GENERALISED TAYLOR’S FORMULA WITH ESTIMATES OF
THE REMAINDER

P. CERONE

ABSTRACT. Generalised Taylor’s formulae are obtained utilising an integral
remainder in which the kernel is comprised of a product of two polynomials,
each of which satisfy the Appell condition wfc = wg_1. Bounds are obtained
in terms of the Lebesgue norms. Prior results are shown to be recaptured as
special cases of the current development. Perturbed Taylor’s formulae are also
investigated with this general setting complete with bounds.

1. INTRODUCTION

A number of authors have recently obtained generalisations of the traditional
Taylor series expansion of a function f(x) about a point a assuming sufficient
differentiability. Estimates of bounds on the remainder have also been procured.

Before proceeding further let us introduce some notation. We shall term polyno-
mials of degree k, W}, as Appell type and say Wy, € A if they satisfy the condition

(1.1) W, =& Wi_1 (t), Wo(t) =1, t R,

These are so named since Appell studied (1.1) with &, = k in 1880 (see [I]).

Polynomials satisfying with £, = 1 have been termed harmonic polynomials

in Matié¢ et al. [7] however a simple scaling will demonstrate that these are Appell.
The following results we obtained by Mati¢ et al. [7] where P, () satisfy

with £, = 1.

Theorem 1. Let {P,}, y

(1.2) P.(t)=P, 1(t), PBb(t)=1,teR, neN, n>1.

Further, let I C R be a closed interval and a € I. If f : I — R is any function such
that for some n € N, (") is absolutely continuous, then for any x € I

be a sequence of polynomials, that satisfy

(13) f(.%‘) :Tn (f§a>x)+Rn (f;(l,LL')

where

(L4 Tu(fia2) = f @+ (D [A@) [P @) - Pe(a) S (a)]
k=1

(15) R (fra,2) = (—1)" / "By (1) £ (1) dr.

They also pointed out the following bounds for the remainder R,, (f,-,").

Date: September 17, 2001.
1991 Mathematics Subject Classification. Primary 26D15, 41A58.
Key words and phrases. Generalised Taylor’s formula, Appell Polynomials, Bounds.

1
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Corollary 1. With the above assumptions, we have the estimations

(1.6)  |R,(f;a,x)|
1Pulloo [|£HD], provided  f+Y € Ly [a, 2],

< 1Pl Hf(”H)Hp provided Y € L, [a,x], p > 1,

1Pully | £V provided  f+Y € Ly [a, 2],

where x > a and ||-||, (1 < s < 00) are the usual s—Lebesque norms. That is,

lal, = (/ 9 <t>|3dt)i7 s € [1,00)

9]l == ess sup g (t)].

tela,x

We introduce superscripts for T'(f;a,z) and R, (f;a,z) as given in (1.4) and
(1.5) respectively to reflect the particular polynomial P, (¢) involved. Let

and

(1.7) P (t):(t_i#, 0(N) =+ (1- Nz Aelo,1],
(1.9 PP =, (120,

and

(1.9) P =, (fcj‘; )

represent polynomials involving; a convex combination of the end points, Bernoulli
polynomials and Euler polynomials respectively.

With the polynomials ((1.7]) — (1.9) then from (1.4) and (1.5)
(L10) T3> (fia,x)
n

k
= f@)+ 30 0 I [0 () ()R - 0 ()]
k=1 ’

(L1) T (fram) = fla)+——[f (2)+ [ (a)]
3] (@ —a)?*
S, o - o
k=1
(1.12) TE (f;a,z)
[%] —a 2k=1 (4k
= sz y EET S [ ) 4 e o
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and
_ n+1 T
1) R e = S0 -0y ot ga
6(A) = Xda+(1-XNz, A€][0,1],

