
PERTURBED GENERALISED TAYLOR’S FORMULAE WITH
SHARP BOUNDS

P. CERONE

Abstract. Sharp bounds are obtained for perturbed generalised Taylor series.

The perturbation involves the arithmetic sum of the upper and lower bounds

of the (n + 1)th derivative. The sharpest bound is in terms of the one norm of
the Appell polynomial which constitutes the coefficients of the derivative of the

function to be approximated. The results are demonstrated for an application
to the logarithm.

1. Introduction

A number of authors have recently obtained generalisations of the traditional
Taylor series expansion of a function f (x) about a point a assuming sufficient
differentiability. A Taylor series representation is a fundamental mechanism for
estimation in problems arising in many applications. Estimates of bounds on the
remainder have also been procured.

Before proceeding further with more generalisations, let us introduce some no-
tation. We shall term polynomials of degree k, Wk as Appell type and say Wk ∈ A
if they satisfy the condition

(1.1) W ′
k = ξkWk−1 (t) , W0 (t) = 1, t ∈ R.

These are so named since Appell studied (1.1) with ξk = k in 1880 (see [2]).
Polynomials satisfying (1.1) with ξk = 1 have been termed harmonic polynomials
in Matić et al. [10], however a simple scaling will demonstrate that these are Appell.

The following results were obtained by Matić et al. [10] where Pn (t) satisfy (1.1)
with ξk = 1.
Theorem 1. Let {Pn}n∈N be a sequence of polynomials, that satisfy

(1.2) P ′n (t) = Pn−1 (t) , P0 (t) = 1, t ∈ R, n ∈ N, n ≥ 1.

Further, let I ⊂ R be a closed interval and a ∈ I. If f : I → R is any function such
that for some n ∈ N, f (n) is absolutely continuous, then for any x ∈ I

(1.3) f (x) = Tn (f ; a, x) + Rn (f ; a, x)

where

(1.4) Tn (f ; a, x) = f (a) +
n∑

k=1

(−1)k+1
[
Pk (x) f (k) (x)− Pk (a) f (k) (a)

]
,
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2 P. CERONE

(1.5) Rn (f ; a, x) = (−1)n
∫ x

a

Pn (t) f (n+1) (t) dt.

They also pointed out the following bounds for the remainder Rn (f ; a, x).
Corollary 1. With the above assumptions of Theorem 1, the following estimations
hold. Namely for x ≥ a,

|Rn (f ; a, x)|(1.6)

≤


‖Pn‖∞

∥∥f (n+1)
∥∥

1
provided f (n+1) ∈ L1 [a, x] ,

‖Pn‖q

∥∥f (n+1)
∥∥

p
provided f (n+1) ∈ Lp [a, x] , p > 1, 1

p + 1
q = 1,

‖Pn‖1
∥∥f (n+1)

∥∥
∞ provided f (n+1) ∈ L∞ [a, x] ,

where x ≥ a and ‖·‖s (1 ≤ s ≤ ∞) are the usual s−Lebesgue norms. That is,

‖g‖s :=
(∫ x

a

|g (t)|s dt

) 1
s

, s ∈ [1,∞)

and
‖g‖∞ := ess sup

t∈[a,x]

|g (t)| .

We introduce superscripts for Tn (f ; a, x) and Rn (f ; a, x) as given in (1.4) and
(1.5) respectively to reflect the particular polynomial Pn (t) involved. Let

(1.7) P cλ
n (t) =

(t− θ (λ))n

n!
, θ (λ) = λa + (1− λ) x, λ ∈ [0, 1] ,

(1.8) PB
n (t) =

(x− a)n

n!
Bn

(
t− a

x− a

)
,

and

(1.9) PE
n (t) =

(x− a)n

n!
En

(
t− a

x− a

)
represent polynomials involving; a convex combination of the end points, Bernoulli
polynomials and Euler polynomials respectively. We should note that the depen-
dence of the polynomials in (1.7) – (1.9), on x is not shown explicitly.

With the polynomials (1.7) – (1.9) then from (1.4) and (1.5)

(1.10) T cλ
n (f ; a, x)

= f (a) +
n∑

k=1

(−1)k+1 (x− a)k

k!

[
λkf (k) (x) + (−1)k+1 (1− λ)k

f (k) (a)
]
,

(1.11) TB
n (f ; a, x) = f (a) +

x− a

2
[f ′ (x) + f ′ (a)]

−
[n
2 ]∑

k=1

(x− a)2k

(2k)!
B2k

[
f (2k) (x)− f (2k) (a)

]
,
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(1.12) TE
n (f ; a, x)

= f (a) + 2
[n+1

2 ]∑
k=1

(x− a)2k−1 (4k − 1
)

(2k)!
B2k

[
f (2k−1) (x) + f (2k−1) (a)

]
and

Rcλ
n (f ; a, x) =

(−1)n+1

n!

