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Abstract. Some inequalities of the Ostrowski type for functions whose mod-
ulus of derivatives are convex and applications for special means and to the f

and HH−divergences in Information Theory are given.

1. Introduction

The following Ostrowski type inequalities for absolutely continuous functions are
known (see [2], [3] and [4]).
Theorem 1. Let f : [a, b] → R be absolutely continuous on [a, b] . Then for all
x ∈ [a, b] we have∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣(1.1)

≤



1
4

+

(
x− a+b

2

b− a

)2
 (b− a) ‖f ′‖∞ if f ′ ∈ L∞ [a, b] ;

1

(p + 1)
1
p

[(
x− a

b− a

)p+1

+
(

b− x

b− a

)p+1
]

(b− a)
1
p ‖f ′‖q

if f ′ ∈ Lq [a, b] , p > 1, 1
p + 1

q = 1;[
1
2

+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]
‖f ′‖1

where ‖·‖r (r ∈ [1,∞]) are the usual Lebesgue norms on Lr [a, b] , i.e.,

‖g‖∞ := ess sup
t∈[a,b]

|g (t)| .

The constants 1
4 , 1

(p+1)
1
p

and 1
2 are sharp in the sense that they cannot be replaced

by smaller constants.
The above inequalities may also be obtained from Fink’s result in [5] on choosing

n = 1 and performing some appropriate computations.
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The main aim of this paper is to point out some similar results in the case when
the modulus of the derivative f ′ is a convex function on (a, b) . Applications for
special means and f and HH−divergence in Information Theory are also provided.

2. The Results

We start with the following lemma which is of intrinsic interest (see also [1]).

Lemma 1. Let f : [a, b] → R be an absolutely continuous function on [a, b], then,
for any x ∈ [a, b],

(2.1) f(x) =
1

b− a

∫ b

a

f(t)dt +
1

b− a

∫ b

a

(x− t)
[∫ 1

0

f ′ [(1− λ) x + λt] dλ

]
dt

Proof. For any x, t ∈ [a, b], x 6= t, one has

f(x)− f(t)
x− t

=
1

x− t

∫ x

t

f ′(u)du =
∫ 1

0

f ′ [(1− λ)x + λt] dλ

showing that

(2.2) f(x) = f(t) + (x− t)
∫ 1

0

f ′ [(1− λ)x + λt] dλ for any x, t ∈ [a, b].

Integrating (2.2) over t on [a, b] and dividing the result by (b−a), gives the desired
identity (2.1).

Using the above lemma the following result can be pointed out improving Os-
trowski’s inequality.

Theorem 2. Let f : [a, b] → R be an absolutely continuous function on [a, b] so
that |f ′| is convex on (a, b). If f ′ ∈ L∞[a, b], then for any x ∈ [a, b],

(2.3)

∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ 1

2

1
4

+

(
x− a+b

2

b− a

)2
 (b− a) [|f ′(x)|+ ‖f ′‖∞] .

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. Using (2.1) and taking the modulus, we have∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣∣ =
1

b− a

∣∣∣∣∣
∫ b

a

∫ 1

0

(x− t) f ′ [(1− λ) x + λt] dλdt

∣∣∣∣∣
≤ 1

b− a

∫ b

a

∫ 1

0

|x− t| |f ′ [(1− λ) x + λt]| dλdt
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≤ 1
b− a

∫ b

a

∫ 1

0

|x− t| [(1− λ) |f ′(x)|+ λ |f ′(t)|] dλdt

(by convexity of |f ′|)

=
1

b− a

∫ b

a

|x− t|
[
|f ′(x)|

∫ 1

0

(1− λ) dλ + |f ′(t)|
∫ 1

0

λdλ

]
dt

=
1

b− a

∫ b

a

|x− t|
[
|f ′(x)|+ |f ′(t)|

2

]
dt := M(x)

≤ 1
2

1
b− a

ess. sup
t∈[a,b]

[|f ′(x)|+ |f ′(t)|]
∫ b

a

|x− t| dt

=
1
2

[
(x− a)2 + (b− x)2

2 (b− a)

