
Solving Inverse PDE Problems using Grid-Free Monte Carlo Estimators
EKREM FATIH YILMAZER, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
DELIO VICINI, Google Inc., Switzerland
WENZEL JAKOB, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

O
1

(a1) Iter. 0 (a2) Iter. 4 (a3) Iter. 16 (a4) Iter. 64 (b) Reference (c)Dref

−4

0

4
×10−1

(d1)D0 − Dref (d2)Dlast − Dref

−4

0

4

×10−2

O
2

−4

0

4
×10−1

−5

0

5

×10−2

O
3

0 4 8 12

−4

0

4
×10−1

0 4 8 12 0 4 8 12

−5
0

5

×10−2

Fig. 1. We apply our inverse PDE solver to a 2D electrical impedance tomography experiment [Hauptmann et al. 2017], in which an electric current flows
through a saline-filled water tank containing conducting objects of different sizes (photographs in middle). The marker in the middle indicates the center.
Injecting a current using 2 of 16 uniformly spaced electrodes at the tank boundary generates a measurable voltage difference at the other electrodes, and
injecting at various locations produces a matrix 𝑢ref of measurements. The objective of this inverse problem is to infer the properties of the conductor from
this data. We perform a differentiable simulation of this setup to optimize the center and radius of a conducting circle. The frames on the left show the
progression of the optimization (columns (a)), while the rightmost two columns reveal how the predicted voltages become increasingly consistent with the
measurement (columns (d)).

Partial differential equations can model diverse physical phenomena includ-
ing heat diffusion, incompressible flows, and electrostatic potentials. Given
a description of an object’s boundary and interior, traditional methods solve
such PDEs by densely meshing the interior and then solving a large and
sparse linear system derived from this mesh. Recent grid-free solvers take an
alternative approach and avoid this complexity in exchange for randomness:
they compute stochastic solution estimates and generally bear a striking
resemblance to physically-based rendering algorithms.

In this article, we develop algorithms targeting the inverse form of this
problem: given an already existing solution of a PDE, we infer parameters
characterizing the boundary and interior. In the grid-free setting, there
are again significant connections to rendering, and we show how insights
from both fields can be combined to compute unbiased derivative estimates
that enable gradient-based optimization. In this process, we encounter new
challenges that must be addressed to obtain practical solutions. We introduce

Authors’ Contact Information: Ekrem Fatih Yilmazer, ekrem.yilmazer@epfl.ch, École
Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Delio Vicini,
vicini@google.com, Google Inc., Zurich, Switzerland; Wenzel Jakob, wenzel.jakob@
epfl.ch, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 1557-7368/2024/12-ART175
https://doi.org/10.1145/3687990

acceleration and variance reduction strategies and show how to differentiate
branching random walks in reverse mode.

We finally demonstrate our approach on both simulated data and a real-
world electrical impedance tomography experiment, where we reconstruct
the position of a conducting object from voltage measurements taken in a
saline-filled tank.

CCS Concepts: • Mathematics of computing → Partial differential
equations; • Computing methodologies→ Rendering.

Additional Key Words and Phrases: Walk on Spheres, Differentiable Render-
ing, Path Replay Backpropagation, Electrical Impedance Tomography

ACM Reference Format:
Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob. 2024. Solving Inverse
PDE Problems using Grid-Free Monte Carlo Estimators. ACM Trans. Graph.
43, 6, Article 175 (December 2024), 18 pages. https://doi.org/10.1145/3687990

1 INTRODUCTION
Many physical phenomena are naturally described using partial
differential equations (PDEs). For example, the heat equation mod-
els the spread of thermal energy in a potentially heterogeneous
material. Solvers that numerically approximate solutions of such
PDEs are in widespread use. We pursue the opposite direction in
this article, which is known as an inverse PDE problem: estimat-
ing unknown parameters from observations of the solution. This
set of unknown parameters could include various PDE coefficients,
boundary conditions, and even the shape of the domain.

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

https://doi.org/10.1145/3687990
https://doi.org/10.1145/3687990

175:2 • Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob

Such problems arise in diverse scientific and engineering contexts,
for example to determine the physical parameters of a thermal
conductor from measurements [Cannon 1964]. Electrical impedance
tomography [Cheney et al. 1999] seeks to reconstruct the interior of
a living organism. Electrodes provide measurements of the electric
field, which is influenced by the tissue’s conductivity, impedance,
and dielectric permittivity.
Our approach entails differentiating the solver and recovering

the unknown parameters using gradient descent. However, one
issue with conventional PDE solvers based on the finite element
method (FEM) is that they require a meshing step that can be fragile
and computationally costly. An alternative is using Monte Carlo
PDE solvers based on thewalk on spheres (WoS) [Muller 1956]. These
grid-free methods sample random paths in the domain to compute
unbiased estimates of the solution. Grid-free solvers have recently
attracted significant attention in the computer graphics community,
partly owing to the similarities to rendering [Sawhney and Crane
2020] and the algorithmic synergies that this creates [Sawhney et al.
2022, 2023; Qi et al. 2022; Bati et al. 2023].
A common issue with gradient-based optimization is that the

standard approach for reverse-mode differentiation (also known as
backpropagation) reverses the data dependencies of an underlying
computation. When applied to the WoS algorithm, this means that
intermediate results of a large number of iterations would need to
be stored to enable the subsequent differentiation.
In rendering, recent progress has led to the development of dif-

ferentiable rendering methods [Gkioulekas et al. 2013; Li et al. 2018;
Nimier-David et al. 2019] that estimate derivatives of complete light
transport simulations. A similar issue arises here as well: light paths
can potentially be very long, particularly in highly-scattering media,
which makes naïve differentiation prohibitively memory-intensive.
This has sparked work on specialized adjoint methods [Nimier-David
et al. 2020; Vicini et al. 2021] that cast differentiation into an inde-
pendent simulation of “derivative light” to avoid these costs.
We demonstrate that this idea also applies to Monte Carlo PDE

solvers, where it leads to unbiased derivative estimators for several
variants and extensions of the WoS algorithm. At the same time,
unique characteristics of this setting require the development of
new solutions: for example, PDEs with spatially variable coefficients
often require a variance reduction strategy where random walks
can split. We extend Path Replay Backpropagation [Vicini et al. 2021]
to branching random walks to support this requirement.
In our experiments, we found that the forward simulation was

often the main computational bottleneck, and we propose several
improvements to accelerate convergence of both primal and adjoint
simulations: first, to better handle PDEs with a heterogeneous diffu-
sion coefficient, we introduce an adaptive sphere radius selection.
Second, we develop a fast way to evaluate and sample the Green’s
function, accelerating convergence by up to an order of magnitude.

As an application of our work, we investigate electrical impedance
tomography (EIT) [Cheney et al. 1999]. Our method provides great
flexibility in the parameterization of the unknown conductance
sought by EIT that we demonstrate in recovering continuously
varying and binary conductance fields. Finally, we use our solver
to reconstruct the shape and position of a conducting object in a

saline-filled tank (Figure 1). This demonstrates that our approach
can translate to real-world data despite modeling approximations.

In summary, our contributions are:
• We develop efficient adjoints for the Walk on Spheres [Sawh-
ney and Crane 2020] and Walk on Stars [Sawhney et al. 2023],
demonstrating recovery of governing parameters (e.g., diffu-
sion coefficient, source terms).

• We then extend these methods to branching random walks.
• We improve the performance of the forward PDE solvers by
introducing an adaptive sphere radius selection and optimized
Green’s function evaluation.

• We apply these ideas to electrical impedance tomography and
present results on measured data.

The experiments in this paper use 2D domains for ease of visual-
ization, though the presented ideas straightforwardly generalize to
higher dimensions. We will release an open source implementation
of our method to ensure reproducibility.

2 RELATED WORK
We briefly review prior work on Monte Carlo PDE solvers, differen-
tiable Monte Carlo estimators and inverse PDE problems.

Monte Carlo PDE solvers. The solvers in this paper all build on
variations of walk on spheres [Muller 1956]. Sawhney and Crane
[2020] were the first to explore this technique in context of com-
puter graphics, realizing their relationship to existing Monte Carlo
rendering methods [Pharr et al. 2023]. Unique characteristics of
these solvers are that they provide statistically unbiased solution
estimates with a computation that is local and progressive in nature,
all without requiring a mesh of the domain’s interior. This makes it
possible to solve and even interactively preview problems on large
and complex domains. The base algorithm was later extended to
spatially-varying coefficients [Sawhney et al. 2022], as well as Neu-
mann [Sawhney et al. 2023] and Robin boundary conditions [Miller
et al. 2024]. Other recent uses of Monte Carlo PDE solvers include
estimators for fluid motion [Rioux-Lavoie et al. 2022] and coupled
solvers for thermal transport [Bati et al. 2023].
As in Monte Carlo rendering, the stochastic nature of estimates

motivates specialized variance reduction strategies. Qi et al. [2022]
propose a bidirectional estimator for PDEs with sparse source terms.
Other works cache and reuse evaluations on the boundary [Miller
et al. 2023] or interior [Bakbouk 2023] or approximate the solution
using a neural cache [Li et al. 2023]. Nabizadeh et al. [2021] warp
space inside-out to efficiently solve PDEs on unbounded domains.

DifferentiableMonte Carlomethods. Given the origins of theMonte
Carlo method in the area of nuclear physics, it is of no surprise that
the first uses of differential Monte Carlo likewise investigated nu-
clear processes, for example to determine the efficiency of neutron
breeding [Mikhailov 1967], design radiation shielding [Brainina et al.
1967], or model the criticality transition in nuclear reactors [Lux and
Koblinger 1990]. In computer graphics, the use of differential Monte
Carlo was initially focused on appearance estimation [Gkioulekas
et al. 2013, 2016; Khungurn et al. 2015; Velinov et al. 2018]. Recently,
general algorithms [Li et al. 2018] and systems [Nimier-David et al.
2019; Jakob et al. 2022] have enabled more systematic use of differen-
tiable Monte Carlo simulations. In rendering, special consideration

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

Solving Inverse PDE Problems using Grid-Free Monte Carlo Estimators • 175:3

is required to differentiate visibility discontinuities [Li et al. 2018;
Loubet et al. 2019; Zhang et al. 2020; Vicini et al. 2022]. Concurrently
to our work, Yu et al. [2024] discuss application of some of those
ideas to optimize the boundary shape of Poisson problems. The
non-trivial control flow and high number of operations found in
rendering algorithms make conventional automatic differentiation
impractical, which has motivated the development of more efficient
adjoint methods [Nimier-David et al. 2020; Vicini et al. 2021] that
we also build upon.

Inverse PDE problems. PDE-constrained inverse problems occur in
a wide range of practical applications such as electrical impedance
tomography [Barber and Brown 1984; Adler and Boyle 2017], fluid
control [McNamara et al. 2004], geophysics [Mosser et al. 2020],
nanophotonics [Molesky et al. 2018] and thermal design [França
et al. 2003]. In computer graphics, Zhao et al. [2018] solve an inverse
problem to control diffusion curves [Orzan et al. 2013].

Electrical impedance tomography. As an example application, we
demonstrate the use of our solvers for electrical impedance tomogra-
phy. Prior work can be categorized into statistical and deterministic
approaches. Statistical methods are mainly based on Bayesian in-
version [Liu et al. 2018, 2020a,b]. Deterministic approaches either
assume linearity [Santosa and Vogelius 1990; Barber and Brown
1984; Calderón 2006; Cheney et al. 1990; Adler et al. 2009], or use
iterative algorithms such as Gauss-Newton or Newton-Raphson
[Bayford 2006]. An example of a direct non-linear method is the
D-Bar algorithm [Hamilton et al. 2012, 2018]. Other approaches
use level set methods [Liu et al. 2017], morphable components [Liu
and Du 2021] or directly predict conductivities using neural net-
works [Guardo et al. 1991; Li et al. 2017; Zhang et al. 2022].

3 BACKGROUND: MONTE CARLO PDE SOLVERS
The discussion of our method (Section 4) assumes familiarity with
Monte Carlo PDE solvers that we review here for completeness. Ta-
ble 1 lists notation used throughout the paper. For a more thorough
introduction, we also refer to the original publications [Sawhney
and Crane 2020; Sawhney et al. 2022, 2023].