∫ x

a

(t− θ (λ))n
f (n+1) (t) dt,(1.13)

θ (λ) = λa + (1− λ)x, λ ∈ [0, 1] ,

(1.14) RB
n (f ; a, x) = (−1)n+1 (x− a)n

n!

∫ x

a

Bn

(
t− a

x− a

)
f (n+1) (t) dt,

(1.15) RE
n (f ; a, x) = (−1)n+1 (x− a)n

n!

∫ x

a

En

(
t− a

x− a

)
f (n+1) (t) dt,

where Bn (·) are the Bernoulli polynomials, Bn = Bn (0) the Bernoulli numbers
and En (·) the Euler polynomials.

The above expressions (1.10) – (1.15) were obtained by Matić et al. [10] for the
Bernoulli and Euler polynomials but only for the equivalent of λ = 0 and 1

2 in (1.7).
Cerone and Dragomir [4] obtained the following theorem which follows directly

from Corollary 1 with P cλ
n (t) as given by (1.7) and using (1.10) and (1.13).

Theorem 2. Assume that f is as in Theorem 1 with x ≥ a, then we have

|f (x)− T cλ
n (f ; a, x)|(1.16)

= |Rcλ
n (f ; a, x)|

≤



1
n! (x− a)n [ 1

2 +
∣∣λ− 1

2

∣∣]n ∥∥f (n+1)
∥∥

1
if f (n+1) ∈ L1 [a, x] ;

1

n!(nq+1)
1
q

(x− a)n+ 1
q

[
(1− λ)nq+1 + λnq+1

] 1
q ∥∥f (n+1)

∥∥
p

if f (n+1) ∈ Lp [a, x] , p > 1, 1
p + 1

q = 1;

1
(n+1)! (x− a)n+1

[
(1− λ)n+1 + λn+1

] ∥∥f (n+1)
∥∥
∞ ,

if f (n+1) ∈ L∞ [a, x] .

It was also noted that since h1 (λ) =
[
1
2 +

∣∣λ− 1
2

∣∣]n , h2 (λ) =
[
(1− λ)nq+1 + λnq+1

] 1
q

and h3 (λ) = (1− λ)n+1 + λn+1 are convex and symmetric about 1
2 , then

inf
λ∈[0,1]

hi (λ) = hi

(
1
2

)
, i = 1, 2, 3.
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Hence the best inequality possible in the class, in the sense of providing the tightest
bound, is

(1.17)
∣∣∣f (x)− T

c 1
2

n (f ; a, x)
∣∣∣

≤



1
2nn!

(x− a)n ∥∥f (n+1)
∥∥

1
;

1

n! (nq + 1)
1
q 2n

(x− a)n+ 1
q
∥∥f (n+1)

∥∥
p
,

if f (n+1) ∈ Lp [a, x] , p > 1, 1
p + 1

q = 1;

1
(n + 1)!2n

(x− a)n+1 ∥∥f (n+1)
∥∥
∞ , if f (n+1) ∈ L∞ [a, x] .

Taking λ = 0 in (1.16) produces the classical Taylor series expansion in terms
of the Lp [a, x] , p ≥ 1, Lebesgue norms for the bounds (see for example, Dragomir
[8]). That is,

(1.18)

∣∣∣∣∣f (x)−
n∑

k=0

(x− a)k

k!
f (k) (a)

∣∣∣∣∣

≤



(x− a)n

n!

∥∥f (n+1)
∥∥

1
, f (n+1) ∈ L1 [a, x] ;

(x− a)n+ 1
q

n! (nq + 1)
1
q

∥∥f (n+1)
∥∥

p
, f (n+1) ∈ Lp [a, x] ,

p > 1, 1
p + 1

q = 1;
(x− a)n+1

(n + 1)!

∥∥f (n+1)
∥∥
∞ , f (n+1) ∈ L∞ [a, x] .

Recently in [7] Dragomir introduced a perturbed Taylor’s formula using the
Grüss inequality for the Čebyšev functional. Matić et al. [10] obtained generalised
Taylor’s formulae involving expansions in terms of general polynomials satisfying
(1.2) producing in particular Theorem 1 and Corollary 1 above. They also examined
perturbed versions of (1.3), namely

(1.19) f (x) = Tn (f ; a, x)

+ (−1)n [Pn+1 (x)− Pn+1 (a)]
[
f (n); a, x

]
+ ρn (f ; a, x) ,

where

(1.20)
[
f (n); a, x

]
:=

f (n) (x)− f (n) (a)
x− a

, the divided difference,

(1.21) ρn (f ; a, x) is the remainder.