]
[|f ′(x)|+ ‖f ′‖∞]

=
1
2

1
4

+

(
x− a+b

2

b− a

)2
 (b− a) [|f ′(x)|+ ‖f ′‖∞] ,

and the inequality (2.3) is proved.
Assume that (2.3) holds with a constant C > 0, that is,

(2.4)

∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ C

1
4

+

(
x− a+b

2

b− a

)2
 (b− a) [|f ′(x)|+ ‖f ′‖∞]

for any x ∈ [a, b] with f as in the hypothesis of the theorem.
Consider the function

f0 : [a, b] → R, f0(t) = k

∣∣∣∣t− a + b

2

∣∣∣∣ , k > 0, t ∈ [a, b].

Since |f ′0(t)| = k, for any t ∈ [a, b] and

1
b− a

∫ b

a

f0(t)dt =
k

4
(b− a) , ‖f ′0‖∞ = k

then choosing f = f0 and x = a+b
2 in (2.4), we get

k

4
(b− a) ≤ Ck (b− a)

2
giving C ≥ 1

2 , which proves the sharpness of the constant 1
2 .

The following particular case is interesting.
Corollary 1. With the assumptions of Theorem 3, we have the inequality

(2.5)

∣∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ 1
8

(b− a)
[∣∣∣∣f ′(a + b

2

)∣∣∣∣+ ‖f ′‖∞

]
and the constant 1

8 is the best possible.
The following result in terms of the p-norms also holds:
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Theorem 3. Let f : [a, b] → R be as in Theorem 3. If f ′ ∈ Lp[a, b], p > 1, 1
p+ 1

q = 1,

then for any x ∈ [a, b],

(2.6)

∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ 1

2 (q + 1)
1
q

[(
b− x

b− a

)q+1

+
(

x− a

b− a

)q+1
] 1

q

(b− a)
1
q ‖|f ′(x)|+ |f ′|‖p

The constant 1
2 is sharp in the sense that it cannot be replaced by a smaller constant.

Proof. According to the proof of Theorem 2, we have∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ 1
b− a

∫ b

a

|x− t|
[
|f ′(x)|+ |f ′(t)|

2

]
dt := M(x).

Using Hölder’s integral inequality for p > 1, 1
p + 1

q = 1, we get that

M(x) ≤ 1
2 (b− a)

(∫ b

a

|x− t|q dt

) 1
q
(∫ b

a

(|f ′(x)|+ |f ′(t)|)p
dt

) 1
p

=
1

2 (b− a)

[
(b− x)q+1 + (x− a)q+1

q + 1

] 1
q

‖|f ′(x)|+ |f ′|‖p

and the inequality (2.6) is proved.
Reconsider the function utilised in Theorem 2,

f0 : [a, b] → R, f0(t) = k

∣∣∣∣t− a + b

2

∣∣∣∣ , k > 0, t ∈ [a, b]

which has |f ′0(t)| (= k) convex in [a, b]. If we assume that (2.6) holds with a constant
D > 0 instead of 1

2 , so that∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ D

(q + 1)
1
q

[(
b− x

b− a

)q+1

+
(

x− a

b− a

)q+1
] 1

q

(b− a)
1
q ‖|f ′(x)|+ |f ′|‖p ,

then taking f = f0 over x = a+b
2 , we get,

k

4
(b− a) ≤ D

(q + 1)
1
q

(
1
2q

) 1
q

(b− a)
1
q k (b− a)

1
p , q > 1, p > 1,

1
p

+
1
q

= 1

giving, on simplification,

D ≥ 1
2

(q + 1)
1
q , q > 1.

Taking the limit as q →∞ and since,

lim
q→∞

(q + 1)
1
q = exp

{
lim

q→∞

[
ln(1 + q)

q

]}
= exp 0 = 1,

we deduce that D ≥ 1
2 , which proves the sharpness of the constant.
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A particular case is the following mid-point inequality:

Corollary 2. With the assumptions of Theorem 3, we have,

(2.7)

∣∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ 1

4 (q − a)
1
q

(b− a)
1
q

(∫ b

a

[∣∣∣∣f ′(a + b

2

)∣∣∣∣+ |f ′(t)|
]p

dt

) 1
p (

p > 1,
1
p

+
1
q

= 1
)

The constant 1
4 is sharp in the previous sense.