3.1 Walk on Spheres
Screened Poisson equation. We consider the screened Poisson equa-

tion with Dirichlet boundary conditions as an introductory problem:

Δ𝑢 (𝑥) − 𝜎𝑢 (𝑥) = −𝑓 (𝑥) 𝑥 ∈ Ω,

𝑢 (𝑥) = 𝑔(𝑥) 𝑥 ∈ 𝜕Ω. (1)

Here, 𝑢 (𝑥) denotes the solution at a point inside the domain Ω.
The function 𝑓 (𝑥) is a spatially-varying source term, and 𝑔(𝑥) pre-
scribes the solution values on the domain boundary 𝜕Ω. The scalar
screening coefficient 𝜎 models a decay in the influence of distant
sources and boundaries. Solutions to Equation (1) satisfy a general-
ized mean value property [Muller 1956; Sawhney and Crane 2020]
that expresses the solution 𝑢 (𝑥) in the form of an integral equation

𝑢 (𝑥) =
∫
𝜕𝐵 (𝑥)

𝑃𝜎 (𝑥, 𝑥 ′) 𝑢 (𝑥 ′) d𝑥 ′ +
∫
𝐵 (𝑥)

𝐺𝜎 (𝑥,𝑦) 𝑓 (𝑦) d𝑦, (2)

(a) Sphere step (Dirichlet) (b) Star step (Dirichlet & Neumann)

Fig. 2. At every iteration we either take a sphere (a) or a star step (b)
depending on the local boundary conditions. The former samples a position
𝑥 ′ ∈ 𝜕𝐵, where 𝐵 is a ball centered at 𝑥 and tangential to the domain’s
Dirichlet boundaries 𝜕Ω𝑑 . Another sample 𝑦 ∈ 𝐵 may be needed in the
presence of interior sources. Star steps (b) are required to handle Neumann
boundary conditions. They construct the largest ball that is tangential to
𝜕Ω𝑑 and involve integrals over the star 𝑆𝑡 = 𝐵 ∩ Ω, its boundary 𝜕𝑆𝑡 and
the subset 𝜕𝑆𝑡𝑛 = 𝜕𝑆𝑡 ∩ 𝜕Ω𝑛 overlapping Neumann boundary conditions.

Table 1. Notation used throughout paper

Term Interpretation
Ω, 𝜕Ω The domain and its boundary
𝐵, 𝜕𝐵 The current ball and its boundary
|𝜕𝐵 | The surface area of the ball
𝑆𝑡, 𝜕𝑆𝑡 The current star and its boundary
𝜕Ω𝑑 Part of 𝜕Ω with Dirichlet boundary conditions
𝜕Ω𝑛 Part of 𝜕Ω with Neumann boundary conditions
𝜕𝑆𝑡𝑛 Part of 𝜕𝑆𝑡 with Neumann boundary conditions
𝑓 (𝑦) Spatially varying source term at 𝑥 ∈ Ω
𝑔(𝑥) Value of the solution at 𝑥 ∈ 𝜕Ω𝑑
ℎ(𝑥) Normal derivative of the solution at 𝑥 ∈ 𝜕Ω𝑛

𝜎 (𝑦) Spatially varying screening coefficient
𝛼 (𝑦) Spatially varying diffusion coefficient
𝑥, 𝑥 ′ Current and next vertex of the Walk on Spheres
𝑃𝜎 ,𝐺𝜎 Poisson kernel and Green’s function

where 𝐵(𝑥) ⊂ Ω is a ball around 𝑥 , 𝑃𝜎 (𝑥, 𝑥 ′) is the Poisson kernel
and 𝐺𝜎 (𝑥,𝑦) the Green’s function. The Poisson kernel and Green’s
function depend on both 𝜎 and the radius of the ball—expressions
for them can be found in the supplementary material.

Monte Carlo estimator. The integral form makes it possible to
construct Monte Carlo estimators of 𝑢 (𝑥). Starting at any point
𝑥 ∈ Ω, theWalk on Spheres [Muller 1956; Sawhney and Crane 2020]
recursively estimates the solution by uniformly sampling a point
𝑥 ′ ∈ 𝜕𝐵(𝑥) (see Figure 2a). The source term’s contribution is evalu-
ated by sampling an additional point 𝑦 ∈ 𝐵(𝑥) at every step. The po-
sition of 𝑦 can be chosen proportional to the Green’s function to re-
duce variance, and Section 5.2 introduces an efficient way to do so.
The radius at each step is arbitrary as long as the resulting ball

does not intersect the boundary. It is usually set to the minimum
distance to the boundary, as taking the largest admissible sphere

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

175:4 • Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob

(a) Walk on Spheres (b) Walk on Stars

Fig. 3. (a) Each step of a Walk on Spheres samples a random point on the
largest sphere that fits within the domain. The algorithm terminates once it
reaches a position in Ω𝜀 . (b) In the Walk on Stars, the recursive integration
over the solution on 𝜕𝑆𝑡𝑛 implies a "reflection" of the sampled path when
encountering a Neumann boundary.

step improves efficiency. The algorithm terminates once it samples
a point within a small distance 𝜀 to the boundary (Figure 3a).

3.2 Walk on Stars
Mixed boundary conditions. A generalization of the earlier family

of PDEs additionally considers Neumann boundary conditions:

Δ𝑢 (𝑥) − 𝜎𝑢 (𝑥) = −𝑓 (𝑥) 𝑥 ∈ Ω,

𝑢 (𝑥) = 𝑔(𝑥) 𝑥 ∈ 𝜕Ω𝑑 , (3)
𝜕𝑛𝑢 (𝑥) = ℎ(𝑥) 𝑥 ∈ 𝜕Ω𝑛,

where the sets 𝜕Ω𝑑 and 𝜕Ω𝑛 partition 𝜕Ω into regions with Dirichlet
and Neumann boundary conditions, and ℎ(𝑥) specifies the normal
derivative 𝜕𝑛𝑢 (𝑥) on the boundary. We assume that the Neumann
boundary is (locally) convex and smooth. Computing solutions on
non-convex Neumann domains is more involved [Sawhney et al.
2023] and beyond the scope of this work.

As before, the problem can be cast into an equivalent recursive in-
tegral form. Instead of integrating over a ball, wemust now integrate
over a star defined as the intersection of the domain and a ball, whose
radius equals the minimum distance between 𝑥 and 𝜕Ω𝑑 (see Fig-
ure 2b). This leads to the following boundary integral equation (BIE):

𝜅 (𝑥)𝑢 (𝑥) =
∫
𝜕𝑆𝑡

𝑃𝜎 (𝑥, 𝑥 ′)𝑢 (𝑥 ′) d𝑥 ′ −
∫
𝜕𝑆𝑡𝑛

𝐺𝜎 (𝑥, 𝑧)ℎ(𝑧) d𝑦

+
∫
𝑆𝑡
𝐺𝜎 (𝑥,𝑦) 𝑓 (𝑦) d𝑦

𝜅 (𝑥) = 1/2 𝑥 ∈ 𝜕Ω𝑛, 𝜅 (𝑥) = 1 𝑥 ∉ 𝜕Ω𝑛, (4)

where 𝑆𝑡 denotes the star, 𝜕𝑆𝑡 is its boundary, and 𝜕𝑆𝑡𝑛 = 𝜕𝑆𝑡 ∩ 𝜕Ω𝑛

refers to the intersection of the star’s boundary and the Neumann
boundary region. If the closest point on the boundary is part of 𝜕Ω𝑑 ,
the expression reduces to Equation (2).

Monte Carlo estimator. Generalizing the previous estimator to
Equation 4 leads to the Walk on Stars [Sawhney et al. 2023]. In each
iteration, this method samples a random ray starting at 𝑥 , whose
direction is either uniform on the sphere (if 𝑥 ∈ Ω) or uniform on the
hemisphere pointing towards the interior (if 𝑥 ∈ 𝜕Ω). Intersecting
this ray with 𝜕𝑆𝑡 produces a sample 𝑥 ′ that can be used to estimate
the recursive term (first integral). To account for sources (third

integral), the method picks a position along the ray proportional to
the Green’s function, ignoring samples that fall outside of the star.

To handle Neumann boundaries (second integral), Sawhney et al.
[2023] construct a custom bounding volume hierarchy (BVH) to
sample the domain 𝜕𝑆𝑡𝑛 . We use simpler scheme that we found to
be more suitable for the Bézier spline curve representation used in
this article. This method does not require custom data structures in
exchange for a potentially larger amount of variance; we explain it
in the supplemental material.
Figure 3b illustrates the complete estimator. At each step, we

check the type of the closest boundary position to select between the
sphere (Dirichlet) and star (Neumann) cases. We then take a suitable
step, accumulating contributions according to Equations (2) and (4).
This process repeats until reaching a position 𝑥𝑘 within distance 𝜀 to
a Dirichlet boundary, where the solution is approximated by 𝑔(𝑥𝑘).

3.3 Spatially-varying coefficients
We can further expand the family of supported PDEs by considering
spatial variation of additional terms:

∇ [𝛼 (𝑥)∇(𝑢 (𝑥))] − 𝜎 (𝑥)𝑢 (𝑥) = −𝑓 (𝑥) 𝑥 ∈ Ω

𝑢 (𝑥) = 𝑔(𝑥) 𝑥 ∈ 𝜕Ω𝑑

𝜕𝑛𝑢 (𝑥) = ℎ(𝑥) 𝑥 ∈ 𝜕Ω𝑛 , (5)

where 𝛼 (𝑥) and 𝜎 (𝑥) are spatially-varying diffusion and screen-
ing coefficients. In the special case of pure Dirichlet boundaries,
Sawhney et al. [2022] show how the combination of a Girsanov
transformation and an insight from null-collision random walks in
heterogeneous volumes [Woodcock et al. 1965; Galtier et al. 2013]
can turn Equation 5 into a screened Poisson equation with constant
coefficients (Equation 1):

Δ𝑈 (𝑥) − 𝜎𝑈 (𝑥) = −(𝜎 − 𝜎′ (𝑥))𝑈 (𝑥) − 𝑓 ′ (𝑥), 𝑥 ∈ Ω,

𝑈 (𝑥) =
√︁
𝛼 (𝑥)𝑔(𝑥), 𝑥 ∈ 𝜕Ω𝑑 , (6)

where 𝑓 ′ (𝑥) = 𝑓 (𝑥)/
√︁
𝛼 (𝑥), 𝜎 is a positive free parameter, and

𝜎′ (𝑥) = 𝜎 (𝑥)
𝛼 (𝑥) +

1
2

(
Δ𝛼 (𝑥)
𝛼 (𝑥) − |∇(ln𝛼 (𝑥)) |2

2

)
. (7)

The solution in terms of this modified problem is then given by
𝑢 (𝑥) = 𝛼 (𝑥)−1/2𝑈 (𝑥). A similar change is also possible in the more
general case of mixed boundary conditions, please see the supple-
mental material for details. For brevity, we only discuss the Dirichlet
version in the following.

Starting from Equation (6), we can build the WoS estimator using
Equation (2). Omitting the source term 𝑓 (𝑥), we have:

𝑈 (𝑥)=
∫
𝜕𝐵 (𝑥)
𝑃 �̄� (𝑥, 𝑥 ′)𝑈 (𝑥 ′) d𝑥 ′+

∫
𝐵 (𝑥)
𝐺�̄� (𝑥,𝑦) (𝜎−𝜎′ (𝑦))𝑈 (𝑦) d𝑦. (8)

Compared to the basic screened Poisson estimator, the volume inte-
gral over 𝐵(𝑥) now also depends on the solution 𝑈 (𝑦). Since both
integrals evaluate the solution recursively, Sawhney et al. [2022]
probabilistically select one of the two terms in each iteration to
prevent exponential runtime complexity. They derive the following

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

Solving Inverse PDE Problems using Grid-Free Monte Carlo Estimators • 175:5

selection probability using the relation between 𝑃 �̄� and 𝐺�̄� :

𝑃 �̄� (𝑥, 𝑧) = 1 − 𝜎 |𝐺�̄� | = 1 − 𝜎
∫
𝐵 (𝑥)

𝐺�̄� (𝑥, 𝑧) d𝑧. (9)

Using this relation, the probability of sampling the volume term is
P𝜕𝐵 = 1 − P𝐵 = 1 − 𝜎 |𝐺�̄� |. The surface and volume terms use the
same strategies as the basic screened Poisson estimator. This yields
the following estimator:

𝑈 (𝑥𝑘) =
{
𝑈 (𝑥𝑘+1) if 𝜉 < P𝜕𝐵,
𝑈 (𝑥𝑘+1)

(
1 − 𝜎 ′ (𝑥𝑘+1)

�̄�

)
otherwise,

(10)

where 𝜉 ∈ [0, 1) is a uniform variate. The efficiency of this estima-
tor depends on the choice of the free parameter 𝜎 . Sawhney et al.
[2022] set it to a global constant 𝜎 = maxΩ 𝜎′ (𝑥) − minΩ 𝜎′ (𝑥), In
Section 5.1, we further investigate the choice of 𝜎 and propose an
acceleration data structure to set it adaptively.

However, even an adaptively chosen 𝜎 can produce samples with
a very large weight, which adds significant variance especially in
long random walks. Sawhney et al. [2022] adopt weight window-
ing to split the path once its throughput weight exceeds a given
threshold, redistributing this weight across independently sampled
path suffixes. We will shortly see that this complicates derivative
computation, for which we present a solution in Section 4.1.

