
1 

 

 

A new frontier approach to model the 

eco-efficiency in European countries1 

 

 
 

Margarita Robaina Alvesa*, Victor Moutinhob, Pedro Macedoc 

aGOVCOPP - Research Unit in Governance, Competitiveness and Public Policy, and Department of 
Economics, Management and Industrial Engineering, University of Aveiro, Campus de Santiago, 

3810-193, Aveiro, Portugal, mrobaina@ua.pt 
bCEFAGE – Center of Advanced Studies in Management and Economics, University of Évora, 

Portugal and Department of Economics, Management and Industrial Engineering, University of 
Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal, vmoutinho@ua.pt 

cCIDMA - Center for Research and Development in Mathematics and Applications, Department of 
Mathematics, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal, 

pmacedo@ua.pt 
*Contact author 

 

 

Abstract 

This study aims to evaluate the resource and environment efficiency problem of European 

countries. We specify a new stochastic frontier model where Gross Domestic Product (GDP) is 

considered as the desirable output and Greenhouse Gases (GHG) emissions as the undesirable 

output. Capital, Labour, Fossil fuels and Renewable Energy consumption are regarded as inputs. 

GDP/GHG ratio is maximized given the values of the other four variables.  The study is divided into 

two distinct periods: 2000-2004 and 2005-2011. This division is related to the implementation of 

the Kyoto Protocol in 2005, and will allow us to evaluate the difference between the levels of 

efficiency before and after the establishment of environmental targets. Since stochastic frontier 

models are typically ill-posed, a new maximum entropy approach to assess technical efficiency, 

which combines information from the data envelopment analysis and the structure of composed 

error from the stochastic frontier approach without requiring distributional assumptions, is 

presented in this work. 
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1. Introduction 

 

Economic activities use production factors as energy resources, labour and capital 

to produce desirable goods and services, but simultaneously produce undesirable 

outputs, such as Greenhouse Gases (GHG), and particularly, Carbon Dioxide (CO2) 

emissions. According to the IPCC report (2007), the energy consumption of fossil 

fuels such as coal, oil and natural gas is the major contributor towards the increase 

of GHG emissions including CO2.  Thus, if the energy is used inefficiently, this will 

lead to higher emission levels.  It becomes necessary to base the economic, the 

energy and the environmental policies on the efficient use of resources, in 

particular on energy efficiency. 

 

But environmental efficiency cannot be separated from economic efficiency. Both 

help to ensure the competitiveness of a country's economy as well as its 

environmental sustainability and energy security. In addition, the full range of 

environmental issues and globalization of economies means that policies are 

increasingly global. Furthermore, for policymaking it is necessary to have 

indicators in this context, that is, indicators of economic and environmental 

efficiency, which compare the evolution of countries or sectors, set goals and 

implement effective policies, either globally or locally. 

 

Economic efficiency can be divided in technical efficiency (which reflects the ability 

of a production unit to obtain maximal output from a given set of inputs and the 

production technology) and allocative efficiency (which reflects the ability of a 

production unit to use the inputs in optimal proportions given their prices and the 

production technology). 

 

Economic efficiency does not imply environmental efficiency, as the production 

processes may rely too much on fossil fuels or technologies, which although 

technically efficient, and cheap, lead to high levels of emissions or other 

environmental impacts. But if there is technical or economic inefficiency, it can 

cause environmental inefficiency. For example, waste of raw materials, or 

inefficient use of energy leads to a technical, economic and environmental 

inefficiency also because we are wasting resources and increasing pollution. 
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The study of economic and environmental efficiency, at the macroeconomic level 

for several European countries, is of great relevance to reveal how has been the 

path in this field, but also to inform policy makers about the economic 

environmental efficiency of their countries and if there is need to amend or 

introduce new policies. Bluhdorn and Welsh (2007) suggest that we are in a new 

era and that ecopolitics needs a new environmental sociology. They pose an 

important question, at the same time that call ecopolitics the politics of 

unsustainability: “How do advanced modern capitalist consumer democracies try 

and manage to sustain what is known to be unsustainable”?  

 

Technological optimists believe that innovation is a key to produce more with less. 

Progress would be enough to generate the decoupling of economic growth and 

impact on nature (Lovins, 1998, 2011; Lomborg, 2001). In other words, it would be 

possible to obtain economic growth and at the same time reduce our absolute 

demand for natural resources. In another line are technological pessimists that say 

that in the context of a much more dynamic and populous world, technology alone 

is not enough to solve all the challenges (Alexander, 2014). So in the future, 

countries will need to develop without economic growth: the so-called "steady 

state". GDP may not be the barometer for measuring the health and well-being of 

economies.  

 

The study of Eco-efficiency, joining the economic and environmental parameters 

together, may respond, or at least illuminate the readers about the sustainability of 

these theories.  

 

There are several ways to measure the so-called Eco-Efficiency (EE), which depend 

on the purpose and scope of the study. Wursthorn el al. (2011) argues that “there 

is an intensive discussion and widespread research on eco-efficiency, which are 

concerned with different scopes and scales (see for example the special issue of 

Ecological Economics 2009, volume 68, issue 6)”.  
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As defined by the World Business Council for Sustainable Development (WBCSD), 

"eco-efficiency is achieved by the delivery of competitively priced goods and 

services that satisfy human needs and bring quality of life, while progressively 

reducing ecological impacts and resource intensity throughout the life-cycle to a 

level at least in line with the Earth’s estimated carrying capacity." The concept is 

concerned with creating more value with less impact (www.wbcsd.org). 

 

In the same line of thought, ISO 14045 defines Eco-efficiency as a quantitative tool 

for management, which allows studying the environmental impacts of a product 

throughout its life cycle (Life Cycle Assessment (LCA)), as recommended by 

previous ISO 14040 and ISO 14044. Thus, EE has three goals: to increase the value 

of the service or good, to optimize the use of resources, and to reduce the 

environmental impact. LCA is used at product or enterprise level. At national level 

it will be more complex and cumbersome to apply it. 

 

Other definitions of EE can be pointed, as "the efficiency with which ecological 

resources are used to meet human needs", by OECD (1998) or "the ability of firms, 

industries or economies to produce goods and services while incurring less impact 

on the environment and consuming fewer natural resources" by Picazo-Tadeo et 

al. (2011).   

 

The simplest indicator of EE relates the economic output or Gross Domestic 

Product (GDP) with the environmental impact caused by the production process, 

for instance, the ratio GDP/CO2. As the production process may give rise to other 

environmental impacts, other measures, that replace CO2 by a composite good of 

environmental pressures, have emerged (Schmidheiny and Zorraquin, 1996). 

 

This study aims to evaluate the resource and environment efficiency (Eco-

efficiency) problem of European countries. We specify a new stochastic frontier 

model where GDP is considered as the desirable output and GHG emissions as the 

undesirable output. We use the ratio between GDP and GHG emissions as 

definition of EE. Fossil fuel consumption, Renewable Energy Consumption, Capital 

and Labour are regarded as inputs. GDP by GHG emissions ratio is maximized 
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given the values of the other three variables. EE will be greater when the emissions 

decrease to the same value of GDP, when production is greater for the same 

amount of emissions, or simultaneously when production increases and GHG 

emissions shrink. 