Finally, the case involving the 1-norm is embodied in the following theorem:

Theorem 4. Let f : [a, b] → R be as in Theorem 2. If f ′ ∈ L1[a, b], then, for any
x ∈ [a, b],

(2.8)

∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ 1
2

[
1
2

+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

[(b− a) |f ′(x)|+ ‖f ′‖1] .

Proof. We have, from the proof of Theorem 2, that

M(x) ≤ sup
t∈[a,b]

|x− t| 1
b− a

∫ b

a

[
|f ′(x)|+ |f ′(t)|

2

]
dt

=
1

2(b− a)
max (x− a, b− x)

[
(b− a) |f ′(x)|+

∫ b

a

|f ′(t)| dt

]

=
1
2

[
1
2

+

∣∣∣∣∣x− a+b
2

b− a

∣∣∣∣∣
]

[(b− a) |f ′(x)|+ ‖f ′‖1]

and the inequality (2.8) is proved.

In particular, we have the mid-point inequality:

Corollary 3. Assume that f is as in Theorem 4. Then

(2.9)

∣∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ 1
4

[
(b− a)

∣∣∣∣f ′(a + b

2

)∣∣∣∣+ ∫ b

a

|f ′(t)| dt

]
.

Another way to estimate the difference∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣∣
is presented in the following theorem.
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Theorem 5. Let f : [a, b] → R be an absolutely continuous function on [a, b] so
that |f ′| is convex on (a, b). Then, for any x ∈ [a, b],

(2.10)

∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ 1

2


1

4
+

(
x− a+b

2

b− a

)2
 |f ′(x)| (b− a)

+
1

(q + 1)
1
q

[(
b− x

b− a

)q+1

+
(

x− a

b− a

)q+1
] 1

q

(b− a)
1
q ‖f ′‖p

 ,

where p > 1, 1
p + 1

q = 1.

Proof. With the notation of Theorem 2, we have,

M(x) =
1

2 (b− a)

[
|f ′(x)|

∫ b

a

|x− t| dt +
∫ b

a

|x− t| |f ′(t)| dt

]

=
1

2 (b− a)

[
|f ′(x)| (x− a)2 + (b− x)2

2
+
∫ b

a

|x− t| |f ′(t)| dt

]

=
1
2

|f ′(x)|

1
4

+

(
x− a+b

2

b− a

)2
 (b− a) +

1
b− a

∫ b

a

|x− t| |f ′(t)| dt

 .

Using Hölder’s inequality,

1
b− a

∫ b

a

|x− t| |f ′(t)| dt

≤ 1
b− a

(∫ b

a

|x− t|q dt

) 1
q
(∫ b

a

|f ′(t)|p dt

) 1
p

=
1

b− a

[
(b− x)q+1 + (x− a)q+1

q + 1

] 1
q

‖f ′‖p

=
1

(q + 1) 1

q

[(
b− x

b− a

)q+1

+
(

x− a

b− a

)q+1
] 1

q

(b− a)
1
q ‖f ′‖p ,

and the theorem is proved.

The following particular corollary is of interest providing a bound for the mid-
point.
Corollary 4. Let f be as in the previous theorem. Then one has the inequality:

(2.11)

∣∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ 1

4

{
1
2

∣∣∣∣f ′(a + b

2

)∣∣∣∣ (b− a) +
1

(q + 1)
1
q

(b− a)
1
q ‖f ′‖p

}
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3. Applications for Special Means

In the applications below we consider the following definitions of some special
means:

– Arithmetic mean,

A = A(a, b) =
a + b

2
; a, b > 0.

– Goemetric mean,
G = G (a, b) =

√
ab; a, b > 0.

– Logarithmic mean,

L = L (a, b) =


b−a

ln b−ln a , a 6= b > 0,

a, a = b.