4 INVERSE SOLVER
With this background in place, we can now turn to inverse problems.
Our goal is to solve a minimization problem of the form

𝝅 = arg min
𝝅

ℓ (u(𝝅)) (11)

using gradient-based optimization. The components of the vector
u(𝝅) represent discrete evaluations of the PDE’s solution 𝑢 (𝑥), e.g.,
on a regular grid. This solution is assumed to depend on a parameter
vector 𝝅 that controls the source term, boundary values, etc. The
function ℓ is a differentiable loss function, for example a 𝐿2 distance
between u(𝝅) and a reference. The optimization depends on our
ability to differentiate both ℓ and the solution u(𝝅), of which the
latter is mainly of interest. For notational simplicity, we focus on a
derivative 𝜕𝜋 ≔ 𝜕/𝜕𝜋 with respect to a single parameter 𝜋 , but the
resulting methods generalize to arbitrary parameter counts.

Fredholm integral equations. We begin by observing that all pre-
viously introduced estimators solve a Fredholm integral equation
of the second kind:

𝑢 (𝑥, 𝜋) = 𝑆 (𝑥, 𝜋) +
∫
Y
𝐾 (𝑥, 𝑥 ′, 𝜋) 𝑢 (𝑥 ′, 𝜋) d𝑥 ′ . (12)

This involves a sampling process on a domain Y involving accu-
mulation of a source term 𝑆 and recursive weighting by a kernel 𝐾 .
The source term 𝑆 may itself be defined in terms of an integral but
does not depend on the solution 𝑢. The key challenge we address in
the following is the evaluation of the derivative 𝜕𝜋𝑢 (𝑥, 𝜋).

This formulation is reminiscent of the rendering equation [Kajiya
1986] solved by physically-based rendering algorithms:

𝐿𝑜 (x,𝝎) = 𝐿𝑒 (x,𝝎) +
∫
S2
𝑓𝑠 (x,𝝎,𝝎′)𝐿𝑖 (x,𝝎′) d𝝎′⊥, (13)

where 𝐿𝑜 , 𝐿𝑖 and 𝐿𝑒 denote the outgoing, incident and emitted
radiance and 𝑓 is the bidirectional scattering distribution function
(BSDF). In both equations, the solution appears in the integral on the
right. Recursive sampling of this term by the associated estimators
produces a random walk.

Derivative integrals. Recentwork on differentiable renderingmeth-
ods [Nimier-David et al. 2020; Vicini et al. 2021] casts differentiation
into an independent random walk that propagates differential quan-
tities (e.g., the derivative of radiance). Unlike conventional automatic
differentiation, this does not require costly recording of the entire
computational structure of the forward algorithm.
The principle underlying these methods can be observed by dif-

ferentiating both sides of Equation 12 with respect to 𝜋 . Under the
assumption that 𝜋 does not affect the position of discontinuities
in the integrand or the integration domain Y itself, we can differ-
entiate under the integral sign and apply the product rule, which
produces the following expression for 𝜕𝜋𝑢 (𝑥, 𝜋):

𝜕𝜋𝑢 (𝑥, 𝜋) = 𝜕𝜋𝑆 (𝑥, 𝜋) +
∫
Y
𝜕𝜋

[
𝐾 (𝑥, 𝑥 ′, 𝜋)] 𝑢 (𝑥 ′, 𝜋) d𝑥 ′

+
∫
Y
𝐾 (𝑥, 𝑥 ′, 𝜋) 𝜕𝜋𝑢 (𝑥 ′, 𝜋) d𝑥 ′ . (14)

If we set 𝑢 (𝑥) B 𝜕𝜋𝑢 (𝑥, 𝜋), then Equation (14) can be interpreted
as a new Fredholm equation in terms of 𝑢 (𝑥) describing the propa-
gation of the derivative. The first line defines the source term, while
the second specifies recursive weighting by the original kernel 𝐾 .

In contrast to the primal Equation (12), we now require two recur-
sive estimates for 𝑢 (𝑥) and 𝑢 (𝑥), which leads to quadratic time com-
plexity as a function of path length. We instead use path replay back-
propagation [Vicini et al. 2021] to solve this problem in linear time.

The following discussion assumes continuous functions 𝑆 , 𝐾 , and
boundary values for now. The discontinuous case has received signif-
icant attention in rendering since it is needed for shape optimization,
and some of the developed solutions such as edge sampling [Li et al.
2018] and reparameterizations [Bangaru et al. 2020; Zhang et al.
2020] can generalize to the Monte Carlo PDE setting. In Section 6.3,
we showcase the optimization of a discontinuous domain boundary.

4.1 Path Replay Backpropagation
PRB is best explained using pseudocode. For this, let us first consider
Algorithm 1, which computes a 1-sample estimate of the primal
equation (12):

1 def solve(x):
2 u = 0 # Running solution estimate
3 𝛽 = 1 # Path throughput
4 while not done:
5 u += 𝛽 * S(x, 𝜋) # Accumulate source term
6 x_new, pdf = sample_K(x) # Sample integral kernel
7 𝜇 = K(x, x_new, 𝜋) / pdf # Compute sampling weight
8 𝛽 *= 𝜇 # Update throughput
9 x = x_new
10 return u

Algorithm 1. Monte Carlo solver for the Fredholm equation (12).

The running estimate u and throughput 𝛽 are initially set to 0
and 1. At each step, the iteration accumulates throughput-weighted
source contributions (e.g., the source term of the PDE or emission in

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

175:6 • Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob

1 2 3

(a) Random walk (b) Contribution and
 backward derivative

=

Fig. 4. (a) Primal evaluation of a linear path with source (𝑆) and weight (𝜇)
terms. (b) Path Replay Backpropagation (PRB) [Vicini et al. 2021] replays
the randomwalk once more to evaluate the backward derivative of all source
and weight terms. The 𝜇-derivative depends on the weighted source terms
of the path suffix, which the method computes incrementally by subtracting
the prefix from the total amount.

rendering) and then samples the next position x_new, while updating
the throughput using a weight 𝜇 given by the ratio of𝐾 and the PDF.
In rendering, this would be the ratio of the BSDF and the projected
solid angle density of the sampling strategy. The evaluation of 𝑆
may also involve a Monte Carlo estimator. If we were to use next
event estimation, we would also consider it to be part of the source
term 𝑆 in this context.

PRB computes the reverse-mode derivative of this program. That
is to say, if J is the Jacobian matrix of the primal PDE solver, then it
evaluates the transposematrix-vector product 𝜹𝜋 = J𝑇 𝜹𝑢 to convert
a perturbation of the outputs (𝜹𝑢) into one of the inputs (𝜹𝜋).

To see what this entails, consider a short path with three vertices
as illustrated in Figure 4a, where edges with weights 𝜇𝑖 scale later
source contributions 𝑆𝑖 . The reverse-mode derivative (Figure 4b)
propagates the perturbation of the output 𝛿𝑢 to the terms of this
weighted sum. The derivative of the source terms is given by 𝛿𝑢

∏
𝜇𝑖 ,

which is easy to compute while building the path. The main chal-
lenge are the weights 𝜇𝑖 , whose derivative is proportional to the
product of 𝛿𝑢 and the contribution of the path suffix. This informa-
tion is not available while constructing the path, since it depends
on vertices that have not yet been generated. One way to fix this
issue is to generate the entire path first and store it for subsequent
differentiation, but this leads to prohibitive storage costs especially
on GPUs that will normally process millions of estimates in parallel.

PRB solves this issue by performing the same random walk twice,
which it does by rewinding the underlying pseudorandom number
generator to its earlier state and reproducing the same sequence of
steps in a replay phase. This phase restarts at position x and takes
a perturbation 𝛿𝑢 and the estimate u of the prior phase as input. It
iteratively computes the necessary contribution of the path suffix
by subtracting that of the prefix. This involves no approximations
and removes the storage overheads.

Algorithm 2 realizes PRB for the previous example (Algorithm 1).
The implementation evaluates the 𝜋-dependent functions 𝑆 and 𝐾
using automatic differentiation (AD), where backward() backpropa-
gates gradients to 𝛿𝜋 . AD will usually eagerly differentiate the entire
program, but here we actually want to localize its usage to a part of

1 def solve_backward(x, 𝛿𝑢, u):
2 𝛽 = 1
3 while not done:
4 with ad_enabled(): # Gradients of "S"
5 𝛿𝜋 += backward(𝛽 * S(x,𝜋) * 𝛿𝑢)
6
7 # no gradient is tracked outside of ad_enabled()
8 u -= 𝛽 * S(x,𝜋)
9 x_new, pdf = sample_next_step(x)
10 v = u / K(x, x_new, 𝜋)
11 with ad_enabled(): # Gradients of "K"
12 𝛿𝜋 += backward(v * K(x, x_new, 𝜋) * 𝛿𝑢)
13 𝛽 *= K(x, x_new, 𝜋) / pdf
14 x = x_new

Algorithm 2. Path replay version of the Fredholm equation solver.

the loop body. Arithmetic outside the ad_enabled() blocks is there-
fore not tracked to avoid a costly AD computation graph spanning
multiple loop iterations. Note that the above pseudocode evaluates
certain terms twice (e.g., 𝑆 (𝑥, 𝜋)), which is purely for notational
simplicity and can be avoided in practice.
Algorithm 2 realizes a detached sampling strategy [Zeltner et al.

2021; Vicini et al. 2021], whichmeans that it estimates the parameter-
dependent integral by only differentiating the integrand 𝑓 (𝑥, 𝜋):∫

X
𝜕𝜋 𝑓 (𝑥, 𝜋) d𝑥 ≈ 𝜕𝜋 𝑓 (𝑥𝑖 , 𝜋)

𝑝 (𝑥𝑖 , 𝜋) , (15)

where 𝑥𝑖 is a sample with density 𝑝 (𝑥𝑖 , 𝜋). On the other hand, at-
tached estimators furthermore differentiate the sampling strategy
(i.e., how 𝑥𝑖 is generated as a function of 𝜋). We use detached estima-
tors throughout the paper but note that attached strategies could be
useful to handle derivatives with respect to the domain boundary.

Algorithm 3 presents complete pseudocode of path replay for the
WoS estimator of the screened Poisson equation based on the nota-
tion introduced in Section 3. The function detach(x) disconnects
its argument from the automatic differentiation graph. This allows
writing Algorithm 2 without duplicating the computation of 𝜇 once
inside and once outside the ad_enabled() block. The supplemental
material provides an extended version of this algorithm that also
accounts for Neumann boundary conditions.

4.2 Weight windowing
Weight windowing is an area where differences between rendering
and random walk-based PDE solvers become apparent. Assuming
perfect sampling of 𝐾 , the weight 𝜇 in a physically based renderer
is upper-bounded1 by 1—exceeding this value would imply that the
material reflects more light than it receives. Non-electromagnetic
radiation can sometimes require albedos that violate energy con-
servation (e.g., neutrons in nuclear reactor simulations), but this
case is uncommon in rendering. As a consequence, the throughput
𝛽 decays over time, enabling efficient stochastic path termination.

Random-walk based PDE solvers that target the spatially variable
case do not have such an upper bound. The path weight 𝛽 can be-
come arbitrarily large, causing estimates with a long-tailed statistical
distribution that impedes the optimization. Prior work [Sawhney
1This assumes that the renderer propagates basic radiance, the ratio of radiance and
the squared index of refraction.

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

Solving Inverse PDE Problems using Grid-Free Monte Carlo Estimators • 175:7

1 def wos_backward(x, u, 𝛿𝑢, f, g, 𝜎, �̄�, 𝛼):
2 𝛽 = 1
3 while True:
4 R = distance_to_boundary(x)
5 if R < 𝜀:
6 with ad_enabled():
7 𝛿𝜋 += backward(𝛿𝑢 * 𝛽 * g(x))
8 return
9
10 # Evaluate source contribution gradient
11 y, pdf_green = sample_green(x, 𝑅, �̄�)
12 with ad_enabled():
13 S = 𝛽 * f(y) * |G(x) | / sqrt(𝛼 (𝑥) ∗ 𝛼 (𝑦))
14 𝛿𝜋 += backward(𝛿𝑢 * S)
15 u -= S
16
17 # Decide sampling between boundary and volume.
18 sample_volume = sampler.rand() < |G(x) | * �̄�
19 if sample_volume:
20 x_new = sample_green(x, R, �̄�)
21 else:
22 x_new = sample_boundary(x, R)
23
24 # Evaluate throughput and its gradient
25 with ad_enabled():
26 𝜇 = sqrt(𝛼(x_new) / 𝛼 (𝑥))
27 if sample_volume:
28 𝜎 ‘ = eval_𝜎 ‘(𝜎(x_new), 𝛼(x_new),
29 ∇𝛼(x_new), Δ𝛼(x_new))
30 𝜇 *= 1.0 - 𝜎 ‘ / �̄�
31 v = u / detach(𝜇)
32 𝛿𝜋 += backward(𝛿𝑢 * 𝜇 * v)
33
34 𝛽 *= 𝜇
35 x = x_new

Algorithm 3. Differential Walk on Spheres for the general elliptic PDE.

et al. 2022] applied weight windows to address this problem, and we
adopt this approach here as well.