 

The study is divided into two distinct periods: 2000-2004 and 2005-2011. This 

division is related to the implementation of the Kyoto Protocol in 2005, and will 

allow us to evaluate the difference between the levels of eco-efficiency before and 

after the establishment of environmental targets.  

 

Since stochastic frontier models are typically ill-posed, many researchers claim the 

urgent need to develop robust estimation techniques. Recently, maximum entropy 

estimators have been used in the literature as powerful alternatives to traditional 

estimators in the estimation of stochastic frontier models. In this study, a 

stochastic frontier approach using some maximum entropy estimators is proposed 

as an alternative to the Kaya identity. A new maximum entropy approach to assess 

technical efficiency, which combines information from the data envelopment 

analysis (DEA) and the structure of composed error from the stochastic frontier 

analysis (SFA) without requiring distributional assumptions, is presented in this 

work.  

 

In this work technical efficiency was estimated, but as the maximized output is the 

GDP/GHG ratio, the estimation of technical efficiency is also a measure of eco-

efficiency. 

 

The article is made up of five sections, including this introduction. Section 2 

summarizes the literature that study EE, namely with DEA technique. Section 3 

presents data and methodology. Section 4 presents the main results and discussion 

and section 5 summarizes the conclusions. 
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2. Literature Review 

 

The use of benchmarking and activity analysis or DEA techniques have emerged in 

recent years as more sophisticated techniques to assess the EE of the countries 

and/or economic sectors. Several studies have considered the existence of 

desirable and undesirable outputs of production, in which the environmental 

effects are seen as undesirable (Färe et al. 1989, 1996, 2004; Chung et al. 1997; 

Tyteca, 1996, 1997; Zofio and Prieto, 2001; Zhou et al., 2006, 2007). For example, 

Haynes et al. (1993) use DEA methodology to measure technical efficiency in 

pollution prevention activities, using chemical as input and chemical waste as 

output, along with other traditional inputs and outputs. 

 

Some authors study sectoral EE, such as Picazo-Tadeo et al. (2011, 2012), who 

estimated EE for individual environmental pressures on the agricultural sector. 

Picazo-Tadeo and Prior (2009) used Directional Distance Functions and DEA to 

show that technologies where the biggest output producer is not the greatest 

polluter and those economic activities can diminish environmental damages 

without compromising the maximization of their output. These authors also made 

an application to Spanish ceramic tile producers. Mandal (2010) studied EE of the 

cement industry in India while Barba-Gutierrez et al. (2009) used the Life Cycle 

Assessment to compare the EE of different household electric appliances using 

their environmental impact. Kortelainen and Kuosmanen (2005) analyzed four 

types of environmental pressures, through the EE analysis of road transport in 

Finland. Egilmez et al. (2014) applied Economic Input-Output Life Cycle 

Assessment (EIO-LCA) and DEA, for measuring the eco-efficiency in US 

manufacturing sectors.  Avadí et al. (2014) used the combined LCA + DEA method 

for examining the eco-efficiency in 13 different fleet segments of fishing vessels, 

aggregated based on hull capacity of the vessels. Zhu et al. (2014) used the same 

combined methodology to evaluate the eco-efficiencies of ten comparable 

pesticides. They considered as inputs: chemical oxygen demand, ammonia nitrogen 

and hazardous solid waste during the process of producing pesticides.  
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Wursthorn et al. (2011) present and discuss a new approach for monitoring eco-

efficiency at the level of industry, using emission data released by the European 

Pollutant Emission Register (EPER) and the Eco-Indicator 99, a single-score life-

cycle impact assessment (LCIA) method. The authors make a detailed analysis of 

eco-efficiency pattern of an economy without being constrained to a small set of 

highly aggregated sectors.  The study covers a wide range of emissions and 

demonstrates that environmental intensity can serve as an instrument for 

analysing the structure of an economy's environmental–economic performance. 

However, disaggregated indicators are needed to better understand the 

ecoefficiency of economies. A disaggregated indicator should consider the eco-

efficiency of branches, which could also be seen as the missing link between the 

activities of individual companies and the macroeconomic level or, in other words, 

as a means of connecting the micro level with the macro-level performance of 

societies (Huppes, 2007, Huppes and Ishikawa, 2009).  

 

Other studies allow for dynamic effects and use panel data, a methodology called 

DEA window analysis (Charnes and Cooper, 1985).  Halkos and Tzeremes (2009) 

applied this methodology to 17 OECD countries and calculated their EE, building 

an efficiency ratio (good efficiency through good output, due to a poor measure of 

efficiency using a bad output). This sort of ratio had already been used in other 

studies such as Färe et al. (1999) and (2003), Zaim et al. (2001) and Zaim (2004). 

 

The use of DEA to do cross country and over time comparisons of EE has been used 

in various studies. For example, Taskin and Zaim (2000) measured EE for 52 

countries and concluded that high income countries are more efficient than low 

and middle income countries, despite not having seen significant changes over 

time in either groups, and Zaim and Taskin (2000) measured the environmental 

performance of 25 countries and found the existence of the EKC hypothesis. 

Rashidi et al. (2014) have been incorporated Slacks-Based Measure and Range 

Adjusted Measure (SBM and RAM models), including as inputs energy (coal and 

petroleum consumption) and non-energy (Labor force and precipitation average), 

and as outputs desirable output and undesirable CO2 emissions. The relationship 

between energy inputs consumption and undesirable outputs production has been 
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explained by two informative indices whereby energy saving potential and 

undesirable output abatement potential is estimated. They also deduced that 

countries producing high undesirable outputs may not operate eco-efficiently and 

thus have extreme potential to save energy resources, and countries consuming 

low energy inputs may operate eco-efficiently and have a low potentiality to 

reduce undesirable outputs.  

 

According to this literature review, particularly at the macro level, there are scarce 

studies that analyze and evaluate the environmental and technical efficiency, 

particularly in the application of stochastic frontier parametric models. In light of 

this gap in the literature and the relevance of this topic, there is an urgent need to 

develop robust estimation techniques. In this study, the parametric stochastic 

frontier approach using some maximum entropy estimators, namely the 

generalized maximum entropy and the generalized cross-entropy are proposed. 

 

3. Data and Methodology 

 

3.1 Data 

 

GDP is the Gross Domestic Product at market prices and at constant prices of the 

year 2000, in Millions of euro (source: Eurostat). GHG are the total Greenhouse Gas 

Emissions (CO2 equivalent) in thousands of tonnes (source: European 

Environment Agency). Fossil fuel consumption is the sum of Final Energy 

Consumption of solid fuels, gas and petroleum products, in thousands of tonnes of 

oil equivalent (TOE) (source: Eurostat). Renewable Energy Consumption is the 

Final Energy Consumption of renewable and wastes in thousands of TOE (source: 

Eurostat). For the variable Capital we considered the Gross fixed capital formation 

at constant prices of the year 2000, in Millions of euro (source: Eurostat). Labour is 

total employment (source: Eurostat). The GDP/GHG ratio is the output and the 

other four variables are considered as inputs by using a log-linear Cobb-Douglas 

production function.  