– p-Logarithmic mean,

Lp(a, b) =


a if a = b[

bp+1 − ap+1

(p + 1)(b− a)

] 1
p

if a 6= b
for p ∈ R\ {0,−1} .

– Identric mean,

I = I(a, b) =


a if a = b

1
e

(
bb

aa

) 1
b−a

if a 6= b
.

The well known fact that G < L < I < A will be used in the following.
1. Consider the function f with domain [a, b] ⊂ (0,∞), f(x) = xp and p ∈ R, p
≥ 2, which is absolutely continuous, and whose modulus of the first derivative is a
convex function.
1.1 If we use this function in Corollary 1, we get that∣∣∣∣∣

(
a + b

2

)p

− 1
b− a

∫ b

a

tpdt

∣∣∣∣∣ ≤ 1
8
(b− a)

[∣∣∣∣∣p
(

a + b

2

)p−1
∣∣∣∣∣+ pbp−1

]
so that ∣∣Ap(a, b)− Lp

p(a, b)
∣∣ ≤ p

8
(b− a)[Ap−1(a, b) + bp−1]

or equivalently

0 ≤ Lp
p(a, b)−Ap(a, b) ≤ p

8
(b− a)[Ap−1(a, b) + bp−1].

1.2 For the same function, we get from Corollary 3 that∣∣Ap(a, b)− Lp
p(a, b)

∣∣ ≤ 1
4

[
(b− a)

∣∣∣∣∣p
(

a + b

2

)p−1
∣∣∣∣∣+
∫ b

a

∣∣ptp−1
∣∣ dt

]

=
p

4

[
(b− a)Ap−1(a, b) +

bp − ap

p

]
=

p

4
(b− a)

[
Ap−1(a, b) + Lp−1

p−1(a, b)
]
.
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That is,

0 ≤ Lp
p(a, b)−Ap(a, b) ≤ p

4
(b− a)

[
Ap−1(a, b) + Lp−1

p−1(a, b)
]
.

2. Now, consider the function f with domain [a, b] ⊂ (0,∞), f(x) = ln(x). The
function is absolutely continuous, and the modulus of the first derivative is convex.
2.1 From Corollary 1, we obtain,

0 ≤

∣∣∣∣∣ln
(

a + b

2

)
− 1

b− a

∫ b

a

ln(t)dt

∣∣∣∣∣ =
∣∣∣∣ln(a + b

2

)
− ln I(a, b)

∣∣∣∣
= ln

A(a, b)
I(a, b)

≤ 1
8
(b− a)

[∣∣∣∣ 2
a + b

∣∣∣∣+ 1
a

]
=

1
8
(b− a)

[
A−1(a, b) +

1
a

]
and so

0 ≤ ln
A(a, b)
I(a, b)

≤ b− a

8
[
A−1(a, b) + a−1

]
or, equivalently,

1 ≤ A(a, b)
I(a, b)

≤ exp
[
b− a

8
[
A−1(a, b) + a−1

]]
.

2.2 From Corollary 3, we get that

0 ≤ |lnA(a, b)− ln I(a, b)| = ln
A(a, b)
I(a, b)

≤ 1
4

[
(b− a)

∣∣∣∣ 2
a + b

∣∣∣∣+ ∫ b

a

∣∣∣∣1t
∣∣∣∣ dt

]
.

That is,

0 ≤ ln
A(a, b)
I(a, b)

≤ b− a

4
A−1(a, b) +

1
4

ln
b

a

or, equivalently,

1 ≤ A(a, b)
I(a, b)

≤
(

b

a

) 1
4

exp
b− a

4
[
A−1(a, b)

]
.

2.3 Taking f(x) = lnx in Corollary 4, gives

1 ≤ A(a, b)
I(a, b)

≤ b− a

4

[
A−1(a, b)

2
+

1

(q + 1)
1
q

L−1
−p(a, b)

]
.