The idea of a weight window is easily explained: if 𝛽 ever exceeds
a certain threshold (say, 2), we duplicate the current state and con-
tinue two independent walks starting from this position (Figure 5a).
A high weight signals that the path prefix is inadequately sampled,
and splitting it increases the computation budget retroactively for
this part of the integration domain. We use a simple 2-way split2 as
opposed to a more complex n-way criterion [Sawhney et al. 2022]
as we found this to be sufficient to address convergence issues in
the spatially variable case. Finally, a standard Russian roulette sto-
chastic stopping criterion is used on the lower end of the window.
Concretely, our implementation uses 𝛽min = 1/2 and 𝛽max = 2.
A practical issue with branching walks is that their recursive

implementation requires an unknown amount of stack memory.
Conservative provisioning of a suitably large stack per GPU thread
will generally exhaust the device memory, making this strategy
impractical. We instead perform the computation in phases: each
time, a random walk requires a split, we follow one branch in the
current phase and atomically append the other to a global work
queue for processing in the next phase. This process repeats until no
work is left (Figure 5b). Memory usage then becomes proportional to
the actual number of branches per phase, a significant improvement
compared to conservative local provisioning of a stack.

2This means that states with 𝛽 ≫ 𝛽max will remain outside the window after branching.

Russian
Roule�e

Branch

Stepi i +1

…

(a) Branching & termination (b) Tree structure

111

11
110 110

1
10 10

1 2 3
Phase

Fig. 5. (a) Windowing of the path weight 𝛽 to an interval is crucial to
avoid statistical outliers in the spatially variable case. This involves either
splitting or stochastically terminating paths that fall outside of an interval
(𝛽min, 𝛽max) . (b) We partition the resulting branching random walk into a
sequence of stack-less linear phases to enable efficient parallel execution of
many random walks on the GPU. Each state is labeled by a bit-vector that
identifies all branching decisions needed to reach it.

Finally, we associate a bit vector with every state that summarizes
the branch decisions taken up to that point. The root of a random
walk initializes this bit vector with 1, and every subsequent split
either appends 0 or 1. The need for this will be clarified in Section 4.3.

4.3 Path replay for branching random walks
The PRB algorithm presented in Section 4.1 efficiently differentiates
random walks with a linear structure, but it is unfortunately incom-
patible with the important weight windowing modification (Sec-
tion 4.2) needed to handle the spatially variable case. We therefore
extend Path Replay to branching random walks. The core mech-
anism of the method remains unchanged: it performs and subse-
quently replays random walks to efficiently evaluate the backward
derivative. Our adaptation of this scheme to tree structures limits
memory usage in exchange for redundant computation.

Section 4.2 explained how our solver processes linear chains in a
parallel phase, using subsequent phases to handle splits. The high-
level structure of this looks as follows:

1 while len(queue) > 0:
2 todo = []
3 for orig_state in queue:
4 final_state = solve(orig_state, write_branches_to=todo)
5 queue = todo

PRBwould typically be applied to the combination of (orig_state,
final_state) following line 4. However, this strategywill not work
for a branching walk when orig_state refers to a split location
from a prior phase. In this case, it is not sufficient to replay from this
intermediate state—we must start from the beginning to generate
derivative contributions linking prefix and suffix (Figure 6b).
We therefore store the initial configuration (position, pseudo-

random number generator state) of the random walk along with
the bit vector describing all branching decisions taken to reach the
final state. Following this, we can reconstruct all derivative terms
for a chain connecting root to leaf, which we additively combine
with contributions from other parallel random walks and phases to
compute a combined derivative.

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

175:8 • Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob

(b) Contribution and
 backward derivative

(a) Branching random walk

1 2
3a

3b

aa

bb

= bba

a

a b

a

a

bb

a b

Fig. 6. (a) The spatially variable case depends randomwalks that can branch
into separate suffixes. (b) The backward derivative of weights in the prefix
preceding the split (𝜇1) now involves quantities from both suffixes. Due to
linearity, these don’t all have to be computed at the same time. Our method
performs replay per phase of the original primal computation (Figure 5b).
In doing so, it only accumulates partial derivative terms associated with the
subpath connecting roots to leaf nodes processed by the current phase.

The practicality of the redundant prefix traversal relies on the
property that splitting is limited to outliers and doesn’t happen ex-
cessively often along the same path. A variant on the other extreme
of the storage-computation trade-off space could avoid redundant re-
play by allocating memory at every split to accumulate the weighted
contribution of all suffixes originating at this position.

4.4 Validation and results
Validations. We first validate our gradient computations against

finite differences. Figure 7 shows the parameter derivatives on a
slice through the center of the domain. The coefficients are repre-
sented as cubically interpolated 3D textures of resolution 323. Their
derivatives are computed by differentiating the 𝐿2 norm of a 163 grid
of solution evaluations in the domain. Gradients constructed using
path replay and weight windowing reveal a perfect match against
the reference. We provide similar validations for a 2D problem in
the supplementary material.

Optimization results in 2D. Figure 8 shows the evolution of differ-
ent optimizations that attempt to recover shown reference parame-
ters by measuring the 𝐿2 difference between a tentative solution and
reference on a 322 grid. The parameters are represented as 162 tex-
tures with cubic interpolation. Each experiment optimizes one PDE
coefficient, while keeping the others constant. This type of inversion
is too ambiguous with just a single observation of the solution, and
we generate many different configurations by prescribing linear
combinations of sinusoidals and linear ramps to parameterize the
temperature distribution on the boundary. In each iteration, we se-
lect 6 of them at random and use the Adam optimizer to take a step
based on the summed gradient. We do not use any regularization
but clip tentative parameters values to the range of the reference to
improve robustness. In all cases, the difference between reference
and tentative solution tends to zero towards the end of the opti-
mization, producing a faithful parameter retrieval. We started all
optimizations with a constant texture and did not find the results to
be overly sensitive to initial values.

O
ur
s

Source, 5

FD

Screening, f Diffusion, U

−2

0

2
×10−5

−2

0

2

×10−5

−1.5

0.0

1.5
×10−4

Fig. 7. Comparison between our gradient estimate and the finite differences
reference (FD) for parameters of the general elliptic PDE (Eq. 5) in 3D.

The normal derivative of the diffusion coefficient at Neumann
boundaries must be zero, otherwise the problem transforms into a
Robin boundary value problem, which we do not support. We only
show Dirichlet boundaries in the diffusion coefficient optimization
(last 2 rows) and will revisit the Neumann case in Section 6, where
we demonstrate a practical application.

Optimization results in 3D. We demonstrate the generality of our
method by performing similar optimizations in 3D. We designed
an artificial heat conduction problem where we solve the general
elliptic PDE (Equation 5) inside a model of an internal combustion
engine. Although this setup does not directly correspond to a real
world application, we believe that our method might be useful for
practical heat conduction problems in the future. We used the same
methodology as in the 2D optimizations (Figure 8). The solution
tensor and the textures are defined on 323 and 163 grids, respectively.
In the examples given in Figure 9, we can recover the reference
coefficients almost perfectly.

Limitations. The presence of Neumann boundary generally re-
sults in longer random walks and higher variance. This increases
optimization time due to the need to take more and smaller steps,
and reduces the quality of reconstruction results. We analyze this
effect by reconstructing the same high-frequency coefficients under
Dirichlet and mixed boundary conditions. As shown in Figure 10,
the size of the Neumann boundary considerably affects the quality
of our reconstructions. To keep the comparison simple, we use the
same number of samples across optimizations. This limitation is
most pronounced when reconstructing the diffusion coefficients, as
high frequency diffusion coefficients cause a high number of path
splits. In the limit, large Neumann boundaries can therefore make
the inverse solver impractical. We did not implement a 3D solver
with Neumann boundaries, but expect similar limitations as in 2D.

We did not compare ourmethodwith state-of-the-art inverse FEM
solvers, as we currently do not expect MC solvers to outperform
these on our simple example problems. FEM solvers have received
decades of research and our paper is only a first step in the use of
inverse MC solvers. We believe that MC PDE solvers offer valuable
flexibility which will lead to further progress on real inverse PDE
applications.

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

Solving Inverse PDE Problems using Grid-Free Monte Carlo Estimators • 175:9

So
ur
ce

5
(G

)o
pt
im

iz
at
io
n

∇[D
(G

)] −
f
D
(G

)=
5
(G

)
Sc
re
en
in
g
f
(G

)o
pt
im

iz
at
io
n

∇[D
(G

)] −
f
(G

)D
(G

)=
0

D
iff
us
io
n
U
(G

)o
pt
im

iz
at
io
n

∇[U
(G

)D
(G

)] −
f
D
(G

)=
0

O
1,
f
=0

(a1) Iter. 0 (a2) Iter. 32 (a3) Iter. 128 (a4) Iter. 2048 (b) Reference

0.0

1.5

3.0

(c) Boundary cond.

−8
0

8
×10−2

(d)Dref

0.0

0.8

1.6

×10−1
(e1)D0 − Dref (e2)Dlast − Dref

−1.5
0.0
1.5

×10−1

O
2,
f
=1
0

0.0

1.5

3.0

−8
0

8
×10−2

0

4

8

×10−2

−8
0

8
×10−2

O
1

Iter. 0 Iter. 32 Iter. 128 Iter. 2048

1.5

3.0

−1.5
0.0

1.5
×101

−4
−2
0

×101

−2.5
0.0
2.5

O
2

0.0

1.5

3.0

−1.5
0.0

1.5
×101

−4
−2
0

×101

−3
0
3

O
1,
f
=0

Iter. 0 Iter. 8 Iter. 32 Iter. 512

1.5

3.0

−1.6
−0.8
0.0

×101

−1.2
−0.6
0.0

×101

−1.5
0.0
1.5

O
2,
f
=1
0

1.5

3.0

−1.6
−0.8

×101

−1.2
−0.6
0.0

×101

−3
0

3

Fig. 8. Optimization results for different PDE coefficients in a 2D problem. Columns (a): The evolution of the optimized parameter throughout the optimization.
Column (b): The reference. Columns (c) and (d): one of the boundary conditions used in the optimization, and the corresponding reference solution inside the
domain. Columns (e): The difference between the reference solution in the first and the last iteration of the optimization. The orange boundary lines represent
Neumann boundaries whereas dark lines represent Dirichlet boundaries.

So
ur
ce

5
(G

)o
pt
im

iz
at
io
n

∇[D
(G

)] −
f
D
(G

)=
5
(G

)
Sc
re
en
in
g
f
(G

)o
pt
im

iz
at
io
n

∇[D
(G

)] −
f
(G

)D
(G

)=
0

D
iff
us
io
n
U
(G

)o
pt
im

iz
at
io
n

∇[U
(G

)D
(G

)] −
f
D
(G

)=
0

O
1,
f
=0

(a1) Iter. 64 (a2) Iter. 256 (a3) Iter. 2048 (b) Reference

0

4

8

(c) Boundary cond.

−8

0

8

×10−2
(d)Dref

0

1

2

(e1) ΔD0 (e2) ΔDlast

−3

0

3

O
2,
f
=1
0

0

4

8

−8

0

8

×10−2

0

2

4

×10−1

−5

0

5

×10−1

O
1

Iter. 512 Iter. 2048 Iter. 8192

0.0

0.8

1.6

×101

0

2

0.0

1.5

3.0

−1.5

0.0

1.5

O
2

1.6

2.4

3.2
×101

0

2

0.0

1.5

−8

0

8
×10−1

O
1,
f
=0

Iter. 16 Iter. 256 Iter. 2048

0.4

0.8

1.2
×101

−2

0

×101

−2

0

×101

−2.5

0.0

2.5

O
2,
f
=1
0

0.4

0.8

1.2
×101

−3

0

3

×101

0

1

2

×101

−1.5

0.0

1.5

×101

Fig. 9. Optimization results for different PDE coefficients in 3D. The result images are structured as in Figure 8. The values of reference and the optimized
coefficients are visualized on 2 distinct slices whereas the the solution tensors (the last 3 rows) are visualized on a slice passing through the center of the model.

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

175:10 • Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob
So

ur
ce
,f

Reference Dirichlet Mixed

Sc
re
en
in
g,
f

D
iff
us
io
n,
U

Out of
memory

0

1

2

3

0

1

2

3

1

2

3

Fig. 10. Visualization of challenging optimizations with Dirichlet and mixed
boundary conditions. Left column: The reference coefficient. Center col-
umn: The optimization result for the Dirichlet boundary value problem.
Right column: The optimization result for the mixed boundary value prob-
lem. A large Neumann boundary can reduce the quality of the reconstruction
and excessive path splits due to high-frequency diffusion variation may
cause the solver to run out of memory (bottom right).

