) ) ~ Departamento de _ _
ﬁ Universidade de Aveiro Electrénica, Telecomunicacdes e Informatica

PORTO Universidade do Porto Faculdade de Ciéncias

< Universidade do Minho Departamento de Informatica

-1 2018
Eurico Farinha Localizacdo e Mapeamento Eficiente para
Pedrosa Robética: Algoritmos e Ferramentas

Efficient Localization and Mapping for Robotics:
Algorithms and Tools






Departamento de

ﬁ Universidade de Aveiro Electrénica, Telecomunicacdes e Informatica

PORTO Universidade do Porto Faculdade de Ciéncias

' Universidade do Minho Departamento de Informatica

-I< 2018
Eurico Farinha Localizacdo e Mapeamento Eficiente para
Pedrosa Robética: Algoritmos e Ferramentas

Efficient Localization and Mapping for Robotics:
Algorithms and Tools

Tese apresentada a Universidade de Aveiro para cumprimento dos requisitos
necessarios a obtencdo do grau de Doutor em Informatica, realizada sob a
orientac3o cientifica de José Nuno Panelas Nunes Lau e Artur José Carneiro
Pereira, Professores Auxiliares do Departamento de Eletrénica, Telecomuni-
cagdes e Informatica da Universidade de Aveiro






o jari / the jury

presidente / president Prof. Doutor Jodo Carlos Matias Celestino Gomes da Rocha
Professor Catedratico da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Urbano José Carreira Nunes
Professor Catedratico da Universidade de Coimbra

Prof. Doutor Rodrigo Martins de Matos Ventura
Professor Auxiliar da Universidade de Lisboa

Prof. Doutor Gabriel de Sousa Torcato David
Professor Associado da Universidade do Porto

Prof. Doutor Vitor Manuel Ferreira dos Santos
Professor Associado da Universidade de Aveiro

Prof. Doutor José Nuno Panelas Nunes Lau
Professor Auxiliar da Universidade de Aveiro (orientador)






agradecimentos /
acknowledgements

Quero comecar por agradecer ao Professor Nuno Lau e ao Professor Artur
Pereira pelos varios anos de orientacio e pela confianca em mim depositada.
Foi simplesmente um prazer.

Aos meus pais e a0 meu irm3o por todo o apoio oferecido.

A todos os membros do laboratério de robética do grupo IRIS pela ca-
maradagem e boas discussées ao longo destes varios anos. Em particular,
quero agradecer ao Jodo Cunha pelas discussdes cientificas, conversas de
café e entreajuda, n3o s6é durante os varios projetos em que participamos
em conjunto, mas também durante o desenvolvimento das nossas teses de
doutoramento.

A Mariana por todo o apoio, carinho e muita paciéncia.






palavras-chave

resumo

informatica, robética, localizacdo, mapeamento, slam, algoritmos

Um dos problemas fundamentais em robética é a capacidade de estimar
a pose de um robdé moével relativamente ao seu ambiente. Este problema é
conhecido como localizacdo robética e a sua exatidio e eficiéncia tém um im-
pacto direto em todos os sistemas que dependem da localizacdo. Nesta tese,
abordamos o problema da localizacdo propondo um algoritmo baseado em
scan matching com otimizac3o robusta de minimos quadrados n3o lineares
em manifold com a utilizacio de um campo de verosimilhanca continuo
como modelo de percecdo. Esta solucio oferece uma melhoria percetivel na
eficiéncia computacional sem perda de exatid3o.

Associado & localizacdo estd o problema de criar uma representacdo ge-
ométrica (ou mapa) do meio ambiente recorrendo as medidas disponiveis,
um problema conhecido como mapeamento. No mapeamento a represen-
tacdo geométrica mais popular é a grelha volumétrica que discretiza o es-
paco em volumes cibicos de igual tamanho. A implementacio direta de
uma grelha volumétrica oferece acesso direto e rapido aos dados mas requer
uma quantidade substancial de meméria. Portanto, propde-se uma estru-
tura de dados hibrida, com divisdo esparsa do espaco combinada com uma
subdivisdo densa do espaco que oferece tempos de acesso eficientes com alo-
cacdes de memoria reduzidas. Além disso, também oferece um mecanismo
integrado de compressdo de dados para reduzir ainda mais o uso de meméria
e uma estrutura de partilha de dados implicita que duplica dados, de forma
eficiente, quando necessario recorrendo a uma estratégia copy-on-write. A
implementacdo da solucdo descrita é disponibilizada na forma de uma bi-
blioteca de software que oferece um framework para a criacdo de modelos
baseados em grelhas volumétricas, e.g. grelhas de ocupacdo. Como existe
uma separacdo entre o modelo e a gestdo de espaco, todas as funcionali-
dades da abordagem esparsa-densa estdo disponiveis para qualquer modelo
implementado com o framework.

O processo de mapeamento é um problema complexo considerando que loca-
lizacdo e mapeamento sdo resolvidos simultaneamente. Este problema, co-
nhecido como localizagdo e mapeamento simultaneo (SLAM), tem tendéncia
a de consumir recursos consideraveis 8 medida que a exigéncia na qualidade
do mapeamento aumenta. De modo a contribuir para o aumento da eficién-
cia, esta tese apresenta duas solu¢cdo de SLAM. Na primeira abordagem, o
algoritmo de localizacdo é adaptado ao mapeamento incremental que, em
combinacio com o framework esparso-denso, oferece uma solucdo de SLAM
online computacionalmente eficiente. O resultados obtidos sdo comparados
com outras solucdes disponiveis na literatura recorrendo a um benchmark de
SLAM. Os resultados obtidos demonstram que a nossa solucdo oferece uma
boa eficiéncia sem comprometer a exatiddo. A segunda abordagem com-
bina o nosso SLAM online com um filtro de particulas Rao-Blackwellized
para propor uma solu¢do de full SLAM com um grau elevado de eficiéncia
computacional. A soluc3o inclui propostas de distribuicio melhorada com re-
finamento de pose através de scan matching, re-amostragem adaptativa com
pesos de amostragem suavizados, partilha eficiente de dados entre particulas
da mesma geracdo e suporte para multi-threading.






keywords

abstract

informatics, robotics, localization, mapping, slam, algorithms

One of the most basic perception problems in robotics is the ability to esti-
mate the pose of a mobile robot relative to the environment. This problem
is known as mobile robot localization and its accuracy and efficiency has a
direct impact in all systems than depend on localization. In this thesis, we
address the localization problem by proposing an algorithm based on scan
matching with robust non-linear least squares optimization on a manifold
that relies on a continuous likelihood field as measurement model. This so-
lution offers a noticeable improvement in computational efficiency without
losing accuracy.

Associated with localization is the problem of creating the geometric repre-
sentation (or map) of the environment using the available measurements, a
problem known as mapping. In mapping, the most popular geometric rep-
resentation is the volumetric grid that quantizes space into cubic volumes
of equal size. The regular volumetric grid implementation offers direct and
fast access to data but requires a substantial amount of allocated memory.
Therefore, in this thesis, we propose a hybrid data structure with sparse di-
vision of space combined with dense subdivision of space that offers efficient
access times with reduced memory allocation. Additionally, it offers an online
data compression mechanism to further reduce memory usage and an implicit
data sharing structure that efficiently duplicates data when needed using a
thread safe copy-on-write strategy. The implementation of the solution is
available as a software library that provides a framework to create models
based on volumetric grids, e.g. occupancy grids. The separation between
the model and space management makes all features of the sparse-dense
approach available to every model implemented with the framework.

The process of mapping is a complex problem, considering that localization
and mapping have to be solved simultaneously. This problem, known as
simultaneous localization and mapping (SLAM), has the tendency to con-
sume considerable resources as the mapping quality requirements increase.
As an effort to increase the efficiency of SLAM, this thesis presents two
SLAM solutions. The first proposal adapts our localization algorithm to in-
cremental mapping that, in combination with the sparse-dense framework,
provides a computationally efficient online SLAM solution. Using a SLAM
benchmark, the obtained results are compared with other solutions found
in the literature. The comparison shows that our solution provides good
efficiency without compromising accuracy. The second approach combines
our online SLAM with a Rao-Blackwellized particle filter to propose a highly
computationally efficient full SLAM solution. It includes an improved pro-
posal distribution with scan matching pose refinement, adaptive resampling
with smoothed importance weight, efficient sharing of data between sibling
particles and multithreading support.






Contents

Contentsl

|[List of Figures|

(List of Tables|

|List of Algorithms|

1__Introductionl
[1.1 Thesis Statement and Objectives| . . . . . . . . .. . ... ... ... ... ..
L2 Contributions . . . . . . . . . . .
[L3  Publicationd . . . . . . . . .
1.4 Thesis Structurel . . . . . . . .
|2 Localization and Mapping]
[2.1 Bayesian State Estimation| . . . . . . . ..o o000
2.1.1  Environment Interaction| . . . . . . . . . . .. ... L.
[2.1.2  Probabilistic Evolution of Controls, States and Measurements| . . . . . .
2.1.3 Bayes Filter| . . . . . . . ..
2.2 Mobile Robot Localization| . . . . . . . . . ... ... oo
221 Motion Modeld . . . . .. .. . . ..
222 Measurement Modeld . . . . . . . .. ... oo
[2.2.3 A Taxonomy ot Localization Problems| . . . . . ... ... .. ... ...
[2.2.4  Localization Approaches| . . . . . . . . . . ... ... L.
Mapping| . . . . . . . .
[2.3.1  Mapping with a Probabilistic Occupancy Grid|. . . . . . . ... ... ..
[2.4  Simultaneous Localization And Mapping| . . . . . . .. ... ... ... ... ..

243  Graph-based SLAM|

13 Scan Matching Approach to Localization with a Likelihood Field|

[3.3  Non-Linear Least Squares Optimization| . . . . . . .. .. ... ... .. ....

13.4  Least Squares on a Manifold|

iii

vii



[3.5 Handling Outliers|. . . . . . . . . . .. . 40

3.6 Global Localizationl . . . . . . . . . .. .. 42
3.7 Experimental Results and Evaluation|. . . . . .. ... ... ... .. ...... 42
3.7.1  Trajectory Validation| . . . . . .. ... ... ... ... ... 43

[3.7.2  Accuracy of Pose Estimates| . . . . . . . ... ... 44

3.7.3  Computational Efficiency Analysis| . . . . ... ... ... ... ... .. 45

B.8 Conclusionl. . . . . . . . . e 46

4 A Sparse-Dense Approach for Efficient Grid Mapping| 53
4.1 Motivation|. . . . . . . .. 55
4.2 Mapping Frameworkl . . . . . . ... oo Y
4.2.1  Sparse-Dense Volumetric Subdivision| . . . . . . . . . ... ... ... .. 57

4.2.2  Space Effictency|. . . . . .. ... o 58

4.3 Implementation Details| . . . . . . ... ... ... 000 62
4.3.1 Software Architecture Overviewl . . . . . . . . .. ... ... ... .... 62

4.3.2  Sparse-Dense Structurel . . . . ... ..o 0oL 63

4.3.3  Lossless Data Compression| . . . . .. ... ... ... .. ........ 63

4.3.4  Multi-Threading Support| . . . . . . .. . ... ... ... 64

4.3.5 Implemented Models| . . . . . .. ... ... ... L. 66

4.4 BEvaluationl. . . . . . . . . 67
4.4.1  Mapping with Known Poses| . . . . . ... ... ... ... .. ...... 67

[4.4.2  Map Accuracy| . . . . . . . . 69

4.4.3  Optimal Density| . . . . .. . . . ... o 69

4.4.4  "Time and Space Efficiency|. . . . . . .. ... 70

4.5 Conclusion|. . . . . . . . . .. 76

[ Tmproved Grid-based SLAM] 79
5.1 An Improved Scan Matching Approach to Online SLAM| . . . . . .. . ... .. 82
b.1.1  Scan Matching Localization with a Dynamic Likelihood Field| . . . . . . 82

b.1.2  Incremental Mapping|. . . . . . . . . .. ... L 83

[.1.3  Evaluation and Benchmarking{. . . . . . . ... ... .. ... ... ... 84

5.2 Improving Rao-Backwellized Particle Filter SLAM |

| with Scan Matching and Multi-Threadingl . . . . ... .. ... ... .. .... 90
b.2.1 A Proposal Distribution with Scan Matching Refinement|. . . . . . . . . 92

[5.2.2  Adaptive Resampling|. . . . . ... ... oo oo 93

0.2.3  Multithreaded RBPE SLAM| . . . . ... 0000000000 95

[5.2.4  Experiments and Analysis| . . . . . ... ..o oo 97

b3 Conclusionl. . . . . . . . . 102

6 Conclusionl 103
[6.1  Other Applications and Future Work| . . . . . . . . ... ... ... ... .... 104
[References| 107

ii



List of Figures

[2.1 Evolution of controls, states and measurements characterized by a dynamic |

Bayes network.| . . . . ..o 10
[2.2  Graphic model of mobile robot localization.| . . . . . .. ... ... ... .. .. 19
[3.1 Interpolation scheme for a continuous likelihood field.|. . . . . . . ... ... . . 38
3.2 Not all bell-shaped measurement distributions are Gaussians.| . . . . . .. . .. 41
13.3  Erroneous deviation of AMCL’s trajectories.|. . . . . . ... ... . ... .... 44
[3.4  Pose estimate accuracy inferred from scan-to-map matching error.|. . . . . . . . 44
3.5 Root mean square error overview. | . . . . . ... ... 45
13.6  Localization experimental results for the ACES dataset[. . . . . . ... ... .. 48
13.7  Localization experimental results for the Intel dataset| . . . . .. ... ... .. 49
13.8  Localization experimental results for the ACES dataset|. . . . . . ... ... .. 50
13.9  Localization experimental results for the Fr079 dataset| . . . . . . . . ... . .. 51
13.10 Localization experimental results for the Killian dataset| . . . . . . . . ... . . 52
4.1 3D Occupancy map of the Fr-079 dataset| . . . . . .. .. ... ... ... ... 54
[4.2  Sliced view of the volumetric grid with volume subdivision| . . . . . . . . . . .. 57
4.3 Visualization of sparse-dense volumetric subdivision for different values of L |

with respective space overhead| . . . . . . . . ... ... ... ... ... .... 59
4.4 Cache mechanism for data compression with an LRU cache replacement strategy.| 60
[4.5 Copy-on-write (CoW) strategy for implicit data sharing,| . . . . . ... ... .. 61
4.6  Simplified UML diagram of our software architecture.|. . . . . . . . . . ... .. 62
4.7 Grid ray casting with line drawing algorithms.|. . . . . . . . . .. ... ... .. 67
4.8 Resulting 3D occupancy maps of all datasets.| . . . . . ... ... ... ... .. 68

4.9 The effect of patch size, more specifically L, in execution time and memory usage.| 70
|4.10 The impact of online compression cache size C' in update time and cache miss |

4.11 Amount of time 1t takes to update each scan for the datasets Fr-079 and Fr- |

Campus.| . . . . . . e e 73

|4.12 'The impact of online data compression in the update time of fast data integration.| 74
[4.13 Memory usage of our solution (SDMapping) and OctoMap after each scan update| 76

5.1 Occupancy grid maps of the evaluated datasets] . . . . . . . .. ... ... ... 85
5.2 Error rolling mean using Gauss-Newton| . . . . . . ... ... ... ... .... 87
[9.3  Error rolling mean using Levenberg-Marquardt| . . . . . ... ... ... .. .. 87
[5.4  Partial constructed occupancy grid maps from ACES.| . . . . ... ... .. .. 88

5.5 Stacked processing time rolling mean using Gauss-Newton| . . . . . . . ... .. 89

iii



[5.6  Stacked processing time rolling mean using Levenberg-Marquardt| . . . . . . . . 89
5.7 Memory usage during mapping for the considered datasets. | . . . . . . . . . .. 90
5.8 Handling the greedy scan matching local search by sampling from motion.| . . . 93
5.9  Handling highly peak importance weights by smoothing the likelihood function.| 94
[5.10 Diagram of an asynchronous Thread Pool.| . . . . . . ... ... ... ... ... 95
.11 MIT Killian Court map.| . . . . . . . . . .. ... . 98
[5.12 Example of map quality improvement on a loop closure location.| . . . . . . .. 98
[9.13 Comparison of single-threaded total execution times between our solution and |

GMapping.| . . . . . e 99
[5.14 Comparison ot single-threaded mean execution times between our solution and |

GMapping.| . . . . . e 100
15.15 Total execution time speedup provided by multithreading per dataset.| . . . . . 100
[5.16 Memory usage over time of our solution compared with GMapping memory usage.[101

iv



List of Tables

3.1 Mean execution times and respective min-max values| . . . . . ... ... .. .. 46
13.2  Mean number of optimization iterations and respective min-max values|. . . . . 46
4.1  In-memory Benchmark of lossless compression algorithms.| . . . . . . . ... .. 64
4.2 Map accuracy and cross-validation. . . . . . . . .. ... 0L 69
4.3 Mapping execution times for the datasets Fr-079 and Fr-Campus.| . . . . . . .. 73
4.4 Total memory usage for the datasets Fr-079 and Fr-Campus.|. . . . . . . . . .. 75

5.1 Localization parameters that provide low translational and rotational errors in |

the experiments for SLAM benchmark and evaluation.,| . . . . ... ... .. .. 85
5.2 Benchmark quantitative results for the tested datasets on the translation error |
with the corresponding standard deviation. | . . . . . . . . ... ... ... ... 86
5.3 Benchmark quantitative results for the tested datasets on the rotational error |
with the corresponding standard deviation. | . . . . . . . ... ... ... .. .. 86
.4 Mean execution times and mean number of iterations/. . . . . . . . ... .. .. 89

5.5  Maximum memory usage reported by GMapping and our solution per dataset.|. 101




vi



List of Algorithms

1 General algorithm for Bayes filtering (Thrun et al., |2005). . . . . . ... ... .. 11
2 Odometry motion model algorithm (Thrun et al.,[2005)]. . . . . ... ... ... 13
3 Odometry sample motion model algorithm (Thrun et al| 2005).] . ... ... .. 14
4 Beam model algorithm (Thrun et al.[[2005)] . . ... ... ... ......... 16
[ Likelihood field model (Thrun et al[2005)] . . . . .. ... ............ 17
6  Markov Localization (Thrun et al;[2005). . . .. ... ... .. ... ... ... 20
7 EKF localization with known correspondences (Thrun et al.,2005).] . . ... .. 21
8 EKF localization with unknown correspondences (Thrun et al.[[2005)] . . . . . . 22
9 Grid Localization with an histogram filter (Thrun et al.;[2005)]. . . . . . . . .. 23
10 Monte Carlo Localization based on particle filters (Thrun et al.[[2005)] . . . . . 24
11 Occupancy grid Mapping (Thrun et al.;[2005)] . . . .. ... .. ... ... ... 29
12 Sampling global localization|. . . . . . . . ... ... ... ... ... ... 43
|Ls ~ Thread-safe CoW data duplication with double-check lock.| . . . . . . . .. ... . .. 65
[L4 ~ Thread-safe compression.| . . . . . . . . . .. Lo 65
[I5  Thread-safe decompression.| . . . . . . . . . . . ... ..o 65
{16 Pseudo-code for updating a dynamic Euclidean distance map (Lau et al.| |2013).| . . . . 66
[I7  Incremental mapping process.|. . . . . . . . .. L 84
[18  Improved Multithreaded Rao-Blackwellized Particle Filter SLAMJ| . . . . . . .. 96

vil



viii



Chapter 1

Introduction

Robots play an important role in our lives, even if we are not aware of it. They are used
in a variety of tasks that can be repetitive, heavy, of high precision, and even dangerous.
Most robots are fixed with pre-programmed actions in a controlled environment. But on the
other hand, mobile robots have the capability to move in their environment with some level of
autonomy. Autonomous mobile robots have the ability to make decisions according to what
they perceive from the environment and their goals.

One of the most basic perception problem in robotics is the capability to determine the
pose of the robot relative to the given map of the environment (Cox |1991). This problem
is commonly known as mobile robot localization. Given the necessary representation
(or map) of the environment the autonomous robot equipped the with appropriate sensor(s)
should be able to infer its pose. Unfortunately, no sensor can provide error free measurements,
making a single measurement usually insufficient to determine the correct pose of the robot.
Instead, the robot’s pose is integrated over time considering all relevant sources of information.

Early mobile robot localization solutions are based on the extended kalman filter for state
estimation (e.g. Dickmanns and Graefe| (1988)), that relies on feature map as representation
of the environment. However, such representation usually requires modifications to the envi-
ronment, such as the installation of artificial beacons. Additionally, proper identification and
correspondence of perceived features in the environment with the actual features in the map
is another research area. As an alternative, researchers moved from feature representation to
geometric techniques for localization (e.g. Cox (1991)).

The concept of using scan matching as a geometric approach to localization was popu-
larized by Lu and Milios (1997a). They utilize range scans, which capture the geometric
representation of the “natural” features in the environment (e.g. walls, furniture), to find the
rigid transformation between two consecutive matching scans. Another approach is to match
the current scan with a map (e.g. [Lauer et al| (2006])) that provides better results. Such
approach utilizes an occupancy grid map as a geometric representation of the environment.
Localization algorithms based on scan matching are typically fast and fairly accurate within
an acceptable uncertainty. Beyond that acceptable uncertainty, localization algorithm based
on scan matching can easily fail and never recover. The Monte Carlo localization algorithm
(Foxl, [2003) is an alternative that utilizes the same occupancy grid map as scan matching but
has a higher resilience to uncertainty, although with lower computational efficiency and dis-
putable accuracy. Nowadays, Monte Carlo localization is one of the most popular localization
algorithms in robotics.



A truly autonomous robot should be able to build its map from scratch using only its sen-
sors and mobile capabilities. Generating the map of the environment from the robot’s sensor
data is a problem known as mapping. If a ground truth of the robot’s pose is provided at the
moment a measurement is obtained the mapping problem is simplified to a problem of inte-
grating measurements into a map representation, i.e. mapping with known poses. A popular
example of mapping with known poses is the probabilistic occupancy grid mapping (Moravec,
1989, 1996)). This method addresses the issue of integrating measurements with uncertainty on
a volumetric grid. The dimensionality complexity of the volumetric grid is handled by its res-
olution, the lower the resolution the lower the space requirements. But on applications where
a finer resolution is required, the necessary amount of space can easily outgrow the available
memory. With the generalized availability of 3D sensors, space efficiency in mapping has be-
come a pressing issue. The most successful approach was presented by [Hornung et al.| (2013)
that proposes OctoMap, a mapping framework based on an octree data structure to manage
space. The approach is oriented towards probabilistic occupancy grid maps and provides a
considerable reduction in memory usage with an acceptable computational efficiency.

The problem of mapping increases in complexity when the poses of the robot are not
known. Without having access to an external ground truth, the autonomous robot has to
localize itself in the environment while building the very same map it uses for localization.
This problem is known as simultaneous localization and mapping (SLAM). When faced
with the challenge of geometric SLAM there are several issues to consider: the size of the
environment, the uncertainty in measurements, the ambiguity in perception and the existence
of loops in the environment. Several SLAM solution have been proposed over the years
to address the aforementioned challenges, but not necessarily all of them because not all
environments are made equal. For environments with small loops and reduced uncertainty,
a SLAM solution based in scan matching can suffice (e.g. [Kohlbrecher et al.| (2011))), with
the additional advantage of a lower computational cost. A more complex environment also
requires a more complex solution. A good example is the grid-based Rao-Backwellized particle
filter (RBPF) SLAM solution popularized by |Grisetti et al. (2005)), that is capable of handing
environment of large size and uncertainty with several loops. To improve its efficiency it
uses scan matching to obtain better samples and reduce the number of particles. An adaptive
resampling technique is employed to maintain a diverse set of particles. Each particle contains
its own map and mapping is handled by a probabilistic occupancy grid map. Despite the
advances in efficiency introduced by the above RBPF SLAM solution, it can still nowadays
be computationally heavy.

1.1 Thesis Statement and Objectives

In the current state of autonomous mobile robots, localization and mapping are still basic
requirements to provide true autonomous capabilities. Being part of the base, their quality
is reflected in all systems that depend on them, such as path planning, object recognition or
location based tasks. The current state-of-the-art in localization (e.g. Monte Carlo), mapping
(e.g. OctoMap) and SLAM (e.g. RBPF) are the main contributors for that quality. In this
thesis we define quality in terms of accuracy, computational efficiency and space efficiency.
The statement of this thesis is that the quality of localization, mapping and SLAM can
be further improved to reduce their share of computation resources while offering higher
accuracy. Consequently, the purpose of this thesis is to provide improved algorithms and tools



for localization and mapping that offers better efficiency than the current state-of-the-art while
providing similar or better accuracy.

