving realistic material appearance,

shadowing and interreflection. They differentiate physically-based

rendering algorithms like path tracing [Kajiya 1986] and use the

resulting gradients to minimize non-linear objective functions on

high-dimensional domains.

A central challenge in these methods are discontinuities that arise
at the silhouette of occluders. If not accounted for, these instan-

taneous changes severely bias derivatives when PBDR methods

are used to optimize the scene geometry, which effectively breaks

applications such as 3D reconstruction from images.
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While rendering is intrinsically differentiable, it can be difficult

to retain this property in the transition from equation to algorithm.

For example, the direct application of automatic differentiation (AD)

to a rendering algorithm will normally not produce usable gradi-

ents. Parameters that require special handling include triangle mesh

vertices and variables that influence the zero level set of implicitly

defined surfaces.

Besides the mathematics of gradient evaluation, a second impor-

tant concern is the 3D representation underlying the scene. Many

options exist, but not all are equally amenable to optimization. Trian-

gle meshes have proven extremely popular in the setting of forward

rendering, but inverse problems have considered a wider set of pos-

sibilities including point-based, implicit, or volumetric surface repre-

sentations. Signed distance functions (SDF) are another possibility;

renewed interest in them has led to specialized SDF reconstruction

techniques that we review in Section 2. A signed distance function

measures the signed distance to a surface that is defined by its zero

level set. A key advantage of using SDFs as geometric representation

is their ability to easily represent topological changes during the

optimization process [Osher and Sethian 1988].

While there is a large body of work on using SDFs for inverse ren-

dering, no existing technique can directly differentiate renderings

of SDFs with respect to primary, secondary (shadows), or higher-

order effects (global interreflections). We generally expect inverse

problems to become more useful as their model evaluation and cou-

pled steps like differentiation become increasingly representative of

physical reality, hence this is highly desirable. A recent approach

that can be adapted to SDFs reparameterizes the discontinuous im-

age contribution function [Loubet et al. 2019; Bangaru et al. 2020].

While originally developed for triangle meshes, these methods are

independent of the geometry representation and therefore also ap-

ply to SDFs. They expose a bias-versus-computation tradeoff, and

to achieve high quality gradients, require tracing many costly addi-

tional rays.

We propose a specialized reparameterization technique for dif-

ferentiable optimization of SDFs that addresses these drawbacks.

Our method augments the sphere tracing technique [Hart 1996]

commonly used for SDF rendering so that it collects a small amount

of additional information while stepping through space. We use

this information to cheaply instantiate a reparameterization that

addresses issues with discontinuous integrals performed by the ren-

derer, so that the remaining calculation can be handled by standard

AD techniques. An important difference of our approach compared

to prior work is that our parameterization does not need to trace

auxiliary rays to sample the surrounding environment in search

of occlusion boundaries, since equivalent information is naturally

available in the signed distance value of the SDF representation.

There are various subtleties that must be considered along the way,

however; we show how careful derivation of gradients and Jacobian

determinant leads to an effective and robust method that is both

faster and more accurate than prior work.

Finally, we demonstrate the use of ourmethod to reconstruct SDFs

of complex objects with gradient-based optimization, eschewing ad-

hoc silhouette losses or complex priors. An example result of such

an optimization is shown in Figure 1. We do not pursue state-of-the

art reconstruction from real-world data in this article; our focus is

mainly on efficient derivative evaluation for SDFs. In summary, our

contributions are the following:

• We propose a modification of sphere tracing that dynamically

constructs reparameterizations enabling accurate differentiable

SDF rendering.

• We demonstrate the use of our method for surface reconstruc-

tion without the need for complex priors or silhouette loss.

• We provide a rigorous derivation of our reparameterization and

the resulting distortion of the integration domain.

• We draw a precise connection between using a reparameteriza-

tion and applying the divergence theorem [Bangaru et al. 2020]

for integrals over the unit sphere.

An open-source implementation of our method is available under

https://github.com/rgl-epfl/differentiable-sdf-rendering.

2 RELATED WORK
In the following, we give a brief overview of the most closely related

differentiable rendering methods.

Signed distance functions. Using a signed distance function rep-

resentation for optimization is a form of a level set method [Osher

and Sethian 1988]. Many works have used SDFs or general level set

methods for 3D object reconstruction using laser scanners [Curless

and Levoy 1996; Zhao et al. 2001] or RGB-D sensors [Newcombe

et al. 2011; Nießner et al. 2013]. Level set methods have also been ex-

tended to account for the motion of occlusion boundaries [Tsai et al.

2004; Gargallo et al. 2007]. Recently, there has been renewed interest

in SDFs with the aim of using them as a geometry representation

for differentiable rendering. Concurrently, Jiang et al. [2020] and Liu

et al. [2020] proposed to use SDFs for scene reconstruction using

differentiable rendering. These works use sphere tracing [Hart 1996;

Keinert et al. 2014; Seyb et al. 2019] to intersect rays with an SDF.

To deal with visibility discontinuities, Liu et al. [2020] introduced a

differentiable version of a silhouette loss, similar to later work by

Yariv et al. [2020]. Niemeyer et al. [2020] optimize implicit surfaces

by adding a 3D loss based on the visual hull [Laurentini 1994].

Relying on a silhouette loss can be problematic. Such approaches

are difficult to generalize to shadows and higher order light bounces.

Additionally, they cannot work in cases where silhouette informa-

tion is not applicable (e.g., reconstructing a room from the inside).

Cole et al.’s [2021] differentiable splatting method does not require

silhouette information, but lacks the ability to generalize to shadows

and interreflections. An alternative approach is to convert the SDF

to a triangle mesh using marching cubes [Lorensen and Cline 1987]

or marching tetrahedra [Doi and Koide 1991], to then fall back to

using differentiable triangle mesh rendering methods [Remelli et al.

2020; Shen et al. 2021]. These methods can work well [Munkberg

et al. 2022], but do not directly differentiate the process of SDF

rendering. Our algorithm avoids meshing and leverages the SDF’s

global structure to obtain high quality gradients.

Alternative scene representations. While surface-based representa-

tions enable efficient rendering and are the standard for physically-

based rendering, image-based optimization of surface geometry can
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be challenging due to the inherent non-convexity of such an op-

timization. This problem is exacerbated by scenes containing fine

detail that is often at the sub-pixel level (e.g., hair or foliage). Volu-

metric representations [Lombardi et al. 2019; Mildenhall et al. 2020;

Vicini et al. 2021a; Yu et al. 2022] have been found to be a power-

ful tool to reach a desirable minimum more reliably. Recent hybrid

methods [Yariv et al. 2021; Wang et al. 2021] define a volume density

based on an underlying SDF to improve the convexity of the geom-

etry reconstruction problem. Unlike our method, these approaches

rely on differentiable volume rendering and do not directly differ-

entiate the surface rendering process. Alternatively, point-based

shape representations have also been shown to produce high qual-

ity scene reconstructions [Yifan et al. 2019; Rückert et al. 2021].

Another key tool for scalable scene representation are coordinate-

based neural networks, also called neural fields, which push beyond

the resolution limits of discretized grids, and which generalize to

higher-dimensional signals like directional emission [Mildenhall

et al. 2020]. We refer to the recent state of the art report by Xie et

al. [2021] for details. A disadvantage of many non-surface-based

representations is that they are difficult to reconcile with physically-

based light transport, e.g., to account for interreflection.

Differentiable rasterization. Several works [Loper and Black 2014;

Kato et al. 2018; Liu et al. 2019; Laine et al. 2020; Cole et al. 2021]

have proposed differentiable versions of triangle mesh rasterization.

These methods either slightly blur the image or build on the anti-

aliasing operation to make the rendering process differentiable. In

combination with preconditioned gradient descent, such methods

can effectively optimize geometry with a fixed topology [Nicolet

et al. 2021]. Rasterization is computationally efficient, but difficult

to use to differentiably render soft shadows or indirect illumination.

Physically-based differentiable rendering. Physically-based render-
ing methods [Pharr et al. 2016] synthesize photorealistic images by

explicitly simulating the full process of light transport and scattering

via ray tracing. Efficient differentiable physically-based rendering

[Gkioulekas et al. 2013; Khungurn et al. 2015; Gkioulekas et al. 2016;

Li et al. 2018; Azinović et al. 2019; Nimier-David et al. 2019; Zhang

et al. 2019] is an active area of research. One central challenge in

differentiating such algorithms are visibility discontinuities (e.g.,

due to an object occluding the background, or casting a shadow).

Under differentiation, these discontinuities introduce a derivative

term that has to be integrated over object silhouettes. Standard path

tracing algorithms do not sample this term and specialized differen-

tiable rendering methods have been proposed that explicitly sample

silhouette edges of triangle meshes [Li et al. 2018; Zhang et al. 2020,

2021]. Sampling these edges is challenging and doing so efficiently

requires using an acceleration data structure. The problem becomes

even more difficult when dealing with continuous implicit surfaces

such as SDFs, where the silhouette does not consist of a discrete

number of line segments. An alternative approach is to convert

the boundary integral to an area integral by reparameterizing the

integrand [Loubet et al. 2019; Bangaru et al. 2020]. Our work builds

on the reparameterization method which we explain in detail in

the next section. Alternative approaches are to build support for

discontinuities into a domain specific language [Bangaru et al. 2021]

or to use a custom data structure to compute analytic visibility for

triangle meshes [Zhou et al. 2021].

Differentiating simulations that account for long light paths with

many scattering events tends to be extremely memory-intensive. Re-

cent methods [Nimier-David et al. 2020; Vicini et al. 2021b] address

this issue by turning the differentiation into another simulation pass

resembling path tracing. These methods can be combined with a

reparameterization of the integrand to correctly deal with disconti-

nuities [Zeltner et al. 2021].