3. Now, consider the function f(x) = 1
x which has domain [a, b] ⊂ (0,∞). This

function is absolutely continuous and the modulus of the first derivative is convex.
3.1 From Corollary 1, we have,∣∣∣∣ 2

a + b
− L−1(a, b)

∣∣∣∣ ≤ 1
8
(b− a)

[∣∣∣∣∣ 1(
a+b
2

)2
∣∣∣∣∣+ 1

a2

]
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giving ∣∣A−1(a, b)− L−1(a, b)
∣∣ ≤ 1

8
(b− a)

[
A−2(a, b) + a−2

]
or equivalently

0 ≤ L−1(a, b)−A−1(a, b) ≤ 1
8
(b− a)

[
A−2(a, b) + a−2

]
, (since A(a, b) ≥ L(a, b))

which may further be represented as

0 ≤ A(a, b)− L(a, b) ≤ 1
8
(b− a)A(a, b)L(a, b)

[
A−2(a, b) + a−2

]
.

3.2 From Corollary 3, we get,∣∣A−1(a, b)− L−1(a, b)
∣∣ ≤ 1

4
(b− a)

[
A−2(a, b) + G−2(a, b)

]
or equivalently

0 ≤ L−1(a, b)−A−1(a, b) ≤ 1
4

(b− a)
[
A−2(a, b) + G−2(a, b)

]
or still further

0 ≤ A(a, b)− L(a, b) ≤ 1
4

(b− a) A(a, b)L(a, b)
[
A−2(a, b) + G−2(a, b)

]
.

3.3 Taking f(x) = 1
x in Corollary 4, produces

∣∣A−1(a, b)− L−1(a, b)
∣∣ ≤ b− a

4

[
A−2(a, b)

2
+

1

(q + 1)
1
q

L−2
−2p(a, b)

]
or

0 ≤ L−1(a, b)−A−1(a, b) ≤ b− a

4

[
A−2(a, b)

2
+

1

(q + 1)
1
q

L−2
−2p(a, b)

]
which may be further expressed as

0 ≤ A(a, b)− L(a, b) ≤ b− a

4
A(a, b)L(a, b)

[
A−2(a, b)

2
+

1

(q + 1)
1
q

L−2
−2p(a, b)

]
.

4. Applications for f and HH−Divergence Measures in Information
Theory

Assume that a set χ and the σ−finite measure µ : χ → R̄ are given. Consider
the set of all probability densities on µ to be

(4.1) Ω :=
{

p|p : χ → R, p (x) ≥ 0,

∫
χ

p (x) dµ (x) = 1
}

.

The f−divergence on Ω is defined as follows

(4.2) Df (p, q) :=
∫

χ

p (x) f

[
q (x)
p (x)

]
dµ (x) , p, q ∈ Ω,

where f is convex on (0,∞) . It is also assumed that f (u) is zero and strictly convex
at u = 1.

By appropriately defining this convex function, various divergences such as the
Kullback-Leibler divergence DKL, variation distance Dv, Hellinger distance DH ,
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χ2−divergence Dχ2 , Jeffrey’s distance DJ , triangular discrimination D∆, etc. may
be obtained. They are defined as follows:

(4.3) Dv (p, q) :=
∫

χ

|p (x)− q (x)| dµ (x) , p, q ∈ Ω;

(4.4) DH (p, q) :=
∫

χ

∣∣∣√p (x)−
√

q (x)
∣∣∣ dµ (x) , p, q ∈ Ω;

(4.5) Dχ2 (p, q) :=
∫

χ

p (x)

[(
q (x)
p (x)

)2

− 1

]
dµ (x) , p, q ∈ Ω;

(4.6) DJ (p, q) :=
∫

χ

[p (x)− q (x)] ln
[
p (x)
q (x)

]
dµ (x) , p, q ∈ Ω;

(4.7) D∆ (p, q) :=
∫

χ

[p (x)− q (x)]2

p (x) + q (x)
dµ (x) , p, q ∈ Ω.

In [6], Shioya and Da-te introduced the generalised Ling-Wong f−divergence
Df

(
p, 1

2p + 1
2q
)

and the Hermite-Hadamard (HH)−divergence

(4.8) Df
HH (p, q) :=

∫
χ

p2 (x)
q (x)− p (x)

(∫ q(x)
p(x)

1

f (t) dt

)
dµ (x) , p, q ∈ Ω.