With respect to mobile robot localization, the objective of this thesis is to research scan
matching algorithms with improved optimization, capable of handling higher uncertainty while
retaining (or even improving) their low computational complexity. From a mapping point-of-
view, the objective of this thesis is to explore a method to manage data allocation and access
of a volumetric grid map that offers a fast data access similar to the regular grid map and the
compact data allocation of a sparse data structure. Furthermore, it should be able to support
concurrent access to data. A final objective is to use the algorithms and tools developed for
localization and mapping as part of SLAM solutions with improved efficiency that can take
advantage of the ubiquitous existence of computational systems with multiple threads.

1.2 Contributions

Mobile robot localization and mapping still presents several challenges in terms of accuracy
and efficiency. The objective of this thesis is to advance the state-of-the-art by introducing im-
proved algorithms and tools to increase the accuracy and efficiency of mobile robot localization
and mapping. Those contributions are:

1. Accurate and Lightweight Scan Matching Localization: Our localization algo-
rithm, based on scan matching, offers an accurate solution with minimal computational
effort. It is built on top of maximum likelihood pose estimation that, with the intro-
duction of a likelihood field as measurement model, provides a formulation that can be
solved with non-linear least squares optimization on a manifold. The manifold is used
to further linearize our formulation and simplify the calculation of the Jacobians. To
improve its accuracy, the discrete nature of the likelihood field is minimized by inter-
polating the value of each grid cell with its neighbors. It actively handles outliers in
measurements by using a loss function that controls their impact during optimization.

(a) Global Localization: Localization algorithms based on scan matching are local
search methods that are not capable of solving the global localization problem.
To address this issue we propose a global localization procedure based on uniform
sampling to find the best global pose when such is unknown.

2. Sparse-Dense Approach for Grid Mapping: To improve the efficiency of any map-
ping procedure, this thesis proposes a space management method for grid mapping that
is based on sparse division of space combined with dense subdivision. Based on the
concept of local density perception in a sparse environment, it provides the advantage
of sparse space management (including automatic grid size growth) with the benefits of
fast local data access times.

(a) Online Data Compression: The local density of data provides the opportunity
to increase space efficiency by exploiting statistical redundancy present in the data.
A lossless data compression algorithm is used seamlessly and transparently during
mapping to proactively reduce the data size.

(b) Implicit Data Sharing: Grid maps are efficiently duplicated by using a Copy-
On-Write method that defers the copy of data until a write operation is performed.



3.

1.3

(c) Mapping Framework with Multithreading Support: The implementation
of the sparse-dense approach, in the form of a software library, offers a mapping
framework with the proposed space management, online data compression and
implicit data sharing with multithreading support. All features are automatically
available to any model that is implemented on top of this framework due to the
architectural abstract layer that separates the model from space management.

Real-time online SLAM: Built on top of our scan matching based localization al-
gorithm and grid mapping with the sparse-dense approach, we take online SLAM a
step further in computational efficiency, while retaining good accuracy. Our solution
is capable of mapping the environment at higher rate than most modern range sensors
(i.e. LIDAR) can provide measurements.

Improved Rao-Blackwellized Particle Filter SLAM: For environments where a
online SLAM solution is not adequate an improved Rao-Blackwellized particle filter
SLAM is proposed. By using our scan matching and sparse-dense space management we
reduced the number of necessary particles to obtain a topologically correct map while
significantly improving the computational efficiency. When compared with the current
state-of-the-art, we were able to obtain speedups that range from 6 to 25 times faster.

(a) Multithreaded RBPF SLAM: By employing a Thread Pool model we were able
to further improve the computational efficiency of our solution with multithreading.
Thanks to the multithreading support of the sparse-dense framework both the scan
matching and mapping procedure can leverage the multiple execution threads.

Publications

From this work the following publication have been produced:

Eurico Pedrosa, Pereira, A., and Lau, N. (April 2018). A Sparse-Dense Approach for
Efficient Grid Mapping. In Autonomous Robot Systems and Competitions (ICARSC),
2018 International Conference on, Torres Vedras, Portugal. IEEE

Eurico Pedrosa, Pereira, A., and Lau, N. (2017). A Non-Linear Least Squares Ap-
proach to SLAM using a Dynamic Likelihood Field. Journal of Intelligent & Robotic
Systems

Pedrosa, Eurico., Pereira, A., and Lau, N. (April 2017). Efficient Localization based on
Scan Matching with a Continuous Likelihood Field. In Autonomous Robot Systems and
Competitions (ICARSC), 2017 International Conference on, Coimbra, Portugal. IEEE

Pedrosa, Eurico., Pereira, A., and Lau, N. (May 2016). A Scan Matching Approach
to SLAM with a Dynamic Likelihood Field. In Autonomous Robot Systems and Compe-
titions (ICARSC), 2016 International Conference on, pages 35—40, Braganga, Portugal.
IEEE

Eurico Pedrosa, Lau, N., Pereira, A., and Cunha, B. (2015). A skill-based architecture
for pick and place manipulation tasks. In Pereira, F., Machado, P., Costa, E., and
Cardoso, A., editors, Progress in Artificial Intelligence, volume 9273 of Lecture Notes in
Computer Science, pages 457-468. Springer International Publishing



e Eurico Pedrosa, Lau, N., and Pereira, A. (2013). Online SLAM Based on a Fast
Scan-Matching Algorithm. In Correia, L., Reis, L., and Cascalho, J., editors, Progress
in Artificial Intelligence, volume 8154 of Lecture Notes in Computer Science, pages 295—
306. Springer Berlin Heidelberg

1.4 Thesis Structure

This thesis is organized in six chapters that describes the presented contributions. The
current chapter, Chapter 1, introduced to the reader the motivation that guided the devel-
oped work and consequent contributions to the state-of-the-art. The chapter that follows,
Chapter 2, presents the main concepts and solutions for mobile robot localization and map-
ping and the challenging problem of solving both concepts simultaneously, commonly known
as simultaneous localization and mapping.

Our first contribution is presented in Chapter 3. It proposes the development of a
localization algorithm for mobile robots based on scan matching. The localization problem is
presented as maximum likelihood pose estimation that, with the introduction of the likelihood
field as a measurement model, can be solved as a scan matching problem with non-linear
least squares optimization on a manifold. The presentation of our contributions continues in
Chapter 4 with the proposal of a sparse-dense framework for efficient mapping. It is a hybrid
solution that uses sparse division of space combined with a dense subdivision of space that is
capable of covering any mapped area. Additionally, it provides several tools to further improve
space efficiency such as online data compression and implicit data sharing. The combined
knowledge of the previous two chapters is explored in Chapter 5 with the development of two
grid-based SLAM solutions. One solution tackles the online SLAM problem with the already
proposed scan matching algorithm for localization that is adapted for incremental mapping.
The other solution addresses the full SLAM problem with a Rao-Blackwellized particle filter
SLAM that leverages on our scan matching algorithm and sparse-dense framework to improve
its computational and space efficiency, which includes multithreading. Finally, Chapter 6
draws the main conclusions of this thesis and discusses open questions and directions for future
work.






Chapter 2

Localization and Mapping

In the majority of robotic application the decision of what to do is facilitated by knowing
certain quantities. For example, it is simpler for a robot to move in the environment when it
knows its exact location and the exact position of known objects. However, these variables are
not directly measurable, instead, the robot has to rely on information extracted from sensor
data. But sensors are a major bottleneck in state estimation, as the information they carry
is usually incomplete about those quantities, and their measurements are contaminated by
noise. Nonetheless, state estimation tries to recover state variables using the available sensor
data and probabilities are used in state estimation algorithms to compute a belief distribution
over possible states. Localization and mapping are two problems in robotics that can be
solved using probabilistic state estimation algorithms. The objective of this chapter is to
present the concepts of robotic localization and mapping in a probabilistic framework with
explanatory examples that demonstrate how they can be solved. Additional state-of-the art
will be presented in the remaining chapters when deemed necessary.

2.1 Bayesian State Estimation

A state is what characterizes an environment and is the collection of all aspects of the
robot and environment that can influence the future. Some state variables are prone to
change over time, such as the location and orientation of the robot robot, while others will
remain unchanged (static), like the location of walls in a building. State that changes over
time is named dynamic state and its counterpart is called static state. Let state be denoted
by x, with the understanding that the variables contained in x will depend on the context.
The state at time ¢ is denoted by x;. Time is assumed to be discrete, therefore all events
take place at discrete time steps t = 0,1,2,...,n. The point in time where the robot starts
corresponds to t = 0. The number of state variables are potentially endless and, as already
mentioned, it depend on the application.

State x; follows the Markov property of a stochastic process. It means that the knowledge
of past states, measurements, or controls provide no additional information that would help
estimate future states. It does not require the future to be a deterministic function of the state,
it may be stochastic but with the restriction that no variable prior to x; may influence the
stochastic evolution of future states, unless mediated through the state x;. Temporal processes
where this restrictions apply are usually known as Markov chains. It is true that in practice
it is not possible to specify a complete state for any reasonable robot system. A complete



state includes all aspects of the environment that may have an impact in the future, the robot
itself with its limited computer memory and processing power, the surrounding people, etc.,
therefore, practical implementations only select a relevant subset of all state variables. Such
state is designated incomplete state.

For most robotic applications, the state x; is continuous. The robot pose, that is, the
location and orientation of the robot relative to the global coordinate frame is a good example
of a continuous state. But a state can also be discrete, as for example the binary state variable
that models whether or not a door is open. State spaces that comprise both continuous and
discrete variables are designated hybrid state spaces.

2.1.1 Environment Interaction

There are two types of interaction between a robot and its environment: it can move
itself and objects in the environment and it can collect information about the environment
state with its sensors. Both interactions can happen simultaneously, but to simplify their
description they are presented separately.

Control The motion of the robot and manipulation of objects are examples of kinematics as
stochastic systems. They change the state of the environment, even if the robot does
not performs any action itself the state may change. Hence, it is assumed that the robot
always performs an action, even when any type of motion is not existent. The data of
a control action contains information about the change of the state in the environment.
Velocity is an example of control data in mobile robotics. Applying a velocity of 1m per
second during 2 seconds suggests that the pose of the robot, after executing the control
action, is around 2m ahead of its pose before the execution of the command. Because
of that, control data carry information about the change of state. Amnother source of
control data are odometers. This sensor, the odometer, can measure the revolution of
the motion wheels installed in the robot. Hence, it holds information about the change
of the state. It is true that an odometer is a sensor, and as such its data can be seen
as measurement data. But because it measures the effect of a control action it can be
used as control data as well. Let us denote u as the control data. Variable u; denotes
the change of state in the time interval (¢ — 1;¢]. Expression

Uty:itg = Uty Uty 41, Ut 425 - - -5 Uty (21)

denotes the sequence of all control actions applied between time ¢; and to, for 1 < to.
A change in the state of the environment is not restricted to the actions of the robot.
The fact that time passes is by itself a control information. Therefore, it is assumed
that at every time step ¢ there is exactly one control data item that includes the action
“do-nothing” as a valid action.

Measurement The robot senses the state of the environment through a perception process.
This process updates the robot’s internal state of the environment by extracting infor-
mation from the data acquired with the robot sensors. For example, the robot can take
a camera image or a range scan to collect information about the environment state.
The result of this perceptual interaction is called measurement or observation, being
both terms used interchangeably. The acquisition of sensor measurements is not done
without delay, and thus, they provide information about the state a few moments ago.



The data carried by a measurement provides information about the environment state
at a specific point in time. Measurement data can include camera images, depth, range
scans, magnetic north, and so on. Small temporary differences in the acquisition of all
data in a measurement (e.g. a laser sensor scans the environment sequentially at very
high speed) can be ignored. Let us denote z the measurement data, and z; the mea-
surement data at time t. Although it is possible for a robot to acquired more than one
measurement within a single time step, for the sake of notation only one measurement
at a time is assumed to take place. Like before

Ztytg = Rty Rt1+1y Rt 425 - - -5 Rtg (2~2)

denotes the sequence of all measurements acquired between time t; and to, for t1 < to.

It is important to maintain a distinction between control and measurement as they can
play fundamental different roles, as for example, in mobile robot localization. Motion (or
any control action) tends to exert a loss of information about the state of the environment
due to the noisy nature of the robot actuators and the randomness of the robot environment.
Perception, on the other hand, adds knowledge about the state of the environment. It is
also important to clarify that actions and perceptions are not separated in time, but rather
concurrent.

2.1.2 Probabilistic Evolution of Controls, States and Measurements

The evolution of controls, states and measurements is controlled by probabilistic laws.
State x; is generated stochastically from the state x;_1, therefore it is adequate to define
the probability distribution from which state x; is generated. Taking into account that the
emergence of state x; might be affected on all past states, measurements and controls, the
probabilistic law that represents the evolution of state can be defined by the following proba-
bility distribution:

P(Xe|X1:0—1,5 21:0—1, U1:t) - (2.3)

Assuming that the state x is complete, then, the state x;_1 is set to be a sufficient statistic
of all previous controls and measurements up to that point in time, that is ui.;—1 and z1.4_1.
From expression only the variable u; matters if the state x;_1 is known. Hence, the
conditional independence property can be used to achieve the following equality:

P(Xe| X111, 21:0—1, U1:t) = D(Xe|Xp—1, ut) - (2.4)

A similar reasoning can be applied to the process that models the generation of measure-
ments. Assuming that the state x; is complete, the following conditional independence can be
obtained:

p(Zt!XLtfl, Z1:it—1, Ul:t) = P(Zt|Xt) . (2-5)

This implies that the state x; is sufficient to predict a (noisy) measurement z; because the
information from past measurements, controls and even states are irrelevant if x; is complete.

The probability p(x¢|x;—1,u) is called the state transition probability. It models how the
environment state evolves over time as a function of robot controls u;. The stochastic nature
of robot environments is the reason why p(x¢|x;—1,u;) is a probability distribution and not
a deterministic function. The probability p(z:|x;) is called the measurement probability. It



models the process by which measurements z; are generated from the environment state x;
using a probability distribution. Measurements can also be seen as noisy projections of the
state. The controls, states and measurements evolve in the following way: at time ¢ the state
is stochastically dependent on the state at time ¢ — 1 and control u;; the measurements z; is
stochastically dependent on the state at time ¢. This probabilistic temporal generative model,
depicted in Flgure 2 1} is known as dynamic Bayes network (DBN).

Xt+1

Figure 2.1: Evolution of controls, states and measurements characterized by a dynamic Bayes network.

2.1.3 Bayes Filter

The internal knowledge of the robot about the state of the environment is represented
by a belief. As already discussed, it is not possible to directly sense the state. For example,
the pose of the robot must be inferred from data, because even with sensors like a Global
Positioning System (GPS) it is not possible to have the value of the true pose. Therefore, the
internal belief is used to distinguish the internal knowledge from the true state.

A Dbelief can be represented through conditional probability distributions. For each possible
hypothesis with regards to the true state a probability (or density value) is assigned by the
belief distribution. Let us denote a belief over a state variable x; by bel(x;) which is an
abbreviation of

bel(x:) = p(xX¢|z1:¢, U1:t) (2.6)

the posterior of the probability distribution over the state x; constrained on all past measure-
ments z1.; and all past controls ui.;. Sometimes it is useful to calculate the posterior before
integrating z;, right after executing the control u;. The resulting posterior is represented by

bel(xt) = p(xe|21:0-1, w1) - (2.7)

In the context of probabilistic filtering, this posterior is also referred to as prediction, in the
sense that bel(x;) predicts the state x; based on the previous state posterior bel(x;_1) right
before integrating the measurements z;. Calculating bel(x;) from bel(x;) is called measurement
update.

The Bayes filter algorithm presents the most general method for calculating beliefs. It cal-
culates the belief distribution bel from control data and measurement. The pseudo-algorithm
of the Bayes filter is presented in It receives as input the belief bel at time t — 1,
along with the most recent control data u; and measurement z;, and outputs the belief bel(x;)
at time ¢. The belief bel(x;) at time ¢ is calculated from the belief bel(x;—1) at time ¢ — 1,
making the Bayes filter a recursive function.

The Bayes filter, at its core, has two essential steps. The first step is called prediction
(line 3 of the algorithm). In this step the control u; is integrated. It calculates the belief

10



Algorithm 1: General algorithm for Bayes filtering (Thrun et al., 2005).
1. Bayes Filter( bel(x¢—1),us, 2 ):

2: for iﬂ x do

3 bel(x;) = [ p(xe|xe—1,us) bel(x4—1) dxy—1
4 bel(x¢) = n p(z¢|x;) bel(x)

5: end

6: return bel(x;)

over state x; based on the prior belief over state x;_1 and the control u;. The predicted state
bel(x;) is calculated by the integral (sum) of the product of the prior assigned to x;_1 and the
probability of the state evolution from x;_1 to x; influenced by the control wu;.

The second step is called measurement update (line 4 of the algorithm). The belief bel(x;)
calculated in the previous step is multiplied by the probability that the measurement z; may
have been observed for all hypothetical posterior state x;. The resulting product is usually
not a probability (it may not integrate to one). Hence, the existence of the constant n that
normalizes the final belief bel(x;).

The recursive computation of the posterior belief requires an initial belief bel(x;) as bound-
ary condition. If the value of x; is known, bel(x;) should be initialized with a mass point
distribution with all probability mass centered around the correct value of x7, and zero prob-
ability elsewhere. If the value x; is not known, an uniform distribution over the domain of
x1 can be assigned to the initial belief bel(x;). Partial knowledge about the value of x; can
be modeled using non-uniform distributions, although, in practice, it is common to assume
complete knowledge or complete ignorance.

2.2 Mobile Robot Localization

Mobile robot localization is the problem of estimating the pose of a robot relative to a given
representation (or map) of the environment. (Cox (1991), considered it to be the fundamental
problem to provide a mobile robot with autonomous capabilities and it holds true up to our
days. From a different point of view, mobile robot localization can also be seen as a problem
of coordinate transformation (Thrun et all 2005)). The map of the environment is described
in a global coordinate system that are independent of the pose of the robot. The localization
procedure is responsible for determining the association between the map coordinate system
and the local coordinate system of the robot. This association allows the robot to apply the
necessary coordinate transformation to express the location of known objects within its own
coordinates frame. Nowadays, most of autonomous mobile robotic tasks requires knowledge
about the pose of the robot and the position of the objects to be handled.

Unfortunately, the pose of the robot can not be sensed directly. Most robots, if not all, do
not possess error free measuring sensors, therefore, the pose of the robot has to be integrated
over time considering all sources of information (sensors and actions). In a probabilistic
framework, the localization problem can be defined by the following probability distribution
(Thrun et al., 2005):

p(X¢ | X¢—1, 2ty U, m) (2.8)

where x; is the robot’s pose, z; the available measurements, u; the control data (usually
odometry information) and m is the map of the environment. This formulation can be further

11



expanded into:
p(xt | Xe—1, 2, ue, m) o< (e | X, m) p(Xe | Xe—1, ur) (2.9)

Here, the factor p(x; | x¢—1,u¢) models how the robot’s pose evolves overs time as a function
of robot controls u; and p(z; | x¢, m) models the process by which the measurements z; are
generated from the environment with respect to the pose of the robot. These models are
known as motion model and measurement model, respectively.

2.2.1 Motion Models

The motion model p(x; | ut, x¢—1) plays a fundamental role in predicting the evolution of
the robot’s pose. It describes the posterior distribution of the robot’s pose x; after executing
the control u; at x;_1, that is, a probabilistic generalization of the robot kinematics (Cox
and Wilfong, 1990). The effect of the control actions on the robot’s pose is described by the
calculation of its kinematics. The pose (or state) of a rigid robot is usually described by six
variables, three for its Cartesian coordinates (x,yand z), and three for its Euler angles (pitch,
roll and yaw). In terms of localization, this thesis is mostly focuses on mobile robots operating
in a planar environment, therefore the state of the robot is characterized by a pose with three
variables: two for its Cartesian coordinates (x and y) and one for its heading direction (yaw).

Let x; = (z y 6)7 denote the robot pose at time ¢. The orientation of the robot 6,
sometimes called bearing or heading direction, is assumed to have orientation equal to 0 rad
pointing into the direction of its x—axis and orientation equal to 7/2 rad when pointing into
the direction of its y—axis. The pose without orientation is usually referred to as location. It is
a two-dimensional vector which refers to the x — y coordinate of an object. The probabilistic
kinematic model, or motion model, is the state transition model in mobile robotics, and is
modeled by the conditional probability p(x¢|x¢—1,u¢). Here, x; and x;_1 are both robot poses
and u; is the control action. This model describes the posterior distribution of the robot pose
X after executing the control u; at x;_1. Note that in actual implementations of the model,
the control data is usually provided by the odometry of the robot.

There are two motion model to describe the effect of a control action. They somewhat
complement the type of motion information that is being processed. The wvelocity motion
model assumes that the control action u; specifies the velocity commands sent to the motor of
the robot. The odometry motion model assumes that one has access to odometry information,
and the integration of such information is to some extend different from the velocity model.
In practice, the odometry model tends to be more accurate than velocity models, with the
simple justification that most robots do not execute velocity commands with the same level
of reliability that can be obtained by measuring the revolution of the wheels of the robot.
However, odometry is only available after executing a motion command. Therefore, it is best
suitable for state estimation whereas the velocity model is best used for probabilistic motion
planning. For the purpose of mobile robot pose estimation only the odometry motion model
(Borenstein et al., [1996) is described.

Odometry Motion Model

Odometry is usually attained by integrating the information of wheel encoders (e.g. every
tenth of a second). In reality, odometric information are sensor measurements, not controls,
and to model it as measurements the resulting estimates would have to include the actual
velocity as state variables. However, it would increase the dimension of the state space,

12



therefore, to maintain a small state space, the odometry information is assumed to be data
from control signals. The true pose of the robot, at time ¢, is modeled by the random variable
X¢. The robot odometry is used to estimate this pose, however, due to the existence of drift
and slippage it is not possible to get a consistent coordinate transformation between the
coordinates of the robot’s odometry and the physical world coordinates. If it was possible,
the robot localization problem would be solved by simply using dead reckoning.

Let X; = (%, 7,0)" denote the odometry measurement fixed in an internal coordinate of the
robot whose relation to the global world coordinates is unknown. In the time interval (¢t — 1, ¢]
that the robot advances from pose x;_1 to pose x;, the odometry reports back the difference
in motion from X;_1 to X;. To use this information in pose estimation one must notice that
the relative difference between T;_1, Ty, under an appropriate definition of “difference”; is a
good estimator for the difference of the true poses x;_1 and x;. Therefore, the control u; is
calculated from the pair (x; — 1,x;)

The control u; is transformed into a sequence of three steps to extract the relative odometry
information: an initial rotation d.t1, followed by a translation dians, and finished by another
rotation dyot2. Each pair of positions (X, X’) has a unique parameter vector (Srot1, Otrans, Orot2)
that is sufficient to reconstruct the relative motion between s and 5. Therefore, the parameters
Orot1, Otranss Orot2 form a sufficient statistics of the relative motion encoded by the odometry.
The probabilistic motion models assume that these parameters are polluted by independent
noise. The describes the method for computing p(x¢|x¢—1,u¢) from odometry.
It accepts as input an initial pose x;_1, a pair of poses u; = (X;_1,%¢)’ obtained from the
odometry of the robot, and a possible final pose x;. The output is the numeric value of
the probability p(x¢|x¢_1,u¢). The odometry relative motion parameters (&rot1, Otrans, Orot2) "
are calculated in lines 2 to 4. The associated relative motion parameters (Srotl, Strans, 5r0t2)T
for the given poses x;—1 and x; are calculated in lines 5 to 7. The individual probabilities
for individual motion parameters are calculated through 8 to 10. The function prob(a,b?)
implements an error distribution over a with mean 0 and variance b. Finally the output of
the algorithm is calculated in line 11 and it is the combined probability error probability of
the individual error probabilities p1, po and p3. The variables 1 through a4 are robot-specific
parameters that can be used to specify the noise in robot motion.

Algorithm 2: Odometry motion model algorithm (Thrun et al., [2005).

1: Odometry Motion Model( X, Uty Xp—1 ):
2: Srot1 = atan2(y’ — g, — ) — 0

3: 5trans - \/(5f - "E/)Q + (27 - gl)2

4: 6rot2 = 9/ —0— 6r0t1

5: Orot1 = atan2(y’ —y, 2’ —x) — 0
6: 5trans = \/(.13 - x/)Z + (y - y/)2

7 5rot2 =0 —6— 6rot1

8: P1 = prOb((srotl - 5r0tla 041830‘51 + a25t2rans)

9: P2 = Prob(Strans — dtrans, a351;2rans + 0‘45301;1 + a45r20t2)
10: D3 = prOb((SrOtQ - 5r0t2; al(g?ot? + a25t2rans)

11: return p; - p2 - p3

An alternative way to apply the motion model is used in particle filters algorithms. The
use of particle filters, require an algorithm for sampling from p(x¢|x;—1,u;) rather than a

13



closed-form expression for computing p(x¢|x;—1,u;) for any x;,x;—1 and w;. The algorithm
for sampling from the odometry motion model is presented in Its input is an
initial pose x;—; and odometry data u;, and its output is a random x; distributed according
to p(x¢|x¢—1, u¢). The difference to the motion model algorithm is that it randomly computes
x; (lines 5 to 7) instead of computing the probability of a given x;.