3 BACKGROUND
Physically-based rendering [Pharr et al. 2016] computes the intensity

of a pixel 𝑗 as an integral over the space of light paths P

𝐼 𝑗 (𝝅) =
∫
P
𝑓𝑗 (x, 𝝅) dx, (1)

where x is a light path and 𝝅 is a vector containing the scene pa-

rameters (e.g., shape parameters, texture values, etc.). The image
contribution function 𝑓𝑗 measures the contribution of a light path to

pixel 𝑗 . In practice, we estimate this high-dimensional integral using

Monte Carlo integration [Kajiya 1986]. In the following, we will

simplify the notation by writing all quantities and their derivatives

using only a single scalar parameter 𝜋 . However, all derivations

generalize to the reverse-mode differentiation case that evaluates

derivatives with respect to many parameters at once.

3.1 Differentiable rendering
In differentiable rendering, our goal is to differentiate the value of

this integral to minimize an image-based objective function over a

large set of scene parameters (e.g., using gradient descent). Specifi-

cally, we want to estimate the following derivative:

𝜕𝜋 𝐼 𝑗 (𝜋) = 𝜕𝜋

∫
P
𝑓𝑗 (x, 𝜋) dx. (2)

If the integrand does not contain any discontinuities that depend on

𝜋 , we use the Leibniz rule to move the derivative operator inside the

integral and apply Monte Carlo integration to estimate derivatives:

𝜕𝜋 𝐼 𝑗 (𝜋) =
∫
P
𝜕𝜋 𝑓𝑗 (x, 𝜋) dx ≈ 1

𝑁

𝑁∑︁
𝑘=1

𝜕𝜋 𝑓𝑗 (x𝑘 , 𝜋)
𝑝 (x𝑘 , 𝜋)

, (3)

where 𝑁 is the number of samples, 𝑥𝑘 denote sampled light paths

and 𝑝 is the probability density function (PDF) of the used sampling

strategy. The above estimator can, for example, be implemented

by evaluating a unidirectional path tracer within a framework sup-

porting automatic differentiation (AD) and differentiating its out-

put [Nimier-David et al. 2019]. One important design decision here

is whether the Monte Carlo sampling step itself, and consequently

the PDF, are differentiated with respect to the scene parameters or

not. It turns out that for most practical use cases, it is preferable

to detach the sampling strategy and PDF from the differentiation,

as done in Equation 3. This greatly simplifies efficient derivative

computation [Zeltner et al. 2021; Vicini et al. 2021b] and is what

we will do for the remainder of this paper. Detaching the sampling

strategy can result in additional variance due to the mismatch be-

tween derivative integrand and PDF, but is usually preferable given

the resulting simplification of the rendering process.
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S2

ω

T (ω, π)

π

(a) Integrand (b) Vector field ∂πT (c) Gradient of original integrand (d) Gradient of reparametrized integrand

Fig. 2. Illustration of a discontinuous integrand on the unit sphere S2. (a) We integrate the color of a shaded shape over a constant-colored background.
The scene parameter 𝜋 controls the translation of the object. (b) We then introduce a reparameterization T , which is designed so that the vector field 𝜕𝜋 T
follows the motion of the object boundary and falls off continuously to 0 away from the object. (c) We further visualize the gradient of the original integrand
and (d) the gradient after reparameterizing, including the area change. Blue and red colors indicate negative and positive values, respectively.

The previous estimator assumed that 𝑓𝑗 (x, 𝜋) did not contain any

discontinuities in x whose position depends on 𝜋 . This generally

ceases to be the case when 𝜋 controls the shape or position of scene

geometry. Such a dependence influences the position of visibility-

related discontinuities in 𝑓𝑗 , which requires an additional derivative

term described by the Reynolds transport theorem [Reynolds 1903;

Zhang et al. 2019]. Simply moving the derivative operator into the

integral fails to account for this extra term and produces incorrect

output [Li et al. 2018]. However, the Reynolds transport theorem is

not the only way to handle parameter-dependent discontinuities.

3.2 Reparameterizing discontinuities
An alternative approach that is particularly well-suited for unidi-

rectional path tracing is to reparameterize the integral [Loubet et al.
2019; Bangaru et al. 2020]. The idea is that this reparameterized in-

tegrand should then be free of parameter-dependent discontinuities.

Following this step, it is legal to move the derivative operator inside

the integral and estimate parameter derivatives by sampling light

paths using standard path tracing. If we correctly account for the

distortion due to the reparameterization, this can even result in an

unbiased gradient estimator [Bangaru et al. 2020].

Unidirectional rendering algorithms can be expressed as the re-

cursive solution of spherical integrals. In the following, we will

therefore differentiate integrals over the unit sphere of directionsS2
,

instead of the full path space:

𝜕𝜋 𝐼 (𝜋) = 𝜕𝜋

∫
S2

𝑓 (𝝎, 𝜋) d𝝎 . (4)

This formulation for now ignores effects due to interreflections, but

that will be sufficient for most derivations. We will connect the

results to the general case at the very end. Similar to prior work, we

will not handle the very challenging special case of discontinuities

observed through perfectly specular interactions (e.g., geometry

observed through a water surface).

Given this spherical integral, we can now reformulate the problem

using a change of variables T : S2 → S2
that maps the unit sphere

onto itself. The reparameterization T has to be chosen so that the

resulting integrand is free of discontinuities with respect to the scene

parameters, which then allows moving the derivative operator into

the integral:

𝜕𝜋 𝐼 (𝜋) = 𝜕𝜋

∫
S2

𝑓 (𝝎, 𝜋) d𝝎

= 𝜕𝜋

∫
S2

𝑓 (T (𝝎, 𝜋), 𝜋)

DT𝝎,𝜋 (s) × DT𝝎,𝜋 (t)


d𝝎

=

∫
S2

𝜕𝜋
[
𝑓 (T (𝝎, 𝜋), 𝜋)


DT𝝎,𝜋 (s) × DT𝝎,𝜋 (t)

]
d𝝎, (5)

where s and t are orthonormal tangent vectors of the unit sphere at𝝎
and DT𝝎,𝜋 is the differential of T with respect to the vector 𝝎. The

norm of the cross product of transformed tangent vectors accounts

for the distortion in the integration domain, similar to the Jacobian

determinant for a change of variables in ambient space.

Constructing a reparameterization. The key challenge in using

this approach is constructing a suitable reparameterization T . Ban-

garu et al. [2020] formalized its requirements: we need T to satisfy

𝜕𝜋T (𝝎𝑏 , 𝜋) = 𝜕𝜋𝝎𝑏 for all directions 𝝎𝑏 that lie on the set of dis-

continuities of the original integrand. In other words, differentiating

the reparameterization should result in a differential motion that

perfectly matches the motion of the discontinuity on the unit sphere.

Note that 𝜕𝜋T (𝝎𝑏 , 𝜋) and 𝜕𝜋𝝎𝑏 are vectors that lie in the tangent

space of the unit sphere. Aside from that, we need 𝜕𝜋T (𝝎, 𝜋) itself
to be continuous for the reparameterization to be valid. Further, it

is necessary that the integration domain either has no boundaries

(e.g., the unit sphere), or the integrand goes to zero as it approaches

the domain boundary.

Figure 2 illustrates a reparameterization of an integral over the

unit sphere. We visualize the original integrand, the vector field

𝜕𝜋T (𝝎, 𝜋), and the derivatives of the original and reparameterized

integrand. The gradient of the original integrand does not contain

any terms related to the occlusion change on the silhouette of the

moving object.

We construct T to be an identity (T (𝝎, 𝜋) = 𝝎) for the current
parameter value 𝜋 , while the derivative 𝜕𝜋T (𝝎, 𝜋) satisfies the
requirements explained above. This approach yields the correct

derivative integral without modifying the primal radiance estimator.

For triangle meshes, a suitable reparameterization can be obtained

by first constructing an auxiliary reparameterization, which attains

the correct motion at triangle boundaries. This reparameterization

is then convolved with a filter kernel in the spherical domain, that

removes discontinuities from the reparameterization itself [Bangaru
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et al. 2020]. Since this blurring only affects the reparameterization,

it can be used to construct an unbiased gradient estimator of the

original integral.

Distortion of the integration domain. The area element in Equa-

tion 5,


DT𝝎,𝜋 (s) × DT𝝎,𝜋 (t)


, accounts for the distortion of the

integration domain due to the reparameterization. If we were to

reparameterize the 3D ambient space, we would simply use the

Jacobian determinant of the mapping. However, here this would

be incorrect as the reparameterization works on a manifold. We

instead need to use the norm of the cross product of the tangent

vectors, mapped through the differential of the reparameterization.

This formulation of the reparameterized integral using the cross

product of the transformed tangent vectors is more explicit than

what has been described in previous work. In Appendix A, we draw

the connection between this formulation as a reparameterization

over the unit sphere and the divergence formulation by Bangaru et

al. [2020]. We show that we can evaluate either the cross product

term or the divergence of the mapping and both will give the same

results when differentiated, and correctly account for the fact that

we reparameterize an integral over a manifold.

4 METHOD
In the following, we first briefly describe how we store and render

SDFs. We then discuss differentiable SDF shading and then finally

introduce our reparameterization method to handle visibility dis-

continuities.