Dragomir [7] developed an estimate of the remainder using the Grüss inequality
for Pn (t) = (t−x)n

n! , Matić et al. [10] used a premature or pre-Grüss argument to

procure bounds on ρ
c 1

2
n (f ; a, x), ρc0

n (f ; a, x), ρB
n (f ; a, x) and ρE

n (f ; a, x) . Dragomir
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[8] obtained tighter bounds for the same polynomial generators of the perturbed
Taylor series for f (n+1) ∈ L2 (I) with x, a ∈ I ⊆ R. In the paper [4], Cerone and
Dragomir procured bounds on ρn (f ; a, x) in terms of ∆−seminorms resulting from
the Čebyšev functional and Korkine’s identity which are used to produce (1.18).

In [7], S.S. Dragomir seems to be the first author to introduce the perturbed
Taylor formula

(1.22) f (x) = Tn (f ; a, x) +
(x− a)n+1

(n + 1)!

[
f (n); a, x

]
+ ρn (f ; a, x) ,

where

(1.23) Tn (f ; a, x) =
n∑

k=0

(x− a)k

k!
f (k) (a)

and
[
f (n); a, x

]
is as given in (1.20). Dragomir [7] estimated the remainder ρn (f ; a, x)

by using Grüss and Čebyšev type inequalities.
In [10], the authors generalised and improved the results from [7] via a pre-Grüss

inequality (see [10, Theorem 3]).
Theorem 3. Let {Pn}n∈N be a sequence of polynomials satisfying (1.2). Let I ⊂ R
be a closed interval and a ∈ I. Suppose f : I → R is as in Theorem 1. Then for all
x ∈ I we have the perturbed generalised Taylor formula, (1.19), where x ≥ a, the
remainder ρ (f ; a, x) satisfies the estimate

(1.24) |ρn (f ; a, x)| ≤ x− a

2

√
T (Pn, Pn) [Γ (x)− γ (x)] ,

provided that f (n+1) is bounded and

(1.25) γ (x) := inf
t∈[a,x]

f (n+1) (t) > −∞, Γ (x) := sup
t∈[a,x]

f (n+1) (t) < ∞.

In (1.24), T (·, ·) is the Čebyšev functional on the interval [a, x]. That is,

(1.26) T (g, h) :=
1

x− a

∫ x

a

g (t) h (t) dt− 1
x− a

∫ x

a

g (t) dt · 1
x− a

∫ x

a

h (t) dt.

It is the intention in the current article to produce perturbed generalised Taylor
series like (1.19), however the perturbation involves the arithmetic average of the
upper and lower bounds of the f (n+1) (t) , t ∈ I. The bounds for the expansion
involve the norms of the Appell polynomials with the one norm, which is shown to
provide the tightest bound.

A novel Čebyšev functional and its bounds are presented in Section 2, the results
of which, are applied in Section 3 to perturbed generalised Taylor series, for a
selection of Appell polynomials. The approximation of the logarithmic function
using the results of Sections 2 and 3 is presented in Section 4.

2. A Novel Čebyšev-like Functional and its Bound

Let f, g : [a, b] → R be two integrable functions and define the functional

(2.1) T (f, g; a, b) := M (fg; a, b)−M (f ; a, b)M (g; a, b) ,

where the integral mean is given by

(2.2) M (f ; a, b) :=
1

b− a

∫ b

a

f (x) dx.
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The functional T (f, g; a, b) as defined in (2.1) – (2.2) is widely known in the lit-
erature as Čebyšev’s functional. The reader is referred to [11], Chapters IX and
X and, to the work by Dragomir [6] and Fink [9] for extensive treatments of the
functional.

We now define a Čebyšev-like functional

(2.3) C (f, g; a, b) := M (fg; a, b)− M + m

2
M (f ; a, b) ,

where −∞ < m ≤ g (t) ≤ M < ∞, for t ∈ [a, b] and M (f ; a, b) is as given by (2.2).
The following theorem holds providing bounds for the functional C (f, g; a, b) .