Algorithm 3: Odometry sample motion model algorithm (Thrun et al. 2005).

1. Odometry Sample Motion Model( u,x;—1 ):
2: Orot1 = atan2(y’ — 5,7’ — ) — 6

3: 5trans :_\/(j:__ i‘/)Q + (27 - g/)2
4: 61'0t2 =0 —6- 61‘01;1

2 _ 2 2

5: Orot1 = Orot1 — sample(aq ;1 + @20 ans)
Iy _ 2 2 2

6: 5trans - 5trans - Sample(a36trans + a45rot1 + a45rot2)
2 _ 2 2

7: Orot2 = Orot2 — sample(ay 82 o + a2ds 1)

8: 7 =2 + bt cos(f + 31—01;1)
9: y/ =y+ Otrans Sin(e + 6rot1)
10: 9/ = 9 + 6r0t1 + 6rot2

11 return x; = (2/,y,0)T

2.2.2 Measurement Models

The measurement model p(z;|x;, m) plays a fundamental role in the measurement update
step of the Bayes filter. It physically models the sensors of the robot. Assuming that the
robot pose x; and the map m are known, the measurements model specifies the probability
that z; is measured. It is common, for sensors equipped in robots, to generates more than one
measurement at time ¢:

2 ={2},22,..., 2K} (2.10)

Thus, the resulting calculation is the collection of probabilities p(2F|x;, m), where z is the
kth measurement, and K the total number of such measurements. Assuming conditional
independence between the measurements, the resulting probability is given by:

K .
p(2t]xe, m) = Hp(ZZ\Xum) : (2.11)

Note that the assumption of conditional independence is only true on ideal cases. Depen-
dencies in noise may exist due to adjacent measurements corrupted by people, errors in the
model m, approximations in the posterior, etc. However, if these violations are ignored the
assumption of conditional independence maintains.

Beam Models of Range Finders

Range finder is a common sensor in robotics and it measure the range to nearby objects.
Ranges may be measure along a beam (i.e. laser range finders) or within a cone (i.e. ultrasonic
sensors). The model that approximates the physical model of range finders is known as beam
model (Moravec, [1989; Fox et al., [1999b; [Thrun et al., 2005). The beam model can consider

14



four types of errors: local measurement noise, errors due to unexpected objects, errors due to
failure to detect objects, and random unexplained noise. The expected model p(z;|x;, m) can
be a mixture of four probabilities, each of which corresponds to a specific type of error.

Measurement noise: Let zf* denote the “true” range of the object measured by zf In
location-based maps, a ray casting function is used to obtained the range z/*. In feature-
based maps, the range zf* is usually obtained by searching for the closest feature within
a measurement cone. However, even if the measurement is correct its value is subject to
error. This measurement noise is usually modeled by a Gaussian, denoted by pp;, with
mean zf* and standard deviation opi. The values measured by the range sensor are
limited to the interval [0;zmax|, Where zmax is the maximum sensor range. Therefore,

the measurement probability is specified by:

{77 N(ZfQ Ztk*aaﬁit) if0 < Zf < Zmax

0 otherwise ’ (212)

k
Phit (2¢ [x¢, m) =
where zf* is obtained from x; and m via ray casting, and N (zF; 2%, 02 ) a univariante
Gaussian with mean zf* and standard deviation op;;. The normalizer 7 is calculated by

Zmax -1
n— ( N 28 o) dzf) . (2.13)
0

Unexpected objects: The environments in which robots operate are dynamic, whereas
maps m are static. As consequence, objects not represented in the map can cause
range finders to produce surprisingly short ranges. Instead of treating dynamic objects
as part of the state vector (to estimate their location), treat the objects as noise. This
way, not modeled objects have the property that they cause ranges to be shorter than
2F*. The likelihood of sensing unexplained objects decrease with range. Such situation
is described by an exponential distribution. Let Aghort denote the parameter of the expo-
nential distribution, an intrinsic parameter of the measurement model. The probability
Dshort (2¢|X¢, m) takes the following form:

k .
n Ashorte_AShortZt if0 < Zf < Zmax

2.14
0 otherwise ’ ( )

pshort(zﬂxta m) = {

Like in the previous case, the normalizer n is needed since the exponential is limited to
the interval [0; zmax]:

Zmax k -1 1
n= (/ Ashort€ short?t dzf) = (2.15)
0 1—e

)‘shortzf*

Failures: Occasionally, objects are just not detected by range finders. For example, for sonar
sensor this happen very often as result of specular reflection, and laser range finders fail
when sensing black, light-observing objects. A sensor failure can be manifested by a
max-range measurement, that is, the sensor return its maximum possible value 2 ax.
This situation is modeled by a point-mass distribution centered at zyax:

1 if 2 = zZpax

0 otherwise ° (2.16)

pmax(zﬂxtam) = {

15



Random measurements: There is also the possibility of entirely unexplainable measure-
ments from range finders. Sonars, for example, often generate phantom readings when
they bounce off walls. Similar situation can also happen with laser range finders. Such
measurements are modeled by an uniform distribution spread over the entire sensor
measurement range [0; Zmax]:

L if 0 < Zf < Zmax

prand(zﬂxta m) = {Zmax (217)

0 otherwise

These four different probabilities are mixed by a weighted average defined by the parameters
Whit, Wshort, Wmax anNd Wrand With whit + Wshort + Wmax + Wrand = 1.

T
Whit Phit (25 %, m)

k
k Wshort Dshort (Zt |Xt7 m)
2| Xe, M) = . 2.18
p( t | b ) Wmax pmax(zﬂxta m) ( )
Wryrand prand(zﬂxtp m)

An implementation of the beam model is presented in [algorithm 4 It takes as input a
range scan z;, a robot pose x; and a map m. The loop (lines 2 and 7) multiplies the likelihood

of individual sensor beams zF, following [Equation 2.11} A ray casting function (in line 4) is

used to calculate the noise-free range zf* for a particular measurement. In line 5, the likelihood

of each individual range measurement kf is computed following [Equation 2.18/ Finally, the

algorithm returns the desired probability p(z¢|x;, m).

Algorithm 4: Beam model algorithm (Thrun et al., [2005]).
1: Beam Model( z;,x;,m ):

2: qg=1

3: for k=1 to K do

4

5

compute zf* for the measurement zf using ray casting
_ k k
P = Whit * phit(zt ’Xtv m) + Wshort pshor(zt |Xt7 m) +
k k
Wmax * pmax(zt ’Xtv m) + Wrand - prand(zt ’Xtv m)

6: 4=q-p
7: end
8: return q

Likelihood Field for Range Finders

While the beam model applies a ray casting function to find the “true” z* range of the
object measured by zF, the likelihood field (Thrun, 2001; Thrun et al., 2005) projects the
endpoint of zf into global coordinates of the map m to find the distance to the nearest object.
Let x; = (2 y 6)7 denote the robot pose at time ¢, (Zk,sens yk@ens)T the relative position of the
sensor on frame of the robot, and 0y, ¢.ns the angular orientation of the sensor relative to the
heading of the robot. The endpoint of the measurement zF, in global coordinates, is given by

the transformation:
v\ _ ( x ) N < 09s0 —sin 6 > [( T sens > b < CF)SHk,senS )} (2.19)
yzf Y sinf  cos0 Yk, sens Si Hk,sens

16



These coordinates are only valid when the sensor actually detects an obstacle. Therefore,
whenever the range measurement takes on its maximum value zF = zpay it is simply discarded
by the likelihood field model. Similar to the beam model, three types of errors are assumed.

Measurement noise. The noise of the process is modeled by a probability density that
requires finding the nearest object in the map. Let A denote the FEuclidean distance
between (mzf yzf)T and the nearest object in the map m. The value of A; is computed
by a search function defined by

D(2.5,y.4) = min <\/(ka —x')? + (Y0 — y')? | (z',y )occupied in m) . (2.20)

! !
z'y t

Then, the measurement noise can be modeled by a zero-centered Gaussian:
Phit(2f X6, 1) = €0, (A) - (2.21)

The density pp;; is obtained by intersecting (and normalizing) the likelihood field by the
Sensor axis.

Failures. Like for the beam model, it is assumed that max-range readings have a large like-
lihood modeled by a point-mass distribution pyax.

Random measurements. To finalize, a uniform distribution pyanq is used to model random
noise in perception.

Again, the desired probability p(zf|x;, m) integrates all three distributions: 2y - phit + Zrand -
Prand + Zmax - Pmax using the known mixing weights z;and, 2hit and zmax. An implementation of
the likelihood field model is presented in The outer loop, as already discussed in
the beam model, multiplies the individual values of p(zF|x;, m). The value of the range reading
is validated in line 4, in case of a max range reading the measurement 2} is discarded. The
measurement end-point is calculated in line 5 and 6. The calculation of the nearest obstacle in
x —y—space is executed (in line 7), and the resulting likelihood is obtained in line 8 by mixing
a normal and uniform distribution. The function prob(A,oy;) calculates the probability of
A under a Gaussian of mean zero and standard deviation oy;.

Algorithm 5: Likelihood field model (Thrun et al., [2005).

1. Likelihood Field Model( z;,x;,m ):

2: qg=1

3: for all k£ do

a: if 2F # 2,40 then

5 Tk =T + Tp,sens COS O — Yk sens SN0 + 2F o8 0 + O sens
6: yz{c =Y + Yk ,sens COS 0 + Lk sens sin 6 + Zf sin 6 + ek,sens
4 A= D(xzf’yzf)

s: q = q - (2nit - Prob(A, o) + Z224)

9: end

10: return ¢

17



2.2.3 A Taxonomy of Localization Problems

Not all localization problems have the same degree of complexity. In this section, the
taxonomy of localization problems are discussed to provide a better understanding of the
difficulty of those problems. The localization problems are divided by this taxonomy along
several important dimensions according to the nature of the environment and initial knowledge
that a robot may hold relative to the localization problem in question (Thrun et al., |[2005).

Local Versus Global Localization The localization problem can be divided into three
types of localization problems with an increase of complexity. These problems are character-
ized by the knowledge that is available at the beginning and at run-time.

e Position tracking or local localization assumes that the initial robot pose is known
(Schiele and Crowley, [1994; |Weiss et al., [1994; Borenstein et al.| |1996]). The pose of
the robot can be attained by handling the effect of the noise in robot motion, which is
usually small. This is a local problem because the uncertainty is restricted to a region
near the true pose of the robot. The uncertainty of the pose is commonly modeled by a
unimodal distribution (e.g. Gaussian).

e The global localization makes no assumptions about the initial pose of the robot (Burgard
et al., [1998; Roumeliotis and Bekey, [2000; |Jensfelt and Kristensen|, 2001). The robot is
initially placed anywhere in its environment without any knowledge about its location.
Bounding errors of the pose can not be assumed, and unimodal probabilistic distributions
are usually ill-suited. The global localization problem is more difficult to solve than
position tracking.

e The kidnapped robot is a variant of global localization that is even more difficult to solve
(Engelson and McDermott|, [1992; Fox et al., 1999b; [Lima et al., 2011). During operation
a robot can be kidnapped and teleported to any other location. The kidnapped robot is
more difficult to solve than the global localization problem because the robot can have
a wrong belief about its location in the environment. In global localization the robot
knows that it does not know where it is. Although, during operation, a robot is rarely
kidnapped this problem has a practical importance, that is the ability to recover from
localization failures.

Static Versus Dynamic Environments The environment is a dimension with a profound
impact on the difficulty of localization. They can be static or dynamic. In a static environment
the pose of the robot is the only existing state (or variable quantity). That is, in a static
environment only the robot moves while other object remain in the same location, forever. In
a dynamic environment existing objects, other than the robot, may change their location or
configuration over time. Changes that persist over time with an impact in more than a single
sensor reading, can affect the outcome of the localization procedure. Untraceable changes
are of course of no relevance to localization, and those that affect a single measurement are
better handled as noise. In practice, most real environment are dynamic, with states changes
happening at different rates. Example of continuing changes are: people, doors, movable
furniture or even other mobile robots.

18



Passive Versus Active Approaches A third dimension that differentiates localization
problems is the fact of whether or not the localization algorithms has control over the motion
of the robot. There are two cases, passive and active localization. In passive localization
algorithms, the localization module is only an observer of the operations of the robots. The
motion of the robot is controlled by other modules that pay no attention about facilitating
localization. In active localization algorithms, the localization module is considered in the
control of the robot as to minimize localization errors and possible problems of moving a
deficiently localized robot into a risky place. Active approaches have in general better local-
ization results than passive ones. However, they require control over the robot motion, which
in practice tends to be insufficient: the robot requires to be able to localize itself even when
executing some other tasks than localization.

Single-Robot Versus Multi-Robot A fourth dimension of the localization problem has to
do with the number of robots involved. The most common approach to localization is single-
robot localization. It handles only one robot. It is the most convenient form for localization
algorithms as all data is collected at a single robot platform and there is no communication
issues. The multi-robot localization (Fox et al., 2000; |[Rekleitis et al., |2002; Martinelli et al.,
2005) problem come into existence in a team of robots. If each robot can localize itself indi-
vidually, the multi-robot localization can be solved using single-robot localization. However,
if a robot can observe other robots, there is an opportunity to improve localization. If the
relative position of both robots are known, or other type of information about the relative po-
sitions, then the belief of one robot can be use to bias the belief of the other. The multi-robot
localization approach raises the issue of non-trivial representation of beliefs and the nature of
communication between them.

2.2.4 Localization Approaches

As already stated, localization is the problem of determining the pose of the robot relative
to the given map of the environment, by extracting information from actions and measurements
. Localization approaches have been developed over the years for a large set of
maps, such as feature-based and geometric-based — maps will be discussed in the next chapter.
Localization assumes the existence of an accurate map of the environment. In this section
several algorithms for mobile localization are presented.

Figure 2.2: Graphic model of mobile robot localization.

19



Markov Localization

The Markov localization (Koenig and Simmons, [1998; Fox et al., [1999b) is the direct
application of the Bayes filter stated in [algorithm 1} The [algorithm 6] shows the basic Markov
localization algorithm. The Markov localization only requires an additional input, a map m.
The map m directly influences the measurement model p(z;|x;, m) (in line 4). Although not
always necessary, it is also incorporated in the motion model p(x¢|x¢—1,u;, m) (in line 3). Just
like in the Bayes filter, the probabilistic belief at time ¢t — 1 is transformed into a belief at time
t. The Markov localization approach handles the global localization problem, the position
tracking problem and the kidnapped robot problem in static environment.

The initial belief bel(x;), that reflects the initial knowledge of the pose of the robot, is set
differently depending on the type of localization problem.

e Position tracking. When the initial pose is known the initial belief bel(x1) is set to a
point-mass distribution
1 ifx1 =%

0 otherwise (2.22)

bel(xl) = {
where X; denotes the known initial pose. However, because point-mass distributions
are discrete and without a density, it is replaced by an approximation, usually a narrow
Gaussian distribution centered in X3

bel(xl) =r N(Xl; X1,%), (223)
with 3 as the covariance of the initial pose uncertainty.

e Global localization. In the case of an unknown initial pose, the belief bel(x;) is
initialized by an uniform distribution over the valid space of all valid poses in the map:

bel(x1) = (2.24)

X1’
where | X| is the volume of the space of all valid poses in the map.

e Other. In the case of partial knowledge about the initial pose of the robot, the initial
distribution can be easily manipulated. For example, if the robot is next to a door,
the belief bel(x1) can be initialized with a density that is zero for all places except for
regions near a door.

Algorithm 6: Markov Localization (Thrun et al., 2005]).

1: Markov localization( bel(x:—1), ut, z¢,m ):

2: for all x; do

3: bel(xy) = [ p(xe|xi—1,ur, m) bel(x;—1) dx
4 bel(x;) = 1 p(z¢|xz, m) bel(xz)

5 end

6: return bel(x;)

20



EKF Localization

The EKF localization algorithm (Dickmanns and Graefe, |[1988]) is a special case of Markov
localization, it represents beliefs bel(x;) by their mean p; and covariance ;. The EKF local-
ization algorithm in question assumes the use of a feature-based map. At any point in time
t, a vector of ranges r; and bearings ¢; to nearby features z; = {z},2?,...} is obtained. Let
us assume that all features are uniquely identifiable and the correspondence is known. The
identification of a feature is expressed by a set of correspondence variables, denoted ci, one for
each feature vector 2.

The EFK localization algorithm is presented in It requires as input the
Gaussian estimate of the robot pose at time ¢ — 1, with mean u;—1 and covariance ¥;_1, the
control u;, a map of known features m, and set of features z; obtained at time ¢, together
with the correspondence variables ¢;. The output of the algorithm is a revised estimate u, 2.
The additions of the EKF localization to the EKF are in lines 4 to 13, a measurement update
adapted for localization using features. It loops through all features ¢ measured at time ¢.
The correspondence of the i-th feature in the measurement vector is assigned to j (in line
5). Then it calculates a predicted measurement z; (in line 5). The Jacobian H} is then used
to calculate the uncertainty S; (in line 7) that corresponds to the predicted measurement 2.
The estimate is updated (in line 12 and 13), once for each feature.

The presented EKF localization is only applicable when landmark correspondences can be
determined with complete certainty, which in practice is hardly ever true. Therefore, most
of localization implementations try to identify the landmarks during the localization process.
The mazimum likelihood correspondence is a simple method to cope with the correspondence
problem. First it finds the most likely correspondence variable, and then assumes this value as
true. The maximum likelihood technique is not without problems. If there are many equally
likely hypotheses for the correspondence variable the outcome may be simply wrong. This
problem of false data association may be reduced by selecting landmarks that are sufficiently
unique and sufficiently far apart that confusing them with each other is unlikely, but it may

Algorithm 7: EKF localization with known correspondences (Thrun et al., 2005).

1: EKF localization with known correspondences( pi—1, X¢—1,us, m, 2, ¢ )t

2: | i = g(pe—1,ur)

: Y =GEaGE + Ry
4: for all observed features zi = (ri, %) do
5: j=ci
6: Zg:h(:atvmj)
7: Si = HiS [HT + Qq
8: Ki =S H{]T (S
9: fir = fir + K{(2f — 7
10: S = (I — KIH)S,
11: end
12: U = Mt
13: Y= St
14: return py, Y

21



not be an easy task.

A version of EKF localization with unknown correspondence using maximum likelihood
correspondence is presented in[algorithm 8 The key differences lies on the measurement update:
for each observation, a quantification value for all landmarks & is calculated (in lines 5 to 8).
The correspondence variable j(i) is chosen (in line 9) by maximizing the likelihood of the
measurement 2! given any possible landmark my, in the map.

Algorithm 8: EKF localization with unknown correspondences (Thrun et al., [2005).

1: EKF localization( py—1,%i—1,ut, m, z¢ ):

2 | = g(p—1,ur)

3: it = GtEt_thT + Rt

4: for all observed features zi = (ri, ¢¢)T do
5: for all landmarks k£ in map m do
6: Zf = h(jir, mg)

7: SF = HFS[HET + Q4

8: end

j(i) = argmax det(275F) "2 exp{—4 (4 — Z)T[SF] " (2} — 2)}

k

K} =%y [H] 5]
11: e = fiy + Ki(zf — 2")
12: S, = (I - KiH'"s,
13: end
14: Up = [t
15: =3
16: return gy, X

Grid Localization

The grid localization algorithm utilizes an histogram filter over a grid decomposition of the
pose state to approximate the posterior. The histogram filter is characterized by a collection
of discrete probability values maintained as posterior

bel(xt) = {pr¢} (2.25)

where each grid cell x; defines a probability py ;. The set of all cells forms a partition of space
of all valid poses:
dom(Xt) =x1:Uxo:U... XK ¢. (226)

In the basic algorithm of grid localization, the space partition is time-invariant with each
grid cell of the same size. The granularity of the space for a mobile robot moving in a
plane is, for example, 0.10 meters for the x— and y—dimension, and 5 degrees for the rotation
dimension. The finer the representation the better are the results, but at the cost of increasing
the computational requirements.

The histogram filter, used in the grid localization algorithm, is similar to the discrete
version of the Bayes filter but with continuous states, shown in [algorithm 9 Its input is the
discrete probability values {p;—1 4}, the control u;, the measurement z; and the map m. The

22



motion update takes place in line 3, and the measurement update in line 4. The initial belief
bel(x1) is represented by an uniform histogram.

Algorithm 9: Grid Localization with an histogram filter (Thrun et al., [2005).
1: Grid Localization( {py:},us, 2 ):

2: for all £ do

3: Pht = Zpi,t,lmotion_model(mean(xk), ug, mean(x;))
i

4: Pkt = 1) Pkt Mmeasurement model(z;, mean(xy), m)

5: end

6: return {pj .}

Monte Carlo Localization

The Monte Carlo Localization (MCL) (Dellaert et al.,[1999; Fox et al., 1999aj; [Thrun et al.,
2001; [Kwok et al., [2004) is a popular localization algorithm that represents the belief bel(x;)
by particles. Similar to a grid-based Markov localization, the MCL can be applied to local and
global localization. The MCL is one of the most popular localization algorithms in robotics
because it s easy to implement and has a tendency to work well across a broad range of
localization problems.

The presents the basic algorithm of MCL. The belief bel(x;) is represented by
a set of M particles S = {XEI],X?], .. ,XEM]}. In line 4, samples are drawn from the motion
model using particles of the current belief as starting point. Then, in line 5, the measurement
model is used to represent the importance weight of that particle. The initial belief bel(x()
can assume a distribution that depends on the knowledge of that same belie. If the initial pose
of the robot is known, the initial belief bel(x;) is obtained by randomly generating M such
particles from the prior distribution p(x1) and setting an uniform importance weight M~! to
each particle. However, if the initial pose of the robot is unknown, the initial belief bel(x1) is
obtained by drawing M samples from an uniform distribution within the valid state space. In
this case the initial importance weight for each particle is also uniform.

Almost any distribution of practical importance can be approximated by the MCL algo-
rithm. It is not restricted to a limited parametric subset of distributions like, for example, the
EKF localization. The accuracy of the localization is increased by the number of particles.
The number of particles M is a parameter that can be tuned to trade off the accuracy of the
localization and the computational requirements of the MCL. Because the approximations of
MCL are of the non-parametric nature, it has the ability to represent complex multi-modal
probability distributions, and blend them with focused Gaussian distributions.

The presented MCL form solves the local and global localization problem but it cannot
recover from the kidnapped robot or global localization failures. As the particles evolve, they
are placed in locations with the most likely pose of the robot. At some point only particles
near a single pose are kept, and the algorithm is unable to recover if this pose is incorrect.
This problem can be solved with a simple heuristic. Assume that the probability that the
robot might get kidnapped is small, therefore it generate a small fraction of random states in
the motion model update procedure.

The number of particles M to use is an important parameter for the efficiency of particle

23



Algorithm 10: Monte Carlo Localization based on particle filters (Thrun et al., |2005).

1: Monte Carlo Localization( S;—1,u, z¢,m ):

2: St = St == @

3: for m=1to M do

4: xl[tm} = sample_motion_model(ut,x,[tnf}l)
5 wgm} = measurement_model(zt,xgm},m)
6: Si=8+ <x£m], wim])

7: end

8: for m =1 to M do

9: draw ¢ with probability o wim]

10: add xl[f] to S;

11: end

12: return S;

filters. To avoid divergence due to sample depletion in MCL, large sample sets has to be used
to allow a mobile robot to handle both global localization and position tracking, which can
be a waste of computational resources. KDL-sampling (Foxl 2003)) is a variant of MCL that
adapts the number of particles over time. It measures the difference between two probability
distributions to determine the number of samples that, with probability 1—4, the error between
the true posterior and the sample-based approximation is less than e.

Scan Matching Localization

The scan matching approach, when used for localization, tries to find the relative distance
and rotation between a reference pose and the current pose of the robot, i.e. it addresses the
pose tracking problem in localization. This is achieved by comparing one range scan acquired
at the reference pose and one range scan taken at the actual pose of the robot. Furthermore,
it is assumed that the actual pose is approximately known (i.e. from dead reckoning). This
assumption reduces the search space of the scan-matching procedure. Let r; denote the relation
(i.e. relative translation and rotation) between the reference scan and actual scan calculated
by the scan-matching algorithm. This relation 7; is then used to estimate the pose of the
robot:

Xt =Xt—1+71¢. (2.27)

According to (Gutmann and Fox, [2002), given good inputs, a scan matching algorithm can
localize a robot with relative precision, and in the linear case its estimation is optimal. How-
ever, it cannot recover from tragic failures caused by bad a bad matching of incorrect model of
the environment. Nonetheless, because its search is bounded by small deviations of the sensor
scans, it is computationally efficient.

The accuracy of the pose estimation is influenced by how the scan matching algorithm
calculates the relation r; between a scan and its reference and by the model used to represent
the environment. Iterative Closest Point (ICP) (Besl and McKay, [1992; Thrun et al., 2003))
and Iterative Closest Line (Bosse, 2004} Olson, 2008} (Censi, 2008) methods are commonly
used in scan matching. In ICP, each point in the current scan is associated with the reference

24



scan according to a distance metric (e.g. Euclidean distance). The goal is to calculate the
rigid-body transformation that best aligns both scans (e.g. |[Horn, 1987).