1y R (e = ot o g, (L) e g a

xT

Tr—a

(115 RE(fram) = (-1 B / "B, (“) £ (1) d,

where B, () are the Bernoulli polynomials, B, = B, (0) the Bernoulli numbers
and E, (-) the Euler polynomials.
The above expressions - were obtained by Mati¢ et al. [7] for the
Bernoulli and Euler polynomials but only for the equivalent of A = 0 and % in .
Cerone and Dragomir [4] obtained the following theorem which follows directly

from Corollary [1| with P¢* (¢) as given by (1.7) and using (1.10]) and (1.13]).
Theorem 2. Assume that f is as in Theorem[], then we have

(1.16) |f (x) = T (f;a,2)|
= R} (f;a,2)]
L@—a)" [+ X=3"IF"|, if ™ € Li[a,a];

nl

1
(- )™ [(1 =X A | |
nl(ng+1)4 P

IN

if fOtY e Lya,2], p>1,

D =

ﬁ (z - a)n+1 {(1 . )\)n+1 I )\n+1] ||f(n+1)Hoo7

if fY € Lo [a,2].

1
It was also noted that since by (\) = [+ [A = |]", ha (A) = [(1 — )t ynatt) e

and h3 (A) = (1 — )\)n'H + A" are convex and symmetrical about %, then

1

A€(0,1]
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Hence the best inequality possible in the sense of providing the tightest bound is
(1.17) f (@) =Tt (fra.2)

g = 17
1 i
L gy e
< n!(ng+1)72
if f*) e L,[a,x], p>1, %—i—%: 1;
1 n n . n
Gz @O IO i FOY € Lo a2l

Taking A = 0 in (1.16]) produces the classical Taylor series expansion in terms
of the L, [a,z], p > 1, Lebesgue norms for the bounds (see for example, Dragomir
[6]). That is,

n

k
(1.18) ‘f(w) - [f (@) + 3 o p <a>H

k=1
% [EAaned FOD € Ly [a, 2] ;
n+1
= ('9[:(_?-1)(11 £V, 0D € Ly fa, ],
ni{nq q
_— p>1 s+ 1=1;
(<n_+)1> lF 0 s £ € Lo fa ]

Recently in [5] Dragomir introduced a perturbed Taylor’s formula using the
Griiss inequality for the Chebychev functional. Matié¢ et al. [3] obtained generalised
Taylor’s formulae involving expansions in terms of general polynomials satisfying
(1.2) producing in particular Theoremand Corollaryabove. They also examined
perturbed versions of , namely

(1.19) f(x) = T,(f;a,2)
+ (1" [Pt () = Pusr (@) [F7sa,2] +p, (Fra,),

where
(n) (z) — f(n)
(1.20) [f(");a, ;1:] = [z = f (a)’ the divided difference,
T —a
(1.21) Pn (f;a,2) is the remainder.

Dragomir [5] developed an estimate of the remainder using the Griiss inequality
for P, (t) = (t;ﬁ) -, Mati¢ et al. [7] used a premature or pre-Griiss argument to pro-

cure bounds on pn% (f;a,zx), pso (f;a,x), p¢B (f;a,2) and pSP (f;a,x). Dragomir
[6] obtained tighter bounds for the same polynomial generators of the perturbed
Taylor series for f("*1) € Ly (I) with z,a € I C R. In the paper [4], Cerone and
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Dragomir procured bounds on p,, (f;a,x) in terms of A—seminorms resulting from
the Chebychev functional and Korkine’s identity which are used to produce (|1.18]).

In two recent papers, Cerone [2] and [3] developed quadrature rules utilizing
Peano kernels comprised of the product of polynomials satisfying the Appell con-
dition .

It is the intention that in the current paper the results of Mati¢ et al. [7], as
exemplified in Theorem [I] and Corollary [I, be extended to polynomials that in
themselves do not satisfy but are comprised of products of polynomials that
do. That is, develop the results of Cerone [2], [3] to obtain generalised Taylor
series involving different polynomials complete with an estimate of bounds for the
remainder. Perturbed Taylor series will also be analysed.

2. RESULTS FROM PRODUCT APPELL POLYNOMIALS

We commence by developing an identity.