 

We considered data for the periods 2000-2004 and 2005-2011 for the following 

countries: Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Ireland, 
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Greece, Spain, France, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, 

Netherlands, Austria, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, 

Sweden and United Kingdom. 

 

 

3.2 Methodology 

 

Technical efficiency can be computed comparing the observed output and the 

potential output of a production unit. Thus, technical efficiency analysis is a 

fundamental tool to measure the performance of the production activity. Several 

methods to estimate technical efficiency are available in the efficiency literature, 

being DEA and the stochastic frontier analysis (SFA) the most dominant methods.  

 

The DEA method (Charnes et al., 1978) is based on the previous work of Afriat 

(1972), Boles (1966), Bressler (1966), Farrell (1957), among others. DEA uses 

linear programming to construct a non-parametric piece-wise linear production 

frontier using different return to scales, and the possibility of multiple inputs and 

multiple outputs. Some well-known DEA models are illustrated in Coelli et al. 

(2005). It is important to note that since DEA does not account for noise, all 

deviations from the production frontier are estimated as technical inefficiency.  

The literature on DEA is massive; see, for example, Charnes et al. (1978) and 

Cooper et al. (2007) for a brief review. 

 

Aigner et al. (1977), Battese and Corra (1977) and Meeusen and van den Broeck 

(1977) were the pioneers of the SFA methodology.  The general stochastic frontier 

model is given by  

ln �� = ����, 
� + 
� − ��,               (1) 

where � is the number of producers �� = 1,2, … , ��, ��. � is the production 

frontier, �� is the scalar output for producer �, ��is a row vector with logarithms of 

inputs, 
 is a column vector of parameters to estimate, 
 is a random variable 

representing noise (measurement errors and/or random shocks) and � ≥ 0 is a 

one-sided random variable representing technical inefficiency. The random 

variable 
 is usually assumed to be normally distributed, ��0, ����, and � is defined 
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through different distributions such as exponential, non-negative half normal, 

truncated normal or gamma. It is assumed that 
 and � are independently 

distributed of each other.  

 

The output-oriented measure of technical efficiency is defined by 

TE� ≔ ��
 !"�#���,
�$���

=  !"�#���,
�$��%&��

 !"�#���,
�$���
= exp�−���,            (2) 

 
which represents the ratio of the observed output to the potential output for the 

�th producer. The potential output is defined by the stochastic production frontier 

exp�����, 
� + 
��. Naturally, TE� assumes values between zero and one. 

 

The parameters of model (1) are usually estimated through maximum likelihood 

(ML). Kumbhakar and Lovell (2000, pp. 74-90) presented all the estimation 

procedures with the ML estimator for different distributional assumptions 

required for the two-error components. It is important to note that this is the main 

criticism on SFA, in particular the choice of the distribution for the � error 

component, since different distributional assumptions can lead to different 

estimates of technical efficiency. However, on the other hand, the main advantage 

of SFA is the structure of the composed error which separates the impacts on 

production outside the producer’s control (strikes, bad weather, luck) from 

technical efficiency. The technical efficiency estimates with ML are obtained in this 

work using “frontier” package in R (Coelli and Henningsen, 2013). 

 

An alternative to ML is the maximum entropy (ME) estimation. The ME formalism 

was first established by Jaynes (1957a,b) based on physics (the Shannon entropy 

and statistical mechanics) and statistical inference. The ME principle provides a 

tool to make the best predictions from the (usual limited) available information. 

Provided that the entropy function is maximized without the model constraint a 

solution from a uniform distribution is obtained and thus the ME principle can be 

seen as an extension of Bernoulli’s principle of insufficient reason. 

 

Golan et al. (1996) generalized the ME, as well as the cross-entropy (CE) 

formalism, and developed the generalized maximum entropy (GME) and 
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generalized cross-entropy (GCE) estimators, which can be used in models 

exhibiting collinearity, in models with small samples sizes (micronumerosity) and 

non-normal errors, as well as in models where the number of parameters to be 

estimated exceeds the number of observations available (under-determined 

models).  

 

Recently, an increasing interest with these estimators in technical efficiency 

analysis has emerged in the literature; e.g., Campbell et al. (2008), Rezek et al. 

(2011), Macedo et al. (2014) and Macedo and Scotto (2014). The main motivation 

comes from the advantages of the ME estimation which avoids criticisms and 

difficulties of DEA and SFA. For instance, with ME estimation the DEA method is 

used only to define an upper bound for the supports and thus the main criticism on 

DEA is used as an advantage. Furthermore, the composed error structure in SFA is 

used without distributional assumptions, which means that the main criticism on 

SFA is avoided with ME estimation. Thus, by avoiding criticisms and difficulties of 

DEA and SFA, the ME estimators appear to be a promising approach in efficiency 

analysis. 

 

Considering the stochastic frontier model in (1) defined in matricial form by 

ln * = ��+;
� + - − .,               (3)  

the reparameterization of the �/ × 1� vector 
 and the �� × 1� vector - follows 

the same procedures as in the traditional regression model. Each parameter is 

treated as a discrete random variable with a compact support and 2 ≤ 2 < ∞ 

possible outcomes and each error is defined as a finite and discrete random 

variable with 2 ≤ 5 < ∞ possible outcomes. Thus, the reparameterizations are 

given by 
 = 67, with 6 being a �/ × /2� matrix of support points, 7 a �/2 × 1� 

vector of unknown probabilities; and - = 89, with 8 a �� × �5� matrix of support 

points and 9 a ��5 × 1� vector of unknown probabilities. Extending this idea to the 

vector ., the reparameterization is similar to the one conducted for the random 

variable representing noise -, taking only into account that . is a one-sided 

random variable which implies that the lower bound for the supports (with 

2 ≤ : < ∞ points) is zero for all error values (the full efficiency case). The 

reparameterization of . can be defined by . = ;<, with ; a �� × �:� matrix of 
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support points and < a ��: × 1� vector of unknown probabilities. See, for example, 

Campbell et al. (2008) and Macedo et al. (2014) for further details. 

 

The GME estimator selects the vectors 7, 9 and < which maximize 

=�7,9, <� = −	7? ln 7 − 9? ln9 − <? ln <,             (4) 

subject to the model constraint and the additivity constraints, respectively,  

ln * = +67 + 89 −;<,               (5) 

@A = �BA ⊗@D? �7,                 (6) 

@E = FBE ⊗@G?H9,                 (7) 

@E = �BE ⊗@I? �<,                 (8) 

where ⊗ represents the Kronecker product. On other hand, the GCE formulation 

selects the vectors 7, 9 and < which minimize 

=�7, JK, 9, J�, <, JL� = 7? ln�7/JK� + 9? ln�9/J�� + <? ln�</JL�,          (9) 

subject to the model and additivity constraints (5)-(8).  