Lu and Milios| (1997a)) describe two approaches for scan matching using the ICP method.
The first separates both translation and rotation components. The main idea is to alternately
fix one component and optimize the other. Given rotation, translations are optimized using
least-squares. The optimization of the rotational components is conducted by the global-
section method (Press et al.,|1992)). The second method, named iterative dual correspondence
(IDC), combines two ICP-like methods with different scan-matching heuristic.

ICL is similar to ICP, however instead of matching query points with reference points,
the query points are matched to lines extracted from the reference points. The motivation
behind this approach is that the sensor samples the environment sparsely, and there may not
be reasonable correspondence for all points. The simple ICL variant does a piecewise linear
interpolation between each pair of adjacent range scan points. Others use heuristics methods
to determine which pair of points are more likely to be part of a connected surface (Fischler
and Bolles| [1981; [Bosse, 20045 |Olson), |2008]).

There is a fair amount of scan matching heuristics in the literature. These include using
Euclidean distance Lauer et al. (2006), polar coordinates (Diosi and Kleeman| [2007), the
Normal Distribution Transformation (NDT) (Biber and Strasser, [2003)), feature-based methods
(Bosse, 2004; Olsonl 2008)), Hough transforms (Censi et al. 2005)), histograms (Roferi, 2002;
Bosse and Roberts| 2007), and correlative scan matching (Olson 2015).

Most of the described scan matching approaches implies a scan vs scan matching. However,
there is also the case where scan vs map matching is performed. For example, the work
presented by Lauer et al.| (2006]) provide a robust real time self-localization, in a highly dynamic
but structured environment, to a mobile robot. Instead of finding a relation r; between the
map and the current scan, it calculates the most likely pose x; given the current measurement
z¢. This method is also called maximum likelihood pose estimation (Thrun et al., |2001)).

The mazimum likelihood approach for pose estimation, although non-probabilistic, is sim-
pler and easier to calculate than the posterior . The idea is simple: given a measurement
and odometry reading, calculate the most likely pose. Mathematically speaking, the x; pose
is obtained as the maximum likelihood estimate of

x; = argmax p(z¢|x¢, m) p(x¢|X—1, ut) (2.28)
xt

To summarize, in time ¢t — 1 the (non-probabilistic) estimate of X;_; is given to the robot. As
uy is executed and a new z; is obtained, the most likely pose X; is calculated by the robot.

In this approach %; is found using a gradient ascent algorithm in log likelihood space. It is
common to maximize the log likelihood instead of the likelihood because it is mathematically
easier to handle, and the maximization is justified by the fact that it is a strict monotonic
function. Thus, this approach tries to calculate

x; = argmax In[p(z¢|x, m) p(x¢|Xi—1,us)] - (2.29)
xt

Taking advantage of the properties of the logarithm, this expression can be decomposed into
additive terms:

x; = argmax In p(z|x¢,m) + In p(x¢|Xe—1,u) - (2.30)
Xt

25



Obtaining the pose estimate is now a matter of using the proper method to solve the max-
imization problem. Notable methods are the gradient descent, Gauss-Newton or Levenberg-
Marquard.

2.3 Mapping

The creation of models of the environment is a crucial part for many robotic application
(Burgard and Hebert, [2008). These models of the environment are used by the robot so that
is can adapt its decisions to the current state of the environment. In robotic localization it is
assumed that that a model of the environment is available a priori — a model used in robotic
localization is often called a map. In several real-world applications the existence of a map,
usually built by hand, is assumed to be true. However, there are several application domains
where a priori map is not available. Furthermore, a handmade map is usually inaccurate,
for example, a blueprint of a building does not always correspond to the real structure of
the building, and besides it does not consider furniture or any other item that shape the
environment.

Having the capability to learn a map from scratch can enable the robot to adapt to changes
without human supervision. Thus, taking one more step in the direction of truly autonomous
mobile robots. The models are typically created from sensor data as the robot explores the
environment. Mapping with mobile robots is a challenging problem due to a number of reasons:

e Maps are defined over a continuous space, therefore the space of all maps has an infinite
number of dimensions. Even under discrete approximations that can help reduce the
state space, map can easily be described by a huge number of variables. The Bayes
filtering approach worked well for localization, but the problem of learning maps makes
it unusable due to the high-dimensional space.

e Learning maps is a “chicken-and-egg” problem. First, when the robot moves through its
environment it accumulates errors in odometry, gradually raising the uncertainty about
its whereabouts in the environment. Localization algorithms are used to correct this
errors, although, they required a known map of the environment. Second, constructing
a map with known poses of the robot can be easy, however, when an initial map and
exact pose information are not available the robot has to do both: learn the map and
localize itself relative to this map. The process of learning maps are often referred to as
the simultaneous localization and mapping (SLAM).

However, not all mapping problems are equally hard. The difficulty of the mapping problem
lies in a collection of several factors, the more relevant are:

e Size. The larger the environment relative to the perceptual range of the robot, the more
hard it is to build a map.

e Noise in perception and actuation. Building a map would be much easier if sensor
and actuators were noise-free. The bigger the noise, the harder it is to build a map.

e Perceptual ambiguity. Different locations may look alike to the sensors of the robot,
making it difficult to create a correspondence between different places traversed at dif-
ferent points in time.

26



e Loops. Loops (or cycles) in the configuration of the environment are specially difficult
to map. Odometry errors can be minimized when going up and down a corridor, but
cycles make robots return via different paths with a high accumulated odometric errors.

The difficulty of the SLAM problem is avoided by assuming that the exact robot path
during mapping is known. This problem is also known as mapping with known poses and
focuses on integrating sensor measurements into a representation of the environment. Feature-
based representations is beyond the scope of the thesis, therefore we will discuss one of the
most popular method for geometric mapping, the probabilistic occupancy grid.

2.3.1 Mapping with a Probabilistic Occupancy Grid

An occupancy grid map is a popular probabilistic approach to represent the environ-
ment (Moravec, [1989; Thrun et al., 2005). Mapping with occupancy grids addresses the
problem of generating consistent maps from noisy and uncertain measurement data, assuming
that the robot pose is known. The basic idea behind an occupancy grid is to represent the map
as a grid of random variables. Each random variable is binary and represents the occupancy
of the location it covers, and are used to estimate an approximate posterior estimation. The
objective of mapping with an occupancy grid is to calculate the map posterior given the data

p(m|x1e, 21:4) , (2.31)

where m is the map, x1.; the sequence of all poses, and z7.; is the the set of all measurements
up to time t. The control u; is not necessary because the poses are already known.
Occupancy grid maps are fine-grained grids defined over the continuous space of locations.
Their most common usage is to represent the two-dimensional (2D) flat surface that most
mobile robots use to navigate. Occupancy grids can be extended to three-dimensional repre-
sentation of the environment but at significant computational expenses. Let us denote m; as
the grid cell with index ¢. The space is partitioned by an occupancy grid into many grid cells

m = {m;} . (2.32)

Each m; corresponds to a binary random variable, which specifies whether a cell is occupied
or free. Let p(m = occupied) or p(m) denote the probability that a grid cell is occupied, and
p(m = free) denote the probability that a grid cell is free. The posterior in is
difficult to calculate when the number of grid cells is significantly high. For example, a grid
with 10,000 cells has 210090 possible maps. The approach of an occupancy grid is to divide
the problem of estimating the map into a collection of separate problems, more specifically

p(m;[x1:t, 21:¢) (2.33)

for all grid cell m;. Now, each estimation is a binary problem with static state. Furthermore,
it is assumed that the individual cells of the grid are independent. Note that this is a rather
strong assumption. It is a convenient decomposition but it does not represent dependencies
among neighboring cells. In practice, there are objects larger than individual grid cells, like
cabinets, chairs, etc. Thus, an occupied grid cell raises the probability of its neighboring cells
to be occupied. Still, this assumption is adopted for convenience.

Under conditional independence assumption the estimation of the occupancy probability
for each grid cell is a binary estimation problem with static static. The occupancy of a grid

27



cell is, in general, represented using log odds:

n p(mi|X1:t7 Zl:t)
1- p(mi|X1:t, Zl:t)

=1 (2.34)

The log odds representation offers numerical stability for probabilities near zero and one. The
probabilities are easily recover from the log odds ration:

1
1+ exp{li;}

The occupancy grid mapping procedure in iterates over all grid cells ¢, and
updates those that fall into the sensor cone of the measurement z;. For those where it does,

the occupancy is updated by the virtue of occupancy grid mapping using the function in-
verse sensor model() in line 4. If not, the occupancy remains the same, as shown in line
6. The constant [y is the prior of occupancy in the form of log odds ratio:

p(my[x1:¢,21.4) = 1 (2.35)

Jo — In 2 = occupled) - p(mi) (2.36)
p(m; = free) 1 — p(my)

In practice, the value of the prior p(m;) is assumed to be 0.5 which results in lj = 0. The
inverse measurement model p(m;|x1.¢, z1.¢) is implemented in its log odds form by the function
inverse sensor model():

p(mz‘\xt, Zt)
1 — p(my|xy, z¢)

inverse sensor model(m;,x;, %) =1In (2.37)

As an example, the considered model model starts by calculating the beam index k and
the range r for the center of mass of the cell m; (lines 10 to 13). The pose of the robot is
given by x; = (z 3 0)”. It returns the prior for occupancy Iy (in log odds) if the cell is outside
the measurement range of the sensor beam, or is further than a/2 the detect range z/ (line
14). Tt return Iy if the range of the cell is within a/2 of the detected range zf (line 16).

This model assigns to all cells within the sensor cone and with range near the measurement
range an occupancy value of locc (line 14 and 15). The width of this region is defined by the
parameter «, and the beam angle is controlled by the parameter 3. It returns lge if the range
to the cell is smaller than the measurement range by a more than /2 (line 16).

2.4 Simultaneous Localization And Mapping

The simultaneous localization and mapping (SLAM) problem appears when the robot does
not possess a map of the environment, nor it knows its own pose. Instead, only measurements
z1.¢ and control uy.; are available to the robot. In SLAM, the robot constructs a map of
its environment while simultaneously localizes itself relative to this same map. The SLAM
problem is more difficult than the localization and mapping problems. It is hard to localize
in a map that is unknown and has to be estimated along the way. And it is also hard to do
mapping when the poses are unknown and have to be estimated along the way.

From a probabilistic point of view, the SLAM problem has two main forms: online SLAM
and full SLAM (Thrun et al., |2005). In online SLAM problem the posterior is estimated over
momentary poses along the map:

p(xt, m| 210, uaee) - (2.38)

28



Algorithm 11: Occupancy grid Mapping (Thrun et al., [2005).

: Occupancy Grid Mapping( {l;—1:,X:, 2t} ):

1

2 for all cells m; do

3: if m; in perceptual field of z; then

4 | It = li_1,; + inverse_sensor_model(m;, x;, z¢) — lo
5: else

6: |l =l

7 end

8: return {l;;}

o: inverse sensor model( m;,x;, 2 ):

10: Let x;,1y; be the center-of-mass of m;

e | or=/(z —2)?+ (v —y)?

12: ¢ = atan2(y; —y,x;, —x) — 0

13: k = argmin;|¢ — 0} sens|

14: if 7> min(zmaz, 28 + @/2) or |¢ — Ok sens| then return Iy
15: if 2F < Zpar and |7 — 2F| < §/2 then return [,

16: if r< zf then return g

Here x; is the pose at time ¢, m is the map, z1.; the measurements, and u1.; the controls. This
problem is designated online SLAM because it only tries to estimate the variables that persist
at time t. Typical online SLAM approaches are incremental, past measurements and controls
are discarded once they have been processed. In full SLAM the posterior is calculated over
the entire path x1.; along with the map, instead of just the current pose x;:

p(X1:t, m|21:4, u:e) - (2.39)

Any SLAM problem has to deal with continuous and discrete components. The pose of the
robot and the location of the objects in the map are part of the continuous estimation problem.
Objects are usually landmarks in feature-based maps, and patches detected by range finders in
grid-based maps. The discrete nature of a SLAM problem lies on the correspondence problem
of detected objects, which is typically discrete: either the object is the same as previously
detected one, or it is not.

In practice, the calculation of the full posterior is usually unfeasible, the high dimension-
ality of the continuous parameters and the large number of discrete correspondence variables
are the main causes. In contrast, localization problems calculate posteriors over a three-
dimensional continuous space, and in most application the correspondences are unknown
making the number of possible assignments to the vector of all correspondences grow ex-
ponentially in time ¢. Therefore, practical SLAM approaches rely on approximations to cope
with the correspondence problem.

2.4.1 Feature-based SLAM

The EKF-SLAM is one of the earliest and most influential feature-based SLAM algorithm
(Leonard and Durrant-Whyte, 1991} Davison et al.l 2007 |Castellanos et al., |2007; |Jesus and
Ventura, 2012). Based on the Extended Kalman Filter (EKF), it is used in SLAM to estimate
the pose of the robot and the location of features in the environment. For now, let us assume
that all correspondences are known. It is a very strong assumption, but otherwise all potential
data association problems had to be handled, increasing the complexity of the problem.

29



The state vector is a combination of the pose of the robot and landmarks coordinates

T
Xt = ( xvyae aml,w,ml,yw"7mn,w7mn,y) . (24())
—— —~
robot pose landmark; landmark,,

Here z,y, 0 denote the pose of the robot at time ¢, m,, ;, my , are the coordinates of the n-th
mark. For convenience, let 7; denote the pose of the robot, and m,, the vector of landmark
coordinates. For a map with n landmarks the state is represented by a (3 + 2n)-dimensional
Gaussian with mean p; and covariance

Tt Erm Enmn
He = |:mn:| Et = |:2;1;mn Zrtmn:| (241)
As shown above, the covariance X; can be decomposed into four covariances. The first, is the
robot pose covariance ¥,,,,. The second is the landmarks covariance ¥, m,,. The third is the
covariance between the robot pose and the landmarks ¥,,,,,,, and the fourth covariance is the
transpose matrix of X,

This type of solution is well known and inherits many of the same benefits and problems
of the basic EKF algorithm for navigation and tracking problems:

Convergence: The convergence of the map is observed in the monotonic convergence of the
determinant of the map covariance matrix X,,,,; and all landmark pair sub-matrices
toward zero. The variance of individual landmarks converge to a lower bound defined
by initial uncertainties in robot pose and observations (Dissanayake et al., |2001]).

Computational effort: The measurement update step requires the calculation of the joint
covariance matrix and landmarks to be updated every time an measurement is taken,
which requires a exponential growth as the number of landmarks increase. Fortunately,
there are methods that allow these calculations in real-time (Leonard and Feder} 1999;
Guivant and Nebot, [2001)).

Data association: The EKF-SLAM is fragile to incorrect associations of measurements to
landmarks (Neira and Tardos| [2001)) (the loop closure is specially difficult in this solu-
tion).

Non linearity: The EKF-SLAM relaxes the non-linearity problem by employing a lineariza-
tion to non-linear motion and measurement models. This can lead to inevitable incon-
sistencies in solutions (Julier and Uhlmann, 2001)).

The FastSLAM algorithm (Montemerlo et all 2002) is another featured-based solution
that combines EKF for landmark estimation with a particle filter for estimating the robot’s
path. The use of particles filters puts the FastSLAM algorithm in the unusual situation where
it solves both the online SLAM problem and full SLAM problem. The approach is formulated
to calculate the full path posterior, however, particle filters estimate on pose at-a-time. Each

(k]
t

particle, in FastSLAM, contains an estimated robot pose x;* and a set of Kalman filters with

mean uyﬂ and covariance Zl[tk], one for each feature m; in the map. The index of the particle
is denoted by [k] and the total number of particles by M. The FastSLAM algorithm can be

represented by a series of steps:

e Execute the following M times:

30



Lk_]l from the particle set S;_1.

(k]
t

— Retrieval. Retrieve a pose x

k
~ P(Xt|X£_]17 Ut)-
— Measurement update. For each feature observed 2! find the correspondence j for

the measurement zj, then incorporate the measurement zj into the corresponding

(K] : (K]
it and covariance ijt.

Prediction. Sample a new pose x

EKF, by updating the mean u
— Importance weight. Calculate the importance weight wik].
e Resampling. Sample, with replacement, M particles, where each particle is sampled
with a probability proportional to w!*!,

The high dimensional state space of the SLAM problem makes a straightforward appli-
cation of particle filters computationally unfeasible. However, sample space can be reduced
by applying Rao-Blackwellization (RB) to represent the posterior over some variables, along
with Gaussians (or other parametric PDF) to represent all other variables. The joint state is
partitioned according the product rule

p(x1,%2) = p(xa|x1)p(x1) - (2.42)

If p(x2|x1) can be represented analytically, only p(x1) need to be sampled x; ~ p(x1). As
result, the joint distribution is represented by the set {x},p(x2|x1)}}¥ and statistics such as
the marginal

1 ‘
p(x2) ~ N Zp(xﬂx’l) ) (2.43)

Using the mathematical insight of RB, the full SLAM posterior p(x1.¢|21.¢, #1:¢) can be written
in the factored form

N
P(X1t| 21, w1:) = p(X1:a|21e, ure, er) [ [ p(malxaee, 210, 1) - (2.44)
i=1
This factorization allows the calculation of the posterior over path and maps to be decomposed
into N + 1 probabilities. The features estimator is now conditioned on the robot path, which
means that there is a separate copy of each feature estimator, one for each particle. This type
of particle filters are commonly known as Rao-Blackwellize particle filters (RBPF).

The presented algorithm is known by the literature as FastSLAM 1.0. The later ver-
sion, FastSLAM 2.0 (Montemerlo et al., 2003), differs from the former only in terms of the
form of their proposal distribution, and consequently the importance weight. The proposal
distribution in FastSLAM 1.0 is modeled by

xt! ~ ploalxily ) (249)

and the importance weight is calculated by

wik] = wyi]lp(zt|x[lﬂ,zlzt,ut) . (2.46)

For FastSLAM 2.0, the proposal distribution includes the current measurement

Xy[fk] ~ p(Xt|Xl[fk_]17 ULty 21t Cl:t) ) (247)

31



where

k k
p(xt\xgl, Uist, 213, Clip) = U[k]p(ztlxhx[hl_p Z1:4—1, Ul:ts Clit) (2.48)

k
p(xt|x[1;1_17 Z1:t—1, Ul:t, Cl:t)

k
IE] = w;_1—7. As consequence, the

and nl¥ is a normalizer. The importance weight is w e

FastSLAM 2.0 is locally optimal (Doucet|, 1998])

2.4.2 Grid-based SLAM

Grid-based maps have the advantage of representing the environment of the robot without
any predefined definition of landmarks, and arbitrary types of environments can be modeled.
The work of |Lu and Milios| (1997b)) introduces a scan matching method for geometric mapping.
It considers the translation and rotation as two separate components, alternatively fixing one
and optimizing the other and then swapping the role of components. The translation is
optimized using least squares and the rotation by global-section method. This approach has
sufficient accuracy with small computational effort but it is generally affected by an increasing
error, visible whenever known areas are revisited. The Normal Distribution Transform (NDT)
(Biber and Strasser, 2003|) assigns to each cell of the grid map a normal distribution that
models the probability of measuring a point. It performs scan matching by building the NDT
of the previous scan and then it finds the rigid transformation with the best score using the
current scan. The optimization is performed using Newton’s algorithm. Furthermore, it uses
four overlapped grids to reduce the effect of discretization. [Holz and Behnke| (2010) propose
a fast ICP-based method for SLAM based on incremental scan registration and Sparse Point
Maps. To improve registration and maintain scalability, they present several heuristics for
rejecting bad correspondence pairs and duplicated points in the sparse map. However, this
solution has a tendency to increase in computational complexity as the sparse map grows
bigger due to the need of having to search for correspondences. Kohlbrecher et al.| (2011)
propose a SLAM system based on scan matching with full 3D estimation. It is based on the
optimal alignment of a scan with the map learned so far. The optimization is solved using the
Gauss-Newton method. To mitigate the problem of getting stuck in a local minimum they
pursue a multi-resolution map representation. Furthermore, they introduce a bilinear filtering
in their maps to reduce the side effects of discretization. The Critical Rays Scan Match SLAM
(Tsardoulias and Petrou, [2013) is a scan matching approach with hill climbing optimization.
To reduce the number of rays used during optimization a set of heuristics is to select only rays
that are considered to be critical to the scan matching between the current scan and the map.
The work of Hess et al.| (2016)) proposes a grid-base SLAM solution based on scan matching
combined with graph optimization of sub-maps for loop closure. The scan matching procedure
is similar to |[Kohlbrecher et al|(2011)) but only uses a single occupancy map.

The Rao-Blackwellized Particle Filter (RBPF) for SLAM |Grisetti et al. (2005, 2007aj)
is an application of the FastSLAM algorithm to occupancy grid mapping. It estimates the
posterior over trajectories and maps using a particle filter and each particle represents a map
m' and an estimate of the robot pose z% on that map. To improve the proposal distribution,
they perform scan matching to determine the mode of the meaningful area of the observation
likelihood function.

32



2.4.3 Graph-based SLAM

Solving the SLAM problem using a graph based formulation was proposed by [Lu and
Milios| (1997al). At that time solving error minimization problems using the available methods
was deemed complex. It took several years until advances in the field of sparse linear algebra
to resulted in efficient approaches to the optimization problem at hand. Consequently, graph-
based SLAM approaches have experienced a rise in popularity (Dellaert and Kaess| [2006}
Kaess et al.l 2007; Grisetti et al., 2009, 2010blb; [Konolige et al., |2010; Kaess et al., 2012) and
have become a state-of-the-art techniques with respect to speed and accuracy.

The graph-based SLAM solves the full SLAM problem by constructing a simplified es-
timation problem by creating an abstraction of the raw sensor measurements, i.e. “virtual
measurements”. An edge between two nodes is labeled with a distribution over the relative
positions of the two poses, conditioned to currents observations. Normally, the measurement
model p(z|x;, m) is multi-modal, thus the Gaussian assumption falls through. This means
that a measurement z; might result in several possible edges connecting different poses in the
graph and the graph connectivity needs to be modeled by a probability distribution.

Instead of directly dealing with this multi-modality in the estimation process, which would
result in an combinatorial increase of the complexity, the estimate is restricted to the most
likely topology. Therefore, the most likely constraint resulting from a measurement needs to
be calculated. This calculation depends on the probability distribution over the poses of the
robot. This problem is known as data association. To find the correct data association an
estimate of the conditional prior over the robot path p(xi.|z1.4,u1:¢) is required. Methods
to efficiently solve the data association problems will not be discussed. Such methods deal
associations by means of spectral clustering (Olson et al.l |2006)), joint compatibility branch
and bound (Neira and Tardos, 2001), or backtracking (Hahnel et al., 2003]).

If the data association is known and the local measurements are affected by (locally)
Gaussian noise, then the goal of a graph-based mapping method is to compute a Gaussian
approximation of the posterior over the robot path. This process involves calculating the
mean of this Gaussian as the configuration of the nodes that maximizes the likelihood of the
measurements. This task is characterized by finding this maximum likelihood as a constraint
optimization problem.

Let x = (x1,...,%x¢)” denote the vector of all poses, where x; describes the pose of node i.
Let z;; and €);; denote respectively the mean and information matrix of a virtual measure-
ment between the nodes ¢ and j. This virtual measurement represents a transformation that
maximizes the overlapping of measurements acquired at node ¢ with measurements acquired
at node j. Let Z;;(x;,%;) denote the prediction of a virtual measurement given a configuration
of the nodes x; and x;. Generally this prediction is the relative transformation between the
two nodes. Therefore, the log likelihood /;; of a measurement is

Lij o [zi5 — 2ij (%4, %5)] T Qijl2s5 — 2ij (%3, %;)] - (2.49)

Let e(x;,X;j, z;;) denote a function that calculates the difference between the expected obser-
vation Z;; and the real observation z;; acquired by the robot. To simplify the notation, the
indices of the measurements are encoded in the indices of the error function

€Z'j(XZ',Xj) = Zij - ZA,’Z‘j(Xi,Xj) . (250)

Let C denote the set of pair of indices for which a constraint (measurement) z exists. The
objective of the maximum likelihood approach is to find the configuration of nodes x* that

33



minimizes the negative log likelihood F'(x) of all observations

F(z) = Z e ijeij (2.51)

therefore, it tries to solve the following equation:

x* = argminF'(x) . (2.52)

X

Solving the equation above is a matter of applying adequate optimization methods. For an
example please refer to |Grisetti et al.| (2010a).