4.1 Preliminaries
For a surface M ⊂ R3

, the signed distance function 𝜙 : R3 → R
measures the distance of a point x ∈ R3

to the surface. We assume

the distance to be of negative sign inside and positive outside the

surface. Figure 3 shows a slice through an example SDF. In the

following, we will denote the value of the SDF as 𝜙 (x, 𝝅), where
𝝅 is the vector of parameters defining the SDF. A key property of

SDFs is that they satisfy the eikonal equation:

∥𝜕x𝜙 (x, 𝝅)∥ = 1, (6)

i.e., the positional gradient has unit norm. For a point on the sur-

face M, its surface normal equals the positional gradient 𝜕x𝜙 (x, 𝝅).

SDF representation. In this paper, we store signed distance func-

tions on a voxel grid. With this representation, 𝝅 represents the list

of stored values. During rendering, the grid values are interpolated

using cubic B-spline basis functions. Sufficiently high-order interpo-

lation is important, since normals are related to the derivative of the

SDF. Simple trilinear interpolation would result in discontinuous

shading producing an undesirable faceted appearance. We interpo-

late positional gradient and Hessian using analytic derivatives of the

basis functions and leverage the continuity of the SDF’s positional

gradient to construct a reparameterization. Our method relies on

the interpolation smoothing out any potential discontinuities in the

positional gradient (including on the SDF’s skeleton).

Ray intersection. We use the sphere tracing algorithm [Hart 1996]

to render the SDF representation. Sphere tracing is an iterative pro-

cedure that efficiently skips through empty space. In each iteration,

Fig. 3. A signed distance function is positive outside the object and negative
inside. Here we visualize a slice of the SDF and its corresponding isolines.
In our implementation, we store the values of the SDF on a regular grid and
use B-spline interpolated lookups to ensure smooth normals.

the step size is equal to the absolute value of the SDF, i.e., the un-

signed distance to the surface, at the current location x𝑖 . This means

the algorithm takes a step given theminimum distance to the surface,

which ensures that we do not accidentally step over it. Eventually,

the ray will either escape into the void, or the evaluated distance

will fall below a specified convergence threshold 𝜀, and the ray in-

tersection location is returned. Our method then additionally uses

the intermediate SDF evaluations to construct a reparameterization.

Notation. As in Section 3, the following derivations use a single

parameter 𝜋 rather than the parameter vector 𝝅 . It will further be
useful to distinguish between uses of 𝜋 that are differentiated, or

attached to the automatic differentiation graph, and uses that are

detached. We will denote detached parameters as 𝜋0.

4.2 Shading gradients
Aside from handling discontinuities, differentiable rendering of SDFs

also requires the ability to differentiate the evaluation of the surface

normal that is later used when evaluating the shape’s reflectance

model. If a ray intersects the surface defined by the SDF, the shading

normal at the intersection location is given by

n(𝜋) =
𝜕x𝜙 (x𝑡 (𝜋 ) , 𝜋)𝜕x𝜙 (x𝑡 (𝜋 ) , 𝜋) , (7)

where 𝑡 (𝜋) is the intersection distance, x𝑡 (𝜋 ) B xo + 𝑡 (𝜋)𝝎 the

intersection location on the surface, with the ray origin xo and

the ray direction 𝝎. The normalization is needed, since the grid-

interpolated SDF representation cannot guarantee that the eikonal

constraint is perfectly satisfied. To differentiate n(𝜋), special care is
required, since the intersection distance 𝑡 depends on 𝜋 and is the

result of sphere tracing, a numerical root finding procedure. Using

the inverse function theorem [Niemeyer et al. 2020; Yariv et al. 2020],

one can show that

𝜕𝜋 𝑡 (𝜋) = −
𝜕𝜋𝜙 (x𝑡 (𝜋0) , 𝜋)

⟨𝜕x𝜙 (x𝑡 (𝜋0) , 𝜋0),𝝎⟩ , (8)
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where ⟨·, ·⟩ denotes the dot product. Using this expression, we can
differentiate the surface normal and correctly account for its de-

pendency on the intersection distance, without the need to track

parameter derivatives across sphere tracing iterations.

4.3 Reparameterizing discontinuities
We now turn to our reparameterization for differentiable SDF ren-

dering, decomposing the problem into two steps: first, we define a

vector field, whose derivative follows the motion of the SDF sur-

face in 3D. We then show how evaluating this vector field along

continuous positions in 3D space enables constructing a reparame-

terization on the unit sphere, which can correctly handle occlusion

and self-occlusion by SDFs. Bangaru et al. [2020] followed a similar

two-step strategy to define a reparameterization for rendering tri-

angle meshes, but theirs is constructed from a set of auxiliary rays

that must be separately traced.

Motion of implicit surfaces. Our eventual goal is to define a repa-

rameterization on the unit sphere. We begin by defining an auxiliary

3D vector field V : R3 → R3
. It is constructed so that the deriva-

tive 𝜕𝜋V(x, 𝜋) ∈ R3
matches the infinitesimal surface motion with

respect to 𝜋 when evaluated on the zero level set.

Since tangential motion does not affect discontinuities, we define

V as a scaled multiple of the surface normal, specifically

V(x, 𝜋) = − 𝜕x𝜙 (x, 𝜋0)
∥𝜕x𝜙 (x, 𝜋0)∥2

𝜙 (x, 𝜋) . (9)

Here, only the value of the SDF 𝜙 (x, 𝜋) depends on the differentiable
parameter 𝜋 , while the positional gradient and its squared norm are

static and hence written using 𝜋0. Similar expressions have been

used in prior work on the motion of implicit surfaces [Stam and

Schmidt 2011], neural level sets [Atzmon et al. 2019] and differen-

tiable marching cubes [Remelli et al. 2020]. We can verify that the

gradient of this vector field matches the surface motion by differen-

tiating with respect to the parameter 𝜋 :

𝜕𝜋V(x, 𝜋) = − 𝜕x𝜙 (x, 𝜋0)
∥𝜕x𝜙 (x, 𝜋0)∥2

𝜕𝜋𝜙 (x, 𝜋)

= −
𝜕x𝜙 (x,𝜋0)
∥𝜕x𝜙 (x,𝜋0) ∥〈

𝜕x𝜙 (x, 𝜋0), 𝜕x𝜙 (x,𝜋0)
∥𝜕x𝜙 (x,𝜋0) ∥

〉 𝜕𝜋𝜙 (x, 𝜋)
=

−n
⟨𝜕x𝜙 (x, 𝜋0), n⟩

𝜕𝜋𝜙 (x, 𝜋)

= 𝜕𝜋 [x𝑜 + 𝑡 (𝜋)n] = 𝜕𝜋x(𝜋), (10)

where n =
𝜕x𝜙 (x,𝜋0)
∥𝜕x𝜙 (x,𝜋0) ∥ is the surface normal. The expression on the

third line is exactly the motion of a surface point x that is the result

of intersecting a ray in the normal direction n with the SDF. This

follows from plugging 𝝎 = n into Equation 8, which describes the

intersection distance gradient. In this case, the ray origin x𝑜 just

needs to be any point along this ray such that the ray intersects the

SDF perpendicularly. Note that this is just a construction to prove

that 𝜕𝜋V(x, 𝜋) has the right direction and magnitude, we do not

need to actually compute such a ray intersection.
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Fig. 4. We visualize the gradients of a rendered image with respect to
a vertical translation of an object represented as an SDF. If we do not
include the normalization term described in Equation 9, the magnitude of the
gradient (middle column) does not quite match the reference. Including the
normalization improves the accuracy of the estimated silhouette gradients
(right). As the SDF grid resolution is increased (y-axis), the interpolated
SDF more closely matches a true SDF, and the effect of the normalization is
less pronounced.

So far, this derivation does not explicitly assume the function 𝜙 to

be an SDF. If 𝜙 is indeed an SDF, the gradient norm in the denomina-

tor in Equation 9 equals 1. However, we found that including the nor-

malization by the squared gradient norm makes our method more

robust when working with approximate (e.g., grid-interpolated)

SDFs. The effect of this is shown in Figure 4.

Reparameterization of the unit sphere. We now use this 3D vec-

tor field to define a reparameterization in the solid angle domain.

Recall the primary requirement of the reparameterization: for a

direction 𝝎𝑏 on a discontinuity on the unit sphere, the reparameter-

ization’s gradient 𝜕𝜋T (𝝎𝑏 , 𝜋) needs to exactly match the motion

of that boundary direction.

The key idea is the following: we define an evaluation distance
function 𝑡 (𝝎, 𝜋0) that, as a boundary is approached, converges to

the distance at which the edge of the SDF causing the discontinuity

is located in 3D. One important detail is that this distance must

itself be continuous in 𝝎, or the requirements on the reparameteri-

zation would be violated. We compute this distance as a weighted

combination of the distances that are encountered during sphere

tracing, with weights chosen so that the weighted sum will have

the right convergence characteristics as it approaches a boundary.

Figure 5 illustrates the high-level idea. From an implementation

point of view, this corresponds to computing not just the intersec-

tion distance during sphere tracing, but one additional distance that

we can then use to define our reparameterization. One important

property of this distance computation is that it does not depend

on the differentiable parameter 𝜋 . This means that we do not need

to compute expensive parameter derivatives 𝜕𝜋𝜙 (x, 𝜋) within the

sphere tracing loop.
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(a) V(x,π) (b) ∂πV(x,π) (c) Sphere tracing steps

0 25000

Weight

(d) Evaluation distance

Fig. 5. Our reparameterization builds on a vector field V(x, 𝜋 ) that is defined everywhere in ambient space (a). Taking the derivative of that vector field
with respect to a scalar parameter 𝜋 will result in a vector field 𝜕𝜋V that follows the parameter-dependent motion due to 𝜋 . In (b), we differentiate the
vector field with respect to a global translation in the vertical direction. For a given ray direction, we then compute a weighted combination of positions
encountered during sphere tracing to determine where to evaluate the vector field 𝜕𝜋V . In (c) we visualize the intermediate sphere tracing steps and weights
that influence the final evaluation point. In (d) we draw the computed vector field evaluation locations as a red line as the origin of the incident ray changes.
The red line is continuous and coincides with the surface on silhouette edges. In an actual shape optimization, we differentiate V(x,𝝅 ) with respect to all
SDF parameters 𝝅 (i.e. all individual grid values) simultaneously using reverse-mode automatic differentiation.