They proved, by the use of the Hermite-Hadamard inequality for convex functions,

(4.9) Df

(
p,

1
2
p +

1
2
q

)
≤ Df

HH (p, q) ≤ 1
2
Df (p, q) ,

provided that f is convex and normalised, i.e., f (1) = 0.
We will illustrate the approach to developing bounds and expressions involving

various divergence measures from the inequalities developed in Section 2.
We will use the inequality (2.5), namely

(4.10)

∣∣∣∣∣f
(

a + b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣ ≤ 1
8
|b− a|

[∣∣∣∣f ′(a + b

2

)∣∣∣∣+ ‖f ′‖∞

]
,

where a, b ∈̊I, a 6= b and f : I̊ ⊂ R → R is a differentiable function on the interior
of I with |f ′| : I̊ → R convex on I̊, to prove the following result.
Theorem 6. Let r, R be such that 0 ≤ r ≤ 1 ≤ R ≤ ∞ and p, q ∈ Ω with

(4.11) r ≤ q (x)
p (x)

≤ R, for a.e. x ∈ χ.

If f : [0,∞) → R is differentiable on (0,∞) and |f ′| is convex on [r, R] then,∣∣∣∣Df

(
p,

1
2
p +

1
2
q

)
−Df

HH (p, q)
∣∣∣∣(4.12)

≤ 1
8

[
‖f ′‖[r,R],∞Dv (p, q) + Df∗ (p, q)

]
,

where f∗ (x) = |x− 1|
∣∣f ′ (x+1

2

)∣∣ , x ∈ [r, R] and ‖h‖[a,b],∞ := ess sup
t∈[a,b]

|h (t)| .
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Proof. If in (4.10) we choose a = 1, b = q(x)
p(x) , x ∈ χ, then∣∣∣∣∣f

(
p (x) + q (x)

2p (x)

)
− p (x)

q (x)− p (x)

(∫ q(x)
p(x)

1

f (t) dt

)∣∣∣∣∣(4.13)

≤ 1
8
· |q (x)− p (x)|

p (x)

[∣∣∣∣f ′(p (x) + q (x)
2p (x)

)∣∣∣∣+ ‖f ′‖[r,R],∞

]
.

Multiplying (4.13) with p (x) ≥ 0 and integrating on χ, we deduce the desired
inequality (4.12).

Another approach is embodied in the following theorem.

Theorem 7. Let r, R be as in Theorem 6. If f : [0,∞) → R is twice differentiable
on (0,∞) and |f ′′| is convex on [r, R], then,

(4.14)
∣∣Df (p, q)− f (1)−Df# (p, q)

∣∣ ≤ 1
8

[
‖f ′‖[r,R],∞Dχ2 (p, q) + Df† (p, q)

]
,

where f# (x) := (x− 1) f ′
(

1+x
2

)
, and f† (x) := (x− 1)2

∣∣f ′′ ( 1+x
2

)∣∣ , x ∈ [0,∞).

Proof. Applying the inequality (4.10) for a = 1, b = u and choosing instead of f,
its derivative f ′, one may state the inequality∣∣∣∣f (u)− f (1)− (u− 1) f ′

(
u + 1

2

)∣∣∣∣
≤ 1

8
(u− 1)2

[∣∣∣∣f ′′(u + 1
2

)∣∣∣∣+ ‖f ′‖[r,R],∞

]
.

If in this inequality we choose u = q(x)
p(x) , x ∈ χ, then we get∣∣∣∣f (q (x)

p (x)

)
− f (1)−

(
q (x)
p (x)

− 1
)

f ′
(

p (x) + q (x)
2p (x)

)∣∣∣∣(4.15)

≤ 1
8

(p (x)− q (x))2

p2 (x)

[∣∣∣∣f ′′(p (x) + q (x)
2p (x)

)∣∣∣∣+ ‖f ′‖[r,R],∞

]
.

Multiplying (4.15) by p (x) ≥ 0, x ∈ χ and then integrating on χ, we deduce the
desired inequality (4.14).
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