34



Chapter 3

Scan Matching Approach to
Localization with a Likelihood Field

The application of scan matching to mobile robot localization relies on matching a set of
points {p;} against a reference surface S, in order to find the roto-translation q = (6, ¢) that
minimizes a function of the distances of the roto-translated points {q @ p;} to their projection
on S, Here, @ is the roto-translation operator, such that

(0,t) ©p;i = R(O)pi +1, (3.1)

where R(#) is the rotation matrix. Using an Euclidean projector on S™f, denoted II(S™,.),
the minimization problem can be defined by

’ (3.2)

ménzz: Hq@ p;i — (S q@p))

To solve this minimization problem, several Iterative Closest Point (ICP) variants have been
proposed (Lu and Milios, [1997a; Pfister et al.l 2002; |Montesano et al., [2005; Censi), 2008).
But, as noted by [Burguera et al.| (2009)), they may suffer from two important drawbacks:
incorrect correspondences from the projector H(Sref, -) and poor convergence as a side effect
of inconsistent correspondences.

In this chapter, we propose a fast scan matching approach with a likelihood field as mea-
surement model. The likelihood field has a central role in this work: it addresses the drawbacks
of the ICP algorithm, by avoiding the direct establishment of correspondences (Burguera et al.,
2009); and it is the element that connects scan matching to mobile robot localization. Once
the scan matching formulation is in place we will solve it by using non-linear least squares.

The likelihood field (LF) (Thrun,|[2001)) was designed as a measurement model that provides
smoother results and is computationally more efficient than the beam model (Thrun, 2001).
Efficiency is achieved by caching the likelihood values of the reference surface S*! in a discrete
volumetric grid. Access to the values is provided by a function

[:R" >R (3.3)

such that [(p;) returns the likelihood of the point p;, where p; can either be defined in 2D or
3D space depending on the application.

35



3.1 Maximum Likelihood Pose Estimation

Let x; be the robot state and z; the measurements at time ¢. The control u; at time ¢
determines the change of state from ¢t — 1 to t. The distribution that models the robot pose
estimate is given by

P(xe | Xi—1, 26, ug, m) X p(2¢ | X, m) (T | X1, Uz) (3.4)

The first term, p(z¢|x¢, m), is the measurement model that expresses how likely is a particular
measurement if the robot’s pose is known. The term p(zy|x;—1,u:) is the motion model that
describes the probability of the pose x; after executing the control u;.

Our proposal to solve the localization problem is based on the calculation of the maximum
likelihood of p(z¢|x¢,m). The motion model is used as an initial hint for x;, and treated as a
constant. This assumption is valid because we are considering a local search approach, and the
accurate measurements from a LIDAR sensor cause the product of to be dominated by
the observation likelihood (Grisetti et al., [2007al). Thus, the pose estimation can be reduced
to

Ty = argmax p(z; | x¢,m) . (3.5)
Xt

The measurement z; is defined by a set of points {pi}, thus, the resulting calculation is the
collection of probabilities p(pi|x¢, m), where p! is the ith measurement. Assuming conditional
independence between measurements, the measurement model probability is given by:

p(2t | x¢e,m) = HP(Pi | x¢,m) (3.6)

Introducing (3.6) into (3.5) the maximum likelihood estimate can be rewritten as

%, = argmax [ [ p(p} | x1,m) . (3.7)
Xt i

As it can be numerically unstable to solve (3.7)), a usual approach is to use the log-likelihood.
The problem can now be formulated as a minimization of the negative log-likelihood of our
measurement model:

X = argminz —In [p(p} | x1,m)] . (3.8)
Xt .

7

The next step is to select a proper measurement model for the pose estimation, and our choice

is the likelihood field.

3.2 Likelihood Field as Measurement Model

Because we are dealing with measurements taken from a LIDAR sensor, the calculation
of the probability density function (PDF) of each sample z; should, in principle, consider
which surface of the map is visible from the pose x;. The beam model (Thrun, 2001) does
this by applying an expensive ray-casting operation. To avoid this expensive operation we
adopted the LF model that, although neglecting visibility and occlusion effects, if constructed
properly, can give smoother results at a lower computational cost (Thrunj [2001). The LF is
defined as a function of z—y-coordinates expressing the likelihood of object detection (Thrun,

36



2001). Although not a proper PDF, we will demonstrate its use in pose estimation with scan
matching, more specifically, how it can be used as the measurement model in localization.
Let us define the LF function [(p) as:

I(p) = exp (~||p — II(m, p)[|?c ) (3.9)

where p is a point in the map, II(m, -) is the Euclidean projector on the map m to the closest
object and o is a scaling factor that guarantees the exponent is dimensionless. To be a proper
LF, I(p) must have the following property: the closer a point p is to its projection II(m,p)
the more likely it is to be measured. This property is fulfilled by the fact that the value of I(p)
is the exponent of the negative squared Euclidean distance between p and the closest object
in m, which increases in value as the Euclidean distance decreases.

We can realize that corresponds to the non normalized PDF of a Gaussian distribution
with respect to to the Euclidean distance. Turning the LF function into a PDF is a matter of
introducing a normalization factor 7:

f(p) =nl(p)
= nexp(—e*(p)) (3.10)
with
e(p) = |lp — (m, p)llo~" (3.11)

as the Euclidean distance to the nearest neighbor. This new obtained PDF (3.10) can now
be used as our measurement model. Assuming that all LIDAR scans are independent, the
measurement model for our maximum likelihood pose estimation is given by

(2t | x¢,m) = HUeXP (—52(Xt D Pi)) . (3.12)

3.2.1 Continuous Likelihood Field

The low computational cost of the likelihood field results from the discretization of the
environment in the form of a grid where each cell contains pre-computed likelihood of a
measurement. Kohlbrecher et al. (2011) noted that discrete representations limit the precision
that can be achieved. As an improvement, they propose the use of an interpolation scheme
that allows sub-cell accuracy through bilinear filtering. The same interpolation scheme is
applied to the Euclidean distance grid €, the discrete version of the Euclidean distance & that
is part of the likelihood field. Given a continuous coordinate p. = [z,y] in grid coordinates
with z,y € [0, 1), the value of the Euclidean distance is computed from the four closest integer
coordinates pgg..11. It should be noted that the cells of the grid are organized in a regular
grid with spacing equal to 1 in grid coordinates. The effective formula for value interpolation
yields

. - £(poo) €(po1)| [1—v

Ex,y)~[1—z 1 [5(1310) 5(p11)} [ y ] . (3.13)
Inherent to this scheme is that values from the grid cells are now samples from a continu-
ous function. Now, instead of pre-computing the likelihood for each cell, only the Euclidean
distance grid is pre-computed and further used to calculate the likelihood as a continuous func-
tion, an example being depicted in The necessary gradients used for optimization

37



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0 1 2 3 4 5 6 Euclidean distance

(a) (b)

Figure 3.1: Interpolation scheme for a continuous likelihood field. a) Example of an environment occupancy
map that models free space and obstacles. b) Corresponding distance map, here two schemes are employed, one
without interpolation that represents the typical discrete Euclidean distance map, the second scheme employs
a bilinear interpolation on top of the discrete distance map.

are calculated using numerical differentiation whilst considering the values of the coordinates
Poo..11, which are the coordinates of its neighbors. The Jacobian of the Euclidean distance,
denoted J., is calculated as follow:

J. - L [(1 = y)(e(Poo) — £(P10)) + y(e(Por) — e(p11))] " (3.14)

7 [(T=2)(e(poo) — e(po1)) + x(e(P10) — e(P11))

where r is the resolution of the Euclidean distance grid.

3.3 Non-Linear Least Squares Optimization

The use of non-linear least squares to solve the minimization problem introduced by the
formal definition of scan matching in is a common approach, as, by definition, least
squares tries to minimize the sum of the squared errors of our objective function w.r.t its
parameters. To obtain the estimation of x; we need to solve the minimization . However,
it lacks the least squares formulation found in the scan matching definition of , and
subsequently it can not be solved using least squares optimization. Therefore, minimization
needs to be converted to an equivalent least squares formulation. This can be achieved
by replacing the measurement model in with the measurement model based on the LF:

Xy = argminz —In [nexp(—e*(x; ® p}))]
Xt P

= argmin —nInn + Z e2(x; © pl)

X .
t 2

= argminz 2(x pl) . (3.15)
i

Xt

38



The terms —n Inn can be safely ignored because it is a constant and thus it does not influence
the minimization. Up until now, in this chapter, localization and scan matching had been
treated as two different concepts. The introduction of the LF into the localization problem
has the consequence of converting the localization problem into a scan matching problem and,
as a result, it can now be solved using least squares. Our approach tries to find the pose x;
that best aligns the endpoints p; of the scan with the local surface of the map m. Due to
the use of the LF with an distance map as the Euclidean projector, there is no need to find
correspondences for the endpoints. Also, because scans are aligned with the map m, there is
an implicit matching with all previous scans.

A common approach to solve a non-linear least squares optimization is to use the Gauss-
Newton (GN) method (Madsen et al.|[2004). The method consists in iteratively updating the
pose estimate with the rule

it =%+ Ax (3.16)

where at each iteration the update step Ax is obtained by solving the normal equation:
ITNHAx = -IT<(3; @ py) (3.17)
with

_ Ge(fct S5 pt) afit @D P

J - =
OX: © py Oy

The method stops when convergence is found or when a maximum number of iterations is
reached. The initial hint of x{=! is provided by the previous estimate %; 1 plus the displace-
ment of the odometry between ¢ — 1 and ¢. To prevent unnecessary estimates, e.g. when there
is no motion, the estimate of the pose is only carried when a certain amount of motion exists,
usually provided by the odometry u;. The motion is divided into its translation p and rota-
tional ¥ components. The pose estimation is only triggered when a threshold is reached in
any of the components. A variant of GN, called Levenberg—MarquardtH (LM) (Madsen et al.,
2004), is also used as an alternative method to obtain the estimates. It changes the normal
equation as follows:

ITT + D Ax = —JTe(%; ® py) s (3.18)

where p is a damping parameter that affects the optimization. For all p > 0, it is guaranteed
that Ax is in the direction of the steepest descent. If ;1 — 0, the method falls back into GN,
whereas if 4 — 0o the gradient descent is used. Furthermore, the update x; + Ax is only
performed if there is a significant residual error reduction. Upon success, u is decreased, other-
wise p is increased. The reasoning behind this heuristic is that GN has quadratic convergence
near the minimum, but gradient descent has a better behavior when far from the minimum.

3.4 Least Squares on a Manifold

In localization, the configuration space (i.e. the robot’s pose X) is not Euclidean. The
translation component of X forms an Euclidean space, however the rotation component spans
over the non-Euclidean rotation group. For example, the two-dimensional rotation is repre-
sented by an angle 6 bounded by 6 € [—7, 7). Adding small changes to 8, which happens in

!The precise name of the method presented in [Equation 3.18|is Levenberg, however we follow the nomen-
clature present in [Madsen et al.| (2004) where the method is named Levenberg-Marquardt.

39



every iteration of the optimization, is not an issue as the angle can be normalized each time it
is changed. However, the comparison between two angles near their limits —7 and 7, results
in a difference of almost 27 although their difference is close to zero.

A common approach to numerically handle non-Euclidean spaces is to perform the opti-
mization on a manifold. A manifold is a mathematical space that is not necessarily Euclidean
from a global perspective, but can be seen as Euclidean locally (Lee, [2003; Hall, [2015). Any
rigid body transformation in R"™ can be expressed as a (n+ 1) x (n + 1) homogeneous matrix

R
0

T =

t
1] with R € SO(n), teR", (3.19)

where SO(n) is the Lie group of rotation matrices, the Special Orthogonal group. The rigid
body transformation is also a Lie group, the Special Euclidean group SE(n), that forms a
smooth manifold in R™. To avoid singularities when dealing with angles, these spaces are
usually expressed in an over parameterized way, for example the groups SO(2) and SO(3)
are represented by a unit complex and a normalized quaternion, respectively. Increasing the
number of parameters to optimize is not desirable, therefore, the optimization is performed
in the corresponding Lie algebra se(n), which is the minimal representation of SE(n) and
also its tangent space at the identity. The Lie algebra se(n) can also be understood as the
linearization of the Lie group SE(n).

Since the optimization is now carried on se(n) it is necessary to introduce an operator H
that maps a local variation Ax in the Euclidean space onto a pose in the manifold space,
B : SE(n) xse(n) — SE(n). This mapping leads to the modified versions of (3.17) and (3.16])
in the least squares definition:

JTHAx = —JTe(%! & py) (3.20)
=% B Ax, (3.21)
with

Oz((%¢ B Ax) @ py)
0Ax Ax=0

J= (3.22)

Now, because the optimization is performed in the origin frame of the tangent space, the
Jacobian of the robot-translation is the Jacobian of a rigid body transformation at the origin,
which simplifies its calculation. In the context of two-dimensional localization, the Jacobian
J is a stack matrix formulated as

.. 1 0 —yf
Jji=J Y (3.23)
01 o«

where (x?, %) are the Cartesian coordinates of the measurement pi and J¢ is the Jacobian of
the Euclidean distance used by the likelihood field (see|3.13)).

3.5 Handling Outliers

The incorrect modelling of the measurement likelihood will likely create disturbances in
the maximum likelihood estimate (Triggs et al.l 2000), such as the maximum likelihood pose

40



0.40 - | | |

30 - | | | | [

0.35 uy Cauchy PDF  _ * « « Cauchy
0.30 - if\,  Gaussian PDF _ X X Gaussian
0.25 - 20- . ‘
0.20 - °
0.15 -
0.10 -
0.05 -
0.00 \ -
=10 -5 0 5 10
60 - , , -
—— Cauchy —log likelihood
50 7\\ —  Gaussian —log likelihood I
40 - 7 B . .
30- O Z_u :
/ . .
200 i 720 .
AN 4 .
10 - —— =4 - .
o~ T - -30- . . . . -
-10 =5 0 5 10 0 100 200 300 400 500

Figure 3.2: Not all bell-shaped measurement distributions are Gaussians (Triggs et al., [2000). The Cauchy
distribution, although with a narrower peak and broader tail, is not very different from the Gaussian distribu-
tion (top left) but their negative log likelihood are very different (bottom left), in fact the Cauchy distribution
accounts for larger deviations (outliers) than the Gaussian one (right).

estimate. The common cause for this type of mismodelling is the failure to take into ac-
count the existence of outliers (e.g. abnormal data values caused by unexpected features).
An example of such incorrect modelling, is the use of the Gaussian distribution to model a
measurement likelihood that does not account for outliers .

In mobile robot localization outliers are naturally present in range scans. To address this
problem we can use a robustified version of the least squares problem presented in :

%, = argmin > p; (2(x, © p1)) | (3.24)
Xt .
K2

where p is a loss function used to reduce the influence of outliers. The advantage of this
formulation is that we can maintain the original measurement model, i.e. the likelihood field.
Following [Triggs et al.| (2000)) proposal, we use the Cauchy loss function p and its respective
weight function w:

2 2
9 c x
1dp 1
_ Y _ 2
w(z) x dx x2’ (3.26)
1+ —
c

where c is the factor that controls the behavior of the loss function. The minimization process
follows the same steps as previously discussed but with the following substitutions:

J=Vwidi A &= /wie(k O pl)

This addition improves the estimation of the robot pose X; and makes the approach more
tolerant to outliers (Triggs et al., 2000).

41



3.6 Global Localization

In localization taxonomy, the scan matching approach to localization falls only into the
category of local localization (or pose tracking), and because its search space is restricted to
a localized area it cannot solve the global localization problem. When a good initial pose is
given to the localization process, this is not an issue. However, there are some situations where
an initial pose is not available, an example being the scenario of an autonomous robot that
has to find its pose in the environment (i.e. after powering up) without human intervention
or external devices.

To solve the global localization problem, we propose a solution akin to particle filters. The
probability p(x;|z1.¢,u1.) is represented by a set of N weighted samples distributed according
to a uniform distribution: .

~ 7
U(a,b) ~ {x }izle : (3.28)
where x1 is a hypothetical pose (i.e. a sample of x) and a and b are the minimum and
maximum coordinates that define the bounding box of the known space, respectively. A
uniform distribution is used to represent the fact that the true pose can be anywhere in the
environment with equal probability. To reduce the search space for random sampling we add
the constraint that a sample must be in free space:

x1 ~ U(a,b) : m(x1) = free . (3.29)

The weight of each sample is defined as the sum of the squared error of the current measure-
ment:

wll = ZEQ(XM oph). (3.30)
k

After sampling, the sample with the lowest weight is chosen to represent the true pose of the
robot:

X = min {xm,wm} . (3.31)

wlil i=1,.,N

Using this sampling method it is not guaranteed to find the true pose. The number of

sample N used may not be enough to explore the full free space. Instead of increasing the

number of samples N, the sampling process is repeated until the weight of the sample with

the lowest weight is below a threshold «. The pseudo-code of the sampling global localization

is presented in

3.7 Experimental Results and Evaluation

We seek to evaluate the quality of the pose estimates generated by our localization solution
as well as its computational efficiency. For that purpose, we used a set of publicly available
datasets, and ran them through our algorithm. The datasets in question are the ACES
Building, the Intel Research Lab, the MIT CSAIL Building, the Freiburg Indoor Building 079
and the MIT Killian Court H For reference, all experiments were run in a computer with an
Intel Core i7 2.8GHz and 16GiB of RAM, and all data was used without pre-processing.

To better evaluate our result we need to define a comparison baseline. For that purpose we
chose the Adaptive Monte Carlo Localization (AMCL) (Fox, 2003), a localization algorithm

2http://cres.usc.edu/radishrepository/view-all.php (last access: September 2017)

42


http://cres.usc.edu/radishrepository/view-all.php

Algorithm 12: Sampling global localization

1: global localization( z;, m,a, N ):

2: S = @
3: repeat
a: for i=1to N do
5 xll ~ U(a,b) : m(x[l) = free
6: wl! = S 52(xmlEB py)
7 S=8+ <X[i],w£l]>
8: end
9: (X, Wipin) = min, @ (S)
until wpi, < o
10: return x

based on particle filter with an adaptive number of samples. This decision is based on the
fact that AMCL is a popular state-of-the-art localization algorithm widely used in mobile
robotics. To distinguish our solution from AMCL, we will refer to it as Scan Matching or SM.
Additionally, for SM, results for different optimization strategies, i.e. Gauss-Newton (GN) and
Levenberg-Marquardt (LM), will also be presented and evaluated.

For both solutions (AMCL and SM), a localization update only occurs after accumulating
p = 0.2m translation motion or after accumulating ¢ = 0.5rad rotational motion. In AMCL’s
particle filter a minimum of 500 and a maximum of 5000 particles are used. Both solutions
use a likelihood field measurement model, but with the difference that AMCL only utilizes 30
scan rays for evaluation while our proposal uses the complete set of scan rays.

3.7.1 Trajectory Validation

The set of all pose estimates results in the trajectory traveled by the mobile robot and
any viable robot localization algorithm should obtain a trajectory closer as possible to the
real one. The best method to evaluate the obtained trajectories is to compare them with a
ground-truth. Unfortunately a ground-truth for the selected datasets is not available, however
it is still possible to assess the validity of a trajectory. A trajectory is considered to be fully
(or partially) valid when: for the same dataset the trajectories outputted by two different
algorithms are similar; and the trajectory only crosses free space.

In all datasets the trajectories from our solution and AMCL are very similar, Figures
13.6(a)l [3.7(a)} 13.8(a)} [3.9(a)| and [3.10(a)l but with a localized and a broader exceptions. The
localized exception is found in the CSAIL dataset. Here, on a contained area of the map, the
AMCL algorithm fails to maintain the trajectory inside free space while our solution maintains
a valid trajectory, as depicted in

The broader exception if found in the Fr079 dataset. There are considerable differences
between our proposal’s trajectory and AMCL’s at certain areas of the map, e.g. [Figure 3.3(b)
Nonetheless, the trajectory of our solution is always contained in free space while AMCL’s is
not. The odometry provided by the dataset contains considerable errors that frequently lead to
erroneous pose estimations in most localization algorithms. By increasing the pose estimation
frequency our solution was able handle the error in the odometry. The same increase was used
in the AMCL algorithm, but it still failed to handle the errors in the odometry.

43



40 _ | | [}
—— Scan Matching
- - AMCL

35 -

32.5 -

meters
meters

30

—— Scan Matching

- - AMCL
25 g g g g g ; 17.5 5 i i i i i i i r
35 37.5 40 42.5 45 47.5 50 0 2.5 5 7.5 10 125 15 17.5 20
meters meters
(a) CSAIL (b) Fr079

Figure 3.3: Erroneous deviation of AMCL’s trajectories. (a) Localized trajectory deviation in the CSAIL
dataset. (b) Considerable amount of trajectory deviations in the Fr079 dataset due to errors in the odometry.

3.7.2 Accuracy of Pose Estimates

As already stated, the best method to evaluate the accuracy of the pose estimates would be
to compare them with a ground-truth, unfortunately one is not available. Instead of directly
evaluate the pose estimate, we propose to evaluate how well the current scan matches the map
at the estimated pose. We reason that the scan matching error correlates with the accuracy of
the pose estimate, the lower the scan matching error the higher the accuracy of the estimate.
An example is showed in The metric used to (indirectly) assess the accuracy of
each pose estimate is the root mean square error (RMSE) of the scan matching defined as

1
MSE = | =Y (5 —vi)?, 32
RMSE = &3 (3~ ) (3:2)

Figure 3.4: Pose estimate accuracy inferred from scan-to-map matching errors. (a) Pose estimate with errors
in the Y axis. (b) Pose estimate with errors in the X axis. (c¢) Pose estimate with angular errors. (d) Pose
estimate with the smallest scan matching errors.

44



where ; is the estimate of ¢;. In our scan-to-map matching, the error is given by the Euclidean
distance of a measurement end-point and the closest object in the map, which is already given
by (3.11). Hence our metric to evaluate the accuracy of pose estimate is given by

1 — .
RMSE = | ~ 252(% ®p) . (3.33)

An overview of the obtained errors for each algorithm, group by dataset, is presented in
and showed with more detail in Figures [3.6(b)], [3.7(b)|[B.8(b)|[3.9(b)|[3.10(b)l The
95% percentile of the error distribution indicates the value below which the error observations
fall and allow us to compare the error between algorithms. Our scan matching solution has a
lower error than AMCL for most datasets, and when comparing with Gauss-Newton strategy,
our proposal has constantly lower error than AMCL.

0.7 — I I I I | -

B SM - Gauss Newton

_. 0.6 - mmm SM - Levenberg Marquard -

e mm AMCL

- 0.5 - -

©

}"_c 0.4 - -

>

o 0.3- -

o

j -

o 0.2 - -

-

| -

Yo1- -
. Hil ==l EEE HE | -

aces intel csail fr-079 killian
dataset

Figure 3.5: Root mean square error overview. For each algorithm, grouped by dataset, the 95% percentile
value is showed (a lower value is better).

3.7.3 Computational Efficiency Analysis

We are also interested in analyzing the computational efficiency of our localization solution.
More specifically, the mean processing time (or update time) between each scan sproc and the
mean number of iterations needed during optimization.

The execution times of our solution and AMCL’s are summarized in [Table 3.1 and showed
with more detail in Figures [3.6(c)}, 13.7(c), [3.8(c)l 13.9(c)| and [3.10(c)} The scan matching
solution offers some interesting results in terms of computational efficiency. Not only it is,
on average, faster than AMCL but the gamut of execution times is considerable shorter. The
Levenberg-Marquardt optimization strategy has an execution time that is regularly slightly
above Gauss-Newton strategy. When using the Levenberg-Marquardt optimization strategy
with the Killian dataset the optimizer, in an isolated event, has poor convergence which results
in abnormal maximum execution time when compared with other datasets.

All datasets have a data rate of approximately 6Hz (a 166 milliseconds period) and that
means that our scan matching solution and AMCL are always capable of estimating the pose

45



Table 3.1: Mean execution times and respective standard deviation, and min-max values for all datasets,
grouped by algorithm.

Scan Matching - GN Scan Matching - LM AMCL
Sproc MS min-max Sproc MS min-max Sproc MS min-max
aces 0.674+0.28 | 0.19 —2.00 || 0.96 +0.34 | 0.33 — 3.02 || 3.98 +£4.78 | 2.62 — 57.42
intel 0.56+0.18 | 0.24 —1.95 || 0.78 £0.24 | 0.33 — 2.64 || 13.5+11.9 | 7.68 — 144.0
csail 1.404+0.61 | 0.35—5.90 || 1.88 £0.75 | 0.65 — 7.50 || 5.14 £ 7.76 | 2.55 — 65.47
fr079 09940.37 | 0.28 —4.53 || 1.404+0.48 | 0.45 —5.81 || 5.56 &= 7.85 | 2.60 — 85.75
killian || 0.66 +£0.32 | 0.18 — 5.75 || 1.16 =0.80 | 0.17 —41.5 || 2.91 £ 0.51 | 2.56 — 34.11

in real-time. However, nowadays LIDAR sensors have data rates of 25Hz (a 40 milliseconds
period) or even 50Hz (a 20 milliseconds period) which may hinder AMCL’s capability to
process data in real-time, but our solution still maintains the real-time property.