 

The support matrices 6 and 8 are defined by the researcher based on prior 

information. When such information does not exist wide bounds can be used 

without expecting extreme risk consequences (Golan et al., 1996). In this work, the 

supports in 6 are defined through N−10,10O, a conservative choice, with 2 = 5. 

Furthermore, since the vector - is a two-sided random variable representing noise, 

the supports in the matrix 8 are defined symmetrically and centered on zero, using 

the three-sigma rule with the empirical standard deviation of the noisy 

observations and 5 = 5.  

 

Considering the definition of matrix ;, it is important to note that the traditional 

distributional assumptions concerning the error inefficiency component (half 

normal, truncated normal, exponential, gamma, among others) have been used in 

the empirical literature since it is expected a particular behaviour in the 

distribution of technical inefficiency estimates. For instance, in the discussion of 

the normal - half normal model, Kumbhakar and Lovell (2000, p. 74) argued that 

the choice of the latter distribution (a non-negative half normal) for the 

inefficiency error component “[…] is based on the plausible proposition that the 
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modal value of technical inefficiency is zero, with increasing values of technical 

inefficiency becoming increasingly less likely." 

 

Thus, an important advantage of the GME and GCE estimators is that distributional 

assumptions are not necessary but the same beliefs can be expressed in the model 

through the error supports (in GME) or through a set of subjective probability 

distribution (in GCE). For example, Campbell et al. (2008) suggested the use of the 

mean of the DEA and SFA efficiency estimates to define the supports in matrix ; 

with a specific upper bound ��Q�. Thus, following Campbell et al. (2008) and Rezek 

et al. (2011) the supports for the GME estimator are defined in this work through  

R�? = N0,0.01,0.05,0.1, �QO,                 (10) 

where ub represents a value such that the prior mean establish by (10) is a central 

value between the DEA and SFA mean technical efficiency estimates. Note that, as 

mentioned by Rezek et al. (2011, p. 364), the selection “of these vectors sets a prior 

expectation of mean efficiency; however, it does not preordain that result.” This is 

an important feature of ME estimation. 

 

For the GCE estimator, since only the vector JL is non-uniform, following the prior 

beliefs mentioned previously, the objective function (9) can be simplified as the 

minimization of  

=�7,9, <, JL� = 7? ln 7 + 9? ln9 + <? ln�</JL�,          (11) 

being the set of subjective probability distribution established in this work by 

JL = N0.70,0.20,0.05,0.03,0.02O            (12) 

for each observation, where the cross-entropy objective shrinks the posterior 

distribution in order to have more mass near zero, such that the prior mean is a 

value between the GME and SFA mean technical efficiency estimates. See, for 

example, Macedo and Scotto (2014) for further details. 

 

In the GCE estimator, the supports in matrix ; are defined with five equally spaced 

points in the range N0, −ln	�DEA��O, where DEA� represents the lower technical 

efficiency estimate obtained by DEA in the � observations in the sample. Since all 

deviations from the DEA production frontier are due to the inefficiency of the 

producer, the DEA method provides, in general, lower levels of efficiency than SFA, 
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which means that DEA can be used to define an upper bound for the supports. Note 

that although the GCE estimator avoids the choice of the three central values in 

(10), that define the prior mean and the skewness, it involves the subjective prior 

weights defined in JL. However, it is expected that the GCE estimator remains 

stable when this prior information is not correct (Golan et al., 1996, p. 142). 

 

Naturally, a very important issue that will deserve further investigation in a near 

future is the sensitivity analysis on the efficiency estimates given the information 

provided through the supports in matrix ; within the GME estimator, or the vector 

JL within the GCE estimator, in the same reasoning that Kumbhakar and Lovell 

(2000, p. 90) answering to the question “Do Distributional Assumptions Matter?”, 

argued that the “sample mean efficiencies are no doubt apt to be sensitive to the 

distribution assigned to the one-sided error component […] What is not so clear is 

whether a ranking of producers by their individual efficiency scores […] is 

sensitive to distributional assumptions.” 

   

 

4. Results and Discussion 

 

The closer the value of EE is from unit, the more efficient the country is, which 

means that the country is making the best use of resources to produce the 

maximum possible and at the same time is minimizing the environmental impact 

through GHG emissions. 

 

Table 1 presents some descriptive statistics for the estimates obtained through the 

GME, GCE and ML estimators. Considering the period 2000-2011, the ML estimator 

provides the higher mean value of EE (0,7654 for ML; 0,7538 for GCE; 0,6741 for 

GME). The standard deviation is also the greatest for the ML estimator, followed by 

the values for the GME and GCE estimators, respectively. ML estimator provides 

the lower (0,2679 in 2007 for Estonia) and the higher (0,9921 in 2008 for Latvia) 

values of EE in this period. Figures A2 in the Appendix illustrate the results from 

the three estimators in the period 2000-2011.  
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Table 1 – Estimates obtained through Generalized Maximum Entropy (GME), Generalized Cross-

Entropy (GCE) and Maximum Likelihood (ML) estimator s – some descriptive statistics 

  

 Mean Standard Deviation Minimum Maximum 

 GME GCE ML GME GCE ML GME GCE ML GME GCE ML 

2000  0,6696 0,7768 0,7834 0,0896 0,0665 0,1093 0,4588 0,5990 0,5257 0,8386 0,8836 0,9304 

2001  0,6970 0,7599 0,8147 0,0800 0,0679 0,0818 0,5134 0,5879 0,5928 0,8545 0,8799 0,9290 

2002  0,6832 0,7496 0,7853 0,0842 0,0731 0,1111 0,4651 0,5392 0,4612 0,8538 0,8790 0,9365 

2003  0,6830 0,7390 0,7763 0,0868 0,0791 0,1183 0,4361 0,4888 0,4068 0,8611 0,8798 0,9372 

2004  0,6837 0,7482 0,7825 0,0831 0,0738 0,1188 0,4416 0,5085 0,4108 0,8553 0,8790 0,9430 

2005  0,6841 0,7552 0,7795 0,0813 0,0705 0,1263 0,4470 0,5255 0,3937 0,8406 0,8714 0,9456 

2006  0,6705 0,7544 0,7516 0,0832 0,0696 0,1530 0,4315 0,5279 0,3218 0,8273 0,8667 0,9566 

2007  0,6636 0,7531 0,7477 0,0915 0,0774 0,1841 0,3955 0,4950 0,2679 0,8158 0,8613 0,9847 

2008  0,6569 0,7519 0,7205 0,0889 0,0728 0,1800 0,4153 0,5262 0,3114 0,8031 0,8559 0,9921 

2009  0,6837 0,7530 0,7671 0,0818 0,0694 0,1381 0,5106 0,5946 0,4610 0,8129 0,8523 0,9399 

2010  0,6701 0,7561 0,7494 0,0886 0,0734 0,1556 0,4493 0,5529 0,3715 0,8341 0,8725 0,9487 

2011  0,6441 0,7486 0,7262 0,0994 0,0834 0,1805 0,3614 0,4755 0,2882 0,7776 0,8429 0,9544 

 

 

Regarding the ranking of countries, the different methods used to evaluate the EE 

show very similar results. Therefore we will focus on the analysis and 

interpretation of results concerning modification on the ranking of countries as 

well as in the trend of EE in the first and the second period (before and after the 

Kyoto Protocol commitment), considering only the results of the GCE estimator. 