Theorem 4. Let f, g : [a, b] → R be integrable functions and −∞ < m ≤ g (t) ≤
M < ∞, then

|C (f, g; a, b)| =
∣∣∣∣M (fg; a, b)− M + m

2
M (f ; a, b)

∣∣∣∣(2.4)

≤ M −m

2
· 1
b− a

‖f‖1 , f ∈ L1 [a, b]

≤ M −m

2
· 1

(b− a)
1
p

‖f‖p , f ∈ Lp [a, b] , 1 < p < ∞

≤ M −m

2
‖f‖∞ =

M −m

2
max {|N | , |n|} , f ∈ L∞ [a, b] ,

−∞ < n ≤ f (t) ≤ N < ∞, t ∈ [a, b] ,

where ‖f‖p are the usual Lebesgue norms for f ∈ Lp [a, b] defined by

‖f‖p :=

(∫ b

a

|f (t)|p dt

) 1
p

, 1 ≤ p < ∞

and
‖f‖∞ := ess sup

t∈[a,b]

|f (t)| .

The 1
2 in the three inequalities in (2.4) are sharp.

Proof. From (2.3) and using (2.2) we have the identity

C (f, g; a, b) = M (fg; a, b)− M + m

2
M (f ; a, b)

= M
(

f

(
g − M + m

2

))
and so

(2.5) C (f, g; a, b) =
1

b− a

∫ b

a

f (t)
(

g (t)− M + m

2

)
dt.

Taking the modulus from identity (2.5) gives

(2.6) |C (f, g; a, b)| ≤ 1
b− a

∫ b

a

|f (t)|
∣∣∣∣g (t)− M + m

2

∣∣∣∣ dt.

Now, since −∞ < m ≤ g (t) ≤ M < ∞, t ∈ [a, b] then

−M −m

2
≤ g (t)− m + M

2
≤ M −m

2



PERTURBED GENERALISED TAYLOR’S FORMULAE 7

and so from (2.6)

(2.7) |C (f, g; a, b)| ≤ M −m

2
· 1
b− a

∫ b

a

|f (t)| dt

giving the first inequality in (2.4).
We further have, using Hölder’s inequality

1
b− a

∫ b

a

|f (t)| dt ≤ 1

(b− a)1−
1
q

(∫ b

a

|f (t)|p dt

) 1
p

, f ∈ Lp [a, b] ,
1
p

+
1
q

= 1, 1 < p < ∞

≤ ess sup
t∈[a,b]

|f (t)| , f ∈ L∞ [a, b]

producing, from (2.7), the second and third inequalities in (2.4).
For the sharpness of the constant 1

2 , consider

(2.8) |C (f, g; a, b)| ≤ k (M −m) · 1
b− a

∫ b

a

|f (t)| dt.

If we choose g = f = f0 where f0 : [a, b] → R is given by

f0 (t) =

 −1, t ∈
[
a, a+b

2

]
1, t ∈

(
a+b
2 , b

]
then

|C (f0, f0; a, b)| = 1
b− a

∫ b

a

f2
0 (t) dt−

(
1

b− a

∫ b

a

f0 (t) dt

)(
M + m

2

)
= 1

and
1

b− a

∫ b

a

|f0 (t)| dt = 1

giving from (2.8) since m = −1, M = 1, that 1 ≤ 2k and so 1
2 ≤ k.

The same function f0 (t) will prove the sharpness of the second and third inequal-
ities or, more directly from the properties of the Hölder inequality. The theorem is
now completely proved.

Remark 1. The inequalities in (2.4) are in the order of increasing coarseness
although each of them are sharp for f ∈ Lp [a, b] , p ≥ 1.

3. The Čebyšev-like Functional and Perturbed Taylor Results with
Bounds

In this section we will now apply the results of Section 2 to obtain sharp bounds
for perturbed Taylor-like formulae.
Theorem 5. Let {Pn}n∈N be a sequence of polynomials that satisfy (1.2). Further,
let I ⊂ R be a closed interval and a ∈ I. If f : I → R is a function which for some
n ∈ N, f (n) is absolutely continuous and −∞ < γn+1 (x) ≤ f (n+1) (t) ≤ Γn+1 (x) <
∞, then for any a ≤ x ∈ I

(3.1) f (x) = Tn (f ; a, x) +
(

γn+1 (x) + Γn+1 (x)
2

)
(−1)n [Pn+1 (x)− Pn+1 (a)]

n + 1
+ Gn (f ; a, x)
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and

|Gn (f ; a, x)|(3.2)

≤
Γn+1 (x)− γn+1 (x)

2
‖Pn‖1,[a,x] , Pn ∈ L1 [I]

≤
Γn+1 (x)− γn+1 (x)

2
· 1

(x− a)
1
p−1

‖Pn‖p,[a,x] , Pn ∈ Lp [I] , 1 < p < ∞

≤
Γn+1 (x)− γn+1 (x)

2
‖Pn‖∞,[a,x] , Pn ∈ L∞ [I] ,

where

(3.3) Gn (f ; a, x) = (−1)n
∫ x

a

Pn (t)
[
f (n+1) (t)−

γn+1 (x) + Γn+1 (x)
2

]
dt

and Tn (f ; a, x) is as given by (1.4).