For now, we assume this distance 𝑡 to be given and we will define

it precisely later. Given the distance, we construct a reparameteriza-

tion on the unit sphere by first defining an auxiliary function:

¯T (𝝎, 𝜋) = [x𝑡 + V(x𝑡 , 𝜋) − V(x𝑡 , 𝜋0)] − x

= 𝑡𝝎 + V(x𝑡 , 𝜋) − V(x𝑡 , 𝜋0), (11)

where x is the ray origin of the ray along 𝝎 and x𝑡 B x + 𝑡𝝎. The
idea here is to take the 3D location x𝑡 and displace it using our vector
fieldV . We then subtract the ray origin x to turn this expression into
a direction aligned with 𝝎. The subtraction of V(x𝑡 , 𝜋0) ensures
that the map is simply scaling 𝝎 when no derivative is being taken.

Since
¯T (𝝎, 𝜋) is not yet a vector of unit length, we normalize to

obtain a reparameterization of the unit sphere:

T (𝝎, 𝜋) =
¯T (𝝎, 𝜋) ¯T (𝝎, 𝜋)

 . (12)

In the primal domain, this is now an identity map from the unit

sphere onto itself. We further need the derivative of this map to

follow the motion of the implicit surface over the unit sphere. We

can show this by explicitly computing the derivative 𝜕𝜋T :

𝜕𝜋T (𝝎, 𝜋) = 1

𝑡

(
I − 𝝎 · 𝝎𝑇

)
𝜕𝜋V(x𝑡 , 𝜋), (13)

where I is the 3 by 3 identity matrix and 𝝎 ·𝝎𝑇
is the outer product

of 𝝎 with itself (see Appendix B for the expanded derivation). This

derivative expression has a simple geometric interpretation: we con-

structed V such that its gradient 𝜕𝜋V(x𝑡 , 𝜋) follows the motion

of the surface in 3D space. We then assumed that 𝑡 was computed

such that if 𝝎 approaches a discontinuity, the evaluation distance

will converge to the distance to the SDF edge along the current ray.

By multiplying the vector field gradient by I − 𝝎 · 𝝎𝑇
, we project

it onto the unit sphere’s tangent space. This means any motion in

the direction of 𝝎 will be removed. Additionally, the division by 𝑡

can be interpreted as a form of a geometry term: the motion of the

3D surface over the sphere is decreasing linearly as the evaluation

location 𝑡 moves further away. Overall, this means that our repa-

rameterization attains the right motion on the discontinuities. What

remains is to define the evaluation distance 𝑡 more precisely.

Reparameterization evaluation distance. We evaluate our 3D vec-

tor fieldV at a distance 𝑡 along the current ray. We obtain a distance

function that is both continuous and has the right characteristics

on the discontinuities by computing a weighted sum of distances

along the ray that are encountered during sphere tracing:

𝑡 =
1∑𝑁

𝑖=1
𝑤 (𝑖)

𝑁∑︁
𝑖=1

𝑤 (𝑖)𝑡𝑖 , (14)

where 𝑡𝑖 are the intermediate distances attained during sphere trac-

ing and𝑤 is a weighting function. We define our weighting function

as a product of three terms:

𝑤 (𝑖) = 𝑤
edge

(𝑖)𝑤
dist

(𝑖)𝑤
bbox

(𝑖) . (15)

The first factor detects proximity to discontinuities:

𝑤
edge

(𝑖) =
(
𝜀 + |𝜙 (x𝑡 , 𝜋0) | + 𝛼

〈
𝜕x𝜙 (x𝑡 , 𝜋0)
∥𝜕x𝜙 (x𝑡 , 𝜋0)∥

,𝝎

〉
2

)−𝑝
, (16)

where we use 𝜀 = 10
−6
, 𝛼 = 0.1, 𝑝 = 2 and 𝝎 is the ray direction.

This weighting function is designed such that𝑤 → ∞ as a surface

is approached at a grazing angle (i.e., the sphere tracing reaches

an edge causing a discontinuity). The dot product between the ray

direction and the (normalized) gradient ensures that the weight only

goes to infinity at grazing angles. Without this term, the evaluation

distance would coincide with the ray intersection distance and not

be continuous. It is crucial for this distance function to be continuous

in 𝝎, as otherwise the resulting gradients would be incorrect. This

weighting scheme serves a similar purpose as the weights used by

Bangaru et al. [2020]. In their method, the weights are used for a 2D

convolution that has to be evaluated using Monte Carlo integration,

whereas our implementation re-uses the locations that are already

sampled during sphere tracing.
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x

x + tω

(a) x + tω without wdist

x

(b) x + tω with wdist

Fig. 6. We compare the evaluation distance function 𝑡 with and without the
𝑤

dist
factor. Without this factor, the evaluation distance approaches zero

for grazing outgoing ray directions. Including 𝑤
dist

reduces the influence of
the surface at the ray origin on the evaluation distance. This also implies
that the evaluation distance is undefined for rays that never approach a
surface, and we need to make sure our reparameterization continuously
goes to zero before reaching this case.

This first weighting term is not quite sufficient to robustly esti-

mate gradients however. For indirect rays starting on the SDF itself

it will likely select an evaluation distance that is very close to the ray

origin. This is in particular the case for rays leaving a surface at near

grazing angles, causing unnecessary variance without improving

gradient estimation. We therefore multiply by a second term:

𝑤
dist

(𝑖) = min


𝑖∑︁
𝑗=1

max

©«
��𝜙 (𝑥𝑡 𝑗−1

, 𝜋0)
�� − ��𝜙 (𝑥𝑡 𝑗 , 𝜋0)

��
min

(
𝛽,

��𝜙 (𝑥𝑡 𝑗 , 𝜋0)
��) , 0

ª®®¬ , 1
 , (17)

where 𝑗 iterates over sphere tracing steps and 𝛽 = 0.05. While

the formula appears complicated, the intuition is simple: we only

start considering sphere tracing locations as a surface is approached.
This present formulation ensures that this is done in a way that

remains continuous, since we want the final distance 𝑡 to vary

continuously as the ray direction changes. Moreover, the distance

term in the denominator ensures that the weight is guaranteed to

reach 1 as the surface is reached. There is little extra cost in adding

this weighting term, as it just re-uses evaluations of the SDF that are

already computed during sphere tracing. The effect of this weighting

term is illustrated on a 2D example in Figure 6.

Lastly, we need to ensure continuity of the evaluation distance

even as the number 𝑁 of sphere tracing steps changes. Such a

change can either be caused by the algorithm traversing beyond the

bounding box, or by a different number of iterations being needed

to converge to the surface intersection. The first case is handled by

the bounding box weight term, which attenuates the influence of

positions as the bounding box of the SDF is approached:

𝑤
bbox

(𝑖) = min

(
dist(𝑥𝑡𝑖 , bbox)/0.01, 1

)
. (18)

To deal with the second case, we additionally multiply each weight

by the mean of the previous and current sphere tracing step length.

This works because the iteration count increases or decreases due

to samples either being right below or newly above the distance

threshold used to terminate a ray intersection. In these cases, the

distance between subsequent samples will approach zero. Concep-

tually, this weighting scheme can be interpreted as replacing the

summation in Equation 14 by integration and applying a trapezoidal

Scene (a) Detached x (b) Decoupled
reparam.

(c) Correct
nesting

(d) Reference
(FD)

Fig. 7. This figure shows the subtleties of nesting reparameterizations. We
render the same object from two different viewpoints and compute gradients
with respect to a translation. If we fully detach the origin x of the shadow ray
(a) the result is wrong. If we do not track the effect of the reparameterization
of the primary rays, we also get wrong results (b). Only if we carefully
account for these effects we get output (c) that matches the reference (d).

quadrature to both integrals:

𝑡 =
1∫

𝑤 (𝑡) d𝑡

∫
𝑤 (𝑡)𝑡 d𝑡 . (19)

A key insight here is that we do not need these integrals to be

evaluated in an unbiased way. We just need the resulting func-

tion 𝑡 (𝝎, 𝜋0) to satisfy the necessary conditions and the resulting

gradient estimator will be unbiased.

While our algorithm here is designed to work with SDFs, the high

level idea could potentially also be applied to more general implicit

functions, where, instead of sphere tracing, ray marching and bisec-

tion are used to compute ray intersections. Such a generalization

would still require the implicit function to be continuous and exhibit

sufficient global structure to enable a suitable evaluation distance

computation (e.g., an indicator function would not work).