Lemma 1. Let pi, qx € A for k € N and so are sequences of Appell polynomials

satisfying .
Further, let I be a closed interval and a € I then if f : I — R is such that f) is
absolutely continuous on I, the following identity holds for any x € T

(21) f(x):Tn(f;aaw)"_Rn(f;aax)a

where

22)  Ta(fia) = 1 ST [K,W () £ ()
k;:

(2.3) Ry (f;a,2) (t) f (1) dt
with

(2'4) K, (t) = Pn-m (t) dm (t) , t€ [a7 CL’]
and

U

(2.5) K® (1 Z( )pn s (0 G5 (8)

(2.6) U=min{k,n—m}, L=max{0,k—m}.
Proof. Consider
1 [ K0 1 @ de

then repeated integration by parts gives

(2.7) / K, (t) £ (1) dt

Z K(k) f(n k) ()

x

+ /x KM () £/ (t) dt.

a
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Now, using the Leibnitz rule for differentiation of a product gives from (2.2

k . .

k\ &’ dk=i
2.8 K" (t) = —Dn—m (t) = qm (£) -
(28) #0=3(5) gt © gm0
Further, since p,_., (-) and g, (-) are Appell polynomials satisfying ([1.2)), then,

Wi (t), j<k

Wi (1) =
0, i>k
and so from
min{k,n—m} i
(2.9) KO@m= Y (j ) P (8) G5 (8).

j=max{0,k—m}

Also, for k = m we deduce from (2.9)) that j = n —m since the subscripts of p and
q are non negative giving

(2.10) K™ () = (”) .

m

Using (2.9) and (2.10) in (2.8]) readily produces the desired result (2.3]) after minor

manipulation. i

Remark 1. If we take m = 0 then K, (t) = p, (t) and the generalised Taylor’s
formula, - , of Matié et al. [7] is recaptured. If we further take py, (t) =
Po(t) = :7315) then the classical Taylor’s formula results. Further, if p, (t) =

Pex (t), PB(t) or PE(t), as defined by - , then the results -

are obtained and so recapturing existing work.

Theorem 3. Let f satisfy the assumptions of Lemma[ll Then the following esti-
mations holds:

(2.11) [f (@) = 70 (f50,2)]
= |Bn(f;0,2)|
Qn (l,m) ||f(n+l)Hoo , f(n+1) € Lo [a7x} :

forth) ¢ L, [a,x],
p>1, l-l—%: 1;

P
Lo sup |K, (1) }’f("+1)||1 . ftY e Ly fa, 2],
(m) tela,x]

1 v N
with K, (t) as defined by (2.4)).

Proof. The estimations are a simple consequence of Holder’s inequalities and prop-
erties of the integral and absolute value. i

Qn (q,2) || D]

IN

p’

where

Remark 2. The results of Lemmal[l] and Theorem[3 are quite general being capable
of recapturing prior generalised Taylor formulae as particular cases of the current
work. Theorem @ provides bounds on the remainder R, (f;a,x) defined in terms
of Ky, (t) which is comprised of the product of Appell polynomials satisfying the



GENERALISED TAYLOR’S FORMULA 7

conditions . The bounds provided by may be evaluated either analytically
using the properties of the specific polynomials in question or else numerically.

The following corollary gives an example for a particular n'" degree polynomial.
Corollary 2. Let the conditions of Lemma [1] hold. The following result is then
valid. Namely, for 0 € [a, x]

(2.12) |f (x) =7, (f; 0, 2)]
= [R, (f;a,7)]
Qr (L) || fH| s fHY € Lo [a, 2] 5

Qn (g, 2) [V, fOY € Ly fa,a], p>1, 5+ 4 =1
<
(x —a)"™™" p_ate " et
nlom T—a+2\0-— 2 Hf Hl7
FOY € Ly [a, 2],
where
21) 7 (fie)
1 n
= J@+ my T (54 (@) £ (2) = k) (@) F7P ()]
m/ k=1
t—a)"" (t—0)"
(2.14) () = 2 L e ol
U n—m-—j i—k+m
k\ (t—x) Tt —0)
2.15 &) () = () — ;
(2.15) ®) ; j) m—m—=j (G—k+m)
with U = min{k,n —m}, L = max {0,k —m}.
Further,
(2.16) nlQ;, (r, )
[(m_a)rn+1 ;’ b
rn+1
= 0—a ’
_ pyrntl _
(x —0) {x <r(n m),rm,x_a)
+B(r(nm)+1,rm+1))}r, 0 € [a,x)
with
X
(s )= [
0
and

1
B (a, ):/0 (1—w)* " du,

the Euler beta function.
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Proof. For K, (t) of given by &, (t) of we have from the identity
in with 7% (f;a,z) as given by (2.13).