Proof. If we identify (−1)n
Pn (t) with f (t) and f (n+1) (t) with g (t) in Theorem 4,

then from identity (2.5) we have

Gn (f ; a, x) = (−1)n
∫ x

a

Pn (t)
[
f (n+1) (t)−

γn+1 (x) + Γn+1 (x)
2

]
dt(3.4)

= (x− a) C
(
(−1)n

Pn (t) , f (n+1) (t) ; a, x
)

.

That is,

Gn (f ; a, x)(3.5)

= (−1)n
∫ x

a

Pn (t) f (n+1) (t) dt

− (−1)n γn+1 (x) + Γn+1 (x)
2

∫ x

a

Pn (t) dt

= Rn (f ; a, x)− (−1)n

(
γn+1 (x) + Γn+1 (x)

2

)
[Pn+1 (x)− Pn+1 (a)]

n + 1
,

where Rn (f ; a, x) satisfies (1.3) – (1.5). Using identity (1.3) in (3.5) produces the
stated result (3.1).

For the bound on the remainder |Gn (f ; a, x)| we have from the first inequality
in (2.4) and (3.4)

|Gn (f ; a, x)| ≤
Γn+1 (x)− γn+1 (x)

2

∫ x

a

|Pn (t)| dt,

and hence (3.2). Utilising the second and third inequality in (2.4) produces the
respective bounds in (3.2).
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Corollary 2. Let the conditions of Theorem 5 persist, and assume a ≤ x, then we
have from (3.1) and (3.2), for P cλ

n (t) given by (1.7)∣∣∣∣f (x)− T cλ
n (f ; a, x)− 1

(n + 1)!

[
(θ (λ)− a)n+1(3.6)

+ (−1)n (x− θ (λ))n+1
](γn+1 (x) + Γn+1 (x)

2

)∣∣∣∣
≤

Γn+1 (x)− γn+1 (x)
2

· 1
n!

Ψ1 (λ; a, x)

≤
Γn+1 (x)− γn+1 (x)

2
· 1

(x− a)
1
p−1

· 1
n!

[Ψp (λ; a, x)]
1
p

≤
Γn+1 (x)− γn+1 (x)

2
· (x− a)

n!
·
[
x− a

2
+
∣∣∣∣θ (λ)− a + x

2

∣∣∣∣]n

,

where

(3.7)


Ψp (λ; a, x) =

(x− θ (λ))np+1 + (θ (λ)− a)np+1

np + 1

θ (λ) = λa + (1− λ) x, λ ∈ [0, 1] .

Proof. We need to evaluate for P cλ
n (t) given by (1.7)∫ x

a

P cλ
n (t) dt and

∫ x

a

|P cλ
n (t)|p dt, p ≥ 1.

Thus, from (1.7), we have,∫ x

a

P cλ
n (t) dt =

1
(n + 1)!

[
(x− θ (λ))n+1 − (θ (λ)− a)n+1

]
and ∫ x

a

|P cλ
n (t)|p dt =

1
n!

∫ x

a

|t− θ (λ)|n dt

=
1
n!

[∫ θ(λ)

a

(θ (λ)− t)n
dt +

∫ b

θ(λ)

(t− θ (λ))n
dt

]

=
1

(n + 1)!

[
(θ (λ)− a)n+1 + (x− θ (λ))n+1

]
,

producing (3.6).
Further,

‖P cλ
n ‖p

p,[a,x] =
∫ x

a

|P cλ
n (t)|p dt =

1
n!

∫ x

a

|t− θ (λ)|np
dt

=
1
n!

[∫ θ(λ)

a

(θ (λ)− t)np
dt +

∫ x

θ(λ)

(t− θ (λ))np
dt

]

=
1
n!

[
(θ (λ)− a)np+1 + (x− θ (λ))np+1

np + 1

]
and so from (3.2) the second inequality in (3.6) is procured.
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The final inequality is obtained from (1.7) and (3.2) giving

‖P cλ
n ‖∞,[a,x] = ess sup

t∈[a,x]

|P cλ
n (t)|

= ess sup
t∈[a,x]

|t− θ (λ)|n

n!

=
1
n!

[max {x− θ (λ) , θ (λ)− a}]n .