Weighted reparameterization. We can further reduce the variance

of the gradient estimator by attenuating the effect of the reparame-

terization for directions that are further away from an actual dis-

continuity. In general, we can multiply our 3D vector field with

any continuous weighting function𝑤V (x, 𝜋0), as long as its value
approaches 1 as it approaches a discontinuity (with respect to the

ray direction 𝝎). We write a weighted version of our vector field as:

¯V(x, 𝜋) = 𝑤V (x, 𝜋0)V(x, 𝜋) . (20)

The weighting function itself depends on the detached scene pa-

rameter, which ensures that the scene parameter gradient remains

unchanged. This approach could even be generalized to a weighted

sum of vector fields, similar to multiple importance sampling [Veach

and Guibas 1995]. The weights would only need to sum to 1 on an

actual discontinuity. A similar idea has been used by Zeltner et

al. [2021] to handle discontinuities that occur when computing

BSDF derivatives through the BSDF sampling routine. We use the

following weighting function to attenuate the vector field V(x, 𝜋):

𝑤V (x, 𝜋0) = max

(
0, 1 − 𝜙 (x𝑡 , 𝜋0)

𝑡 · 𝜀 (x)

)
(21)
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Fig. 8. We compare the gradients obtained using our method to the ground truth and an SDF version of the convolution method by Bangaru et al [2020]. The
gradient images are computed by using forward-mode differentiation with respect to a translation of the entire object. For the convolution method, we show
the results using varying numbers of auxiliary rays estimating the convolution integral. Increasing the number of rays improves the accuracy of the gradient
estimate, at the cost of increased computation time. All gradient images are rendered using 1024 samples per pixel. The Shadowing and Logo scene are using
direct illumination, and the Bunny scene is rendered with one bounce of indirect illumination.

where 𝜀 (x) is the minimum of 0.01 and the distance of x to the SDF’s
bounding box. This weighting effectively restricts the reparameter-

ization to only have an impact as x is approaching a surface and

therefore possibly a discontinuity. Additionally, by considering the

bounding box it ensures that our reparameterization continuously

drops off to zero as the evaluation location approaches the border

of the SDF volume. Finally, we also multiply this weight by the

sum of sphere tracing weights (clamped to at most 1) to handle the

degenerate case of the evaluation location being undefined.

Area element. On top of evaluating the reparameterization T
itself, we need to evaluate the area element as defined in Equation 5.

To do so, we first compute the Jacobian matrix 𝜕𝝎T analytically.

We then simply evaluate the trace of this Jacobian to account for

the area change, as it is equivalent to the cross product formulation

under differentiation (see Appendix A). The trace requires slightly

less computation than explicitly computing the cross product of the

transformed tangent vectors.

Since our reparameterization depends on the distance 𝑡 (𝝎, 𝜋0),
we need to evaluate the derivative 𝜕𝝎𝑡 (𝝎, 𝜋0) ∈ R3

to compute the

Jacobian. We analytically compute this term during sphere tracing,

and return it alongside the distance 𝑡 and, if applicable, the intersec-

tion distance. None of these terms require tracking a differentiable

dependency on 𝜋 through the sphere tracing loop, hence there is

no need to build an AD graph over it, which would be an expensive

operation. The complete derivation of the Jacobian is laborious and

done in Appendix C.

Variance reduction. Reparameterizing the integral can cause un-

desirable gradient variance in regions of the image without discon-

tinuities. Based on the observation that the majority of that noise is

caused by the differentiable evaluation of the pixel filter, prior work

suggested using antithetic sampling and control variates [Loubet

et al. 2019; Bangaru et al. 2020]. We find that steps like antithetic

sampling and control variates add a significant amount of imple-

mentation complexity, and that a similar variance reduction can be

achieved by easier means. Renderers usually divide the accumulated

radiance in each pixel by the sum of accumulated pixel filter weights

to reduce variance [Pharr et al. 2016, Section 13.9]. Interestingly, we

found that by tracking derivatives through this normalization step,

most of the noise caused by the differentiable pixel filter evaluation

can be eliminated.

Nested reparameterization. When building a differentiable ren-

dering algorithm, we have to correctly handle the subtleties due to

nested application of our reparameterization. Related to that, the

surface point that results from a ray intersection might be parameter

dependent due to the motion of the surface itself, as explained in

Section 4.2. Both these factors will have the consequence that the

ray origin x, and hence x𝑡 , can differentiably depend on the SDF

parameter 𝜋 . This is relevant for example when applying our repa-

rameterization to a shadow ray. In the derivations so far, we have

not considered this potential dependency. Completely ignoring the

parameter dependence of x𝑡 when handling the shadow ray will

produce wrong results. If we ignore the dependency on the reparam-

eterization of the primary ray when reparameterizing the shadow

ray, the gradient is also not correct. Only if we track the dependency

on the primary ray’s reparameterization all the way through the

secondary reparameterization, we get correct gradients, as shown in

Figure 7. More precisely, we need to make sure to evaluate 𝜙 (x𝑡 , 𝜋)
in Equation 9 using the parameter-dependent x𝑡 (𝜋) = x(𝜋) + 𝑡𝝎.
All other terms of the reparameterization can remain detached as

before. This then ensures that our vector field produces the right

relative motion between occluder and ray origin. A more detailed

discussion and derivation is provided in Appendix D.

ACM Trans. Graph., Vol. 41, No. 4, Article 125. Publication date: July 2022.



125:10 • Delio Vicini, Sébastien Speierer, and Wenzel Jakob

Only shading
gradients

Ours Conv.
2 samples

Conv.
4 samples

Conv.
8 samples

Conv.
16 samples

Conv.
32 samples

0

1

2

3

4

Ti
m

e
(s

)

0.303
0.569 0.633

0.858

1.356

2.324

4.256

(a) Rendering time, 2562 pixels at 256 primal SPP and 64 adjoint SPP

Adjoint rendering
Primal rendering

163 323 643 1283 2563 5123

10−2

10−1

100

Ti
m

e
(s

)

0.004

0.008

0.017

0.037

0.198

1.434

(b) SDF redistancing time for di�erent grid resolutions

Fig. 9. We measure the rendering time (a) and the SDF redistancing time (b).
The rendering time plot reports both the time to render the primal image
and the time required to compute SDF gradients in reverse-mode.

5 SHAPE OPTIMIZATION
The reparameterization introduced in the previous section enables

computing accurate gradients for renderings of signed distance func-

tions. An important use of such gradients is 3D shape reconstruction

given a set of observed views. In this section, we will describe the

overall pipeline and settings we use to produce the optimization

examples in this paper. Our goal is to reconstruct a shape by solving

𝝅∗ = arg min

𝝅

𝑁∑︁
𝑖=1

ℓ

(
𝐼 𝑖 (𝝅), 𝐼 𝑖

𝑟𝑒 𝑓

)
, (22)

where 𝑁 is the number of views and 𝝅 contains both the SDF param-

eters, as well as any optimized parameters used in its bidirectional

scattering distribution function (BSDF). The loss function ℓ mea-

sures the differences between images. In the following, we will

describe the specific parameters and heuristics that we use to make

this optimization practical.

Loss function. We use an 𝐿1 loss on linear RGB pixel values for all

optimizations. We evaluate it both at the original image resolution,

as well as on a 3-level pyramid of downsampled reference and

rendered images. This helps increasing the spatial support of the

loss function. If we were to only evaluate the 𝐿1 loss at the original

resolution, the optimization might more easily get stuck in a local

minimum representing a low-quality solution.

Optimizing SDFs. During optimization, the differentiable renderer

backpropagates gradients to the SDF grid values. Even after a single

iteration of gradient descent, the values stored in the grid might

not represent a valid SDF anymore [Gomes and Faugeras 2000]. In

particular, the SDF will violate the eikonal constraint and in gen-

eral ∥𝜕x𝜙 (x, 𝝅)∥ ≠ 1. A common approach to reduce the deviation

from a true SDF is adding an eikonal regularization term to the opti-

mization, that penalizes deviations of the gradient norm from 1 [Li

et al. 2005]. This is particularly useful when the SDF is not stored

explicitly, but rather is the output of a neural network. The disad-

vantage of this regularization approach is that it does not yield an

exact SDF and introduces another hyperparameter in the form of a

regularization weight. Since we are directly storing the SDF values

on a grid, we found it more convenient to explicitly redistance the
SDF after every iteration of the optimization. The high-level idea is

to reconstruct the distance function values by marching outwards

from the current zero level set [Adalsteinsson and Sethian 1995;

Sethian 1996, 1999]. In practice, we use a CUDA implementation of

the parallel fast sweeping method [Zhao 2004; Detrixhe et al. 2013]

and redistance the SDF after every iteration of the optimization.

To further improve performance, it could be interesting to use a

sparse SDF representation in conjunction with a sparse version of

fast sweeping [Museth 2017]. Another approach would be to use

velocity extension [Adalsteinsson and Sethian 1999], that infers SDF-

compatible grid value updates from the speed of the surface itself.

We experimented with simple versions of such an idea, but in the

end found the redistancing to work well enough. Alternatively, one

could investigate updating the SDF using the adjoint state method,

similar to work on art-directable fluid simulations [McNamara et al.

2004] and travel-time tomography [Leung and Qian 2006].

Regularization. On top of the image-based loss, we found it bene-

ficial to slightly regularize the SDF using a Laplacian regularization.

While the optimization itself is robust, a small amount of regulariza-

tion can reduce the noise on unobserved regions or due to variance

in the gradients and the rendered images. This primarily improves

the surface appearance when re-rendering under new illumination

conditions. We use a simple discrete Laplacian kernel, which penal-

izes differences between a voxel and its directly adjacent neighbors.

We use a regularization weight of 10
−5
, which is small enough to

not oversmooth the surface.

Multiscale optimization. It is further advantageous to initially

optimize the SDF at a lower resolution than the target resolution.

We start optimizing at a resolution of 16
3
voxels and then double the

resolution several times during the optimization until the desired

target resolution is reached.

Texture optimization. We also optionally optimize albedo and

roughness parameters, stored on trilinearly interpolated grids. Op-

timization of these quantities is straightforward and only requires

clamping to valid parameter ranges. When optimizing roughness,

we use the Disney BSDF [Burley 2012], but turn off all lobes except

for diffuse and specular lobe.
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Fig. 10. Results using our method on a few challenging example objects. All these examples use 512 gradient descent iterations (using batches of 6 views).
For the Dragon scene, the BSDF parameters are assumed to be fully known. For the other scenes we optimize albedo textures, and for Chair and Boar
additionally surface roughness.