The bounds are obtained utilising (2.11)).

For f("+1) ¢ L, [a,z] then we require to determine from the third inequality in

(2.11), with K, (t) = Ky, (t) defined in (2.14). Namely,

1 1 _
Ty sup |k ()] = o5 sup [t—a" [t -0
(m) t€(a,z] (m) t€(a,x]
1 _
= —~ sup (z—0)"""|t—0|"
(m) tefa)
(x_a)n—m m
= ——— [max{0—a,x-0}]",
n!

which produces the third inequality of (2.12)) on using the result 2max {A, B} =
A+ B+ |A-B|.
Now, for f("*1) € L, [a,z], 1 < p < oo then from (2.11) with K, () given by

K (t) of
([ entorar)”

(2.17) Qi (ra) = 1)
(/ (2 — 1)) ¢ _ g dt) "

n
m

e @i = (/z (x—t)" dt) L [(ﬂc—a)"+1

n! m+1

For 0 € [a,z) then from ([2.16]),
(2.19)  QF (r,x)

_ 1 l / ' (z— )" "™ (9 — )™ dt + /0 ’ (z—t)" "™ (1 — o)™ dt]

n!

—~

-

2=

Firstly, if § = x then

1
T

1
1 1
= 5 [I(avgax) + J(a,@,x)]" :
Now, taking u = 6 — t then
0—a
I(a,0,z) = / (u+z—0)" "™y,
0

which, with a further substitution of u = (z — 0) v gives

6—a

(2.20) I(a,0,2) = (x—0)""" /x_a (v+ )" gy,
0

Further, the substitution (z — 0)w =t — 6 produces from ([2.17)
1
(2.21) J(a,0,2) = (x—6)" / (1= w)" "™ ™y,
0

Combining (2.17) — (2.21) produces (2.16) and thus completing the proof of the

theorem. |
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Remark 3. Different choices of m,n and 6 recapture earlier results. If m = n then
Kn (1) of becomes PS> (t) given by and the resulting Taylor expansion
and bounds are procured. Taking 60 = x in gives P (t) from producing
agreement between the results and .

The tightest bounds from 1) are obtained if we take 6 = # The following
corollary then holds.

Corollary 3. Let the conditions of Lemma[]] and Corollary[g hold, then

‘f () - [f (@) + 7y 20 (D[R (@) £ () — A0 (a) 70 <a>]] ’

By () ||f V|, fOFY € Lo [a, 2]

oo’

<) B, ||f(n+1)Hp’ foY e L, [a, ],
p>1 o+ o+
SEr [N, S0 € Lifaal,

nl2m

where
e = (,5) <2>
RO (@) = i(f) 2j—k+m(<_§)_nnj(—$5!2n_l+m>!’

with U = min {k,n —m}, L —=max{0,k—m}

and

B (x) = (x;ayﬁlk<”—m”“;>+0Higﬁﬂy

st = (52) e fsnmran ) ot ]

Further, x (o, 8, X) and B («, 3) are as defined in Corollary @

Proof. Taking 6 = “;z in Corollary |2[ produces the results stated after some minor
algebraic manipulation. i

3. PERTURBED TAYLOR’S FORMULA

Perturbed Taylor series may be obtained utilising the well known Chebychev
functional and its properties including identities and bounds. It has a very extensive
and long history, see for example [8, pp. 295-310].

For g,h : I — R which are both integrable as is their product, then

(3.1) T (g,h) = M (gh) — M (g) M (h)

is the well known Chebychev functional, where M (g) = 1 [* g (¢) dt is the inte-
gral mean and z > a.