 

In the first period, before the Kyoto Protocol, according to Figure 1 and Table A1 in 

Appendix, the empirical evidence shows that Sweden, United Kingdom, Latvia, 

Cyprus and France are the five most efficient countries, while Estonia, Czech 

Republic and Greece constitute the least efficient countries. Furthermore, as shown 

in Table 1, Portugal and Slovenia were in the 20th and 17th position respectively, 

in 2000 and are ranked in 12th and 10th position on 2004.  Conversely, Bulgaria 

and Italy were ranked at 8th and 10th position in 2000 and changed the ranking to 

17th and 18th respectively in 2004. That evidence suggests that Portugal and 

Slovenia are becoming relatively more efficient, while Bulgaria and Italy became 

the least economic and environmental efficient countries at the end of the first 

period of analysis. 
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Figure 1- Eco-Efficiency estimates in 2000-2004 provided by the GCE estimator 

 
 

Table 2- Rankings of Eco-Efficiency in European Countries established by the GCE estimator 

  

                   

         

2000 

          

2001 

        

2002 

       

2003 

       

2004 

       

2005 

       

2006     2007 

       

2008 

      

2009 

         

2010      2011 

Sweden  1 1 1 1 1 1 1 1 2 3 2 1 
United Kingdom  2 5 4 4 4 3 3 6 3 1 3 6 
Latvia  3 3 3 3 3 5 5 3 1 2 1 2 
Cyprus  4 2 2 2 2 2 2 2 5 9 12 8 
Romania  5 4 6 7 6 4 11 13 17 14 15 11 
Lithuania  6 8 7 6 8 9 10 15 11 4 8 13 
France  7 6 5 5 5 7 9 9 10 11 10 9 
Bulgaria  8 14 12 17 17 20 20 20 24 24 23 23 
Luxembourg  9 7 10 13 14 15 16 17 18 18 19 22 
Italy  10 11 16 15 18 18 15 14 13 13 14 15 
Netherlands  11 10 9 8 7 6 8 8 9 7 11 16 
Austria  12 9 8 10 9 10 7 7 7 8 9 10 
Denmark  13 15 13 16 13 11 18 16 16 16 16 17 
Belgium  14 12 11 9 15 17 14 12 12 17 17 14 
Hungary  15 13 14 12 11 8 4 4 4 5 5 3 
Slovakia  16 21 20 18 16 16 13 10 8 6 13 20 
Slovenia  17 16 15 14 10 12 12 11 14 15 7 5 
Finland  18 17 19 20 20 14 17 18 15 20 21 12 
Germany  19 18 18 19 19 19 19 19 20 19 20 21 
Portugal  20 19 17 11 12 13 6 5 6 10 6 4 
Spain  21 20 23 23 23 24 24 23 21 21 18 19 
Greece  22 22 24 24 24 22 23 24 23 22 22 18 
Ireland  23 24 21 22 22 23 21 21 19 12 4 7 
Poland  24 23 22 21 21 21 22 22 22 23 24 24 
Czech Republic  25 25 25 25 25 25 25 25 25 25 25 25 
Estonia  26 26 26 26 26 26 26 26 26 26 26 26 

 

 

For the second period analyzed (2005-2011), it can be seen from Figure 2 and 

Table A1 in Appendix, that Sweden, Latvia, UK, Hungary, Portugal and Cyprus are 
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the six most efficient countries, while, Czech Republic, Poland and Estonia, 

constitute the three least efficient countries.  

 

Figure 2 - Eco-Efficiency estimates in 2005-2011 provided by the GCE estimator 

 
 
 According to Table 2, Hungary, Slovenia, Portugal and Ireland are ranked in 8th, 

12th, 13th and 23rd place respectively in 2005 and change their ranking to 3rd, 

5th, 4th and 7th place respectively in 2011. This suggests a significant change in 

the trend of economic and environmental efficiency. Conversely, Romania, 

Lithuania and Denmark are ranked in 4th, 9th and 11th place respectively in 2005, 

and drop position to 11th, 13th and 17th respectively at the end of the period. 

      

The EE estimates using the three estimation techniques (GME, GCE and ML) for 

these European countries show that changes in energy sources, capital and labour 

might give a reasonable simultaneous indication of the economic and 

environmental efficiency improvements.  Analyzing the EE path (Table A1), we can 

point out some relevant facts. 

 

For the period as a whole, we can point out some countries that performed well, 

such as Ireland, which increased its level of EE by 50% (from 0.65 to 0.95), 

Hungary, by 23% (from 0.77 to 0.95), Portugal and Slovenia, by 22% (from 0.74 to 
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0.91 and 0.76 to 0.92 respectively). This good performance was particularly strong 

in the second period. On the other hand, Bulgaria and Estonia experienced a bad 

performance overall, by dropping the EE level of 0.83 to 0.53 (-36%) and from 0.54 

to 0.29 (-47%) respectively.  

 

Although the EE indicator gives us the overall outcome for the economic and 

environmental efficiency of the joint use of production factors, such as capital, 

labour, renewable and non renewable energy sources, it is importantto know what 

factors lie behind the good performance or the poor performance of the mentioned 

countries (see Figures A1 in Appendix). 

 

For instance, in the case of Portugal, Ireland and Hungary, the performance seems 

to be a good combination of improving the average productivity of capital, with a 

reduction in fossil fuels intensity (improved energy efficiency) and the increased 

use of renewable energy. In addition to these factors, Slovakia also has significant 

improvements in average productivity of labour.  

 

For countries with less good performance, the factors that seem to be behind this 

result are the drop in the average productivity of capital and labour (Italy and 

Denmark) and the increased intensity of fossil fuels in some years (Romania). In 

the case of Denmark, there was an increased use of renewable energy, but it 

probably was not done efficiently. 

 

As in this study the type of efficiency analysis is not only economic, but also 

environmental, that is, we are considering production per unit of emissions, the 

source of energy used (fossil or renewable) is crucial to the performance. 

Countries who bet on renewable energy efficiently, gradually substituting fossil 

energy, have a greater potential to move closer to the efficiency frontier. Moreover, 

the best performers are countries pointed by the European Commission (2014) as 

countries with low energy intensity or with a good performance in terms of energy 

intensity in the last decade. 
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Since the ratification of the Kyoto Protocol, the European countries have taken 

various initiatives to reduce emissions and this was noted in the evolution of the 

level of eco-efficiency of some countries, particularly on the second period. The 

investment in renewable energy seems to be a differentiator of that good behavior. 