6 RESULTS
In the following, we evaluate the correctness, performance and opti-

mization results using our method. Our implementation runs using

NVIDIA CUDA and all timings that are reported in the following

have been measured on a NVIDIA TITAN RTX graphics card (24

GB of RAM).

Implementation. We implemented our differentiable SDF renderer

on top of Mitsuba 2 [Nimier-David et al. 2019] and use reverse-mode

AD to propagate derivatives to the SDF parameters.We implemented

the majority of our pipeline using Mitsuba 2’s Python API. Interpret-

ing our reparameterization as a differentiable ray tracing operation,

we absorb its logic into the ray intersection function, which can

then be used as follows inside an integrator:

si, ray.d, area_element = ray_intersect(ray)

# Evaluate terms in the integrand using the now reparameterized "ray.d"

throughput *= bsdf.eval(si, si.to_local(ray.d))

# ... and multiply by area element

throughput *= area_element

The ray intersection routine returns a surface interaction record,

the reparameterized ray direction and the area element. This abstrac-

tion allows to cleanly implement different integrators leveraging

the same reparameterization logic.

We use the same hyperparameters for all our results and did not

find our method to be particularly sensitive to the various parame-

ters used to define the weights in Section 4. Unless stated otherwise,

our optimizations use a direct illumination integrator with emitter

sampling. All optimizations use the Adam optimizer [Kingma and

Ba 2015] with a learning rate that is proportional to the current

grid resolution. We optimize SDFs up to a resolution of 256
3
voxels

by differentiably rendering 512
2
pixel images. Initial optimization

iterations use both a lower resolution SDF and lower rendered im-

age resolutions to improve performance. Similar to previous work,

we decorrelate the estimation of the primal image and the gradi-

ents [Gkioulekas et al. 2016]. For our optimizations, we use 256

primal and 64 adjoint samples per pixel. These sample counts are

chosen conservatively to reduce the impact of Monte Carlo noise on

the optimization results. For the highest performance optimization,

adaptively sampling both temporal and spatial dimensions could be

effective at reducing the overall optimization time.

Gradient validation. We validate the gradients computed using

our reparameterization in Figure 8. We use forward-mode differ-

entiation to obtain gradients of the pixel values with respect to

a translation of the SDF. The reference gradients are obtained us-

ing finite differences (with ℎ = 10
−3
). For the scene using indirect
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Fig. 11. We compare the reconstruction results using our reparameterization and the convolution method [Bangaru et al. 2020] at equal iteration count.
Increasing the number of samples to estimate the convolution integral improves the quality of results, but at the cost of drastically increasing the total time
for the optimization. Our method both results in the most accurate reconstruction and the shortest runtime.

illumination, we use a reparameterized version of path replay back-

propagation [Vicini et al. 2021b], following the work by Zeltner et

al. [2021]. We also implemented an SDF version of the convolution

method by Bangaru et al. [2020]. This is the only prior algorithm

that can be used to differentiate physically-based renderings of im-

plicit shapes without explicit meshing. We use their convolution

kernel and apply it to our 3D vector field defined in Equation 9. We

set the concentration parameter 𝜅 of the spherical von Mises-Fisher

distribution to 10
5
for all our experiments. This worked better than

the default of 10
4
suggested in the original paper. Higher values (e.g.,

𝜅 = 10
6
) then again seemed to reduce the quality, in particular of

shadow gradients. In Figure 8, we estimate the convolution integral

using varying numbers of auxiliary rays. We can see that using

4 rays already provides some edge gradients, but we oftentimes

need up to 16 to get a more accurate estimate with the correct sign.

This appears to be consistent with the observations made for tri-

angle meshes in the original paper. Our method on the other hand

produces gradients that closely match the finite difference reference.

Benchmarks. We benchmark the different gradient computation

methods in Figure 9. We show both the time required to render the

primal image and the time used to estimate gradients. We use our di-

rect illumination integrator for these benchmarks. Compared to only

considering shading gradients, our method is around 1.9× slower,

since it evaluates additional terms during sphere tracing and also

needs to compute the area element. It is faster than the convolution

method, in particular as the number of auxiliary rays increases. The

primal rendering time remains constant across all methods, since

we are careful to only reparameterize when computing gradients.

We also benchmark the SDF redistancing implementation to show

the potential overhead caused by the redistancing. We only need to

redistance once per iteration, but each iteration of gradient descent

might require rendering multiple images. As the SDF resolution

increases, we also need to increase the resolution of the rendered

images to effectively use the additional surface resolution. Overall,

we found the overhead due to redistancing negligible compared to

the differentiable rendering itself.

Optimization results. In Figure 10 we show different reconstruc-

tions obtained using our reparameterization and shape optimization

scheme. We always initialize our SDF to a sphere of a constant color.

For all scenes, we re-render the optimization result from a novel

view using a new illumination condition that was not part of the

optimization. Our method can reconstruct these various objects

without the use of a silhouette constraint. One common issue in

shape optimizations are pieces of geometry that are detached from

the main shape and are not removed by the optimization. We did not

observe such issues with our method. The combination of multiscale

optimization and noise in the optimization process even allows to

overcome some of the local minima inherent in this setting. For

example, this allows to correctly reconstruct the complex topology

of the Chair scene. However, a purely surface-based optimization

routine can also get stuck in local minima, where the loss will not

provide any useful gradients to improve further. In the combina-

tion with optimizing albedo textures this can cause some holes of

shapes to be erroneously filled in, e.g., between the legs of the Boar

statue. This non-convexity is a known difficulty of the optimization

problem and addressing it is beyond the scope of this paper.

Comparison to the convolution method. While we have already

seen that our reparameterization produces more accurate gradients

than the SDF version of the method by Bangaru et al. [2020], we can

also validate that this actually yields better optimization results. In
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Fig. 12. The robustness of the shape reconstruction depends on the number
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by varying amounts. The haze around the object in the averaged image is
caused by variance in the reconstructed geometry.

Figure 11 we show optimizations both using our and the convolution

method using varying numbers of auxiliary rays. Overall, we can see

that using a low number of auxiliary rays often results in artifacts

in the reconstructed geometry. The inaccurate edge gradients in

particular seem to cause problems in scenes with sharp edges, as

illustrated in the Cubes scene. As the number of auxiliary rays

increases, the convolutionmethodmanages to produce better results,

at the cost of an increase in overall runtime. Similar issues would

likely occur if one were to apply the convolution method to a finely

tesselated triangle mesh obtained, e.g., using MeshSDF [Remelli

et al. 2020].

Influcence of the number of viewpoints. The quality of the opti-

mization results depends on the number of reference images of the

given scene. Studying the behavior of this effect can provide addi-

tional insight in the stability of gradient estimation and optimization

methods. In Figure 12, we compare reconstructions obtained both

using our method and the convolution method using 4 auxiliary

rays. We show both results as the number of views increases and

also show images blending results of 8 separate runs over different
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Fig. 13. We compare single view reconstructions both without using any
secondary gradients (middle column) and using secondary gradients (right
column). Accounting for indirect effects improves the reconstruction quality
when the number of observations is limited.
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per pixels both using our method and the convolution method [Bangaru
et al. 2020], the latter using 16 samples to estimate the inner convolution
integral. We can reduce the noise of the gradients by using a differentiable
pixel filter weight normalization or using antithetic sampling.
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Fig. 15. Top row: Ignoring discontinuities misses important gradient con-
tributions due to occlusion effects. Bottom row: Using such strongly biased
gradients in an optimization is very likely to completely diverge.

configurations to illustrate the stability of the optimization. These

results further confirm that our method is more robust at a lower

number of reference views than the convolution method. Increasing

the number of auxiliary rays would again increase its runtime. At a

higher number of viewpoints the optimization is more constrained

and the results become more similar.

Benefits of diffentiating secondary effects. One key advantage of

our method is that it can differentiate secondary effects such as shad-

ows and indirect illumination. Figure 13 showcases two example

optimizations where accounting for those gradients improves the

reconstructed geometry. Both examples use only a single reference

view and in both cases differentiating secondary effects helps to

reduce ambiguities by leveraging additional shape cues in the form

of shadows and reflections. In the first example, the optimization

that ignores secondary gradients converges to an undesirable local

minimum, where part of the shadow on the background plane ends

up being approximated by many small disconnected components.

In the second example, we optimize accounting for indirect illu-

mination, which allows to use the shape’s mirror reflection as an

additional constraint.

Gradient variance. In Figure 14, we visualize forward-mode gradi-

ents computed using a low number of samples per pixel.We compare

a naive implementation to one that uses antithetic sampling of the

pixel filter, and one that simply keeps the pixel filter normalization

weights attached to the differentiation, as discussed in Section 4.3.

We can see that the differentiable normalization weights reduce the

variance both for ours and prior work, and seem to perform slightly

better than antithetic sampling. We therefore use the differentiable

weight normalization for all implemented methods.

Comparison to using only the shading gradient. While from a theo-

retical point of view it is clear that we need to account for visibility

discontinuities, it is worth validating that not doing so does not

work. In Figure 15 we run a simple optimization both using our

Reference Ours Ref. Ours

Fig. 16. The presence of complex topology and spatially varying albedo
textures can result in challenging, non-convex optimization problems with
many undesirable local minima. In this example, we optimized SDF and
albedo texture at a resolution of 256

3 using 40 input images. The result is
rendered using the same environment map that is used during optimization.

method and an implementation that does not reparameterize dis-

continuities. While at first glance the gradient images look quite

similar, the missing edge gradients make the optimization diverge

completely.