Performance. Table 2 provides the runtime performance for both
primal and gradient computations for each optimization in Figures 8
and 9. We implemented all our methods using Dr.Jit [Jakob et al.
2022]. The reported timings are measured for the CUDA backend
running on an NVIDIA RTX 4090.

Table 2. Average duration of different phases during each optimization
step (in seconds). We report timings for computing the primal forward
computation (P) and gradient computation (G). In parenthesis, we give the
number of samples per point.

2D 3D
P(214) G(212) P(213) G(211)

Source O1 0.44 0.16 0.06 0.28
Source O2 0.35 0.12 0.05 0.15

Screening O1 1.83 0.99 0.36 0.37
Screening O2 1.02 0.59 0.25 0.26
Diffusion O1 0.73 0.87 0.70 2.98
Diffusion O2 0.51 0.32 0.48 1.00

5 ACCELERATING THE FORWARD SOLVER
One important limitation of themethod as presented so far is that the
diffusion coefficient must have a sufficiently low frequency. Noisy
intermediate steps produced by the gradient-based optimization
cause a high majorant 𝜎 (Section 3), which in turn slows down the
optimizations. We now present an adaptive majorant and sphere
radius selection to mitigate this effect. We also propose an optimized
Green’s function evaluation routine, that offers further speedups.

D
iff
us
io
n,
U
(G

)

Localized majorant Spread majorant

f
′ (G

)

0

4

8

×10−1

−1.5

0.0

1.5

×103

Fig. 11. Left: Even for a localized variation of the diffusion cofficient 𝛼 ,
𝜎 ′ (𝑥) , and hence �̄� , can become large. This reduces the expected per-step
progress of the random walk, even if |𝜎 ′ (𝑥) | is large only in a smaller
subregion. Right: The value of �̄� and the expected step size remain the
same if the variation is high across the domain.

5.1 Adaptive majorant and radius selection
We found that the solvers with spatially-varying coefficients can be
accelerated by adaptively setting the majorant and picking a sphere
radius that is smaller than the maximum admissible one. To explain
why and how, we first recall the walk on spheres formulation given
in Equation 8:

𝑈 (𝑥) =
∫
𝜕𝐵 (𝑥)
𝑃 �̄� (𝑥, 𝑥 ′)𝑈 (𝑥 ′) d𝑥 ′ +

∫
𝐵 (𝑥)
𝐺�̄� (𝑥, 𝑥 ′) (𝜎 − 𝜎′ (𝑥 ′))𝑈 (𝑥 ′) d𝑥 ′.

Sawhney et al. [2022] globally set 𝜎 to maxΩ𝜎′ (𝑥) − minΩ𝜎′ (𝑥),
which becomes large if the diffusion coefficient 𝛼 (𝑥) exhibits local
high-frequency variation (see Figure 11).

A high global 𝜎 reduces the expected per-step progress of the ran-
domwalk and increases computation time. In analogy to volume ren-
dering, we characterize the average progress by the mean free path:

𝑟 𝑓 (𝑅, 𝜎) B E[𝑟 |𝑅, 𝜎] = P𝜕𝐵𝑅 + P𝐵
∫ 𝑅

0
𝑟
𝐺�̄�
𝑟 (𝑟)
|𝐺�̄� | d𝑟, (16)

where E is the expected value operator, 𝑟 = ∥𝑥 − 𝑥 ′∥, 𝑅 is the radius
of the sphere,𝐺�̄�

𝑟 (𝑟) is the radial distribution of the Green’s function,
P𝜕𝐵 and P𝐵 are the selection probabilities of sampling the boundary
and the volume integral, respectively. This definition is valid for the
sampling routines outlined in Section 3.3.

Spatially-varying majorant. Inspired by similar approaches in
volume rendering [Yue et al. 2010; Szirmay-Kalos et al. 2011], we
increase the mean free path by replacing the global majorant by a
spatially-varying one. This prevents local variations from slowing
down convergence globally. We use a multi-resolution texture, that
in each level stores the maximum value of |𝜎′ (𝑥) | within a given ball
𝐵(𝑥, 𝑅). This is then used as a local majorant 𝜎 (𝑥, 𝑅). That choice
of majorant limits per-step throughput increases to at most a factor
of 2 and thus prevents excessive splitting.

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

Solving Inverse PDE Problems using Grid-Free Monte Carlo Estimators • 175:11

0

2

4

R
=
1

PDF of the radial Green’s function

f̄ = 1 → Pm� = 0.790, A 5 = 0.88

f̄ = 10 → Pm� = 0.179, A 5 = 0.48

f̄ = 100 → Pm� = 0.000, A 5 = 0.16

0.0 0.2 0.4 0.6 0.8 1.0
A

0

5

10

15

f̄
=
10
0

R = 0.1 → Pm� = 0.790, A 5 = 0.09

R = 0.5 → Pm� = 0.037, A 5 = 0.16

R = 1.0 → Pm� = 0.000, A 5 = 0.16

Fig. 12. Illustration of the radial Green’s function and corresponding 𝑟 𝑓
and P𝜕𝐵 values for different parameters (in 2D). Top: For a fixed radius,
P𝜕𝐵 and 𝑟 𝑓 decrease as �̄� increases. Bottom: When �̄� is kept constant, 𝑟 𝑓
plateaus above some critical radius value (green and orange lines).

Radius selection. We further increase the mean free path by adap-
tively selecting the radius of the sphere to integrate over. In Figure 12,
we plot the Green’s function for varying parameters 𝑅, 𝜎 and report
the corresponding mean free path. For a fixed radius, increasing the
majorant reduces P𝜕𝐵 and 𝐺�̄� (𝑟) gets peakier close to the origin,
hence decreasing the mean free path. For a fixed majorant, increas-
ing the radius initially increases the mean free path. However, the
probability of sampling the boundary eventually converges to zero
and the shape of the Green’s function also approaches a limit be-
havior. Empirically, we found that increasing the radius beyond
𝑅 ≈ 5/√𝜎 barely improves the mean free path.
Since 𝑅

√︁
𝜎 (𝑥, 𝑅) is a strictly increasing function in 𝑅, we can

use bisection to find 𝑅0 such that 𝑅0
√︁
𝜎 (𝑥, 𝑅0) ≈ 5. The value 𝑅0

is an upper bound, and the optimal radius (in terms of mean free
path) is a value between zero and 𝑅0. We find the optimal value
by evaluating 𝑟 𝑓 (𝑅, 𝜎 (𝑥, 𝑅)) at equally spaced values of 𝑅 ∈ [0, 𝑅0]
using a precomputed lookup table.

Discussion. Figure 13 plots circles generated using our radius
selection algorithm. If the center is far from a region with high-
frequency variation, the circle is biggest circle excluding that region.
For point very close to that region, the radius increases again as
in any case the majorant is high. The algorithm still locally needs
small steps, but our adaptive radius selection prevents this behavior
from expanding to the entire domain. Figure 14 shows histograms
of the path length distribution for both the baseline and our method.
The average path length in our method is significantly lower in the
case of localized high-frequency variation, without any noticeable
difference in estimator variance. If the variation is high throughout
the domain, there is no significant difference.

5.2 Efficient Sampling of the Green’s Function in 2D
Solving PDEs with WoS and WoSt requires repeated sampling of
the associated Green’s function𝐺𝜎 (𝑥,𝑦). To sample proportional to

0.0

0.8

1.6

×103

Baseline Ours Boundary

A 5 = 0.034, f̄ = 2088

A 5 = 0.176, f̄ = 0

A 5 = 0.034, f̄ = 2088

A 5 = 0.053, f̄ = 0

A 5 = 0.034, f̄ = 2088

A 5 = 0.034, f̄ = 2088

Fig. 13. Illustration of our radius selection scheme (yellow) for the PDE
defined in the left column of Figure 11. We compare to the baseline solver
(blue), where the global majorant is set to maxΩ |𝜎 ′ (𝑥) | , and the radius is
simply the minimum distance to the domain boundary. Left: If the query
point is far from the region of high-frequency variation, our method selects
the radius such that the sphere excludes the region where |𝜎 ′ (𝑥) | is high
(bright red values). Middle: As the query location moves closer, the radius
shrinks accordingly. Right: Moving even closer, the radius increases again,
as it is no longer efficient to try to exclude the high |𝜎 ′ (𝑥) | values. We also
provide the values of the mean free path 𝑟 𝑓 for both global and spatially-
varying majorant. Our mean free path is up to 5× greater for this example.

0 200 400
0.00

0.02

Localized majorant

Baseline
Ours

0 200 400
0.000

0.005

0.010

Pa
th

le
ng

th
di
st
.

Spread majorant

Baseline
Ours

Fig. 14. Histograms over sampled path lengths for the global constant �̄�
baseline and our adaptive method. This again uses the diffusion coefficients
from Figure 11. On this particular example PDE, ourmethod averages around
4× fewer interactions than the baseline for the localized variation (left).
There is no speedup if the variation is high throughout the domain (right).

this function, we generate a random uniform direction, and sample
a distance proportional to the radial Green’s function𝐺𝜎

𝑟 (𝑟). First,
we define 𝑦 = 𝑟/𝑅 and 𝑧 = 𝑅

√
𝜎 to decrease the degrees of freedom

in the normalized radial Green’s function 𝐺𝜎
𝑟 (𝑟)/𝑅, which we can

now write as:

𝐺 (𝑦, 𝑧) = 𝑦
[
𝐾0 (𝑦𝑧) − 𝐼0 (𝑦𝑧)𝐾0 (𝑧)

𝐼0 (𝑧)

]
(17)

where 𝐼 and 𝐾 refer to modified Bessel functions of the first and
second kind (see supplementary material for details). Numerically
robust evaluation of Bessel functions is relatively expensive. Given
that we use simple boundary representations like quadratic Bézier
curves, circles and SDFs, computation of the boundary queries are
cheap. We found that evaluation of the Bessel functions is one of the
main computational bottlenecks. Thus, we developed a sampling
scheme that allowed us to run our simulations 5 to 10 times faster
compared to the previous work which uses rejection sampling to
sample the Green’s function.
Our goal is to use the inverse transform method to draw 𝑦 pro-

portional to 𝐺 (𝑦, 𝑧) for a given value of 𝑧, which requires inversion
of the definite integral of this expression.

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

175:12 • Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob

While this integral can indeed be determined and is given by

𝐼𝐺 (𝑦, 𝑧) =
∫ 𝑦

0
𝐺 (𝑦′, 𝑧) d𝑦

= 𝑧−2
[
1 − 𝑦𝑧𝐼1 (𝑦𝑧)𝐾0 (𝑧)

𝐼0 (𝑧) − 𝑦𝑧𝐾1 (𝑦𝑧))
]
, (18)

its inversion requires numerical root finding as 𝐼−1
𝐺 has no analytic

form. This alone would be fine, but the definition (18) in terms of
an extended set of Bessel functions makes this even harder than
evaluating the original Green’s function (17). We tried various ways
of approximating 𝐼𝐺 (𝑥,𝑦) and transformed versions using polyno-
mials but found that large numbers of coefficients were needed to
obtain sufficiently good fits.

Near the origin, themodified Bessel function of the second kind re-
sembles the negative logarithm, i.e.,𝐾0 (𝑧) ≈ − log 𝑧 as 𝑧 → 0 [DLMF
2024, 10.30.3], which turns out to be a defining feature that also in-
fluences the shape of 𝐼𝐺 elsewhere. We incorporate this observation
by adopting an approximation of the form

𝐼𝐺 (𝑦, 𝑧) = 𝑃 (𝑦) +𝑄 (𝑦) log𝑦

where both 𝑃 and 𝑄 are polynomials containing only positive even
terms, i.e. 𝑃 (𝑦) = 𝑝0𝑦2 + 𝑝1𝑦4 + This reduced the absolute error
by more than two orders of magnitude compared ordinary polyno-
mials at equal coefficient count. We fit 𝐼𝐺 to 𝐼𝐺 by solving a linear
system that enforces equality at Chebyshev nodes. The 𝑝0 coeffi-
cient encodes the normalization constant. Given that our accelerated
sphere tracing method requires to sample the Green’s function in
the domain 𝑦 ∈ [0, 1] and 𝑧 ∈ [0, 5], we used 6 coefficients per
polynomial which creates a fit with maximum absolute error of
4 · 10−6. This error is sufficient for our application as the rest of the
solver is implemented in single precision.