In AMCL, the number of particles in the set has a direct influence in its computational
efficiency, the higher the number of particles the higher the processing time. Because this
number adapts to the variance in the particle set, areas in the map with higher uncertainty
(or error) triggers an increase in the number of particles that results in higher processing times,
such phenomenon can be observed in Figurewhere different plateaus of executions times
are visible. This observation tell us that, for most datasets, AMCL needs to continuously trade
computational efficiency for better pose estimates.

In our scan matching solution, the number of iterations per optimization has a clear impact
in its computational efficiency - the lower the number of iterations, the higher the computa-
tional efficiency. A summary of the number of iterations of our solution, per strategy, is shown
in On average, our solution has a reduced number of iterations during optimization,
specially when using the Gauss-Newton strategy, and as result it has a high computational
efficiency. The reduced number of iterations is also an indication that the emplaced non-linear
least squares optimization has good convergence. As previously mentioned, the Levenberg-
Marquardt strategy has a one-time event in the Killian dataset where its convergence is poor.

Table 3.2: Mean number of optimization iterations and respective standard deviation, and min-max values for
all datasets, grouped by algorithm.

Scan Matching - GN Scan Matching - LM

# iterations | min-max || # iterations | min-max
aces 6.93 £ 3.34 1-24 12.30 £4.60 | 3 —37
intel 5.70 +2.14 1—-22 9.88 + 3.63 3—32
csail 8.10 £4.03 1—40 13.37+£5.86 | 3 —58
fr079 5.47 £2.24 1—25 9.65 £ 3.52 2-34
killian || 5.99 + 3.40 1—-44 13.84 +£9.26 | 1 —488

3.8 Conclusion
This chapters presents a localization algorithm for mobile robots based on scan matching

supported by a likelihood field. The localization problem is first introduced as a maximum
likelihood pose estimation, and by introducing a continuous likelihood field as the measurement

46



model the localization problem is converted into an scan matching problem solved by non-
linear least squares on a manifold. In the carried experiments, our scan matching proposal
has a high computational efficiency that results from good convergence of the optimization
process. Furthermore, when compared with AMCL, a state-of-the-art localization algorithm,
our solution not only provides pose estimates with better accuracy for all experiments but
also trajectories that never cross occupied space, like in some experiments with AMCL. The
end result is an accurate localization algorithm for mobile robots with a high computational
efficiency that makes it suitable for tasks with real-time requirements.

47



error deviation (m)

execution time (ms)

meters

ISM - Glauss-l\llewtor}

(b) Root mean square error at each pose estimate

/

— Scan Matching

— - SM - Levenberg-Marquardt

-+ AMCL

[
- 0.8-
- 0.6 -
- 0.4 -
0.2 -

£100 -

- 10+

1-
— rmse
0.8 -
0.6 -
0.4 -
0.2 -
nl 1 1 1
0 5 10 15
timestamp (m)
100 2 SM - Gauss-Newton
: — mean
- e std
10 =
01 7 I I I I
0 5 10 15 20

timestamp (m)

meters

(a) Robot trajectory

SM - Levenberg-Marquardt

— rmse

tlmestamp (m)

SM - Levenberg-Marquardt

[E
- 0.8-
- 0.6 -
- 0.4 -
- 0.2-

F

£100 4

— mean -

o std

I
10 15
timestamp (m)

(¢) Execution times

- 10+

£

AMCL,

10

15

— rmse

| [

20 25

timestamp (m)

AMCL,

10

— mean °:
- std

| | [

15

timestamp (m)

Figure 3.6: Localization experimental results for the ACES dataset.

48



error deviation (m)

execution time (ms)

0- - | |
—— Scan Matching
— - SM - Levenberg-Marquardt

AMCL
5 -
10-
15-
4
[
@
E 20 -
25-
30-!
35-
0 5 10 15 20 25 30 35 40
meters
(a) Robot trajectory
1. 3M-Gauss;Newton ,k_, , , S5M-leyenberg-Marquardt 1o o AMaL \
- - - 1
— rmse — rmse — rmse
0.8 - -0.8- -0.8-
0.6 - - 0.6 - -0.6-
0.4 - S04 - ~0.4-

0.2 - l l -0.2- -0.2-
0 et “..l.ll.‘ Il lAI : -0+ .04

timestamp (m) timestamp (m) timestamp (m)

(b) Root mean square error at each pose estimate

100 il 1 $M -I GaIuSSI-NeIVVtOIn 1 Ij 100 il $M -I Le\I/enlberg-MIarqlljardlt Ijloo il 1 1 1 AIMCIL
: — mean - : — mean : :
) e std - - e std : :

10 - - 10 - - 10~

1- B 1- B 1-

WA Al MR T ean
B . i B © e std

0.1 L - 0.1 e e - 0.1 e
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35

timestamp (m) timestamp (m) timestamp (m)

(c) Execution times

Figure 3.7: Localization experimental results for the Intel dataset.

49

I
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

40 4

5



error deviation (m)

execution time (ms)

0 ) I | | | | ! ! -
Scan Matching
- SM - Levenberg-Marquardt
- AMCL

4
2
9}
1S
0 10 20 30 40 50 60 70 80
meters
(a) Robot trajectory
SM - Gauss-Newton SM - Levenberg-Marquardt AMCL
2 - | | 1 | I | [ 2 - ! ) | | | [ 2 - ! | | T | |
— rmse — rmse — rmse
1.5- -1.5- -1.5-
1- - 1- - 1-

I I I I I I [ I I I l al I I I I I I
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7 0O 1 2 3 4 5 6
timestamp (m) timestamp (m) timestamp (m)
(b) Root mean square error at each pose estimate
100 2 . SM - Gauss-Newton L1002 SM - Levenberg-Marquardt L1002 : . AMCL :
E — mean : — mean ° :
: e std : . e std : i
10 - - 10 - - 10 -
: C : — mean
. . B . . o std
0-1 nl 1 1 1 1 1 1 ~ 0-1 il 1 1 1 1 I 1 ~ 0-1 il 1 [ 1 1 I - I
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7 0O 1 2 3 4 5 6
timestamp (m) timestamp (m) timestamp (m)

(¢) Execution times

Figure 3.8: Localization experimental results for the ACES dataset.

50

~N o



error deviation (m)

execution time (ms)

— SM - Gauss-Newton
~ - SM - Levenberg-Marquardt
AMCL

2.5-

5

7.5 -

2

10 -

125

15 -

17.5 - . . .
0 10 20 30 40
meters
(a) Robot trajectory
M - -Newt M - L -M t AMCL
100 ,I ] $ ] GaIussl elvv oIrI ] I?loo ?I $ ] e\Ilenlberg Iarqlljarcl| I?].OO ,I ] ] ] ) CI ] ] ] I?
: — rmse - : — rmse ° — rmse °
10 - - 10+ - 10 - -
L ro1: Tl -
0.1- -0.1- o :
: 0.1 e
0 2 4 6 8 1012 14 16 18 0 2 4 6 8 1012 14 16 18 0 2 4 6 8 10 12 14 16 18
timestamp (m) timestamp (m) timestamp (m)
(b) Root mean square error at each pose estimate
SM - Gauss-Newton SM - Levenberg-Marquardt AMCL
100 ,EI | [ | [} ] I I | I?100 ,EI [ | ) I I ] [} I?].OO ,EI | | | ) [} | | | I?
: — mean : — mean - : :
B e std - . e std - . -
10 - - 10 - 10+ -
My
: : : : J — Mmean :
. . . R C e std .
01~ v v v 01~ R0 e
0 2 4 6 8 1012 14 16 18 0 2 4 6 8 1012 14 16 18 0 2 4 6 8 1012 14 16 18
timestamp (m) timestamp (m) timestamp (m)

(c) Execution times

Figure 3.9: Localization experimental results for the Fr079 dataset.

ol



error deviation (m)

execution time (ms)

0- ‘
SM - Gauss-Newton
- SM - Levenberg-Marquardt
AMCL

meters

i i i
0 50 100 150 200
meters

(a) Robot trajectory

SM - Gauss-Newton SM - Levenberg-Marquardt AMCL

2 - 1 I T 1 I 1 2 [ T 1 1 1 I 2 1 1 1 T 1 1 I
— rmse — rmse — rmse
1.5- -1.5- - 1.5 -
1- - 1- - 1- -
0.5 - -0.5- - 0.5+ -
0 al [ [ 1 1 [ 1 r 0 al [ [ 1 1 [ 1 ~ 0 ul [ 1 I 1 I 1 r
0 20 40 60 80 100120140 0O 20 40 60 80 100120140 0 20 40 60 80 100 120 140
timestamp (m) timestamp (m) timestamp (m)
(b) Root mean square error at each pose estimate

) . SM - Gauss-Newton | ) SM - Levenberg-Marquardt AMCL

- _ 5 _l 1 ) 1 1 1 [ 5 _l 1 1 1 1 1 1 [
. — mean 4 — Mmean

N e std - N e std N -
3- - 3- - 3- -
2 - - 2- - 2- -

1- oo1- oo1- — mean
e std

1 1 1 1 1 1 [ 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
timestamp (m) timestamp (m) timestamp (m)

(¢) Execution times

Figure 3.10: Localization experimental results for the Killian dataset.

92



Chapter 4

A Sparse-Dense Approach for Efficient
Grid Mapping

The creation of models of the environment is an important part for many robotic ap-
plications (Burgard and Hebert| |2008]). One of such models is the spacial representation of
the environment which is used in a variety of applications such as robotic localization, path
planning, manipulation, and object recognition. This type of applications requires the capa-
bility to provide a probabilistic representation of space capable of modeling free, occupied and
unknown areas with efficient runtime and memory usage.

One of the earliest and popular approaches to model a three-dimensional environment uses
a regular volumetric grid that discretizes the space into cubic volumes of equal size, usually
known as wvozels, with early approaches authored by |Roth-Tabak and Jain| (1989); Moravec
(1996)). Implementing a regular volumetric grid is straightforward, hence its popularity. Let g
be a linear array that contains all cells of a grid map and ¢;;; a cell located at the coordinates
(i,7,k) € N&®. For a grid map of size (w x h x d) € N, any grid cell can be referenced by

Cijk = glk +d(j +1ih)] with i<w,j<hk<d. (4.1)

There is also the matter of converting world coordinates to the discrete grid coordinates. If r
is the resolution of the volumetric grid and (z,y, z) coordinates in the world frame, then the
transformation to grid coordinates is given by

(i,5,k) = {(m,y, z)i-‘ +0, (4.2)
where 0'is the offset that defines the origin of the volumetric grid, i.e. it maps a world coordinate
to the grid’s origin coordinates (7,7, k) = (0,0,0). Note that a two-dimensional version of the
volumetric grid is a special case of the three-dimensional version where k£ and d are fixed to
the values k=0 and d = 1.

Despite its popularity, the regular volumetric grid representation has one major drawback
in its implementation: it requires a large amount of memory. In its basic implementation, a
grid must be instantiated with a size at least as big as the bounding box of the space that
was mapped, independently of the grid cell distribution that was actually used. In large
environments, such as outdoor, or even is scenes where a high granularity is required, the
required memory can actually be a technical obstacle that prevents its usage. But there is
another drawback that hinders its efficiency: it requires beforehand the extent of the area

93



being mapped, or, if size readjustment is in place, it may require a time consuming copy
operation every time the map area expands.

Other models have been proposed to addressed the aforementioned issues of the volumetric
grid representation such as: elevation map (Herbert et all |[1989) that is essentially a 2D grid
where each cell contains its measured height; multi-level surface map (Triebel et al., 2006|) that
is similar to the elevation map but it recognizes the existence of more than one surface per cell;
and point sparse maps that instead of discretizing the environment it saves the measurements
directly, like the point cloud approach proposed by (Cole and Newman| (2006) for 3D SLAM.
But these models still have shortcomings: the first two fail to model unknown mapped areas
and are unable to represent arbitrary environment; the last one does not handle memory
efficiently, as more range data are acquired more memory is needed to store them.

Hornung et al.| (2013)) proposed a probabilistic 3D mapping framework, called OctoMap,
that implements a volumetric grid using an octree with a focus on probabilistic occupancy
maps. An octree is a hierarchical tree data structure that recursively subdivides a volume into
eight sub-volumes until a minimum voxel size is achieved. Additionally, it does not require
prior knowledge about the extent of the mapped area, grid cells are only initialized when
a measurements needs to be integrated. This results in an efficient space management that
considerably reduces the necessary memory to represent a volume grid, and by pruning the
tree it is possible to further reduce memory consumption. OctoMap is at the moment the
most popular and widely used volumetric grid implementation in the field of robotics. An
example of its usage is shown in

(b) Representation of the free volumes.

Figure 4.1: 3D Occupancy map of the FR-079 corridor dataset, constructed offline with OctoMap at a resolution
of 0.05 meters.

o4



4.1 Motivation

The work presented in Chapter [3] provides a fast and accurate localization algorithm and
it is our intention to explore its applicability in two-dimensional SLAM with occupancy grids,
specifically for online SLAM and full SLAM. The use of our localization proposal in online
SLAM requires two grid maps: a probabilistic occupancy map that is built by integrating mea-
surement and a likelihood field that is a reflection of the occupancy map. For the full SLAM
problem we decided to pursue a solution based on a Rao-Blackwellized particle filter, that
although it calculates a full path posterior, each particle estimates one pose at-a-time (Thrun
et al., 2005|) following an online approach. This realization opens the possibility to use our
online solution as part of a full solution. Generating and using maps is ubiquitous in SLAM
and with our approach pose estimation requires two maps, and scaling to a particle filter adds
additional pressure on the issue of having an efficient volumetric grid implementation, as each
particle represents a pose estimation that contains its own map.

To fulfill our requirements we need a volumetric grid implementation with efficient space
(or memory) management without compromising runtime. The 3D mapping framework Oc-
toMap is a volumetric grid implementation that offers such efficiency. It defines three essential
requirements for a reliable implementation: probabilistic representation, modeling of unknown
areas and efficient runtime and memory usage. Let’s discuss them and their applicability to
our application.

Probabilistic representation To create a 3D model of the environment a mobile robot
senses the space by taking 3D range measurements. These measurements are bound to
be tainted by uncertainty, as erroneous measurements can be caused by the limitations
of the sensor but also by reflections and dynamic objects. To create an accurate model
we need to address the fact that noisy measurements are part of the system, and there-
fore, we should model this underlying uncertainties using probabilities. A probabilistic
representation provides a method to fuse multiple uncertain measurements into a robust
estimate of the true state of the environment. Additionally, in probabilistic sensor fusion
the integration of multiple measurements is not restricted to a single sensor or even to
a single robot.

A probabilistic occupancy grid map is a text-book example of a viable probabilistic rep-
resentation of the environment. It is widely used in applications such as SLAM, motion
planning or even scene representation. However, the “probabilistic representation” is
coupled with the semantics of probabilistic occupancy mapping, that forgoes the fact
that not all grid maps need to represent probabilities. Such an example is the likeli-
hood field that we used as a measurement model for localization using scan matching
(described in . It also needs the modeling of unknown areas, efficient access
times and a proper memory management but it does not require a built-in probabilistic
representation for the state of each grid cell. We argue that a volumetric grid imple-
mentation, at its lower level, should not be bounded by the semantics of the model it
is supporting. This is not the case with OctoMap, since it is not possible to implement
different models beyond occupancy grids to take advantage of the octree data structure
use for memory management.

Modeling of unknown areas As an example, in autonomous mobile navigation, the knowl-
edge about occupied and free space is essential for planing free-collision paths, and un-

95



known areas should be avoided, therefore it is also important to know the unknown. This
also allows new possibilities such as autonomous exploration, where unknown areas are
the points of interest. In the octree data structure, it is possible to model the unknown
as every node that is not allocated is unknown space. However, once a node is allocated
it cannot revert to an unknown state.

Efficiency There are two metrics to consider when referring to the efficiency of an imple-
mentation: runtime and memory. When mapping the environment, specially in 3D,
the amount of data to integrate can be overwhelming and the system can ultimately
lag behind and provide a representation that does not correspond to the current state
of the environment. In the same situation, memory consumption is a major drawback.
Unless a compact memory management is used, a large environment may not fit in the
memory of the robot, rendering the system to a halt. These problems can be mitigated
by sub-sampling or down-sampling (or both), but we are trading accuracy for better
run-times and lower memory consumption.

Accessing data within the octree data structure requires an additional overhead when
compared with the fixed-size volumetric grid. A random single update, on a tree with
n nodes with depth d, has an access complexity of O(d) = O(logn), with additional
memory allocation overheads when traversing unknown areas. In practice, the octree has
a depth limited to the constant dp,ax that results in a complexity of O(dmax). In general,
the octree data access is runtime efficient but, when dealing with 3D measurement, the
high number of data accesses can undermine the runtime efficiency of the application,
specially if more than one map is used at the same time. Reducing dyax would improve
runtime efficiency, but in exchange the area that the octree is capable to represent would
decrease significantly.

By delaying the initialization of a grid cell until it is necessary for integration, the octree
is capable of reducing the necessary amount of memory to represent the known areas
of the environment. Redundant information can be reduced by pruning the tree, which
further reduces memory usage, but it requires all eight children of a node to have the
same occupancy value, meaning that a single child can prevent pruning even though
there is redundant information. This situation is further aggravated in two-dimensional
applications, where pruning will never happen because at most only four children per
leaf node will be used. For better compactness all grid cells can be brought to their
maximum likelihood (either free or occupied), but this is a lossy technique that discards
information for future updates. A better approach to increase compactness would be to
evaluate information redundancy of grid cell clusters with a higher number of members
without compromising runtime and memory efficiency. As a final observation, OctoMap
does not provide a memory efficient method to duplicate a tree, as it will always do a
deep copy, which is not optimal for application such as SLAM particle filter.

Although OctoMap is a successful implementation of a volumetric grid, proved by its
extensive use in several robotic applications, we found that it is not suitable for our SLAM
application. Not only it is bounded to a single model, the occupancy grid, but it is also
inefficient for two-dimensional representations and does not provide an efficient duplication of
data required by a SLAM particle filter. Hence, in this chapter we will introduce a volumetric
grid implementation suitable for our SLAM application but that is general enough to be used
in other applications, for example as a replacement for OctoMap.

o6



4.2 Mapping Framework

The approach proposed in this chapter is an efficient hybrid solution that uses sparse
division of space combined with a dense subdivision of space that is virtually capable of cov-
ering any mapped area at any defined resolution. To further reduce memory consumption a
compression scheme is also in place. Additionally, it provides an abstraction layer that sepa-
rates model implementation from space management, meaning that any model transparently
inherits the underlying space management.

4.2.1 Sparse-Dense Volumetric Subdivision

An environment of unknown area size can, conceptually, be of infinite size. From this global
perspective any perception of the environment is rather sparse. A sparse representation of the
environment has the advantage of a lower memory requirement than its dense counterpart.
The trade-off is a reduction in access time efficiency, but it gains the flexibility to represent
both known and unknown space without additional cost. However, from a local perspective,
when perceiving the environment with range data the knowledge about the environment is
rather dense. Assuming locality, consecutive perceptions of the environment are related to its
immediate surroundings. In this situation a dense representation of the environment is more
advantageous, as access time is constant and it requires less initializations.

The sparse and dense representations are not mutually exclusive. Both can be combined to
create an efficient representation of the environment. The proposal is to divide the volumetric
grid into smaller dense volumetric grids of equal size that are referenced by a sparse structure.
In summary, space is represented by a sparse grid of dense volumetric grids .

A dense volumetric grid is ruled by the parameter L € N that defines the length of its
edge measured in grid cells. Therefore, a dense volumetric volume of length L represents a
sub-volumetric grid with L3 grid cells, named patch. The patch is the actual container of grid
cells that in turn contains the data used by the model, therefore, access to a grid cell goes
through one level of indirection. Given the coordinates (3,7, k) of grid cell ¢, the first step
is to find the patch that contains such cell and then to obtain its reference within the patch.

Figure 4.2: Sliced view of the volumetric grid with volume subdivision. The area is divided into sub-volumes
of equal sides when data in integrated.

o7



Let p be a patch and P a sparse structure (e.g. a dictionary) that holds all patches. Each
patch is identified by a unique identifier given by the function h : Ng — Np such that

h(i,j. k) =k+A(j+iA) with AeN:A> <2, (4.3)
where A is the size limit of the volumetric grid imposed by the finite nature of all computational
systems and b is the bits resolution that governs the imposed size limit. The access to the
correct patch for the coordinates (i, j, k) is now given by
ik
L'L'L
If the patch is not found in P it should be created and initialized. Before obtaining the grid

cell, it is now necessary to adjust the coordinates to the current patch pjp, which is achieved
with the following:

pp=P [h( )} with 4,7,k < AL . (4.4)

(i,4,k) = (i mod L, j mod L,k mod L) . (4.5)
Finally, the grid cell ¢, is obtained by
Cijk = palk + L(j +iL)] . (4.6)

Note that pp is a multi-dimensional array with a row-major flat memory layout where data is
stored in a continuous memory segment that provides faster access times. The conversion of
world coordinates to discrete grid coordinates is the same as (4.2]), but with its origin o set to
the geometric center of the volumetric grid, that is

LA

0= 5(1, 1,1). (4.7)

Despite the indirect reference to a grid cell introduced by the use of patches, from a user

perspective any grid cell is accessible by providing its world coordinates (z,y, z), similar to the
classic dense volumetric grid, making the use of patches a transparent process. Anecdotally,
our volumetric grid with resolution r can map an environment of size

(rLA)® m? (4.8)

which can be large as a room, a building, a city block, a city, a region or even a country,
depending on the parameters that are used.

4.2.2 Space Efficiency

Space (or memory) efficiency of our proposed volumetric grid is heavily influenced by the
value of L, i.e. by the number of grid cells contained in each patch. A single used grid cell in
a patch requires the allocation and initialization of L3 grid cells therefore, it is desirable to
have a low value for L to avoid unnecessary allocations. However, the sparse structure that
holds all patches trades access time for lower space requirements, hence by a low value
of L can introduce significant access time overheads and hinder time efficiency. The size of
the patch, defined by L, is therefore a trade-off slide between space and time efficiency: a
lower value provide better space efficiency but worse access times, and a higher value results
in lower access times but with a considerable space overhead that results from cells that are
allocated but not touched during integration. As more data is integrated into the volumetric
grid the space overhead is attenuated, which is a visible effect of the local density assumption
(see . But, in some applications, the space overhead is too big to be neglected.
To address this issue we propose three additions to our volumetric grid: two-dimensional
awareness, data compression, and data sharing with reduced overhead.

o8



(a) L =4, ~ 60% space overhead (b) L =8, ~ 72% space overhead (c) L = 16, ~ 81% space overhead

Figure 4.3: Visualization of sparse-dense volumetric subdivision for different values of L with respective space
overhead. In this example only one scan is integrated. The space overhead corresponds to the percentage of
cells that are allocated but not touched during integration. As more data is integrated the space overhead
reduces, the final space overhead is approximately 32%, 48% and 64% for (a), (b) and (c) respectively.

Dimensional Awareness

Not all applications require a three-dimensional representation of the environment. A
practical example is the two-dimensional mapping of an environment. In this situation, the
allocation of L3 grid cells for each patch has a guaranteed space overhead of

1
- >50% VLEN:L>1, (4.9)

that will never be used. Such degree of space overhead is clearly not desirable. To avoid
this shortcoming, our volumetric grid is aware of the environment dimensionality, that is, the
dimensionality of the environment is explicitly defined as either two or three dimensional.
To accommodate this awareness several changes to the volumetric grid are required. The
first change is the number of grid cells allocated upon initialization of a patch. When the
environment is two-dimensional, only L? grid cells are allocated instead of L3. Furthermore,
the unique identification of a patch has the following modification:

o [ k+A@G+id) D=3
Wi, 3 k) = { j+iA if D=2 (4.10)

where D is the number of dimensions to consider. The access to an individual grid cell ¢;;;, also
needs to be changed to in order to handle two-dimensional and three-dimensional linearized
grids:

Gijh = { ph[l_‘?+L(] +il)] if D=3 (4.11)

pulj + L] if D=2
The remaining equations (i.e. @, and (4.7)) do not need to change, because for any
value of k they remain valid.
Online Data Compression

As previously discussed, the use of patches comes from the local density assumption of
measurements, however it does not guarantee that all grid cells are used to integrate measure-
ments — a disadvantage when compared to an octree structure that only allocates a grid cell

99



when it is needed. But this trade-off in space provides some time efficiency, and depending on
the application the space overhead may be negligible. Nonetheless, for situations where the
overhead is not negligible we propose to take advantage of the patch flat memory layout to
compress the data and reduce its size during operations.

In situations where most grid cells in a patch are “untouched”, lossless data compression
algorithms can be efficiently used to exploit the statistical redundancy contained in the data.
This also has the advantage that data compression can be carried independently of the model
implemented on top of the volumetric grid. Although data compression is a good mechanism
to reduce the memory footprint of a patch, read and write operations require the data to be
uncompressed. This raises the issue of when to compress and when to decompress data. A
naive approach would be to decompress the data before every read/write operation and soon
afterwards, compress it again. But such approach is not feasible, as data compression and
decompression are computationally expensive operations and any space gain is overshadowed
by the overall time inefficiency.