The European Directive 2009/28/EC of the European Parliament and of the 

Council, sets targets for the promotion of renewable energy use in order to reduce 

emissions of pollutants and reduce energy dependence on imports. This directive 

also recognizes the importance of renewable energy for economic growth and for a 

sustainable energy policy. 

 

Nevertheless, the worst performance of some countries may be being supported by 

strong lobbies in the area of fossil fuels. This effect combined with the protectionist 

policies in the energy production sector increases the use of non-renewable 

sources despite the effective promotion of renewable sources by public policies. 

 

On the other hand, the large variability and uncertainty associated with certain 

renewable energy causes the energy operators to have to maintain an energy mix, 

in which fossil fuels are still very important (Kabouris and Kanellos (2010), 

Halamay and Brekken (2011)). Much of the literature argues that there is a trade-

off between the backup of fossil fuels and renewable use. It is argued that natural 

gas or coal are energy sources with a higher backup, especially in terms of safety 

and security of supply, due to the intermittent supply of energy from renewable 

energy sources. However, the generation of energy from renewable sources 

(particularly wind power) due to its rapid operational flexibility and connection to 

transmission networks, responds to fluctuations in demand, as is supported by 

Dursun and  Alboyaci (2010). That is, renewable energy responds to periods of low 

demand while conventional plants respond to fluctuating demand in the peak-load 

periods. 

 

Our results are also relevant to identify that the share of renewable and non-

renewable energy sources are important in explaining differences in emissions 

together with economic growth, capital investment and labour, that is, to explain 

the different levels of efficiency measured by GDP/GHG ratio for each country in 
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the EU-27 panel. Moreover, these results show the importance of the interactive 

impact of the share of renewable and non-renewable sources, that is, the mix of 

resources that can simultaneously maximize economic growth without 

compromising the mitigation of GHG emissions. 

 

As it is necessary to comply with the targets for renewable energy and to lower the 

costs of renewable energy, countries like Portugal and Spain have implemented 

policies based on schemes that include feed-in tariffs, feed-in premiums and green 

certificates. As these countries had high tariff deficits, they combined raises in 

tariffs with other measures that divide the burden between the energy consumers, 

the energy sector and public finance.  But in Bulgaria, grid access tariffs for 

renewable energy producers were introduced and at the same time the access to 

the energy system was enabled for a part of the grid of connected renewable 

capacity. Bulgaria reduced its tariff deficit, but it had negative effects on the 

investment of renewable energy (European Commission, 2014). 

 

If we analyze the rate of GDP growth, the fastest growing countries in this period 

were Bulgaria, Czech Republic, Lithuania, Poland and Slovakia (with average 

growth rates between 4% and 8%). High growth rates may show that these are 

less developed countries, and that could be at a stage prior to the turning point of 

Kuznets curve. Looking to other data we can see that in these countries there is a 

high rate of growth of labor productivity and of the intensity of the fossil energy 

consumption, while there is a poor increase in capital productivity. According to 

our results these countries are among the least efficient from a technical and 

environmental perspective.  Our analysis is in consonance with the Kuznets curve 

as it suggests that less developed countries have worse technical and 

environmental efficiency than most developed countries. On the other hand, 

countries that are more eco-efficient, like Sweden, Cyprus, Latvia and UK are 

countries whose GDP grew at more moderate rates (on average between -1% and 

2%). Therefore countries in a growth phase that may have exceeded the turning 

point of the Kuznets curve and have become technically and environmentally more 

efficient. In that way, although our study does not provide direct evidence about it, 

can somehow strengthen the techno optimistic theory. 
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5. Conclusions 

 

This study evaluated the Eco-efficiency problem of European countries in two 

distinct periods: 2000-2004 and 2005-2011. We specified a new stochastic frontier 

model where the ratio between GDP and GHG emissions is maximized given the 

values of Fossil Fuel Consumption, Renewable Energy Consumption, Capital and 

Labour. 

 

We could identify the change in the positioning of the countries in relation to EE in 

the two periods under review. The most efficient (Portugal, Slovakia, Hungary, 

Ireland) and the least efficient countries (Bulgaria, Italy, Romania, Denmark) were 

noted as well as a greater effort to converge to the frontier of efficiency by some 

countries in the second period of the analysis which coincides with the period after 

the ratification of the Kyoto Protocol. 

 

Since the ratification of the Kyoto Protocol, the European countries have taken 

various initiatives to reduce emissions and this was noted in the evolution of the 

level of eco-efficiency of some countries, particularly in the second period.  

Our analysis is in consonance with the Kuznets curve and techno-optimistic 

theories as it suggests that less developed countries have worse technical and 

environmental efficiency than most developed countries. 

 

As the focus of this article was for efficiency measures and not for estimated 

parameters of frontier of production, it does not reveal which factor (labour, 

capital, or source of energy) is actually behind the good or bad performance of the 

country in terms of eco-efficiency. It only gives us the result of the combination of 

these factors for the different countries.  A suggestion for future research would be 

a detailed analysis of the estimated parameters of the production frontier. Another 

useful approach could be the use of the decomposition analysis to ascertain which 

are the most relevant factors in determining the countries’ eco- efficiency.  
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Appendix 

 

Table A1- Eco-Efficiency in European Countries through Generalized Maximum Entropy (GME), 
Generalized Cross-Entropy (GCE) and Maximum Likelihood (ML) estimators 

  

 2000 2001 2002 2003 

 GME GCE ML GME GCE ML GME GCE ML GME GCE ML 

Belgium  0,6740 0,7851 0,8066 0,7079 0,7731 0,8391 0,6947 0,7640 0,8237 0,7079 0,7655 0,8352 

Bulgaria  0,7225 0,8170 0,8309 0,7035 0,7694 0,8321 0,6942 0,7634 0,8211 0,6730 0,7351 0,7859 

Czech Republic  0,4971 0,6387 0,5257 0,5433 0,6205 0,6349 0,5144 0,5947 0,5445 0,5319 0,5984 0,5593 

Denmark  0,6816 0,7906 0,7954 0,6949 0,7623 0,8252 0,6932 0,7619 0,8023 0,6778 0,7382 0,7620 

Germany  0,6392 0,7607 0,7673 0,6741 0,7452 0,8046 0,6624 0,7373 0,7736 0,6621 0,7263 0,7663 

Estonia  0,4588 0,5990 0,5398 0,5134 0,5879 0,5928 0,4651 0,5392 0,4612 0,4361 0,4888 0,4068 

Ireland  0,5696 0,7061 0,6349 0,6050 0,6828 0,7199 0,6204 0,6998 0,7046 0,6164 0,6832 0,6782 

Greece  0,5826 0,7173 0,6770 0,6168 0,6938 0,7335 0,5877 0,6690 0,6489 0,5762 0,6436 0,6119 

Spain  0,6079 0,7374 0,7205 0,6430 0,7180 0,7677 0,6088 0,6892 0,6849 0,6083 0,6760 0,6698 

France  0,7373 0,8254 0,8753 0,7723 0,8221 0,8885 0,7517 0,8075 0,8780 0,7529 0,8010 0,8761 