Remark 2. The bounds in (3.6) are in order of increasing coarseness. This was
commented upon in Remark 1 referring to the results (2.4), of which (3.6) is a
specialisation. For λ = 1

2 , θ
(

1
2

)
= a+x

2 then from (3.6) and (3.7)∣∣∣∣∣f (x)− T
c 1

2
n (f ; a, x)− 1 + (−1)n

(n + 1)!
·
(

x− a

2

)n+1(γn+1 (x) + Γn+1 (x)
2

)∣∣∣∣∣(3.8)

≤
Γn+1 (x)− γn+1 (x)

2
· (x− a)n+1

2n (n + 1)!

≤
Γn+1 (x)− γn+1 (x)

2
· (x− a)n+1

2n (np + 1)
1
p n!

≤
Γn+1 (x)− γn+1 (x)

2
· (x− a)n+1

2nn!

where, from (1.10),

(3.9) T
c 1

2
n (f ; a, x) = f (a) +

n∑
k=1

(x− a)k

2kk!

[
f (k) (a) + (−1)k+1

f (k) (x)
]

from which we may confirm, for this case at least, the fact that the bounds are in
order of increasing coarseness since 1

n+1 < 1

(np+1)
1
p

< 1, 1 < p < ∞.

We further note that for n odd, the perturbation in (3.8) vanishes, giving the
tightest bound

(3.10)
∣∣∣f (x)− T

c 1
2

n (f ; a, x)
∣∣∣ ≤ Γn+1 (x)− γn+1 (x)

2
· (x− a)n+1

2n (n + 1)!
, n odd.

For n odd, the result (3.10) may be compared with the last result in (1.17) demon-
strating that it is tighter since∥∥∥f (n+1)

∥∥∥
∞
≥

Γn+1 (x)− γn+1 (x)
2

where γn+1 (x) ≤ f (t) ≤ Γn+1 (x) , t ∈ [a, x] .
For n even, the bound is still tighter in (3.8), however, the perturbation is now

present.
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If λ = 0 in (3.6) then θ (0) = x and we obtain a perturbed version of the
traditional Taylor series expansion about a point a. That is, from (1.10),∣∣∣∣∣f (x)− T c0

n (f ; a, x)− (x− a)n+1

(n + 1)!

(
γn+1 (x) + Γn+1 (x)

2

)∣∣∣∣∣(3.11)

=

∣∣∣∣∣f (x)−
n∑

k=0

(x− a)k

k!
f (k) (a)− (x− a)n+1

(n + 1)!

(
γn+1 (x) + Γn+1 (x)

2

)∣∣∣∣∣
≤

Γn+1 (x)− γn+1 (x)
2

· (x− a)n+1

(n + 1)!
,

where

T c0
n (f ; a, x) = f (x) +

n∑
k=0

(−1)k+1 (x− a)k

k!
f (k) (a) .

We notice that the bound in (3.11) is inferior to that in the first inequality in

(3.8) where T
c 1

2
n (f ; a, x) is as given by (3.9). However, (3.9) requires information

involving f (k) (x) being available in order to approximate f (x) .
The following corollary examines perturbed Taylor series expansions when the

polynomials are either Bernoulli or Euler. A similar approach would also be fruitful
for other polynomials satisfying the Appell condition (1.2).

Before proceeding any further we require, for the sake of lucidity, to present some
properties of the Bernoulli and Euler polynomials. Let Bn (t) and En (t) represent
the Bernoulli and Euler polynomials respectively. The Bn (t) may be defined by
the expansion

(3.12)
xetx

ex − 1
=

∞∑
n=0

Bn (t)
xn

n!
, |x| < 2π, t ∈ R

or, alternatively, they are uniquely determined by the properties

(3.13) B′
n (t) = nBn−1 (t) , n ∈ N; B0 (t) = 1

and

(3.14) Bn (t + 1)−Bn (t) = ntn−1, n ∈ N.

From (3.13) and (3.14) it may be shown that

(3.15)
∫ 1

0

Bn (t) dt = 0 and Bn (1) = Bn (0) := Bn,

the Bernoulli numbers.
The Bn (t) also satisfy the property (see [1], 23)∫ 1

0

Bn (t) Bm (t) dt = (−1)n−1 n!m!
(m + n)!

Bn+m, n, m ∈ N

and in particular

(3.16)
∫ 1

0

B2
n (t) dt = (−1)n−1 (n!)2

(2n)!
B2n =

(n!)2

(2n)!
|B2n| .