Non-convexity of surface-based reconstruction. Directly optimizing

surfaces represented as SDFs can work surprisingly well in many

cases. However, the surface reconstruction problem itself can exhibit

undesirable local minima, in particular in the presence of complex

topology (i.e., objects with holes). This sometimes causes undesirable

connections between object parts that should remain disjoint. The

gradient information is then not always sufficient to infer that an

opening must be created. Figure 16 shows such an example, where

gradient descent is unable to correctly reconstruct the topology of

a complex object.

7 CONCLUSION AND FUTURE WORK
We presented a novel approach to the problem of differentiable

rendering of signed distance functions. Our method efficiently com-

putes accurate gradients for image-based optimization of SDFs. We

exploit the computational structure of sphere tracing, convenient

properties of the SDF representation, and the flexibility admitted by

the reparameterization framework.

Our reparameterization handles the discontinuities caused by

SDFs, but supporting efficient combination with other shape rep-

resentations remains future work (e.g., a triangle mesh occluding

an SDF). It would be interesting to combine our method with a

sparse data structure storing the SDF values to allow scaling the

SDF resolution more adaptively. While our method works well with

minimal regularization, investigating more tailored regularization

methods could be worthwhile to further improve results.

For practical shape reconstruction, the main limitation is the

inherent non-convexity of direct surface optimization. This could be

remedied by either using a more sophisticated method to initialize

the SDF, or by using some form of semi-transparency.

Lastly, it would be interesting to apply a similar reparameteriza-

tion approach to triangle meshes. Instead of using a convolution,

one could construct a reparameterization during traversal of the

ray acceleration data structure. This could reduce both variance and

bias of the gradient estimator.
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A EQUIVALENCE OF AREA ELEMENT AND
DIVERGENCE DERIVATIVES

In the following, we prove that we can either evaluate the area

element (using the cross product) or the divergence of the mapping

computed in ambient space. Under differentiation with respect to the

scene parameter 𝜋 , these are equivalent. Sincewe reparameterize the

manifold of the unit sphere, we found this is to be not immediately

obvious. We would like to show:

𝜕𝜋

DT𝝎,𝜋 (s) × DT𝝎,𝜋 (t)

 = 𝜕𝜋divT (𝝎, 𝜋). (23)

The differential DT𝝎,𝜋 is computed in ambient space and in the

following we write it as a parameter dependent Jacobian matrix J(𝜋).
We then prove the original statement by simplifying the derivative

of the area element:

𝜕𝜋 ∥J(𝜋)s × J(𝜋)t∥ = 𝝎 · (𝜕𝜋 J(𝜋)s × J(𝜋)t + J(𝜋)s × 𝜕𝜋 J(𝜋)t)
= 𝝎 · (𝜕𝜋 J(𝜋)s × t + s × 𝜕𝜋 J(𝜋)t) ,

where we differentiated the vector norm and moved the derivative

operator inside the cross product and "·" denotes the dot product.
We also used that J(𝜋) maps s and t onto themselves and therefore

J(𝜋)s × J(𝜋)t = 𝝎. We simplify further by using the fact that the

triple product a · (b × c) is invariant under circular shifts of its
arguments:

𝝎 · (𝜕𝜋 J(𝜋)s × t + s × 𝜕𝜋 J(𝜋)t) = 𝜕𝜋 J(𝜋)s · t × 𝝎 + 𝜕𝜋 J(𝜋)t · 𝝎 × s

= 𝜕𝜋 J(𝜋)s · s + 𝜕𝜋 J(𝜋)t · t,

where we additionally used that t × 𝝎 = s and 𝝎 × s = t. We then

add the zero-valued term 𝜕𝜋 J(𝜋)𝝎 · 𝝎 to the expression above and

use that the sum of inner products of basis vectors with 𝜕𝜋 J(𝜋) is
exactly its trace:

= 𝜕𝜋 J(𝜋)s · s + 𝜕𝜋 J(𝜋)t · t + 𝜕𝜋 J(𝜋)𝝎 · 𝝎
= tr(𝜕𝜋 J(𝜋)) = 𝜕𝜋 tr(J(𝜋)) = 𝜕𝜋divT (𝝎, 𝜋).

With this, Equation 23 has been proven. This makes the equiva-

lence of reparameterization and divergence formulation explicit and

shows that in practice either formulation yields the same result.

Both formulations correctly account for the geometry of the unit

sphere.

To complete the proof, we still need to show the following:

𝜕𝜋 J(𝜋)𝝎 · 𝝎 = 0. (24)

We do so assuming that we can write T (𝝎, 𝜋) = ¯T (𝝎, 𝜋)/
 ¯T (𝝎, 𝜋)

,
where

¯T (𝝎, 𝜋) might not have unit norm, but preserves the direc-

tion, i.e.
¯T (𝝎, 𝜋) = 𝜆𝝎. Our reparameterization keeps the primal

value of 𝝎 fixed, but there can still be an arbitrarily complex differ-

entiable relation to the parameter 𝜋 . We then explicitly compute

the parameter derivative of the Jacobian matrix J(𝜋) = 𝜕𝝎T :

𝜕𝜋 J(𝜋)= 𝜕𝜋

[
𝜕𝝎

(
¯T (𝝎, 𝜋) ¯T (𝝎, 𝜋)


)]

= 𝜕𝜋

[(
1 ¯T
 I − 1 ¯T

3

¯T ¯T𝑇

)
𝜕𝝎 ¯T

]
=

(
1 ¯T
 I − 1 ¯T

3

¯T ¯T𝑇

)
𝜕𝜋 𝜕𝝎 ¯T︸                                  ︷︷                                  ︸

(1)

+ 𝜕𝜋

[
1 ¯T
 I − 1 ¯T

3

¯T ¯T𝑇

]
𝜕𝝎 ¯T𝑇

︸                                    ︷︷                                    ︸
(2)

,

where I is the 3 by 3 identitymatrix and
¯T ¯T𝑇

is an outer product.We

omit the arguments of
¯T (𝝎, 𝜋) for brevity. In order for Equation 24

to hold, we need to show that multiplying 𝝎 with this matrix is a

projection into tangent space of the unit sphere at𝝎. For the term (1)

this follows immediately, since the terms inside the parentheses are

such a projection (recall that
¯T is simply a scaled 𝝎). For (2) this

is a bit more laborious to show, but can be done by computing the

derivative of the terms inside the brackets:

𝜕𝜋

[
1 ¯T
 I − 1 ¯T

3

¯T ¯T𝑇

]
= − 1 ¯T

3

(
¯T𝑇 𝜕𝜋 ¯T

(
I − 1 ¯T

2

¯T ¯T𝑇

)
︸                            ︷︷                            ︸

(1)

+ 𝜕𝜋 ¯T ¯T𝑇 −
¯T𝑇 𝜕𝜋 ¯T ¯T

2

¯T ¯T𝑇

︸                           ︷︷                           ︸
(2)

+ ¯T 𝜕𝜋 ¯T𝑇 −
¯T𝑇 𝜕𝜋 ¯T ¯T

2

¯T ¯T𝑇

︸                           ︷︷                           ︸
(3)

)
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Here, we can again see that (1) is a projection (scalar factors do

not matter), and (2) and (3) require a few additional steps. We can

simplify (2) to again see that it indeed projects onto tangent space:

𝜕𝜋 ¯T ¯T𝑇 −
¯T𝑇 𝜕𝜋 ¯T ¯T

2

¯T ¯T𝑇 =

(
𝜕𝜋 ¯T −

¯T𝑇 𝜕𝜋 ¯T ¯T
2

¯T
)

¯T𝑇

=

(
I − 1 ¯T

2

¯T ¯T𝑇

)
𝜕𝜋 ¯T ¯T𝑇 .

The second equality used that
¯T𝑇 𝜕𝜋 ¯T is a scalar to commute it

with
¯T . We skip the derivation for the term (3), as it is analogous.

This shows that Equation 24 indeed holds.

B PARAMETER DERIVATIVE OF THE
REPARAMETERIZATION T

The parameter derivative of the reparameterization T should follow

the motion of the visible surface boundary on the unit sphere. We

validate this by explicitly computing this derivative. In practice, the

following computation will be carried out by automatic differen-

tiation. Taking the derivative 𝜕𝜋T of our reparameterization we

obtain:

𝜕𝜋T (𝝎, 𝜋) = 𝜕𝜋

[
¯T (𝝎, 𝜋) ¯T (𝝎, 𝜋)


]

=

(
1 ¯T (𝝎, 𝜋0)

 I − 1 ¯T (𝝎, 𝜋0)
3

¯T (𝝎, 𝜋0) · ¯T (𝝎, 𝜋0)𝑇
)
𝜕𝜋 ¯T (𝝎, 𝜋)

=

(
1

𝑡
I − 1

𝑡3

¯T (𝝎, 𝜋0) · ¯T (𝝎, 𝜋0)𝑇
)
𝜕𝜋 ¯T (𝝎, 𝜋)

=

(
1

𝑡
I − 1

𝑡
𝝎 · 𝝎𝑇

)
𝜕𝜋 ¯T (𝝎, 𝜋)

=
1

𝑡

(
I − 𝝎 · 𝝎𝑇

)
𝜕𝜋 ¯T (𝝎, 𝜋)

=
1

𝑡

(
I − 𝝎 · 𝝎𝑇

)
𝜕𝜋V(x𝑡 , 𝜋). (25)

The first equality used the definition of T . In the second equality we

evaluate the derivative of the division by the norm and use the chain

rule. Here, I is the 3 by 3 identity matrix and
¯T (𝝎, 𝜋0) · ¯T (𝝎, 𝜋0)𝑇

is the outer product. For the terms inside the parentheses, we do not

need to track parameter derivatives. In other words, we have 𝜋 = 𝜋0

and the term𝑉 (x+𝑡𝝎, 𝜋)−𝑉 (x+𝑡𝝎, 𝜋0) in the definition of
¯T is then

equal to 0. This allows to simplify further to arrive at the final expres-

sion, where we use the shorthand notation x𝑡 B x+ 𝑡𝝎. This shows

that the normalization projects the derivative vector 𝜕𝜋V(x𝑡 , 𝜋)
to tangent space and divides by the distance, producing a vector

correctly matching the motion of the discontinuity.