10 P. CERONE

Further, a number of sharp bounds for |¥ (g, k)| exist, under various assumptions
about g and h, including (see [3] for example)

32)  |T(9.h)
S (9,9)]2 [T (b, )7,

Ay — A
2

(Au;Al> (Bu2—31> , Bi<g(t)< By, tela,z] (Griiss)

The bounds in (3.2) are from top to bottom in order of increasing coarseness.
They utilise the Korkine identity, namely

(33)  T(g.h)= 2(1) / ' / (b () — B () (9 (1) — g (s)) drds

ol
°
=
m
~
N
=

S (9.9))° . A <h(t) < Ay, telaa]

IN

for their development.
As mentioned in the introduction, the identity (1.19)) was introduced by Dragomir

5] for P, (z) = {= ”,”) and bounds were obtained on the remainder utilising the
Griiss inequality, the third in . Matié et al. [5] capitalised on the fact that

[T (P, Pn)]; can be evaluated explicitly for particular polynomials P, (t) and so
utilised the second inequality in , termed by them as the pre-Griiss inequality,
to obtain bounds.

It should be emphasised that (| comes from (3.1]) and ( where

(3.4) pu(f30,2) = (@ = a) T (P, f("“)) .
Specifically, Matié¢ et al. [7] obtain the bound

Tni1 () = i1 (@)
2

(3.5) lpn (fia,2)] < (z —a)
where

Vngr (@) = inf fOFD (@), Doy (z) = sup OV ().
t€la,z] tela,x]

For f("*1) ¢ Ly (I) and = > a, Dragomir [6] obtained, using the first inequality in

and (3),
(3.6) P (fi0,2)| < (¢ = ) [T (Pa P))F o (£ Ds0,2)

where

R )

L e~ (s

/x fn) (0 dt = ) (z) — f0) (a).

r—a

with

{f(");amc} =M <f<n+1>>

r—a
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Let 8,, = [T (P, Pn)]% , then Matié¢ et al. [7] showed that

B8 = (z — )™ (l(f;i,;!)é

and

1
2 2
B =2(x—a)""

(441 = 1) |Bamsa|  [2(2"*2 = 1) Buys
(2n + 2)! (n+1)!

where the polynomials PZ (t) and PF (¢) involving the Bernoulli and Euler poly-
nomials are present, respectively.

Consider now the polynomial P (t) as defined in (L.7), then
g =T Pt

and so from

(3.8) B2 = M((P2)) = (M (P2))?.

Now, from ,

nl(z—a)M(P>) = /x (t—6(\)" dt

Az—a)
= / u"du,
—(1-X)(z—a)

n+1
) ! _ P — n+1 1" (1 — n+1 (33 —CI,)
(39 nle-a)MPP) = [V ()" - T
Similarly,
(3.10) (n))’(z —a) M ((Pﬁ*)2> = / (t—0(N)*"dt
2n-+1
_ 2n+1 3\ 2n+l (z —a)
B [/\ +(1=X) } 2n+1
Thus substitution of (3.9)) and (3.10]) into (3.8]) gives, upon simplification
c ((E _ a)n
3.11 e SO\
(311) o = r vt W
where
(3.12) 2N = (n+1)? [W“ (1)

—(2n+1) [A"“ F (=) (1— A)"“r] .

We note that v () is convex so that the tightest bound is obtained for A = % Also,
taking either A = 0 or 1 gives
(x—a)"

(3.13) By = CESINCIES =By
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Further,
1
cL —a)" 1 2 1 2
gt =l L 2]
(n+1)2n+r1 2 2
which may be written more succinctly as
o _\n 1 n, n even

(3.14) po = 2= 9)

(n+1lvan+1 27 n+1, n odd.

The result (3.13) was obtained by Dragomir [5]. It was also obtained in Matié¢ et

al. [7] as was an equivalent result for ﬂn%. The expression shows that the
bound is slightly tighter for n even than it is for n odd since 25 < 1.