To handle different parameters 𝑦, we perform many fits and rep-
resent the resulting coefficient table as a 1D texture. Importance
sampling then performs a texture fetch to obtain coefficients for a
given 𝑦 followed by numerical inversion using Newton-bisection
and the bracketing interval [0, 1]. This requires the derivative

𝐼 ′𝐺 (𝑥,𝑦) = 𝑃 ′ (𝑥) + 𝑥−1𝑄 (𝑥) + log(𝑥)𝑄 ′ (𝑥), (19)

which is cheap to evaluate in lockstep with 𝐼𝐺 and also provides the
needed sampling density. Finally, a good starting guess can greatly
reduce the number of Newton-bisection steps. We use

𝑥0 = 1 − 𝑧−1 cosh−1 (cosh(𝑧) (1 − 𝑞) + 𝑞) (20)

where 𝑞 =
√︁
𝜉 for a random variate 𝜉 ∈ 𝑈 [0, 1). In the domain

𝑦 ∈ [0, 1] and 𝑧 ∈ [0, 5], rejection sampling is not very expensive
and the main benefit of our method comes from the evaluation of
the Green’s function. But Green’s function is extremely peaky for
larger z and rejection sampling should be avoided.
Lastly, we emphasize that the Poisson kernel 𝑃𝜎 (𝑥, 𝑥 ′) can be

evaluated by 𝑃𝜎 (𝑥, 𝑥 ′) = 1 − 𝜎 |𝐺𝜎 | where |𝐺𝜎 | is the norm of the
Green’s function (see supplementary).

Most of the above steps are somewhat specific to the 2D case due
to the complexity of the underlying Green’s function. The 3D case
only involves hyperbolic trigonometric functions, so the polynomial
approximation is not needed in practice.

6 APPLICATION: ELECTRICAL IMPEDANCE
TOMOGRAPHY

6.1 Problem statement
We apply our methods to electrical impedance tomography (EIT),
which reveals an object’s internal structure frommeasured electrical
currents. This requires applying and measuring currents at elec-
trodes placed on the object’s surface, and then solving an inverse
PDE problem to reconstruct the object’s spatially-varying electri-
cal conductance. Variations in conductance strongly correlate with
specific internal structures. Since EIT measurements are on the do-
main’s boundary and not in the interior, this problem is harder than
the somewhat artificial setups studied so far (e.g., in Fig. 8 and 9).
A common application of EIT is non-invasive medical diagno-

sis, where it can aid detecting breast cancer, blood clots, and pul-
monary emboli. Malignant tumors, with their high water content,
exhibit conductivity levels around an order of magnitude higher
than the surrounding healthy tissue [Adler and Boyle 2017]. Electri-
cal impedance tomography also finds application geophysics (e.g.,
to locate mineral deposits) or material sciences (e.g., to identify
corrosion and material defects) [Mueller and Siltanen 2012].

PDE formulation. In EIT, the following PDE governs the distribu-
tion of voltage 𝑢 (𝑥):

∇ [𝛼 (𝑥)∇𝑢 (𝑥)] = 0, 𝑥 ∈ Ω. (21)

The function 𝛼 (𝑥) is the spatially-varying conductance that we seek
to reconstruct.
The choice of an electrode model determines the boundary con-

ditions of the above PDE. We use a simple model that represents
electrodes as infinitesimal points on the boundary and assumes
negligible contact resistance. This results in the following Neumann
boundary conditions:

𝛼 (𝑥𝑖) 𝜕𝑢
𝜕𝑛

(𝑥𝑖) = 𝐼𝑖 , 𝑖 = 1, . . . , 𝑛, (22)

where 𝑥𝑖 is the position of electrode 𝑖 and 𝐼𝑖 the injected current.
At any other point on the domain boundary, the solution’s normal
derivative must be zero. The solution of this PDE is defined up to
an additive constant. We can compute the missing offset by using
that the sum of voltage values at the electrodes needs to be zero:

𝑛∑︁
𝑖=0

𝑢 (𝑥𝑖) = 0. (23)

Inverse problem. We reconstruct the conductance function by
minimizing the difference between simulated voltage values and
measured values at the electrodes using gradient descent. For the
measurements, we inject positive current 𝐼 at one electrode and
"receive" the corresponding negative current −𝐼 at another one.
Measurements are then taken at all inactive electrodes, since we
cannot measure the voltage at an electrode where current is injected.
We activate electrodes in skip-k configurations, where between a
pair of active electrodes, 𝑘 electrodes are skipped.

6.2 Continuous conductance
Our Monte Carlo gradient estimators are flexible in their representa-
tion of the PDE’s parameters. We begin by modeling the unknown

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

Solving Inverse PDE Problems using Grid-Free Monte Carlo Estimators • 175:13
O
1

(a1) Iter. 0 (a2) Iter. 16 (a3) Iter. 128 (a4) Iter. 512 (b) Reference

1.6

2.4

(c)Dref

−4

0

4
×10−1

(d1)D0 − Dref (d2)Dlast − Dref

−3

0

3

×10−2

O
2

1

2

3

4

−4

0

4
×10−1

−4

0

4

×10−2

O
3

1.6

2.4

−4

0

4
×10−1

−1

0

1
×10−1

O
4

1.6

2.4

−4

0

4
×10−1

−1

0

1

×10−1

O
5

1.6

2.4

0 4 8 12

−4

0

4
×10−1

0 4 8 12 0 4 8 12

−1

0

1

×10−1

Fig. 15. Optimization results for continuous conductance EIT. Columns (a): Evolution of the conductance coefficients. The blue dots inside the boundaries
mark the circular Dirichlet boundaries (we add at most 3). Column (b): The reference coefficients that we seek to recover. Column (c): The reference voltage
values at the electrodes. Each row of the voltage images is a distinct current injection pattern and each column is a different electrode. The currently active
electrodes are marked by black pixels. Columns (d): The difference to the reference voltages in the first and the last optimization iteration. The radius of the
boundary is 0.22 and the radius of the Dirichlet boundaries is 0.00022. The resolution of the conductance texture is 16 × 16 for O1-O3, and 24 × 24 for O4 & O5.

conductance as a continuous function and present a discrete repre-
sentation later.

Challenges. The forward EIT problem only has Neumann bound-
aries, and the absence of a screening term implies that no energy
dissipates. Monte Carlo PDE solvers terminate either when reaching
a Dirichlet boundary, or when, due to a screening term, the through-
put decreases sufficiently to apply Russian roulette. Neither of this
is the case here, which would lead to infinitely long random walks.
This is similar to rendering a room containing only perfectly reflect-
ing mirrors. In EIT, the path contributions become more and more
low frequency as the number of interactions increases, eventually
converging to a global constant.
We ensure a finite number of interactions by decreasing the

throughput by a constant factor a user-defined threshold in each
iteration, which results in a small bias in our estimators. Sawhney
et al. [2023] achieve a similar effect by introducing a small screening
coefficient if the walk becomes too long.

While EIT is a Neumann problem, we could add Dirichlet bound-
ary conditions at any subset of points for which we know the actual
voltage values. Building on this intuition, we place small, circular
Dirichlet boundaries within the domain, allowing walks to termi-
nate upon reaching them. In a preprocess, we estimate the voltage

values at their location using our solver. While using these Dirichlet
boundaries adds a small bias to our final estimator, they signifi-
cantly reduce variance. The locations of the Dirichlet boundaries
are determined by a clustering of high-conductance regions (see
Section 7). Table 3 provides an analysis of the bias-variance tradeoff,
demonstrating a substantial variance reduction without a notice-
able difference in bias if the threshold path length is selected high.

Table 3. Bias, variance and computation time due to throughput reduction
and added Dirichlet boundaries. 𝑘𝑑 : number of Dirichlet boundaries, 𝑛𝜇 :
threshold on walk length after which the throughput is decreased in every
iteration, 𝜇: throughput decrease factor. The number of samples per elec-
trode for primal and gradient computation is 215, whereas 223 to estimate
the voltage at each Dirichlet boundary. The conductance function is the
optimized conductance in the last iteration of O5 (Figure 15).

𝑘𝑑 𝑛𝜇 𝜇 Bias ×103 Var. ×104 Primal (s) Gradient (s)
0 150 0.99 2.04 25.4 0.19 4.32
0 50 0.90 11.8 4.34 0.05 0.27
3 ∞ ∼ 1.03 5.34 0.10 1.17
3 150 0.99 1.04 5.00 0.08 0.71
3 50 0.90 14.9 2.32 0.06 0.24

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

175:14 • Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob

Table 4. Average duration of different phases during each optimization
step (in seconds). From left to right, we report timings for computing the
Dirichlet boundary voltages, primal forward computation and gradient
computation. In parentheses, we give the number of samples per Dirichlet
boundary (column 1) or electrode (columns 2, 3).

Dirichlet boundaries (223) Primal (220) Gradient (217)
O1 0.29 1.38 5.18
O2 2.34 1.23 3.63
O3 1.74 1.35 4.58
O4 3.65 2.03 11.23
O5 1.97 2.09 12.02

For future work, it could be interesting to combine this idea with
de-biasing techniques [Misso et al. 2022].

Results. Figure 15 shows reconstruction results using a contin-
uous conductance representation. The boundary conditions are
generated with skip-1, skip-3, skip-5 and skip-7 current injection
patterns. We compute reference voltage values using our forward
solver, but minimize bias by disabling the throughput decrease and
only using one Dirichlet boundary inside the domain.
The unknown conductance function 𝛼 (𝑥) is represented as a

bicubically interpolated texture. We use an 𝐿1 and a total variation
regularizer to encourage sparsity and smoothness, respectively (each
at a weight of 10−4). Close to the boundary, we enforce a constant
conductance to ensure that the normal derivative of the conductance
is zero on the boundary. As detailed in the supplemental material,
this prevents the Neumann boundary condition from turning into a
more complex Robin boundary condition. After optimization, the
voltage values computed from the optimized coefficients closely
match the reference. Due to the ill-conditioned and challenging
problem setup, it is no surprise that the reconstructed coefficients
are not quite as accurate as for the simpler setups shown previously.
Table 4 shows a breakdown of the computation time of the dif-

ferent phases of our differentiable solver. We use a high number
of Monte Carlo samples to compute the fixed voltage values of the
circular Dirichlet boundaries. Nevertheless, the main computational
bottleneck of our algorithm is the gradient computation, due to
its repeated traversal of the branching random walk. This is more
pronounced for the last two optimizations, as the higher frequency
conductance results in more path splits.

6.3 Discrete conductance
Problem definition. We further apply the differentiable EIT solver

to a discrete conductance representation. For this, we split the do-
main into two disjoint regions, each with a different constant con-
ductance. Our aim is to reconstruct an interior object that is of
significantly higher conductance than the surrounding background
region. This object can therefore be modeled as a Dirichlet boundary
with a constant value3. We illustrate this setup in Figure 16.

Gradient estimator. We estimate gradients for the resulting mixed-
boundary problem using differentiable Walk on Stars. Unlike before,
we differentiate the original estimator with respect to the shape of
3The constant is arbitrary, but can again be pinned after the solve using Equation 23.

Fig. 16. Illustration of the discrete EIT setup. We model the high-
conductance inner object as a Dirichlet boundary, since its conductance 𝛼2
is much larger than the background conductance 𝛼1. The random walks
sampled by WoSt reflect on the outer Neumann boundary and terminate
when they reach the inner object.

the inner Dirichlet boundary 𝜕Γ. For a point 𝑥 where the closest
boundary is 𝜕Γ, we need to differentiate a Walk on Spheres step:

𝜕𝜋𝑢 (𝑥, 𝜋)= 𝜕𝜋
∫
𝜕𝐵 (𝑥)

1
|𝜕𝐵(𝑥) |(1Ω\𝜕Γ𝜀 (𝑥)𝑢 (𝑥, 𝜋) + 1𝜕Γ𝜀 (𝑥)𝑔(𝑥)) d𝑥,

where 1𝐴 (𝑥) is an indicator function that is 1 if 𝑥 ∈ 𝐴 and 0 other-
wise. This formulation makes the termination of walks reaching the
epsilon shell 𝜕Γ𝜀 explicit. The discontinuities due to the indicator
function could be handled using a reparameterization [Loubet et al.
2019] or explicit sampling [Li et al. 2018]. However, since 𝜀 is small,
we found a simpler approach to work well: Whenever a path ter-
minates on a Dirichlet boundary, we compute a solution derivative
𝜕𝜋𝑢 (𝑥, 𝜋) using a first-order expansion along the normal direction:

𝑢 (𝑥, 𝜋) ≈ 𝑉 + 𝑑 (𝑥, 𝜋)𝜕𝑛𝑢 (𝑥𝑛, 𝜋), (24)

where 𝑑 (𝑥, 𝜋) is the boundary distance, 𝑉 the constant Dirichlet
voltage of the inner object and 𝑥𝑛 the closest boundary point (see
Figure 17a). On the boundary, the spatial solution derivative is
continuous and colinear to the normal of the Dirichlet boundary
(Figure 17b). We use this local expansion to create the following

(a) (c)(b)

Fig. 17. (a)We locally approximate the solution value at a distance 𝑑 (𝑥, 𝜋) .
(b) The spatial gradient of the solution is perpendicular to the surface and
has no tangential component. (c) The Jacobian term corrects for the density
change due to surface curvature.