Our proposal for data compression relies on the use of a caching mechanism to maintain
the recently accessed patches, with uncompressed data, so they can be accessed at a later time
without incurring in a compress-decompress time penalty. The patches that are not referenced
by the cache list have their data compressed. Cache replacement follows a least recently used
(LRU) strategy. When cache replacement occurs, the data of the patch that enters the cache
is decompressed, while the data of the patch that is removed from the cache is compressed
(see [Figire 13).

The viability of this cache mechanism relies, once more, in the local density assumption
and in the size of the cache list. For example, concerning local density, in the integration of
a three-dimensional laser scan, consecutive range rays are close in space and likely to “touch”
the same patch. The optimal size of the cache list is an open issue.

patch dictionary patch dictionary patch dictionary

cache list cache list cache list
id:87 [ id:100 [ 1 id:87 +{id:200 [ 1 id:87 -{id:87 |1
{g} : id:200 | 2 id100 | 2 id:200 [ 2
id:100 7 [id201 3 id:100 [ia201 [ 3 id:100 -[ia:100 [ 3
: WE
id:120 i id:120 id:120
id:200 id:200 id:200
0201 |+ id:201 id:201
: } s
\ } d
B g
id:300 |+~ = .= g id:300 id:300
al (]
& =g
(a) (b) (c)

Figure 4.4: Cache mechanism for online data compression with an LRU cache replacement strategy. Scenario
(a) depicts the current state of the cache, only the patches referenced by the cache list have their data
uncompressed. In (b), patch-200 in the cache list is referenced, as result it is moved to the top of the cache list,
no other operations being required. Next, in (c), patch-87 not in the cache list is referenced, as result, and
because the cache list is full, the patch-201 referenced at the bottom of the cache list is removed from the list
and its data is compressed, then the reference patch-87 is added to the cache list and its data in uncompressed.

60



Implicit Data Sharing

The modeling of the environment is not restricted to a single volumetric grid. The en-
vironment can be represented by different grids that capture distinct characteristics, such as
occupancy, traversal cost or distance to closest object. There are also modeling techniques that
reconstruct the environment by branching from the same model state with different parame-
ters and later prune the model tree, by removing the model instances that worse represent the
actual environment. The grid-based SLAM with Rao-Blackwellized particles (Grisetti et al.,
2007a)) is a perfect example of model branching. Each particle contains its own representation
of the environment that is inherited from its ancestral particle during re-sampling. Such in-
heritance implies a full copy of the grid for each particle that is spawn. In a reasonable sized
environment, combined with the number of particles, the space requirements can grow to an
unmanageable amount. To address this issue, Eliazar and Parr| (2003) propose the use of a
single grid (instead of multiple) where each grid cell contains an ancestry tree that associates
changes to particles. However, this is a specialized solution that only works for particle filters
and breaks our architecture of a volumetric grid that is agnostic to any model.

Fairfield et al.| (2007) introduced an efficient method to share an octree structure by wrap-
ping each node of the octree with a copy-on-write (CoW) structure that employs a strategy
where data duplication is deferred until the data is changed. Duplicated CoW structures keep
a count reference to the same resource, but when a caller tries to modified the data a private
copy is created and the previous reference is release, unless it has a single reference, which
indicates that data duplication is not needed. The advantage of this strategy is that if the
resource is never modified it will will never be duplicated.

Considering our volumetric grid solution, efficient data sharing must operate at the patch
level. Thus, by importing the CoW strategy to our volumetric grid, each patch is wrapped
by a CoW structure to optimize data sharing. Now, the duplication of a volumetric grid only
implies a copy of the sparse structure that contain CoW references to the patches, and the
duplication of a patch only happens when it is accessed for a write operation (see .

patch dictionary 1 patch dictionary 1 patch dictionary 2 patch dictionary 1 patch dictionary 2

id:87 id:87 id:87 id:87 id:87

id:100 [ N id:100 [ S, id:100 id:100 [ Sy id:100
\d- y N \ 4 N \d' Y, /
‘ ) . ; . )

id:120 id:120 id:120 id:120 id:120

id:200 e s - id:200 poemes - id:200 id:200 P - id:200
=) RS N=) NEh

*\ ———— r,’l " ‘\ ~~~~~ _,’, \‘ _____ /,/

ey - e = =

...... L

' S 1
uncompressed ! (| ™\ | h
patch ¥, / N

(a) (b) (c)

Figure 4.5: Copy-on-write (CoW) strategy for implicit data sharing. Scenario (a) depicts the current state
of a volumetric grid. In (b) the initial volumetric grid is duplicated, and due to CoW, the patches belong to
both volumetric grids without the need to duplicate. Next, in (¢), patch-200 in one of the grids is accessed for
writing, following the CoW strategy the patch is duplicated and the reference to the previous is released.

61



4.3 Implementation Details

This section contains the description of the most relevant details of our implementation of
the proposed sparse-dense volumetric grid. The software was developed as a C++ library and
tested in the Linux and MacOS platforms.

4.3.1 Software Architecture Overview

One of the most important requirements of our mapping framework is the separation of
the volumetric grid space management from model implementation and that is achieved with
the software architecture depicted in As result, space is provided to the model
as a discrete dense division of the environment (i.e. grid cells) without forcing or requesting
size limits. The advantage of this abstraction is that data compression and implicit data
sharing is transparently available for any model, independently of its logic. The exception is
the dimensionality awareness, where the model has to declare its preference. Nonetheless, if
a model does not declare its preference the volumetric grid will operate at three-dimensions,
which is more than capable of handling a model with a two-dimensional logic — thus increasing
the abstraction.

|— ________________________________________________________________________________ hl

000000 |

: <CellType T> <int64, CoW<Patch<T>>> <Patch<T>> <CellType T> |
....................... )

: Map PatchDictionary CoW Patch

| 0.. 1

| sd: PatchDictionary &> dic: CoW<Patch<T>> @ D reference: *Patch<T> O; data: *T

|

|

|

A

ellT

OccupancyMap

DistanceMap

FrequencyOcc DynamicDistance

ProbabilisticOcc

Models

Figure 4.6: Simplified UML diagram of our software architecture.

In our architecture, the class Map is responsible for handling everything related with the
volumetric grid. It includes methods to access individual grid cells, transform coordinates
to and from map coordinates, control the compression mechanism and obtain internal state
information such as memory usage and metric bounds of the map. To take advantage of the
sparse-dense volumetric subdivision, every model has to adhere to the following convention:
read-only operations must call the immutable version of the grid cell getter that returns a
null reference when the requested coordinates does not map to an existing patch; and write
operations must call the mutable version of the grid cell getter that dynamically allocates
new patches when the requested coordinates does not map into an already allocated patch.
Note that the grid cell getter is the implementation of . This convention also makes the
CoW strategy possible. The differentiation between read and write operation is an obligatory
functionality for an effective use of the strategy.

The implementation of a model starts by deriving from the class Map. An extra level of

62



abstraction can be added by defining an interface for different types of models. For example,
occupancy maps represens the occupancy state of a grid cell, and require methods to update
and query that state. However, there are different ways of updating the occupancy state,
such as by using probabilities or by ternary states (unknown, free or occupied). They require
different structures to represent the environment, but conceptually they are both occupancy
maps.

4.3.2 Sparse-Dense Structure

All patch references are kept in a map container (i.e. a dictionary) that is implemented
with a self-balancing binary search tree (e.g. red-black tree). The binary tree provides an
average (and worst case) time complexity of O(lnn) for searching, insertion and deletion.
Furthermore, accessing an individual grid cell in a patch is an O(1) operation due to the use
of the flat layout memory, or array linearization.

The maximum metric size of the volumetric grid is imposed by A that is defined by a
bit resolution b (see ) For our implementation we chose a bit resolution of b = 64 that
results in

AeN:AP <200 — A < V26t (4.12)

To maximize the area covered by the map, A = v/264 is used. In practice, we are defining the
hash of a patch to be an unsigned 64 bits integer, where A is the maximum number where an
integer overflow will not happen in the hash calculation.

4.3.3 Lossless Data Compression

As already discussed, we take advantage of the patch’s flat memory layout to compress
and decompress the data when needed. Concerning the implementation, a crucial decision is
which algorithm to use. Three aspects must be considered when selecting a lossless compres-
sion algorithm: compression ratio, compression time and decompression time. The amount of
lossless compression algorithms available is considerable and each one of them tackles differ-
ent aspects of compression. Some provide good compression and decompression speeds but
sacrifice compression ratio, and others offer the opposite, good compression ratio at the cost
of lower compression and decompression speed. It is also common, within each algorithm,
to sacrifice compression speed for better compression ratios while maintaining similar decom-
pression speeds. Shared among all algorithms is the asymmetry between compression and
decompression speeds, where decompression is always faster.

The main concern for our application is to have a balanced trade-off between compression
speeds and ratio. Using the caching mechanism, the number of compressions will always be
equal to number of decompressions. At first glance, the compression speed of the algorithm can
be a bottleneck, as already mentioned it is usual to trade compression speed for better com-
pression ratio. The common algorithms for lossless data compression are LZ77/LZSS/LZMA
(Ziv and Lempel, [1977; |[Salomon and Motta, 2010) and its derivatives, and popular choices
are lz4E|, snappyEL zlibE| and zstdﬁ The algorithms 1z4 and snappy have high compression and

"http://1z4.github.io/1z4/
2http://google.github.io/snappy/
Shttp://www.zlib.net/
“http://facebook.github.io/zstd/

63


http://lz4.github.io/lz4/
http://google.github.io/snappy/
http://www.zlib.net/
http://facebook.github.io/zstd/

Table 4.1: In-memory benchmark of lossless compression algorithms. The results were obtained with data
blocks of 16KB using 1 core i7-2640M CPU @ 2.80GHz. The baseline is the system memory copy function.

name | compression | decompression | ratio
memcpy 5766 MB/s 5766 MB/s | 1.00
1z4 469 MB/s 1723 MB/s | 1.72
snappy 367 MB/s 1118 MB/s | 1.77
zlib 65 MB/s 231 MB/s | 2.49
zstd 164 MB/s 434 MB/s | 2.55

decompression speeds with reasonable compression ratio, while zlib and zstd have higher com-
pression ratio with reasonable speeds, albeit considerably lower. The performance of these
algorithm is supported by an in-memory benchmark of lossless LZ77/LZSS/LZMA deriva-
tive compression algorithms, available online at http://github.com/inikep/lzbench. Their
benchmark results are shown in [Table 4.1l

Despite the benchmark, the actual choice and respective performance of an algorithm
depends on the model, i.e. the integration rate, data redundancy, data density, etc. Therefore,
several algorithms were implemented, including the already mentioned. This provides a higher
flexibility to the user that can choose between speed and compression ratio.

During cache substitution there is a decompression followed by a compression, executed
in sequential order. Decompression imposes a hard dependency: because data needs to be
decompressed to be read and/or written the execution flow has to wait until the operation is
finished to continue. On the other hand, compression does not impose any dependency to the
main execution flow and can be performed in parallel — we name it asynchronous compression.
This way, the increase in execution time by compression can be reduced, which attenuates the
asymmetry between compression and decompression speeds. The parallelism and concurrency
is achieved through multi-threading.

4.3.4 Multi-Threading Support

Nowadays, multi-core systems with several execution threads are ubiquitous. Such re-
sources are an opportunity to increase the time efficiency of our volumetric grid implemen-
tation. To support multi-threading we need to identify the shared resources and respective
critical sections. There are two levels of multi-threading support: thread-safe CoW mechanism
and a thread-safe online data compression. The former assumes that each execution thread
contains a branched version of the same volumetric grid, and the latter allows several execu-
tion threads to perform data compression and decompression to the same patch independently
of belonging to multiple volumetric grids.

Considering the CoW mechanism, the only critical section is the duplication of a patch.
The action is only performed if other CoW structures point to the same patch and that
verification and possible duplication needs to be mutually excluded. Failing to do so can result
in data corruption and unnecessary data duplications. Read-only operations does not impose a
critical section because CoW guarantees that write operation will never change the data from
other execution thread. Enclosing the verification and duplication in a critical section will
inevitably introduce an execution time overhead, and considering that this procedure is called
very frequently the system looses efficiency. Fortunately this can be avoided by performing an
initial verification about the number of CoW structures referencing a patch before entering the

64


http://github.com/inikep/lzbench

critical section. If the reference is unique, i.e. a single CoW structure references the patch, then
the procedure terminates without entering the critical section. Otherwise, it enters the critical
section and repeats the verification, to ensure that the duplication only occurs if the reference
is not unique, as it could have been changed by other execution thread. A pseudo-code of the
procedure, called detach, is presented in

Algorithm 13: Thread-safe CoW data duplication with double-check lock.

CoW::detach( ):
if pres 25 unique then return // First verification

enter critical section‘

if pres is not unique then // Second Verification
p < duplicate prqr
release Py
Pref < reference of p

end

‘ leave critical section
return

Compression and decompression are two mutually excluded regions within a patch. How-
ever, due to the online data compression mechanism with implicit data sharing, the same
patch can be in compressed and decompressed states at the same time. This paradox happens
because each volumetric grid has its own cache list, thus the same patch can be present in one
of the cache lists, ergo in a decompressed state, while not being present in the remaining cache
lists, which implies a compressed state. The paradox is dismissed by introducing a simple rule:
the presence of a patch in any cache list guarantees the decompressed state. This is solved
by implementing a counting mechanism where a decompression increases the counting value
and a compression decreases the counting value. In practice, the number of compression calls
must be equal to the decompression number calls before an actual compression action takes
place. The pseudo-code for compression and decompression are shown in and
respectively. Consequently, the counting mechanism also works, at no cost, for
the previously discussed asynchronous compression.

Algorithm 14: Thread-safe compression. Algorithm 15: Thread-safe decompression.
Patch::compress( ): Patch::decompress( ):
enter critical section‘ ‘enter critical section‘
if count > 1 then count < count + 1
count < count — 1 if count == 1 then
if count == 0 then | ¢ < lossless-decompress(¢)
| ¢ < lossless-compress(¢) end
end \ leave critical section\
end return
\ leave critical section \
return

65



4.3.5 Implemented Models

In the context of this thesis, two models were implemented on top of our sparse-dense
volumetric grid: an Euclidean Distance map and an Occupancy Grid map. The reader may
notice that these models are used in Chapter [3| as an integral part of our scan matching
approach to localization. In fact, these implementations were the ones utilized for that work.

Distance Map

The Euclidean Distance map is an implementation of the dynamic Euclidean Distance
map proposed by [Lau et al| (2013]), where only cells affected by the change of state, i.e. from
occupied to free and vice versa, are updated, instead of the full map like in a traditional
implementation. For a better understanding of the solution, its pseudo-code is presented in
Algorithm [I6, and for a detailed description please consult the aforementioned reference.

Algorithm 16: Pseudo-code for updating a dynamic Euclidean distance map (Lau et al., [2013)).

setObstacle(s)
obst(s) + s
D(s) « 0
insert(open, s, 0)

removeObstacle(s)
clearCell(s)
toRaise(s) < true
insert(open, s, 0)

updateDistanceMap()
while open # () do
s < pop(open)
if toRaise(s) then
| raise(s)
else if isObst(s) then
| lower(s)
end
return D

raise(s)
forall n € Adj(s) do
if obst(n) #
cleared A —toRaise(n)
then
insert(open, n, D(n))
if —isOcc(n) then
clearCell(n)
toRaise(n) +

lower(s)
forall n € Adj(s) do
if ~toRaise(n) then
d < ||obst(n) — s||
if d < D(n) then
D(n) «+d
obst(n) = obst(s)
insert(open, n, d)

end

true
end

toRaise(s) <+ false

Probabilistic Occupancy Map

Probabilistic occupancy grid maps are used to generate consistent metric maps from noisy
and uncertain measurement data. Each grid cell is treated as an independent binary random
variable, which specifies the probability that a grid cell is occupied. Independently of how the
probability is updated, the integration of a measurement z; requires the casting of all rays z{ to
mark free space. The end-points of the rays 2} are used to mark occupied space. The casting
of a ray can be achieved by using well known line drawing algorithms, which are the Digital
Differential Analyzer (DDA) (Amanatides et al. [1987) and Bresenham (Bresenham)| |1965).
In the former algorithm all grid cells traversed by the ray are marked as a free. However,
this process is time consuming for a large amount of rays, thus the introduction of the faster
Bresenham algorithm that only uses integer operations. The Bresenham algorithm, although
faster, has the downside of neglecting some grid cell that are traversed by the ray. A visual
difference of the algorithms is depicted in

The ray casting operation can introduce unwanted effects due to its discretization. During
a scan sweep of a flat surface, a volume can be measured as occupied in one ray and then as free
in the following ray casts (Hornung et al.| [2013). To minimize the effect, cells that are marked
as occupied, during the same scan, will always supersede any “mark as free” operation. We
call this procedure as occupied superseding. However, this safeguard also introduces execution
time overheads, which may not be necessary — as we will show in the evaluation section. For
that reason, this is an implemented feature with optional use.

66



(a) DDA (b) Bresenham

Figure 4.7: Grid ray casting with line drawing algorithms, visited cells being in gray. In (a), the Digital
Differential Analyzer (DDA) algorithm marks all grid cells that are traversed by the ray. In (b), the Bresen-
ham algorithm follows the direction of the slope and only marks only one grid cell per (integer) step, which
corresponds to the grid cell with higher ray coverage.

4.4 Evaluation

The evaluation of our volumetric grid approach is supported by several real-world datasets
using the probabilistic occupancy model. The datasets in question are the Freiburg Build-
ing 079 corridor (Fr-079), Freiburg Campus (Fr-Campus) and the New College - Epoch C
(N. College). The first and second dataset represent an indoor and an outdoor environment,
respectively, with 360° laser scans (laser on a pan-and-tilt unit). The last dataset is an out-
door environment with laser data provided by two lasers mounted vertically. Additionally to
the laser data, a ground truth of the robot’s pose is also provided. The datasets were made
available by Hornung et al.| (2013)) and are part of Octomap evaluatiorﬂ These datasets allows
us to directly compare our approach with Octomap.

4.4.1 Mapping with Known Poses

The first step to validate our volumetric grid solution is to evaluate its ability to provide
the necessary grounds to construct a map of the environment for each dataset. Using the
available datasets, the laser data is integrated using the implemented probabilistic occupancy
map. With the availability of a ground truth, the construction of the environment is simplified
to a problem of mapping with known poses, using the approaches described in Subsec
Here, the correctness of the obtained maps, depicted in is subjective to the visual
observation of the reader. The expected outcome are maps that present a credible structure
of the environment without artifacts that could hint to inconsistencies in the underlying data
structure, i.e. in our sparse-dense volumetric data structure.

From our observation, a coherent and structured map is obtained for the three datasets.
From the Fr-079 indoor dataset it is possible to clearly identify the corridor structure contained
in this dataset, while in the outdoor datasets, Fr-Campus and N. College, building facades
and tree structures are certainly visible.

Shttp://ais.informatik.uni-freiburg.de/projects/datasets/octomap/

67


http://ais.informatik.uni-freiburg.de/projects/datasets/octomap/

(c) N. College at 0.2m resolution (size of scene: 161 x 249.7 x 33 m®)

Figure 4.8: Resulting 3D occupancy maps of all datasets with the proposed volumetric grid. For clarity, free
space is not depicted and occupied grid cells are color coded by height.

68



4.4.2 Map Accuracy

We seek to evaluate the accuracy of the obtained 3D occupancy map using our approach
and how it compares to OctoMap. Following |Hornung et al| (2013) proposal, the accuracy is
measured as percentage of correctly mapped grid cells for the entire 3D scan data. A grid cell
is considered to be correctly mapped if its state (free or occupied) in the map is the same in
the evaluated scan ray. In practice, every scan ray is treated as an integration on an already
built map where the grid cells along the sensor origin and ray endpoint must be free and the
grid cell at the endpoint (of the scan ray) must be occupied. Accompanying the accuracy is
the cross-validation of the map where each fifth scan ray is skipped when building the map
but then is used to evaluate the percentage of correctly mapped grid cells, i.e. 80% of data is
used to build the map and the remaining 20% is used to measure the accuracy of the map.

The obtained results are presented in They show that our solution, which we
call SDMapping, is capable of representing the environment with considerable accuracy and is
on a pair with Octomap. The residual errors can be justified by sensor noise and discretization
effects introduced by the grid representation and also ray casting. Switching from DDA to
Bresenham does not introduce a significant decline in accuracy, even though it fails to visit all
grid cells traversed by a scan ray, and in fact, in some situations it actually increases accuracy.
We can conclude that Bresenham can be used to reduce computational effort without loosing
significant accuracy. Disabling occupancy superseding incurs in an increase of accuracy but
at a cost of possible side effects in the resulting map as previously discussed. Nonetheless,
it offers an increase in time efficiency that can be advantageous if the side effect of disabling
occupancy superseding is minimal.

Table 4.2: Map accuracy and cross-validation. Both metrics are presented as percentage of correctly mapped
grid cells for the 3D scan data (for each dataset). Several strategies are evaluated, which includes our volumetric
grid proposal with different ray casting algorithms complemented by occupied superseding (enable or disabled)
and OctoMap. The best values are shown in bold.

Dataset Accuracy (%) Cross-Validation (%)

1 2 1 2
(strategy) a b a b 3 a b a b 3
Fr-079 97.72 98.16 97.95 98.23 97.30|97.65 98.01 97.48 97.69 96.25

Fr-Campus 97.80 98.81 97.33 98.29 97.73|97.98 9859 97.26 9791 95.74
N. College 98.54 98.77 98.68 98.84 98.63 | 98.42 98.67 98.53 98.70 98.34

1,2  Our proposal with DDA and Bresenham, respectively.
3 Octomap (which uses DDA and occupied superseding).
a, b With occupied superseding enabled and disabled, respectively.

4.4.3 Optimal Density

In the proposed volumetric grid, the size of the patch edge, designated L, defines the
density of a patch. As discussed in [subsection 4.2.2] the value of L offers a trade-off between
space and time efficiency. This raises the following question: what actual value of L provides
the best balance between space and time efficiency? To answer this question we carried out the
mapping with known poses experiment for different L values and recorded the total execution
time and memory usage. The obtained results, are shown in

69



r- Fr-
722 F ,079 - : 1400 rC?mpus . : : 8000
@ 20 = g - =
k) 4 1000 J 46000 o
- / 1 e ’ 2
/ 45000
£ 18y ; 8o 3 ,/ 3
5 / 2 , {4000 2
K] 600
S 16f /X,’ £ X {3000 £
0] 400 € Pid £
g - E {2000 =
v 14 SRt T = =X T
= e 200 8 N i....4{1000 B
< —— = % +
Pl x-—=--x%---%-"7"7 1 1 0 I ! I 1 0
4 8 16 32 64 128 256 32 64 128 256
Patch size - L Patch size - L
(a) (b)
N. College

~
o

wwa DU OO
o v o uowouwu

Total execution time (seconds)

PO B ) i il

--| % =< Memory H

9000

~N
o o
o o
[SERS}

16000
15000
14000
3000
42000

o =
o
o
o

tal memory usage (MiB

To

4 8 16 32 64
Patch size - L

(¢)

Figure 4.9: The impact of patch size L in execution time (left axis) and memory usage (right axis).

From the analysis of these results we can infer a value of L that provides the optimal
density, i.e. the patch density that offers the most balanced execution time and memory
efficiency. As expected, as the value of L increases, the total execution time decreases and
the total memory usage increases. Unlike the memory usage, the total execution time is not
monotonic in all datasets. Since up to L < 64 the patch memory size is lower than the processor
cache size, our educated guess is that for higher values of L the execution times increases due
to a higher number of processor cache misses. This explanation could be defeated by the
dataset where this does not happen, as a counterexample. However, the data in that dataset
is arranged as vertical scans that are cache friendly due to our columnwise flat array memory
organization, therefore our hypothesis is still valid.

The actual choice of a value for L, supported by the results shown in is, in our
opinion, a subjective decision — it depends on the application. For applications where memory
usage is the priority, a lower value for L should be used, but when execution times is the main
concern, a higher value for L is the best option. For our applications we found that L = 32
provides a good balance between execution time and memory usage, also, it is the value that
is used through the ubiquitous usage of the proposed volumetric grid in this thesis.

4.4.4 Time and Space Efficiency

The objective of the following experiments is to analyse the execution times and memory
usage, including lossless data compression and the impact of cache size, and how they are
comparable with OctoMap. Data was obtained by carrying out mapping with known poses
experiments for the datasets Fr-079 and Fr-Campus. For reference, all experiments were run
in a MacBook Pro with an Intel Core i7-2640M 2.8GHz and 16GB of RAM.