Thus we have the perturbed Taylor series expansion with error p,, (f;a, )
bounded by for v (z) < f**1(t) < T (x), t € [a,z] and by for f(n+1) ¢
Lo (I). Here the bound is in terms of

(3.15) B, = [T (P, P)]?

which is dependent on the particular polynomials used.

It should be noted that the Griiss inequality (the third in (3.2)) has not been
emphasised for two main reasons. Namely, it is coarser than the other two and,
for P, (t) involving the Bernoulli and Euler polynomials the bounds are not useful.
However, for PS> as given by , we have

¢y (1) S P < Py (), € a,2],

where
0, n even

¢ () = inf pp(t) =

tela,a] r—a)"

n (
and N
M [max {\,1 —A}]", n even
n!

D, (x) = sup py (t) =

t€la,x] _ 4\

e’ n odd.

n!

Hence, from (3.15))
L + A s eve
n = - = n
o P - @) @-a" ) 3T
2

B <

2n!
A+ (1-XN",  n odd.

The following theorem gives perturbed Taylor formulae involving product Appell
polynomials.
Theorem 4. Let pg, qr € A for k € N so that they are sequences of Appell
polynomials satisfying . Further, let I be a closed interval and a € I then,
for f: I — R and f absolutely continuous on I, the following inequalities hold.
Namely, for xz € I,

(="
()

(3.16) f@)—71n(f;a,2) — U, () {f(”); a,x}
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< (‘T - a) bn (.17)0' (f(n-‘rl);aaw) ) f(n+1) € Ly [I]7

Fn 1(35)—
S(x—a)bn(x)( + 5

Tn+1 (x)) s Yo () < FOFD () < Ty (2),
t € [a, x|

(r=a)  (Bas1 (1) = by () G (€) < Ko (1) < Do (2),

C G 2
" (Tt (2) ;’Yn+1 (30))’ t € [a,a]
where T, (f;a,x) is as defined in
(317) Un(z) = / Ko (0= [ pue 0 (01
(3.18) {f(n);a’x} _ (i:(];n)( )
(3.19) by (z) = nlxa/ K2 (1) di — (Z(a))r7

and o (f("“);a@) being as defined by ,
Proof. Associating g (t) with ((i))n K, (t) and h (t) with £+ (¢) then from 1}

we obtain
<( 1)"Kn( ),f(n+1) (t))

K (1) £ <t>> M <(‘1)nKn <t>> M (50 (1)

and thus, from (2.3)

(3.20) (x—a)T <((_i))n K, (t), f0Y (U)
= Ru(fion) () Ul >[f<“>;a,x]
where U, d [f™);a,z] are given by l 17)) and
Substltutmg (2.1)) in l 20)) produces
f((,C) —Tn (f;aa l’) - ((_7}))71(]71 (37) |:f(n);a; 3{|
= (z-a)% <((i>)n Ky (), fOFY (t)> ;

which upon taking the modulus and utilising (3.2) gives the results (3.16) where

by (x) = (7,1;) [Z (K, (t), K, (t))]% , since T (ag,ah) = a*% (g,h), a constant. il

The following corollary provides a particular result for a specific n'* degree
polynomial.
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Corollary 4. Let the conditions of Theorem [{] hold. The following result is then
valid. Namely, for 6 € [a, z]

(3.21) P =7 (0 = (U ) [
<(z—a)b} (z)o (f"*;a,z), fFY e Ly (1],

< -ty (o) (FH T ) < 7 (0 < D o),
t € [a,z]
Kn (t)

<(z-a) B) ¢7*z+1 (z) < B <®5(2),
(Fn+1 () ;%H () ’ t € [a,2]
where
(3.22) 7y (f;a,x)
= 1@+ oy YD 0 ) 107 ) w0 (0 100 ()
m/ k=1
(323) ()= 2 L vl
U n—m—j i—k+m
() () = kN (t—x) J.@—ey
324 w02 () e
with U = min{k,n —m}, L = max {0,k —m}.
Further,
Uy (2)
3.25
2
(-1t e, o—u,
- (=)™ (szl)!nﬂ {( }L) - B (n -—m+1,m+1, i_gﬂ , B€la,x)
*x_i *H2_U;(x)2%
(3.26) b = 7o [M (2) (m_)] 7