The En (t) satisfy (see [1], 23)

(3.17)
2etx

ex − 1
=

∞∑
n=0

En (t)
tn

n!
, |x| < π, t ∈ R
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and may be uniquely defined by

(3.18) E′
n (t) = nEn−1 (t) , n ∈ N; E0 (t) = 1

and

(3.19) En (t + 1)− En (t) = 2tn, n ∈ N.

Further, since ([2, 23.1.20])

(3.20) En (0) = −En (1) = − 2
n + 1

(
2n+1 − 1

)
Bn+1, n ∈ N

then from (3.18)

(3.21)
∫ 1

0

En (t) dt =
En+1 (1)− En+1 (0)

n + 1
=

2En+1 (1)
n + 1

=
4
(
2n+2 − 1

)
Bn+2

(n + 1) (n + 2)

and∫ 1

0

En (t) Em (t) dt = (−1)n 4
(
2n+m+2 − 1

) n!m!
(n + m + 2)!

Bn+m+2, n, m ∈ N,

giving

(3.22)
∫ 1

0

E2
n (t) dt = 4

(
4n+1 − 1

) (n!)2

(2n + 2)!
|B2n+2| .

Corollary 3. Let the conditions of Theorem 5 be valid, then we have from (3.1)
and (3.2), for PB

n (t), PE
n (t) as given by (1.8), (1.9),∣∣f (x)− TB

n (x)
∣∣(3.23)

≤
Γn+1 (x)− γn+1 (x)

2
(x− a)n+1

n!

∫ 1

0

|Bn (u)| du

≤
Γn+1 (x)− γn+1 (x)

2
(x− a)n+1

n!

(∫ 1

0

|Bn (u)|p du

) 1
p

, 1 < p < ∞

≤
Γn+1 (x)− γn+1 (x)

2
(x− a)n

n!
‖Bn‖∞,[0,1]

and ∣∣∣∣f (x)− TE
n (f ; a, x)−

(
γn+1 (x) + Γn+1 (x)

2

)
(3.24)

× (−1)n (x− a)n+1

(n + 1)!
· 4 (4n − 1) Bn+2

(n + 2)

∣∣∣∣∣
≤

Γn+1 (x)− γn+1 (x)
2

(x− a)n+1

n!

∫ 1

0

|En (u)| du

≤
Γn+1 (x)− γn+1 (x)

2
(x− a)n+1

n!

(∫ 1

0

|En (u)|p du

) 1
p

, 1 < p < ∞

≤
Γn+1 (x)− γn+1 (x)

2
(x− a)n

n!
‖En‖∞,[0,1] .

Proof. From (3.1) it may be seen that with Pn (t) = PB
n (t) , as given by (1.8) and

using (3.15), produces the left hand side of (3.23) without a perturbation.
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Now, for the bounds. From (1.8), we have∥∥PB
n

∥∥
1,[a,x]

=
(x− a)n

n!

∫ x

a

∣∣∣∣Bn

(
t− a

x− a

)∣∣∣∣ dt =
(x− a)n+1

n!

∫ 1

0

|Bn (u)| du

producing the first bound in (3.23) on using the first result in (3.2).
For the second, we require∥∥PB

n

∥∥
p,[a,x]

=
(x− a)n

n!

(∫ x

a

∣∣∣∣Bn

(
t− a

x− a

)∣∣∣∣p dt

) 1
p

=
(x− a)n− 1

p

n!

(∫ 1

0

|Bn (u)|p du

) 1
p

,

producing the stated result from (3.2).
Finally, from (3.2),∥∥PB

n

∥∥
∞,[a,x]

=
(x− a)n

n!
ess sup

u∈[0,1]

|Bn (u)|

as required.
The expressions (3.24) are obtained in a similar manner for Pn (t) = PE

n (t) as
defined by (1.9).

For the perturbation we require

PE
n+1 (x)− PE

n+1 (a)
n + 1

=
(x− a)n+1

(n + 1)!
[En+1 (1)− En+1 (0)]

=
(x− a)n+1

(n + 1)!
4

n + 2
(4n − 1) Bn+2,

where we have used (3.20) for the final step.

Remark 3. The bounds in (3.23) and (3.24) involve the norms
∥∥PB

n

∥∥
p,[0,1]

and∥∥PE
n

∥∥
p,[0,1]

. These are difficult to obtain explicitly although they may be evaluated
numerically if sufficient care is taken.

To obtain explicit bounds then we require knowledge about the zeros of Bn (x)
and En (x) , u ∈ [0, 1] . This is in general not known explicitly. The first inequalities
in (3.23) and (3.24) are the sharpest, however, we may obtain bounds in terms of
‖Bn‖2,[0,1] and ‖En‖2,[0,1] explicitly (see also [10]).