Italy  0,7034 0,8043 0,8470 0,7130 0,7772 0,8439 0,6817 0,7532 0,8023 0,6790 0,7410 0,7924 

Cyprus  0,7643 0,8416 0,9057 0,8101 0,8489 0,9096 0,7901 0,8350 0,9071 0,7987 0,8345 0,9092 

Latvia  0,7699 0,8452 0,8888 0,7908 0,8351 0,8981 0,7888 0,8336 0,8999 0,7927 0,8295 0,8986 

Lithuania  0,7432 0,8295 0,8669 0,7337 0,7929 0,8585 0,7329 0,7927 0,8458 0,7322 0,7828 0,8358 

Luxembourg  0,7154 0,8119 0,8664 0,7372 0,7960 0,8647 0,6964 0,7655 0,8329 0,6958 0,7553 0,8210 

Hungary  0,6589 0,7753 0,7718 0,7077 0,7727 0,8371 0,6902 0,7600 0,8118 0,7017 0,7596 0,8256 

Netherlands  0,6967 0,8000 0,8433 0,7139 0,7779 0,8449 0,7200 0,7836 0,8508 0,7201 0,7752 0,8466 

Austria  0,6911 0,7967 0,8177 0,7241 0,7856 0,8521 0,7211 0,7842 0,8428 0,7090 0,7652 0,8173 

Poland  0,5367 0,6772 0,6371 0,6134 0,6906 0,7284 0,6119 0,6922 0,6940 0,6202 0,6877 0,7003 

Portugal  0,6377 0,7602 0,7436 0,6690 0,7406 0,7965 0,6634 0,7373 0,7572 0,7051 0,7613 0,8043 

Romania  0,7531 0,8353 0,8974 0,7899 0,8347 0,8979 0,7451 0,8027 0,8766 0,7262 0,7802 0,8566 

Slovenia  0,6499 0,7691 0,7567 0,6899 0,7581 0,8190 0,6898 0,7593 0,8044 0,6935 0,7517 0,7964 

Slovakia  0,6543 0,7720 0,7566 0,6390 0,7143 0,7616 0,6486 0,7253 0,7518 0,6693 0,7321 0,7838 

Finland  0,6458 0,7662 0,7579 0,6777 0,7479 0,8058 0,6602 0,7349 0,7588 0,6446 0,7090 0,7134 

Sweden  0,8386 0,8836 0,9304 0,8545 0,8799 0,9290 0,8538 0,8790 0,9365 0,8611 0,8798 0,9372 

United Kingdom  0,7807 0,8504 0,9074 0,7842 0,8309 0,8970 0,7771 0,8258 0,9017 0,7667 0,8120 0,8940 

Mean  0,6696 0,7768 0,7834 0,6970 0,7599 0,8147 0,6832 0,7496 0,7853 0,6830 0,7390 0,7763 

Std. Deviation  0,0896 0,0665 0,1093 0,0800 0,0679 0,0818 0,0842 0,0731 0,1111 0,0868 0,0791 0,1183 

Minimum  0,4588 0,5990 0,5257 0,5134 0,5879 0,5928 0,4651 0,5392 0,4612 0,4361 0,4888 0,4068 

Maximum  0,8386 0,8836 0,9304 0,8545 0,8799 0,9290 0,8538 0,8790 0,9365 0,8611 0,8798 0,9372 

 
  

 2004 2005 2006 2007 

 GME GCE ML GME GCE ML GME GCE ML GME GCE ML 

Belgium  0,6910 0,7592 0,8181 0,6781 0,7551 0,7933 0,6732 0,7612 0,7886 0,6742 0,7671 0,8313 

Bulgaria  0,6745 0,7451 0,7859 0,6399 0,7231 0,7212 0,6247 0,7228 0,6885 0,6268 0,7311 0,6533 

Czech Republic  0,5411 0,6202 0,5673 0,5488 0,6375 0,5608 0,5406 0,6457 0,5313 0,5217 0,6352 0,4893 

Denmark  0,7039 0,7684 0,8101 0,7114 0,7805 0,8115 0,6436 0,7374 0,6229 0,6569 0,7535 0,6383 

Germany  0,6602 0,7334 0,7604 0,6620 0,7418 0,7602 0,6395 0,7343 0,7062 0,6327 0,7347 0,6755 

Estonia  0,4416 0,5085 0,4108 0,4470 0,5255 0,3937 0,4315 0,5279 0,3218 0,3955 0,4950 0,2679 

Ireland  0,6141 0,6917 0,6767 0,5907 0,6781 0,6095 0,6040 0,7043 0,5918 0,6141 0,7195 0,6424 

Greece  0,5864 0,6651 0,6265 0,6154 0,7010 0,6576 0,5957 0,6970 0,5865 0,5274 0,6404 0,4650 

Spain  0,5973 0,6761 0,6491 0,5855 0,6733 0,6127 0,5747 0,6777 0,5521 0,5697 0,6805 0,5402 

France  0,7442 0,8006 0,8739 0,7290 0,7942 0,8667 0,7228 0,7975 0,8744 0,7147 0,7958 0,8654 

Italy  0,6703 0,7419 0,7795 0,6745 0,7522 0,7771 0,6664 0,7557 0,7445 0,6677 0,7620 0,7649 

Cyprus  0,7894 0,8331 0,9136 0,7974 0,8425 0,9243 0,7778 0,8352 0,9358 0,7664 0,8308 0,9824 

Latvia  0,7675 0,8167 0,8864 0,7427 0,8038 0,8635 0,7400 0,8097 0,8483 0,7654 0,8299 0,8793 

Lithuania  0,7190 0,7800 0,8284 0,7207 0,7875 0,8224 0,7044 0,7846 0,7541 0,6578 0,7547 0,6162 

Luxembourg  0,6942 0,7620 0,8321 0,6882 0,7634 0,8304 0,6642 0,7548 0,8273 0,6520 0,7507 0,9436 

Hungary  0,7048 0,7699 0,8302 0,7280 0,7937 0,8638 0,7495 0,8164 0,9355 0,7566 0,8246 0,9847 

Netherlands  0,7325 0,7918 0,8689 0,7390 0,8017 0,8749 0,7248 0,7990 0,8655 0,7165 0,7973 0,8863 

Austria  0,7140 0,7769 0,8321 0,7134 0,7824 0,8396 0,7267 0,8003 0,8671 0,7418 0,8143 0,9157 

Poland  0,6266 0,7037 0,7114 0,6341 0,7182 0,7114 0,5962 0,6978 0,6418 0,5893 0,6988 0,6058 

Portugal  0,7056 0,7699 0,8140 0,7013 0,7729 0,8028 0,7309 0,8032 0,8323 0,7467 0,8176 0,8343 

Romania  0,7425 0,7996 0,8865 0,7440 0,8058 0,8976 0,6981 0,7806 0,8848 0,6668 0,7624 0,7664 

Slovenia  0,7063 0,7704 0,8198 0,7107 0,7802 0,8246 0,6961 0,7786 0,7840 0,6847 0,7749 0,7441 