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

Solving Inverse PDE Problems using Grid-Free Monte Carlo Estimators • 175:15

(a) Shape

−15

−10

−5

0

5

(b) Curvatures

−2

0

2

(c) Normal derivatives

t = 0.01
t = 0.1
t = 0.2

−2

0

2

(d) Corrected normal deriv.

t = 0.01
t = 0.1
t = 0.2

Fig. 18. Illustration of the bias due to evaluating the normal derivative
at an offset. (a) The used example setup, where red and purple points
correspond to the vertical lines in other plots (in clockwise order), and the
green points are the electrodes. The radius of the outer boundary (yellow)
is 1. (b) Curvature at the boundary. (c) The normal derivative of the solution
computed at different offsets. (d) Applying the Jacobian correction factor
reduces the bias due to an increase in offset distance.

gradient estimator:

𝜕𝜋𝑢 (𝑥𝑘 , 𝜋) =
{
𝜕𝜋𝑉 + 𝜕𝜋𝑑 (𝑥𝑘 , 𝜋)𝜕𝑛𝑢 (𝑥𝑘,𝑛, 𝜋) 𝑥𝑘 ∈ 𝜕Γ𝜀
𝜕𝜋𝑢 (𝑥𝑘+1, 𝜋) otherwise,

(25)

where 𝑥𝑘,𝑛 is the projection of 𝑥𝑘 onto the object boundary. We do
not differentiate the normal derivative with respect to the parame-
ters and found the bias due to this approximation to be negligible.

Normal derivative. Evaluating the normal derivative very close to
the boundary is both noisy and biased due to the proximity to the
epsilon shell [Sawhney and Crane 2020]. We therefore evaluate the
normal derivative 𝜕𝑛𝑢 (𝑥, 𝜋) at a fixed distance 𝑡 from the Dirichlet
boundary. As the spatial gradient of the solution (∇𝑥𝑢) is divergence-
free in our setup, we correct magnitude of the normal derivative
(𝜕𝑛𝑢) by the Jacobian of this transformation (Figure 17c):

𝜕𝑛𝑢 (𝑥𝑛, 𝜋) ≈ |𝐽 (𝑥𝑛, 𝑥𝑡) |𝜕𝑛𝑢 (𝑥𝑡 , 𝜋), (26)

where 𝑥𝑡 is the offset location, |𝐽 (𝑥𝑛, 𝑥𝑡) | = 1 − 𝑡𝜌 (𝑥𝑛) and 𝜌 (𝑥𝑛)
the curvature at the boundary point. The choice of 𝑡 exposes a bias-
variance tradeoff. Figure 18 illustrates the effect of 𝑡 on the estimated
normal derivative.

Gradient validation. We validate our gradients against finite dif-
ferences in Figure 19. We model the inner shape using an signed
distance function (SDF) represented by a bicubically interpolated
grid. As expected, the estimator bias increases if we use a larger

FD setup

0.00

0.25

H
or
iz
on

ta
l

FD comparisons
FD
t=0.01

t=0.1
t=0.2

0 2 4 6 8 10 12 14

0.00

0.25

Ve
rt
ic
al

Fig. 19. Validation of our derivative estimator against finite differences (FD).
We compute derivatives of the solution at the electrodes with respect to
vertical and horizontal translations of the inner shape. Starting with 0 at the
top, electrodes are numbered in clockwise order. Injected current locations
are marked in red (electrodes 0, 10) and the radius of the boundary is 1.

normal derivative offset 𝑡 . We found 𝑡 = 10−2 to closely match finite
differences and provide a practical bias-variance tradeoff.

Optimization results. We show optimization results for synthetic
example problems in Figure 20. The discrete representation reduces
ambiguities compared to the continuous case. We noticed that con-
cave regions are more difficult to reconstruct (e.g., result O4), since
the local voltage values become very similar to the voltage of the
Dirichlet boundary.
Finally, we apply our method to measured data of metal con-

ductors in a saline solution, using the dataset by Hauptmann et al.
[2018]. The dataset is created using the KIT4 (Kuopio Impedance
Tomography) measurement system [Hauptmann et al. 2017]. The
setup is vertically uniform so that it can be modeled on a 2D domain.
We show reconstructions using the SDF representation in Figure 21
and, as an alternative, using a parameterized circle in Figure 1. Both
SDF and circle parameterization allows reconstructing the shape
and position of the metal conductor. The reconstructions are not
perfect, which is likely due to the approximations taken by the elec-
trode model. Further improvements could be made by using more
realistic electrode models or formulating the problem with Robin
boundary conditions [Maire and Simon 2015; Miller et al. 2024].

7 IMPLEMENTATION DETAILS
We now briefly discuss some key implementation details.

Evaluation of boundary conditions. For all optimization results,
we compute gradients using multiple different boundary conditions.
Since the boundary values do not affect sampling, we improve effi-
ciency by simultaneously computing the solution for six different
boundary conditions (instead of running independent solves).

Circular Dirichlet boundaries. In each optimization iteration for
EIT, we find the circular Dirichlet boundaries by using K-means
clustering on the value and norm of the conductance function. We
eliminate clusters that are too close to each other and pick the
top three clusters according to the average conductance over their
respective region. We then estimate the voltage at each selected
location and use the result during gradient computation. This choice

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

175:16 • Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob
O
1

(a1) Iter. 0 (a2) Iter. 4 (a3) Iter. 8 (a4) Iter. 16 (a5) Iter. 128 (b) Dref

−3

0

3
×10−1

(c1)D0 − Dref (c2)Dlast − Dref

−1.5

0.0

1.5

×10−1

O
2

−3

0

3
×10−1

−2

0

2
×10−1

O
3

−3

0

3

×10−1

−2.5

0.0

2.5
×10−1

O
4

0 4 8 12

−2.5

0.0

2.5
×10−1

0 4 8 12 0 4 8 12

−2
0

2

×10−1

Reference conductance Optimized conductance Intersection

Fig. 20. Optimization results using the discrete conductance model on synthetic data. Columns (a): Evolution of the coefficients over gradient descent
iterations. Column (b): The reference voltage values on the electrodes, with each row representing a different current injection pattern. The nodes at which
current is injected are black. Columns (c) show differences in voltage values for first and last iteration. The radius of the outer boundary is 0.14.

O
1

(a1) Iter. 0 (a2) Iter. 8 (a3) Iter. 64 (a4) Iter. 256 (b) Reference (c)Dref

−4

0

4
×10−1

(d1)D0 − Dref (d2)Dlast − Dref

−4
0

4

×10−2

O
2

−4

0

4
×10−1

−5

0

5
×10−2

O
3

0 4 8 12

−4

0

4
×10−1

0 4 8 12 0 4 8 12

−5
0

5

×10−2

Fig. 21. Optimization results on the measured EIT data using the SDF representation. We use the same color scheme and layout as in Figure 20.

of Dirichlet boundary locations is physically-motivated: The Dirich-
let boundaries can be understood as regions of infinite conductance.
Therefore, placing them in high conductance regions reduces bias.

Normal derivatives. The shape derivatives in discrete EIT require
estimating the solution’s normal derivative. Even when evaluated
at an offset way from the boundary, the normal derivative is noisy.
We thus precompute it for each texel of the SDF using ≈214 samples.
For the circle representation (Figure 1), we precompute the normal
derivative for an evenly distributed set of points on the circle itself.

Handling interpolated SDFs. The distance values in interpolated
SDFs can be inaccurate, especially at low resolutions (see Figure 22).
Our discrete EIT gradients rely on an accurate, differentiable dis-
tance evaluation. We therefore correct for inaccuracies by dividing
the distance by the norm of the spatial gradient of the SDF when
evaluating Equation 25. Similar issues with interpolated SDFs were
observed in differentiable rendering [Vicini et al. 2022].

Redistancing. To ensure that a texture represents a valid signed
distance function, we apply redistancing after each optimization step.

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

Solving Inverse PDE Problems using Grid-Free Monte Carlo Estimators • 175:17

3 (G) | |∇3 (G) | | Direction

−2

0

2

×10−1

0.5

1.0

1.5

Fig. 22. Left: Distance values of a grid-based SDF. We mark the zero-level
set using white lines. Center: The norm of the spatial gradient differs from
1, violating the Eikonal equation ∥∇𝑑 (𝑥) ∥ = 1. In the blue region, the
evaluated SDF values diverge from the true geometric distance. Right: The
orientation of the spatial gradient ∇𝑑 (𝑥) is correct, which implies that
simply re-normalizing largely corrects interpolation issues.

We do this using the scikit-fmm [Furtney 2023] library. It does not
account for the bicubic interpolation that we use during simulation.
To compensate for this, we upsample the SDF to a resolution of
10242 using bicubic interpolation, then perform the redistancing
and finally downsample back to the original resolution.

8 CONCLUSION
We introduced practical derivative estimators for Walk on Spheres
and various extensions thereof. Differentiable Monte Carlo meth-
ods admit a great flexibility in the underlying representation and
set of optimized parameters. For practical applications, this could
allow to not only reconstruct the main parameters of interest, but
also simultaneously calibrate measurement setups In medical EIT,
determining electrode locations or body shape of patients is still
an active research area. Unlike MC solvers, FEM-based methods
would have to run a costly domain remeshing step in each iteration.
Another benefit of MC PDE solvers is their support for a wide range
of parameter representations. The shape of the boundary, boundary
conditions, or PDE coefficients can be parameterized by various
functions, enabling the use of complex, domain-specific priors. We
demonstrate this for EIT, where we use circles and SDFs for discrete
shape representations.
The main limitation of our method is the performance and gen-

erality of the forward solvers. For example, high-frequency spatial
variation in the diffusion coefficient requires a large number of
costly path splits. These problems are exacerbated for pure Neu-
mann problems without screening term. The effect of parameters
on the final PDE solution is often the result of very long random
walks, which means that, unlike in rendering, we cannot reduce the
number of interactions to a fixed maximum.
We believe that there are many interesting future directions to

explore. Our application to EIT only scratches the surface of poten-
tial practical usecases. We expect novel applications to come with
their own set of challenges, but hope that our methods provide a
useful foundation. The similarities with light transport simulation
and inverse rendering mean that their solution can benefit from the
computer graphics community.

9 ACKNOWLEDGEMENTS
We thank Rohan Sawhney and Dario Seyb for their valuable clarifi-
cations on the forward solvers.

REFERENCES
Andy Adler, John H Arnold, Richard Bayford, Andrea Borsic, Brian Brown, Paul Dixon,

Theo JC Faes, Inéz Frerichs, Hervé Gagnon, Yvo Gärber, et al. 2009. GREIT: a unified
approach to 2D linear EIT reconstruction of lung images. Physiological measurement
30, 6 (2009).

Andy Adler and Alistair Boyle. 2017. Electrical Impedance Tomography: Tissue Proper-
ties to Image Measures. IEEE Transactions on Biomedical Engineering 64, 11 (2017).

Pieter Bakbouk, Ghada and Peers. 2023. Mean Value Caching for Walk on Spheres. In
Proceedings of EGSR.

Sai Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. UnbiasedWarped-Area Sampling for
Differentiable Rendering. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020).

David C Barber and Brian H Brown. 1984. Applied potential tomography. Journal of
Physics E: Scientific Instruments 17, 9 (1984), 723.

Mégane Bati, Stéphane Blanco, Christophe Coustet, Vincent Eymet, Vincent Forest,
Richard Fournier, Jacques Gautrais, Nicolas Mellado, Mathias Paulin, and Benjamin
Piaud. 2023. Coupling Conduction, Convection and Radiative Transfer in a Single
Path-Space: Application to Infrared Rendering. ACM Trans. Graph. (Proc. SIGGRAPH)
42, 4 (2023), 1–20.

RichardHBayford. 2006. Bioimpedance tomography (electrical impedance tomography).
Annu. Rev. Biomed. Eng. 8 (2006), 63–91.

M.Z Brainina, V.L Generozov, V.G Kuznetsov, and V.A Sakovich. 1967. Evaluation of
dose derivatives by the Monte Carlo method for optimizing protective screen shape
and composition. U. S. S. R. Comput. Math. and Math. Phys. 7, 4 (1967), 335–340.

Alberto P Calderón. 2006. On an inverse boundary value problem. Computational &
Applied Mathematics 25 (2006), 133–138.

J.R Cannon. 1964. Determination of certain parameters in heat conduction problems. J.
Math. Anal. Appl. 8, 2 (1964), 188–201.

Margaret Cheney, David Isaacson, and Jonathan C. Newell. 1999. Electrical Impedance
Tomography. SIAM Rev. 41, 1 (1999), 85–101.

Margaret Cheney, David Isaacson, Jonathan C Newell, S Simske, and J Goble. 1990.
NOSER: An algorithm for solving the inverse conductivity problem. International
Journal of Imaging systems and technology 2, 2 (1990), 66–75.