(327) M* (k3)

n+1 z—a)?"
()" e 0=uz,

2+l e
(njn)‘!gm!($7a) [( 21) — B (2 (n—m)+1,2m+1, ZZ)} , 0€la,x)

2m
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and
X
X — el 61 , 1y = L@ T(5)
(3.28) B(a,ﬂ,X)—/O (1—-w)" v du with B(a,p;1) = Tatd)
Finally,

(n)qb;';(ac): inf k,(t) and (:;) OF (z) = sup kn (f).

m t€la,zx] tela,x]

Proof. The above results are a direct consequence of Theorem [4] for K,, (t) = &, (t)
as given by (3.23)). A star is used to signify this particular K, (¢) . Now, from (3.17)),

Uy (x)

()

(3.29)

:/Inn(t)dt l/m(t—x)”_m-(t—H)mdt, 6 la,a].

Tl

For § = z then U (z) = (—1)""' % and for 6 € [a,z) we have
U; R _
”n(x) = 5 (u+6—2)" " umdu
(m) nJa—o
(=)t
= (=" m(x')[B(n—m—i—l,m—i—l,l)
n!
-0
— B <nm+1,m+1,a>} .
x—0
Now, since B (a, 3;1) = FIE(O‘OBE_(B’%), then the expression li is as stated.
We have to determine b} (). From (3.19)) we have
1
1 I Ur (z)\?|?
3.30 by (z) = 75 | —— 2(tydt — [ ===
(3.30) H@) =77 [m_a/anm (42

Thus, since U} (z) has already been determined as (3.25) we need to evaluate

M* (k2) . That is, from

and so,
(3.31)  (n—m)im!(z —a) M* (k2) = / (t—a2)> ™™™ (1 — 0)*™ dt .= J (6).
For 6 = x we have

(3.32) J(z) = / S =

For 0 # x, that is for 6 € [a,z) we have

z—0
/ (u—(x— 0))2("_m) u?du
a—0

(1_ _ a)2n+1

2n+1)!

(3.33) J (0)

1
= (z—0)>""! / (1- v)Q(n_m) v?"dv
a—6

T—

a—0
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Combining (3.32) and (3.21) with (3.31)) followed by substitution in (3.30) gives
(3-26). m
Remark 4. If m = n then &, (t) = P$* (t) with @ = Aa + (1 — \) z, then b} (x) is

equivalent to By given in with . Taking 0 = x will reproduce the results
of Dragomir [B] involving bounds for the perturbed traditional Taylor representation.

Remark 5. It is possible to obtain bounds for perturbed Taylor formulae by using
the Chebychev inequality and an inequality due to Lupas. The Chebychev inequality
(see |9, p. 207]) states that for g,h : [a,x] — R absolutely continuous and g’ (-),
b’ (+) bounded then

1
T (9,0)] < = (@ —a)® sup g’ (t)] sup |W(1)].
12 tela,x] tela,x]
However T2 (g,h) < % (g,9)% (h,h) and so
T—a
(3.34) 1T (g,h)| < —= sup |g' ()| VT (h,h).
12 t€la,x]

The Lupag result (see [3l p. 210]) states that if g,h : (a,2) — R are locally
absolutely continuous on I = (a, ) and ¢’,h’ € Ly (I) then

(z —a)*

et
19l [Wll2

11 = (1 /:If(t)Ith)%, feLa(D).

r—a

1T (g, h)| <

where

Following a similar procedure as above gives
T —a
(3.35) T(g. ) < == llg'lls VE (. ).

Taking g (t) = "+ (¢t) and h(t) = P, (t) or K, (t) in and (3.35) would
produce further bounds for Taylor expansions. These would however, require fur-
ther conditions on f("12) (t) being bounded when utilizing the result and
f*2) ¢ Ly (I) for . The earlier results were in terms of conditions on
fH+D (¢) rather than f(*+2) (¢). This will not be pursued further here.
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