Thus, ∣∣f (x)− TB
n (x)

∣∣ ≤ Γn+1 (x)− γn+1 (x)
2

· (x− a)n+1

√
|B2n|
(2n)!

and∣∣∣∣f (x)− TE
n (f ; a, x)−

γn+1 (x) + Γn+1 (x)
2

× (−1)n (x− a)n+1

(n + 1)!
· 4 (4n − 1)

Bn+2

(n + 2)

∣∣∣∣∣
≤

Γn+1 (x)− γn+1 (x)
2

· (x− a)n+1 · 2

√
(4n+1 − 1) |B2n+2|

(2n + 2)!
.
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4. Applications to the Logarithm

We shall apply the results of the previous sections to the logarithm function to
illustrate the results.

Let f : (0,∞) → R, f (t) = ln t then

(4.1) f (k) (t) = (−1)k−1 (k − 1)!
tk

, t > 0, k ∈ N.

We note that f (n+1) is strictly monotonic on (0,∞) so that

γn+1 (x)∓ Γn+1 (x)
2

(4.2)

=
1
2

[
max

{
f (n+1) (a) , f (n+1) (x)

}
∓min

{
f (n+1) (a) , f (n+1) (x)

}]
=

1
2

∣∣∣f (n+1) (a)∓ f (n+1) (x)
∣∣∣

=
n!
2

(
1

an+1
∓ 1

xn+1

)
, for x ≥ a.

We shall utilise the first inequality in (3.6), which is the least coarse of the three,
to illustrate the results to give

(4.3) |f (x)− T cλ
n (ln; a, x)

− 1
2 (n + 1)

[
(θ (λ)− a)n+1 + (−1)n (x− θ (λ))n+1

]∣∣∣∣
≤ 1

2 (n + 1)

(
1

an+1
− 1

xn+1

)[
(θ (λ)− a)n+1 + (x− θ (λ))n+1

]
,

where θ (λ) = λa + (1− λ) x, λ ∈ [0, 1] , and from (1.10),

T cλ
n (ln; a, x) = ln a +

n∑
k=1

(x− a)k

k

[(
λ

x

)k

+ (−1)k+1

(
1− λ

a

)k
]

.

Simplification of (4.1) gives

(4.4)

∣∣∣∣∣lnx− ln a−
n∑

k=1

(x− a)k

k

[(
λ

x

)k

+ (−1)k+1

(
1− λ

a

)k
]

− (x− a)n+1

2 (n + 1)

[
(1− λ)n+1 + λn+1

]( 1
an+1

+
1

xn+1

)∣∣∣∣∣
≤ (x− a)n+1

2 (n + 1)

[
(1− λ)n+1 + λn+1

]( 1
an+1

− 1
xn+1

)
.

where the sharpest bound results from taking λ = 1
2 .

In particular, taking λ = 0 gives

(4.5)

∣∣∣∣∣lnx− ln a−
n∑

k=1

(−1)k+1

k

(
x− a

a

)k

− (x− a)n+1

2 (n + 1)

(
1

an+1
+

1
xn+1

)∣∣∣∣∣
≤ (x− a)n+1

2 (n + 1)

(
1

an+1
− 1

xn+1

)
:= R,
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which may be compared with the result (see case in Section 4 of Matić et al. [10])

(4.6) lnx = ln a +
n∑

k=1

(−1)k+1

k

(
x− a

a

)k

+ (−1)n (x− a)n

n (n + 1)

(
1
an

− 1
xn

)
+ B,

where |B| ≤ n√
2n+1

R.

It may be seen that the bound, R, obtained here, is much tighter, especially
for large n since n√

2n+1
> 1. It must be remembered, however, that a different

perturbation is present in (4.5) than in (4.6). There is very little difference in
complexity between the two perturbations. The perturbation used in [10] from
the traditional Čebyšev functional (2.1) giving rise to (1.19) rather than the novel
Čebyšev functional (2.3) producing (3.1). That is, the perturbation in (1.19) in-
volves

[
f (n+1); a, x

]
= f(n)(x)−f(n)(a)

x−a whereas that in (3.1) contains γn+1(x)+Γn+1(x)

2 ,

where γn+1 (x) ≤ f (n+1) (t) ≤ Γn+1 (x) .

5. Concluding Remarks

A new Čebyšev-type functional has been introduced giving sharp bounds involv-
ing the upper and lower bounds for one of the functions. The results have been
applied to obtain perturbed generalised Taylor series together with sharp bounds
of the approximations. The approximation of the logarithmic function is given as
an example.
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