Slovakia  0,6762 0,7467 0,7880 0,6801 0,7568 0,7905 0,6728 0,7614 0,7826 0,7008 0,7868 0,8310 

Finland  0,6578 0,7303 0,7345 0,6952 0,7680 0,8065 0,6500 0,7429 0,6990 0,6476 0,7465 0,6791 

Sweden  0,8553 0,8790 0,9430 0,8406 0,8714 0,9456 0,8273 0,8667 0,9566 0,8158 0,8613 0,9803 

United Kingdom  0,7598 0,8125 0,8970 0,7689 0,8233 0,9056 0,7579 0,8216 0,9190 0,7428 0,8150 0,9571 

Mean  0,6837 0,7482 0,7825 0,6841 0,7552 0,7795 0,6705 0,7544 0,7516 0,6636 0,7531 0,7477 

Std. Deviation  0,0831 0,0738 0,1188 0,0813 0,0705 0,1263 0,0832 0,0696 0,1530 0,0915 0,0774 0,1841 
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Minimum  0,4416 0,5085 0,4108 0,4470 0,5255 0,3937 0,4315 0,5279 0,3218 0,3955 0,4950 0,2679 

Maximum  0,8553 0,8790 0,9430 0,8406 0,8714 0,9456 0,8273 0,8667 0,9566 0,8158 0,8613 0,9847 
  

 2008 2009 2010 2011 

 GME GCE ML GME GCE ML GME GCE ML GME GCE ML 

Belgium  0,6669 0,7648 0,7958 0,6786 0,7535 0,7982 0,6540 0,7492 0,7563 0,6449 0,7568 0,7309 

Bulgaria  0,5587 0,6771 0,4684 0,5557 0,6415 0,5085 0,5579 0,6664 0,5076 0,5459 0,6762 0,5295 

Czech Republic  0,5036 0,6226 0,4379 0,5197 0,6044 0,4920 0,4880 0,5955 0,4401 0,4594 0,5899 0,4097 

Denmark  0,6518 0,7530 0,6910 0,6818 0,7558 0,7626 0,6682 0,7597 0,7620 0,6352 0,7484 0,7044 

Germany  0,6223 0,7296 0,6296 0,6574 0,7356 0,7274 0,6292 0,7291 0,6760 0,5783 0,7037 0,5676 

Estonia  0,4153 0,5262 0,3114 0,5106 0,5946 0,4610 0,4493 0,5529 0,3715 0,3614 0,4755 0,2882 

Ireland  0,6223 0,7304 0,6832 0,6982 0,7691 0,8189 0,7330 0,8069 0,9047 0,7337 0,8169 0,9506 

Greece  0,5661 0,6824 0,5345 0,6024 0,6868 0,6189 0,6034 0,7073 0,6260 0,6244 0,7412 0,6778 

Spain  0,5816 0,6957 0,5476 0,6371 0,7181 0,6785 0,6511 0,7467 0,7184 0,6235 0,7402 0,6567 

France  0,6944 0,7841 0,7838 0,7151 0,7820 0,8386 0,7161 0,7951 0,8473 0,6903 0,7884 0,7727 

Italy  0,6648 0,7629 0,7184 0,6957 0,7670 0,8003 0,6734 0,7641 0,7748 0,6447 0,7564 0,7039 

Cyprus  0,7362 0,8137 0,9286 0,7188 0,7851 0,8484 0,6969 0,7815 0,8232 0,7147 0,8048 0,9214 

Latvia  0,8031 0,8559 0,9921 0,8124 0,8518 0,9342 0,8341 0,8725 0,9487 0,7746 0,8421 0,9506 

Lithuania  0,6770 0,7728 0,6772 0,7772 0,8276 0,8934 0,7243 0,8009 0,8190 0,6474 0,7582 0,7150 

Luxembourg  0,6304 0,7373 0,8879 0,6682 0,7456 0,8401 0,6291 0,7295 0,7557 0,5755 0,7024 0,6395 

Hungary  0,7527 0,8243 0,9023 0,7342 0,7967 0,8618 0,7313 0,8061 0,8513 0,7618 0,8348 0,9498 

Netherlands  0,6978 0,7868 0,8123 0,7268 0,7912 0,8620 0,7093 0,7904 0,8735 0,6397 0,7526 0,7469 

Austria  0,7201 0,8019 0,8717 0,7224 0,7876 0,8536 0,7206 0,7982 0,8522 0,6874 0,7864 0,7721 

Poland  0,5677 0,6841 0,5060 0,5654 0,6514 0,5495 0,5450 0,6541 0,5055 0,5049 0,6373 0,4562 

Portugal  0,7265 0,8065 0,7944 0,7163 0,7829 0,8122 0,7321 0,8061 0,8513 0,7423 0,8219 0,9058 

Romania  0,6432 0,7482 0,5728 0,6940 0,7660 0,7533 0,6716 0,7635 0,6625 0,6477 0,7598 0,6815 

Slovenia  0,6609 0,7609 0,7250 0,6937 0,7656 0,7956 0,7241 0,8010 0,8422 0,7393 0,8206 0,9215 

Slovakia  0,7125 0,7979 0,8090 0,7328 0,7956 0,8547 0,6942 0,7798 0,7954 0,6077 0,7282 0,6603 

Finland  0,6526 0,7538 0,7189 0,6446 0,7248 0,7098 0,6275 0,7278 0,6524 0,6492 0,7596 0,6750 

Sweden  0,7809 0,8409 0,9707 0,8051 0,8466 0,9305 0,7892 0,8434 0,9326 0,7776 0,8429 0,9544 

United Kingdom  0,7708 0,8351 0,9637 0,8129 0,8523 0,9399 0,7696 0,8313 0,9350 0,7357 0,8181 0,9387 

Mean  0,6569 0,7519 0,7205 0,6837 0,7530 0,7671 0,6701 0,7561 0,7494 0,6441 0,7486 0,7262 

Std. Deviation  0,0889 0,0728 0,1800 0,0818 0,0694 0,1381 0,0886 0,0734 0,1556 0,0994 0,0834 0,1805 

Minimum  0,4153 0,5262 0,3114 0,5106 0,5946 0,4610 0,4493 0,5529 0,3715 0,3614 0,4755 0,2882 

Maximum  0,8031 0,8559 0,9921 0,8129 0,8523 0,9399 0,8341 0,8725 0,9487 0,7776 0,8429 0,9544 
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Figure A1- Variation of: Average Productivity of Capital (GDP/K), Average Productivity of 

Labour (GDP/L), Fossil Fuel Intensity (F/GDP) and Renewable Energy Intensity (R/GDP) 

 

 

Figure A1a – Countries with good performance 

 

 

 

 

Figure A1b –Countries with less good performance 
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Figure A2a - Eco-Efficiency estimates in 2000-2011 provided by the GME estimator 

  

 

Figure A2b - Eco-Efficiency estimates in 2000-2011 provided by the GCE estimator 

  

 

Figure A2c - Eco-Efficiency estimates in 2000-2011 provided by the ML estimator 

 