C JACOBIAN OF THE REPARAMETERIZATION T
Accounting for the distortion of the integration domain requires

computing the Jacobian 𝜕𝝎T (𝝎, 𝜋) ∈ R3×3
. To do so, we first com-

pute the positional Jacobian 𝜕xV . The vector field V is used to

define the reparameterization T and was defined as:

V(x, 𝜋) = − 𝜕x𝜙 (x, 𝜋0)
∥𝜕x𝜙 (x, 𝜋0)∥2

𝜙 (x, 𝜋) (26)

Note that only 𝜙 (x, 𝜋) is differentiable with respect to the scene

parameter 𝜋 . Taking the derivative with respect to the position x
we get:

𝜕xV(x, 𝜋) = −A · 𝜕2

x𝜙 (x, 𝜋0)𝜙 (x, 𝜋) −
𝜕x𝜙 (x, 𝜋0)

∥𝜕x𝜙 (x, 𝜋0)∥2
· 𝜕x𝜙 (x, 𝜋)𝑇

(27)

with A being the Jacobian of the division by the squared norm:

A =
1

∥𝜕x𝜙 (x, 𝜋0)∥2

(
I − 2

∥𝜕x𝜙 (x, 𝜋0)∥2
𝜕x𝜙 (x, 𝜋0) · 𝜕x𝜙 (x, 𝜋0)𝑇

)
Accounting for the additional weighting factor 𝑤V , we compute

the weighted vector field’s Jacobian using the product rule:

𝜕x ¯V(x, 𝜋) = 𝜕𝝎 [𝑤V (x)V(x, 𝜋)] = V(x, 𝜋) · 𝜕𝝎𝑤V (x)𝑇

+𝑤V (x)𝜕𝝎V(x, 𝜋) (28)

So far, this Jacobian assumes we vary the 3D position x. We need to

convert it to a Jacobian with respect to the ray direction 𝝎:

𝜕𝝎 ¯V(x𝑡 , 𝜋) = 𝜕x ¯V(x, 𝜋)𝜕𝝎x𝑡 , (29)

where 𝜕𝝎x𝑡 = 𝜕𝝎 [xo + 𝑡𝝎] = I ·𝑡+𝝎 ·𝜕𝝎𝑡𝑇 . And finally, accounting
for the conversion to a reparameterization on the unit sphere:

𝜕𝝎T (𝝎, 𝜋) = B ·
(
𝜕𝝎x𝑡 + 𝜕𝝎 ¯V(x𝑡 , 𝜋) − 𝜕𝝎 ¯V(x𝑡 , 𝜋0)

)
, (30)

where B is the normalization Jacobian which we used before:

B =
1 ¯T (𝝎, 𝜋)

 I − 1 ¯T (𝝎, 𝜋)
3

¯T (𝝎, 𝜋) · ¯T (𝝎, 𝜋)𝑇 .

Finally, we then simply evaluate tr (𝜕𝝎T (𝝎, 𝜋)). We can further

reduce the number of 3 × 3 matrix products by analyzing this ex-

pression more closely. First of all, we know that

 ¯T (𝝎, 𝜋)
 = 𝑡 and

does not depend on 𝜋 in a differentiable way (𝑡 is computed using

𝜋0). We will also drop any term that is additive and does not depend

on 𝜋 directly, as its derivative will be zero. In the end, we only need

the derivative of the trace of the Jacobian:

𝜕𝜋 tr (𝜕𝝎T (𝝎, 𝜋)) = 𝜕𝜋 tr

(
B·

(
𝜕𝝎x𝑡 + 𝜕𝝎 ¯V(x𝑡 , 𝜋) − 𝜕𝝎 ¯V(x𝑡 , 𝜋0)

) )
= 𝜕𝜋 tr (B · 𝜕𝝎x𝑡 ) + 𝜕𝜋 tr

(
B·𝜕𝝎 ¯V(x𝑡 , 𝜋)

)
We can now show that 𝜕𝜋 tr (B · 𝜕𝝎x𝑡 ) = 0:

𝜕𝜋 tr (B · 𝜕𝝎x𝑡 ) = 𝜕𝜋 tr

(
B ·

[
I · 𝑡 + 𝝎 · 𝜕𝝎𝑡𝑇

] )
= 𝑡 · 𝜕𝜋 tr (B) + 𝜕𝜋 tr

(
B · 𝝎 · 𝜕𝝎𝑡𝑇

)
Since B is simply the projection onto tangent space, we know that

tr(B) = rank(B) = 2 and therefore its derivative is zero. Additionally,

B ·𝝎 · 𝜕𝝎𝑡𝑇 is zero, since B removes any component in the direction

of 𝝎. Hence, 𝜕𝜋 tr (B · 𝜕𝝎x𝑡 ) = 0 and the derivative simplifies to:

𝜕𝜋 tr (𝜕𝝎T (𝝎, 𝜋)) = 𝜕𝜋 tr

(
B · 𝜕𝝎 ¯V(x𝑡 , 𝜋)

)
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D NESTING REPARAMETERIZATIONS
When reparameterizing a rendering algorithm, we need to correctly

nest reparameterizations of the solid angle domain. For example,

when rendering an image with direct illumination, we solve the

following nested integration for each pixel:

𝐼 (𝜋) =
∫
S2

𝑓0 (𝝎0, 𝜋)
∫
S2

𝑓1 (𝝎0,𝝎1, x1 (𝝎0, 𝜋), 𝜋) d𝝎1 d𝝎0, (31)

where 𝑓0 and 𝑓1 contain all relevant importance, visibility, BSDF and

incident radiance terms. We use this simplified notation to reduce

notational clutter. We explicitly write the dependency of 𝑓1 on the

ray intersection x1 (𝝎0, 𝜋) of the camera ray in direction 𝝎0. The

inner integration is over reflected directions 𝝎1.

If we now want to differentiate this nested integral, we need to

introduce two reparameterizations. The first one reparameterizes

the primary ray and the second one the secondary ray (or put more

simply, the shadow ray). First, applying a reparameterization T0 on

the primary ray:

𝐼 (𝜋) =
∫
S2

𝑓0 (T0 (𝝎0, 𝜋), 𝜋) |T0 |∫
S2

𝑓1 (T0 (𝝎0, 𝜋),𝝎1, x1 (T0 (𝝎0, 𝜋), 𝜋), 𝜋) d𝝎1 d𝝎0, (32)

where in a slight abuse of notation |T0 | denotes the area element.

Assuming a static sensor, we drop the dependency of T0 on x0 for

clarity. We further reparameterize the second ray to obtain:

𝐼 (𝜋) =
∫
S2

𝑓0 (T0 (𝝎0, 𝜋), 𝜋) |T0 |∫
S2

𝑓1

(
T0 (𝝎0, 𝜋),T1 (𝝎1, x1 (T0 (𝝎0, 𝜋), 𝜋), 𝜋),

x1 (T0 (𝝎0, 𝜋), 𝜋), 𝜋
)
|T1 | d𝝎1 d𝝎0 . (33)

The second reparameterization can now potentially depend on the

first reparameterization, and hence 𝜋 , through the position x1. On

top of that, x1 might also directly depend on the parameters, e.g., if

𝜋 controls the distance of the object from the sensor, x1 will move

away or closer to the sensor as 𝜋 changes.

The remaining question is whether our reparameterization T1

still evaluates to the correct motion over the unit sphere when

differentiated. This can be validated by plugging the parameter-

dependent position into the definition of our reparameterization.

Equation 11 now needs to evaluateV using a parameter-dependent

position x:

𝜕𝜋V(x𝑡 (𝜋), 𝜋) = 𝜕𝜋V(x(𝜋) + 𝑡𝝎, 𝜋). (34)

We previously assumed the ray origin to be fixed and did not con-

sider the parameter-dependence of x𝑡 . Here we simplified the nota-

tion by omitting the explicit dependency of x on T0.

We can now use the following fact: when solving the inner inte-

gral and integrating over secondary rays, x(𝜋) is fixed. That means

that the dependency of x on 𝜋 can be re-interpreted as simply an-

other way in which the SDF values depend on 𝜋 . When evaluating

V we therefore need to evaluate

V(x𝑡 (𝜋), 𝜋) = − 𝜕x𝜙 (x𝑡 (𝜋0), 𝜋0)
∥𝜕x𝜙 (x𝑡 (𝜋0), 𝜋0)∥2

𝜙 (x𝑡 (𝜋), 𝜋) . (35)

It is important to detach the evaluation of the positional gradient

from the parameter dependence introduced through x. With this we

moved the parameter dependency of x into the vector field evalua-

tion, which then in turn guarantees the correct (relative) motion of

the surface, as our formulation ofV does not assume any specific re-

lation of 𝜋 and 𝜙 in order to produce a valid reparameterization. For

future work, it could be interesting to generalize these derivations

to path space, similar to the work by Zhang et al. [2019].
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