DLMF 2024. NIST Digital Library of Mathematical Functions. https://dlmf.nist.gov/,
Release 1.2.0 of 2024-03-15. https://dlmf.nist.gov/ F. W. J. Olver, A. B. Olde Daalhuis,
D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders,
H. S. Cohl, and M. A. McClain, eds..

Francis H.R. França, John R. Howell, Ofodike A. Ezekoye, and Juan Carlos Morales.
2003. Inverse design of thermal systems with dominant radiative transfer. Advances
in Heat Transfer, Vol. 36. Elsevier.

Jason Furtney. 2023. scikit-fmm. https://github.com/scikit-fmm/scikit-fmm
Mathieu Galtier, Stéphane Blanco, Cyril Caliot, Christophe Coustet, Jérémi Dauchet,

Mouna El Hafi, Vincent Eymet, Richard Fournier, Jacques Gautrais, Anaïs Khuong,
et al. 2013. Integral formulation of null-collision Monte Carlo algorithms. Journal
of Quantitative Spectroscopy and Radiative Transfer 125 (2013).

Ioannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An evaluation of computational
imaging techniques for heterogeneous inverse scattering. In European Conference
on Computer Vision (ECCV). Springer International Publishing, 685–701.

Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.
Inverse Volume Rendering with Material Dictionaries. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 32, 6, Article 162 (Nov. 2013).

R. Guardo, C. Boulay, and M. Bertrand. 1991. A Neural Network Approach To Image
Reconstruction In Electrical Impedance Tomography. In Proceedings of the Annual
International Conference of the IEEE Engineering in Medicine and Biology Society
Volume 13: 1991. 14–15.

Sarah J Hamilton, CNL Herrera, JL Mueller, and Alan Von Herrmann. 2012. A direct
D-bar reconstruction algorithm for recovering a complex conductivity in 2D. Inverse
problems 28, 9 (2012).

Sarah J Hamilton, JL Mueller, and TR Santos. 2018. Robust computation in 2D abso-
lute EIT (a-EIT) using D-bar methods with the ‘exp’approximation. Physiological
Measurement 39, 6 (2018).

Andreas Hauptmann, Ville Kolehmainen, Nguyet Minh Mach, Tuomo Savolainen, Aku
Seppänen, and Samuli Siltanen. 2017. Open 2D electrical impedance tomography
data archive. (2017). arXiv:1704.01178

Andreas Hauptmann, Ville Kolehmainen, Nguyet Minh Mach, Tuomo Savolainen, Aku
Seppänen, and Samuli Siltanen. 2018. 2D electrical impedance tomography dataset.

Wenzel Jakob, Sébastien, Nicolas Roussel, and Delio Vicini. 2022. Dr.Jit: A Just-In-Time
Compiler for Differentiable Rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 41, 4
(July 2022), 124:1–124:19.

James T Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques. 143–150.

Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner.
2015. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph.
35, 1, Article 1 (Dec. 2015).

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable
Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia) 37, 6 (2018), 222:1–222:11.

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

https://dlmf.nist.gov/
https://dlmf.nist.gov/
https://github.com/scikit-fmm/scikit-fmm
https://arxiv.org/abs/1704.01178

175:18 • Ekrem Fatih Yilmazer, Delio Vicini, and Wenzel Jakob

Xiuyan Li, Yang Lu, Jianming Wang, Xin Dang, Qi Wang, Xiaojie Duan, and Yukuan
Sun. 2017. An image reconstruction framework based on deep neural network
for electrical impedance tomography. In IEEE International Conference on Image
Processing (ICIP). 3585–3589.

Zilu Li, Guandao Yang, Xi Deng, Christopher De Sa, Bharath Hariharan, and Steve
Marschner. 2023. Neural Caches for Monte Carlo Partial Differential Equation
Solvers. In Proc. SIGGRAPH Asia (Conference track). Article 34.

Dong Liu and Jiangfeng Du. 2021. Shape and topology optimization in electrical
impedance tomography via moving morphable components method. Structural and
Multidisciplinary Optimization 64, 2 (2021), 585–598.

Dong Liu, Anil Kumar Khambampati, and Jiangfeng Du. 2017. A parametric level set
method for electrical impedance tomography. IEEE Trans. med. imaging 37, 2 (2017).

Shengheng Liu, Ruisong Cao, Yongming Huang, Taweechai Ouypornkochagorn, and
Jiabin Jia. 2020a. Time sequence learning for electrical impedance tomography
using Bayesian spatiotemporal priors. IEEE Transactions on Instrumentation and
Measurement 69, 9 (2020), 6045–6057.

Shengheng Liu, Yongming Huang, Hancong Wu, Chao Tan, and Jiabin Jia. 2020b. Effi-
cient multitask structure-aware sparse Bayesian learning for frequency-difference
electrical impedance tomography. IEEE Trans. industrial informatics 17, 1 (2020).

Shengheng Liu, Jiabin Jia, Yimin D Zhang, and Yunjie Yang. 2018. Image reconstruction
in electrical impedance tomography based on structure-aware sparse Bayesian
learning. IEEE transactions on medical imaging 37, 9 (2018), 2090–2102.

Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing
discontinuous integrands for differentiable rendering. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 38, 6 (Dec. 2019).

Iván Lux and Lázló Koblinger. 1990. Monte Carlo Particle Transport Methods: Neutron
and Photon Calculations. CRC Press, Boston.

Sylvain Maire and Martin Simon. 2015. A partially reflecting random walk on spheres
algorithm for electrical impedance tomography. J. Comput. Phys. 303 (2015).

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control
using the adjoint method. In ACM Trans. Graph. (Proc. SIGGRAPH), Vol. 23. ACM.

Guennady A. Mikhailov. 1967. Monte-Carlo calculation of derivatives of functionals
from the solution of the transfer equation according to the parameters of the system.
U. S. S. R. Comput. Math. and Math. Phys. 7, 4 (1967), 274–281.

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2023. Boundary
Value Caching for Walk on Spheres. ACM Trans. Graph. (Proc. SIGGRAPH) 42, 4,
Article 82 (July 2023).

Bailey Miller, Rohan Sawhney, Keenan Crane, and Ioannis Gkioulekas. 2024. Walkin’
Robin: Walk on Stars with Robin Boundary Conditions. ACM Trans. Graph. (Proc.
SIGGRAPH) 43, 4 (2024).

Zackary Misso, Benedikt Bitterli, Iliyan Georgiev, and Wojciech Jarosz. 2022. Unbi-
ased and consistent rendering using biased estimators. ACM Trans. Graph. (Proc.
SIGGRAPH) 41, 4 (July 2022).

Sean Molesky, Zin Lin, Alexander Y. Piggott, Weiliang Jin, Jelena Vucković, and Alejan-
dro W. Rodriguez. 2018. Inverse design in nanophotonics. Nature Photonics 12, 11
(01 Nov 2018), 659–670.

Lukas Mosser, Olivier Dubrule, and Martin J. Blunt. 2020. Stochastic Seismic Waveform
Inversion Using Generative Adversarial Networks as a Geological Prior. Mathemat-
ical Geosciences 52, 1 (2020).

Jennifer L Mueller and Samuli Siltanen. 2012. Linear and nonlinear inverse problems
with practical applications. SIAM.

Mervin E. Muller. 1956. Some Continuous Monte Carlo Methods for the Dirichlet
Problem. The Annals of Mathematical Statistics 27, 3 (1956), 569 – 589.

Mohammad Sina Nabizadeh, Ravi Ramamoorthi, and Albert Chern. 2021. Kelvin
transformations for simulations on infinite domains. ACM Trans. Graph. (Proc.
SIGGRAPH) 40, 4, Article 97 (July 2021).

Merlin Nimier-David, Sébastien Speierer, Benoît Ruiz, andWenzel Jakob. 2020. Radiative
Backpropagation: An Adjoint Method for Lightning-Fast Differentiable Rendering.
ACM Trans. Graph. (Proc. SIGGRAPH) 39, 4 (July 2020).

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:
A Retargetable Forward and Inverse Renderer. ACM Trans. Graph. (Proc. SIGGRAPH
Asia) 38, 6 (Nov. 2019).

Alexandrina Orzan, Adrien Bousseau, Pascal Barla, Holger Winnemöller, Joëlle Thollot,
and David Salesin. 2013. Diffusion curves: a vector representation for smooth-shaded
images. Commun. ACM 56, 7 (July 2013), 101–108.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically Based Rendering:
From Theory to Implementation (4th ed.). The MIT Press.

Yang Qi, Dario Seyb, Benedikt Bitterli, and Wojciech Jarosz. 2022. A bidirectional
formulation for Walk on Spheres. Comp. Graph. Forum (Proc. EGSR) 41, 4 (2022).

Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H. Shimada,
Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2022. A Monte
Carlo Method for Fluid Simulation. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 41, 6,
Article 240 (Nov. 2022).

Fadil Santosa and Michael Vogelius. 1990. A backprojection algorithm for electrical
impedance imaging. SIAM J. Appl. Math. 50, 1 (1990), 216–243.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing: A grid-
free approach to PDE-based methods on volumetric domains. ACM Trans. Graph.
(Proc. SIGGRAPH) 39, 4 (2020).

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-free
Monte Carlo for PDEs with spatially varying coefficients. ACM Trans. Graph. (Proc.
SIGGRAPH) 41, 4 (2022).

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2023. Walk on Stars:
A Grid-Free Monte Carlo Method for PDEs with Neumann Boundary Conditions.
ACM Trans. Graph. (Proc. SIGGRAPH) (2023).

László Szirmay-Kalos, Balázs Tóth, and Milán Magdics. 2011. Free Path Sampling in
High Resolution Inhomogeneous Participating Media. Comp. Graph. Forum 30, 1
(2011), 85–97.

Zdravko Velinov, Marios Papas, Derek Bradley, Paulo Gotardo, Parsa Mirdehghan,
Steve Marschner, Jan Novák, and Thabo Beeler. 2018. Appearance Capture and
Modeling of Human Teeth. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 37, 6 (Dec.
2018), 207:1–207:13.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2021. Path Replay Backpropagation:
Differentiating Light Paths using Constant Memory and Linear Time. ACM Trans.
Graph. (Proc. SIGGRAPH) 40, 4 (Aug. 2021).

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable Signed Distance
Function Rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 41, 4 (July 2022).

E Woodcock, T Murphy, P Hemmings, and S Longworth. 1965. Techniques used in the
GEM code for Monte Carlo neutronics calculations in reactors and other systems
of complex geometry. In Proc. Conf. Applications of Computing Methods to Reactor
Problems, Vol. 557.

Zihan Yu, Lifan Wu, Zhiqian Zhou, and Shuang Zhao. 2024. A Differential Monte Carlo
Solver For the Poisson Equation. In Proc. SIGGRAPH (Conference track).

Yonghao Yue, Kei Iwasaki, Bing-Yu Chen, Yoshinori Dobashi, and Tomoyuki Nishita.
2010. Unbiased, adaptive stochastic sampling for rendering inhomogeneous partici-
pating media. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 29, 6 (Dec. 2010).

Tizian Zeltner, Sébastien Speierer, Iliyan Georgiev, andWenzel Jakob. 2021. Monte Carlo
Estimators for Differential Light Transport. ACM Trans. Graph. (Proc. SIGGRAPH)
40, 4 (Aug. 2021).

Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020.
Path-Space Differentiable Rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 39, 4
(2020), 143:1–143:19.

Tao Zhang, Xiang Tian, XueChao Liu, JianAn Ye, Feng Fu, XueTao Shi, RuiGang Liu, and
CanHua Xu. 2022. Advances of deep learning in electrical impedance tomography
image reconstruction. Frontiers in Bioengineering and Biotechnology 10 (Dec. 2022).

Shuang Zhao, Frédo Durand, and Changxi Zheng. 2018. Inverse Diffusion Curves Using
Shape Optimization. IEEE Trans. Vis. and Comp. Graph. 24, 7 (2018), 2153–2166.

ACM Trans. Graph., Vol. 43, No. 6, Article 175. Publication date: December 2024.

	Abstract
	1 Introduction
	2 Related work
	3 Background: Monte Carlo PDE solvers
	3.1 Walk on Spheres
	3.2 Walk on Stars
	3.3 Spatially-varying coefficients

	4 Inverse Solver
	4.1 Path Replay Backpropagation
	4.2 Weight windowing
	4.3 Path replay for branching random walks
	4.4 Validation and results

	5 Accelerating the Forward Solver
	5.1 Adaptive majorant and radius selection
	5.2 Efficient Sampling of the Green's Function in 2D

	6 Application: electrical impedance tomography
	6.1 Problem statement
	6.2 Continuous conductance
	6.3 Discrete conductance

	7 Implementation Details
	8 Conclusion
	9 acknowledgements
	References