70



Optimal Cache Size in Online Data Compression

Before going into the analysis of time and space efficiency, we need to address yet another
parameter that has a direct impact in execution times and memory usage, the cache size
C used during online data compression. Although only relevant when data compression is
used, its proper definition is necessary to validate the usability and overall advantage of online
data compression. The objective of this system is to reduce the memory usage as much as
possible with the lowest possible impact in computations, in the most desirable situation the
overall execution time overhead would be negligible. We used mapping with known poses with
different values for C' to record the update times and the rate of cache misses — accessing a
grid cell that is part of a patch that is not in the cache list is a cache miss. The obtained

results are shown in [Figure 4.10

Fr-079

1.4H «— Mean update time

1.2

et X 0 Max cache miss

Mean update time (seconds)

» X Mean update time (no compression

¥ ¥ Mean cache miss

40.30

16 T T

L
o o
) N
o w

o
=
wu

Cache miss rate %

0.10

{0.05

0.00

~— Mean update time
14 -

Mean update time (seconds)

» X Mean update time (no compression

1.0

% - X Max cache miss

"""""" ¥ ¥ Mean cache miss|

Figure 4.10: The impact of online compression cache size C' in update time (left axis) and cache miss rate
(right axis). As the cache size value increases the cache miss rate approximates to zero and the mean update

Cache size - C

0.8

Cache miss rate %

time has a fast asymptotic behaviour towards the mean update time without online compression.

71



From the analysis of these results we can infer a value for C' that has the lowest impact in
update times. As hypothesized, as the cache size value increases, the update time overhead
introduced by the online compression diminishes with an asymptotic behaviour towards the
mean update time without online compression. This is the most desirable behaviour, because it
allows us to further reduce the memory footprint of the volumetric grid without compromising
time efficiency.

The cache miss rate is also a metric worth analysing. A zero rate is the obvious asymptote
that can only be reached when compression is not in place. Therefore, it is no surprise that
the optimal cache size value has a cache miss rate close to zero. However, “close to zero” is
subjective and may well depend on external factors that we are not considering. Nonetheless,
we observed that optimality is achieved when the miss rate variance is at its minimum, and a
visible consequence of such is a maximum cache miss rate similar to the mean miss rate.

The obtained results show that the optimal value for C' depends on the data being used,
i.e. different environments result in different optimal cache sizes. This is due to the properties
of the data such as the number of rays per scan, the mean range per scan and how close (in
space) two consecutive scans are when gathered. The optimal cache size C' is, therefore, a
value that is tailored to individual datasets that needs to be obtained through experimentation.
However, the cache size C' has an asymptotic effect in update times as it grows in value. By
overestimating C' we can trade a fixed but manageable increase of memory for the need to find
its optimal value through experiment. For the remaining experiments that use online data
compression a value of C' = 200 was used.

Execution Times

The impact (or significance) of this metric depends on when the measurements are inte-
grated: soon after each measurement is obtained or offline after all data are collected. In the
former scenario time efficiency is important, as, if the current measurement is not processed
before the next one is available, information will probably be lost and as consequence the
environment can be misrepresented. In the latter scenario time is not an issue, as measure-
ments are integrated sequentially and no information is lost, nonetheless one can argue that
a total execution time of one minute is better than one hour. Despite any scenario, achieving
the best possible execution times is always desirable, for example it reduces computational
requirements and operational times such as development-test cycles.

In order to assess the execution times of our solution we use OctoMap’s times as baseline.
The objective is to evaluate the speedup that our proposal offers when confronted against
the current state-of-the-art. The execution times of every experiment is quantified by the
wall time it takes to update (or integrate) a complete scan, which we call update time and is
denoted as sypdate- The total execution time is now given by

N

Stotal = Z Sﬁpdate (413)
k=1

where N is the total number of scans. The total execution time sii4 i then used to calculate
the speedup of a strategy: '
Si _ Szotal (414)
Sref
where 7 is the strategy index and s, is the reference total execution time, that is, the total
execution time of Octomap. The obtained results are shown in

72



Table 4.3: Mapping execution times for the datasets Fr-079 and Fr-Campus. The mean update time, total
execution time and speedup are presented for different strategies, namely OctoMap and our solution with and
without online data compression.

Dataset Strategy Supdate (S) Stotal (8) Speedup
Fr-079 Octomap 0.770 £0.146  50.858 1.0x
(5em res.)  SDMapping 0.521 +£0.052  34.411 1.4x
SDMapping-fast 0.207 +0.033  13.699 3.7x
SDMapping-fast (1z4)  0.216 +£0.041  14.278 3.5x
SDMapping-fast (zstd) 0.209 £0.040  13.83 3.6x
Fr-Campus Octomap 6.365 £1.756 515.571 1.0x
(10cm res.) SDMapping 2.750 £ 0.573 222.808 2.3x
SDMapping-fast 0.957 +£0.171  77.565 6.6x
SDMapping-fast (1z4)  0.972 +£0.187  78.768 6.5x
SDMapping-fast (zstd) 1.17940.262  95.564 5.3x

When comparing with OctoMap there is a clear speedup in every variant of our solution,
which implies a better all-around time efficiency. The base variant of our solution, named
SDMapping, utilizes the same techniques for data integration as OctoMap, both using DDA
and occupied superseding. Therefore, by providing a better time efficiency we can infer that
our underlying space management structure is responsible for the speedup. Additionally, a
variant of our mapping solution with Bresenham and without occupancy superseding, named
SDMapping-fast, provides a further speedup without losing accuracy (as shown in .
A detailed view of these update times is depicted in

Fr-079

— Octomap « < SDMapping-fast|]
~—— SDMapping

=
IN)
T

g
=)

Update time (s)
o
o

o
>
T

o
N)
T
r
&
)
4
»
ht
)
a
B
i
<
é
~
o
4
2
e
&
7
i
.
»
<
>
4
s
i
d
M
1
‘
‘.
¢
-
Y
e
1
»
N
R
¢
4
&
&
»
H

I I | |

10 20 30 40 50 60
Scan number #

o ¢
o

Fr-Campus

14 T T T , , , ,

12| oo Octomap ~ < SDMapping-fast||
— «~—— SDMappin
210 pping
° -
£ 8
R R B L N
2
S 4

oosooee® Pt etnealosotonetyoca i, no0otetootonn, ot e0o o, te ot e eetese Noas
0 Il Il Il Il Il Il L

0 10 20 30 40 50 60 70 80
Scan number #

Figure 4.11: Amount of time it takes to update each scan for the datasets Fr-079 and Fr-Campus. It includes
the update times of OctoMap and SDMapping (our proposal). For our proposal we include an experiment
with data integration similar to OctoMap (DDA for ray casting and occupancy superseding) and another
experiment with fast data integration (Bresenham for ray casting and without occupancy superseding).

73



To further reduce the amount of memory used by our proposal, we have introduced (and
implemented) an online data compression mechanism (subsection 4.2.2). It was developed to
maximize the space gain while minimizing the execution time overhead. From the obtained
results that goal was achieved. The update time overhead is noticeable but it is not significant
considering the space gain that it offers — as it will be shown ahead. depicts in
more detail the impact of the online data compression during data integration. It also shows
that even with a compressor like zstd, that trades execution times for better compression
ratios, the time overhead is negligible.

Fr-079
1ol SDMapping -+ SDMapping-fast (Iz4 compression) ||
’ ‘ «~—— SDMapping-fast ~ < SDMapping-fast (zstd compression)

Update time (s)

0.0 I I L I I I
0 10 20 30 40 50 60

Scan number #

Fr-Campus

— SDMapping + -+ SDMapping-fast (1z4 compression)
~—— SDMapping-fast ~ = SDMapping-fast (zstd compression

Update time (s)

Scan number #

Figure 4.12: The impact of online data compression in the update time of fast data integration. The update
times of the base version of data integration is presented for comparison purposes.

Memory Usage

The memory usage is a metric that can not be overlooked. In applications such as mapping,
the more information is obtained the more memory is required to hold it — assuming that
information is not discarded. The memory usage of the regular volumetric grid to store the
probabilistic information of an occupancy map is given by

Mgrid = xxr#llBytes (4.15)

where x,y and z are the size of the minimal bounding that covers the mapped area and r is the
resolution of the map. For large environments the volumetric grid would require a considerable
amount of memory that could go beyond the capacity of the computational system. Therefore,
any volumetric grid solution has to considerer space efficiency in its implementation and the
less memory it uses the better.

Once again, to assess the memory usage of our solution we will use OctoMap’s memory
usage in a 64-bit architecture as baseline. The objective is to evaluate the memory gain that
our solution offers when compared with the current state-of-the-art. The memory usage of

74



every experiment is quantified by the memory usage after the update (or integration) of each
scan. The total memory usage is defined as myota and is the memory usage after the last scan
integration. The gain in memory is the memory savings relative to the baseline and is defined
by
G =1 - Mol (4.16)
Myef
where i is the strategy index and m is the reference total memory usage, that is, OctoMap’s
total memory usage. The memory usage reported by our solution, without compression, is
equal to
Miotal = Np(L3 x 4Bytes + H) (4.17)

where n,, is number of patches, L is the patch size and H is an estimated memory overhead of
the sparse-dense structure. When data compression is used, the reported value is the sum of
the compressed data size of each patch, which includes the memory overhead H, plus the cache
size. The current estimated overhead is 96 Bytes but it is possible to be an underestimation,
nonetheless the calculated values are not very different from the ones reported from the system.
The calculation of OctoMap’s memory usage is available at Hornung et al. (2013). The
obtained results are shown in and both our solution and OctoMap have better space
management than the regular volumetric grid, as it was expected.

Table 4.4: Total memory usage for the datasets Fr-079 and Fr-Campus. The total memory usage and gain are
presented for different strategies, including OctoMap and our solution with and without online data compres-
sion. In the indoor dataset, Fr-079, OctoMap and our solution have similar memory usage but in the outdoor
dataset, Fr-Campus, our sparse-dense structure provides a significant cut in memory usage. When using online
data compression our solution provides a significant space gain in both datasets.

Dataset Mapped area (m®) mgiq (MB) Strategy Miotal (MB) Gain
Fr-079 46.45 x 36.4 x 4.4 170.27 Octomap 84.93 0%
(5cm res.) SDMapping 81.55 3.97%
SDM-fast 81.55 3.97%
SDM-fast (1z4) 28.55 66.37%
SDM-fast (zstd) 27.01 68.19%
Fr-Campus 292.4 x 167.2 x 27.8 5184.63 Octomap 1982.75 0%
(10cm res.) SDMapping 1085.79 45.23%
SDM-fast 1084.79 45.28%
SDM-fast (1z4) 144.44 92.71%
SDM-fast (zstd) 86.83 95.62%

The datasets that were used represent an indoor and an outdoor environment. In the indoor
dataset, Fr-079, our solution (without online data compression) and OctoMap, have similar
memory usage but with advantage to our solution when execution times are also considered,
which are shorter, specially in the fast variant of the solution. The difference in memory usage
then widens considerable when online data compression is used. Consequently, this proves our
hypothesis that a patch can have significant data redundancy for an efficient usage of data
compression algorithms. This statement if further supported by the results of the outdoor
dataset, Fr-Campus, where the memory gain is above 90%. Additionally, observing that our
solution without online data compression in the same dataset holds a considerable memory
gain (approximately 45%) it is then sensible to assume that the difference in memory usage
between our solution and OctoMap can be justified by the memory overhead of the octree

75



Fr-079 (5cm res.)

120F L U U U U
_ : — Octomap - - SDMapping-fast (Iz4 compression)
g R | — SDMapping-fast SDMapping-fast (zstd compression)]
g 80 . . . . H
a
S 60
-
g 40
[
= 20 ;

O 1 1 I 1 1 1

0 10 20 30 40 50 60
Scan number #
Fr-Campus (10cm res.)
R 2500 ---ceeee ------ — Octomap - - SDMapping-fast (I1z4 compression) ]
g 20001 ______ — SDMapping-fast  --- SDMapping-fast (zstd compression)| |
» : : : : : : -
[« . . . . N - .
© 1500 O RRRLEEEEE R RERLELT EEPPRPPETERRPPS B IR  ERRLLTEEEEES ERTTEPPRPPPREE 4
> : : : ’ : : :
S 1000f---------oee- L N P P i e T — =
e . . H . H H .
[
S OB00 b T i
0 e N R ol o W e Rl
0 10 20 30 40 50 60

Scan number #

Figure 4.13: Memory usage of our solutions (SDMapping-*) and OctoMap after each scan update.

structure. Our findings are further supported by a detail view of memory usage after each

scan update (Figure 4.13]).

4.5 Conclusion

This chapter presents a Sparse-Dense framework for efficient mapping, which we named
SDMapping. A regular volumetric grid is a popular method to represent the environment,
however for large three-dimensional environments it requires a large amount of memory that
may not even be available. Overtime, several solutions were proposed to address the issue
of memory management such as elevations maps, multi-level surface maps and point clouds.
Nevertheless, they all have several limitations for three-dimensional application that lead to
the creation of OctoMap by Hornung et al. (2013), an efficient state-of-the-art probabilistic
three-dimensional mapping framework based on octrees.

OctoMap, like any solution before it, has its limitations, as for example: no explicit support
for two-dimensional mapping; no complete independence from the semantics of probabilistic
occupancy mapping; further memory compactness achieved by a lossy method; noticeable
memory overhead for large environments; and no efficient method to duplicate a map when
needed. Due to this limitations OctoMap did not provided the necessary functionalities for
our SLAM applications. Therefore we developed SDMapping, a volumetric grid space rep-
resentation managed by a sparse-dense structure with efficient execution times and memory
management that provides support for any model. It includes features such as: the sepa-
ration between space management and model; the recognition that not all applications re-

76



quires a three-dimensional representation of space, thus allowing the user to also choose a
two-dimensional representation of space that increases space efficiency; an online data com-
pression mechanism that further reduces memory usage by taking advantage of the statistical
redundancy present in the data of the dense blocks of our structure that is managed by an
LRU cache mechanism; and an implicit data sharing structure that efficiently duplicates the
data of a map using a copy-on-write strategy.

To evaluate our solution we conducted several probabilistic occupancy mapping experi-
ments with publicly available datasets and compared their results with OctoMap’s, namely
mapping accuracy, execution times and memory usage. Overall, our solution provides a similar
accuracy to OctoMap while providing a better time and space efficiency and additional fea-
tures that covers the requirements of our applications. Furthermore, we also showed that for
mapping the Bresenham algorithm is a viable alternative to DDA that offers faster execution
times without losing accuracy.

7



78



Chapter 5

Improved Grid-based SLAM

Having the proper and correct models of the environment is a crucial part of many robotic
applications as they are used by robotic agents to adapt their decisions to the current state of
the environment. There are different models that can be obtained by sensing the environment
but one of the most important is the one that allows the robot to infer its most likely pose
in the environment in which it is operating. Such model is usually known as the map of
the environment and a popular method to create it is to integrate sensor data while the
robot explores the environment. This process is known as Simultaneous Localization and
Mapping (SLAM) (Smith and Cheeseman, |1986} Thrun) 2002).

Having only access to measurement z;.; and control uy.; data, SLAM has to obtain the map
that best represents the environment. That is, in addition to estimate the pose of the robot,
it has to evaluate the spatial relation between the robot’s own poses and estimated objects in
the map, making it a complex problem to solve. Moreover, it has to handle with the fact that
measurement and control data are noisy and easily disrupted in dynamic environments. The
representation of objects in the map can be landmarks in a feature-based representation or the
environment shape captured by a range finder in a grid-based representation. SLAM solutions
have been using both feature-base and grid-based map representations with proficiency and
each representation has unique characteristics that defines how the SLAM problem is solved.

Feature-based representations require the use of maps that maintain the list of perceived
landmarks. One of the earliest SLAM solution to use this type of representation is the EKF
SLAM (Smith and Cheeseman, |1986) that in essence is the EKF localization algorithm applied
to online SLAM using maximum likelihood data association (e.g. Neira and Tardos (2001)).
But this approach has several limitations. The number of tracked landmarks does not scale
well due to the computational requirements of the sparse map that maintains the conjoint
position of the landmarks. Furthermore, the Gaussian noise assumption in this method has
the tendency to introduce unrecoverable errors if the level of landmark ambiguity is too high.
To reduce the ambiguity in landmark detection, artificial landmarks or detectors with higher
sophistication are commonly used (Thrun et al., |2005).

The FastSLAM algorithm (Montemerlo et al., 2002) is another solution that estimates
landmarks with EKFs but now with a Rao-Blackwellized particle filter (RBPF) approach
(Murphy, [1999; Doucet et al., 2000). It allows the estimation of the robot’s pose separated
from the landmarks estimation. In addition to the robot’s pose, calculated by sampling, each
particle contains several low-dimensional EKF that are used to estimate the state of each
individual landmark that reduces the complexity of updating information and allows the use

79



of negative information to reduce the number of landmarks overtime. As consequence, the
filter maintains several maps with different data associations and not only the most likely one,
which is an approximation to the full posterior. This categorizes the FastSLAM as full SLAM
but because a particle filter estimate a pose at-a-time it also fits in the online SLAM category
(Thrun et al., |2005). Despite the advantage of FastSLAM over EFK SLAM, its efficiency
also depends on the quality of data association (i.e. landmark detection ambiguity, virtual
landmarks) and a manageable number of particles to find a solution.

GraphSLAM (Grisetti et al 2010a) is another SLAM method that uses a feature-base
representation and is capable of calculating a solution over all poses and all features in the
map, hence it is labeled as a full SLAM solution. The localization and mapping problem is
defined by a graph with nodes and likelihood constraints (or arcs) between those nodes. The
nodes represent robot poses and landmarks while constraints represent motion links between
two consecutive poses and measurement links between landmarks and the pose where they
were observed. A solution is then found by minimizing the negative log likelihood of all
constraints which results in a non linear least square problem. Typically, a solution is found
offline for two reasons: the necessary data is only available after exploring the environment
and the computational requirement is usually too high to be used during operations. The
mapping quality is often high with GraphSLAM but like every method that uses a feature-
base representation it also depends on the quality of landmark detection and data association.

The Grid-based representation, or more specifically occupancy grid map as a volumetric
representation of the environment, has the advantage over feature-based maps of not requir-
ing a prior definition of any landmark. Instead, it uses the natural features present in the
environment (e.g. walls, furniture, pillars) to map the arbitrary shape of that environment.
Localization algorithms based on scan matching have been used successfully in SLAM and its
initial usage can be tracked to |Lu and Milios (1997a)). Its main advantage lies in the lower
computational complexity that it requires when compared to other localization algorithms
such as histogram and monte-carlo localization. Its efficiency relies on good inputs and a
search bounded by small deviations of scans. However, these conditions are not always met,
hence several scan matching variations have been proposed over the years in order to improve
the localization process. For example: Biber and Strasser| (2003)) uses the Normal Distribution
Transformations (NDT) with several grids to match range scans; (Kohlbrecher et all [2011)
uses an inverse occupancy map pyramid with an interpolated occupancy lookup to funnel the
scan matching and reduce the effect of discretization; and |Olson| (2009, [2015) proposes a global
scan matching with multi-resolution maps for a global coarser search. All of this grid-based
SLAM proposals fall into the online SLAM category, meaning that if something goes wrong
they may never recover.

Scan matching localization algorithms have the tendency to accumulate errors but they are
usually corrected by the map. But in SLAM, the map is the also the result of localization and
it will reflect the accumulated errors. In environments without loops, or even with small loops,
those errors may not manifest but that is not guaranteed in environments with large loops.
Developed by [Eliazar and Parr (2003), DP-SLAM picks on the ideas of FastSLAM and extends
them to occupancy grid maps. Each particle contains the pose of the robot, which is sampled
from the robot motion, and a full occupancy grid of the environment. However, an actual full
occupancy grid for each particle is not feasible (memory wise), therefore, DP-SLAM employs
a volumetric grid where each cell contains an observation tree of the particles that changed
the cell. The method also requires the maintenance of an ancestry tree of particles so that a
particle can find the ancestor that made the most recent change to the same cell. Although

80



DP-SLAM is capable of producing occupancies grid of high quality it has a noticeable problem:
the necessary amount of particles is considerably high, e.g. 9000 as reported by |Eliazar and
Parr| (2003)).

To reduce the number of particles and possible particle depletion (Van Der Merwe et al.,
2000) in Rao-Blackwellized approaches, |Grisetti et al.| (2005) introduced a better proposal
distribution that considers the accuracy of the sensor being used (such as LIDARS) and
an adaptive resampling technique that maintains a reasonable variety of particles to avoid
depletion. The novelty in the proposal distribution is the use of scan matching to obtain the
most likely particle-dependent pose to sample from, which provides a more accurate model
than just using the last odometry reading as in, for example, DP-SLAM. Combined with the
adaptive resampling technique, this approach considerably reduces the necessary number of
particles to obtain a viable map (e.g. 15 or 30 particles). Additionally, it maintains a low
memory footprint by sharing duplicated data of the occupancy grids among the particles.
This SLAM approach has become one of the most popular grid-based SLAM solution and its
reference implementation is known as GMappinéﬂ

Although GMapping improved the efficiency of RBPF SLAM, we will show in this chapter
that such efficiency can be further improved, most notably the execution times required for
localization and mapping. This development is based on a better scan matching algorithm
for localization, a more flexible space management data structure for mapping and a multi-
threading mechanism that takes advantage of the independence between particles to speedup
execution time. The localization algorithm that we propose is the one already presented in
but with the necessary changes for a map that is being built incrementally. The
space management data structure for mapping was also presented in this thesis in
Its sparse-dense structure with implicit data sharing and online data compression is used to
improve space efficiency while retaining the time efficiency of the SLAM solution. Applying
multithreading to GMapping has already been tried (Gouveia et all, [2014), however, only
the scan matching process is parallelizable in this study. The map update process has to
maintain a sequential order because its mapping data structure fails when multithreading is
used. Because our mapping data structure does not have this limitation (see [subsection 4.3.4])
it is possible to parallelize the scan matching and map update processes to reduce the execution
time.

The RBPF SLAM has an interesting characteristic: although it is categorized as a full
SLAM solution, the particle filter estimates one pose at-a-time which is by itself an online
SLAM solution (Thrun et al., 2005). In essence, each particle has an independent scan match-
ing localization process followed by the integration of the current measurement into its own
occupancy grid map. This opens the opportunity to first develop a self contained online
SLAM solution, based on our scan matching algorithm, that can be later used as an integral
part of an RBPF SLAM solution. Therefore, this chapter focuses on the development of two
grid-based SLAM solutions that cover both online and full categories.

"mttps://github.com/OpenSLAM/slam_gmapping

81


https://github.com/OpenSLAM/slam_gmapping

5.1 An Improved Scan Matching Approach to Online SLAM

In probabilistic terms, the SLAM problem can be posed as the posterior estimation of the
transient pose together with the map:

p(xt)m ‘ Zl:t7u1:t) ) (51)

where x; is the pose of the robot at time ¢ and m is the map. This approach is named online
SLAM because only variables that persist at time ¢ are considered and therefore estimated.
As result, solutions for this type of SLAM discard past measurement and control data after
they have been processed which attenuates the complexity of the problem. Additionally, as
showed by [Thrun! (2001)), the formulation in (5.1]) can be factorized into:

p(Xe, M | 21, wi) = p(Xe | 216, wi) p(M | Xaet, 21:4) (5.2)

localization mapping

where the first factor is the pose estimation and the second factor is the map creation. In
this factorization both factors are independent and, as result, online SLAM can be treated as
a problem of localization and then mapping with known poses. In practice, the localization
procedure is carried out using the map built so far, and then the map is updated using the
obtained pose estimation.

5.1.1 Scan Matching Localization with a Dynamic Likelihood Field

Scan Matching based localization algorithms are a good fit for online SLAM (e.g. |Biber
and Strasser| (2003); Holz and Behnke| (2010); Kohlbrecher et al.| (2011)). They have low com-
putational requirements and are capable of providing good results as long as measurements
are sufficiently accurate and big loops are non existing. In scenarios where we can assume that
successive poses are close to each other and large loops do not exist, scan matching localiza-
tion algorithms can be accurate enough to assist in the construction of a globally consistent
environment. Fortunately nowadays, sensors (such as LIDARS and odometers) provide accu-
rate readings that make scan matching solutions viable for SLAM applications. Additionally,
not all environments have big loops, therefore, a solution that offers good accuracy with low
computational requirements such as scan matching is a viable choice.

In we introduced a fast and accurate localization algorithm based on scan
matching, and we hypothesize that it can be used in the localization process of an online
SLAM solution and benefit from its speed and accuracy. Our localization solution utilizes a
likelihood field model and expects an priori map from which the likelihood is computed into
a discrete grid. In essence, the estimation of the robot pose x; with this model is the result of
several roto-translations for likelihood look-ups, performed in a precomputed likelihood table,
during the optimization process to find the local minimum. The created table is expected to
be static over time, therefore, the overhead introduced by its creation is negligible because it
happens only once.

In SLAM, the map m is built incrementally and as consequence the map changes overtime
and the static assumption of the likelihood table is no longer valid. For the likelihood field
to work with an incremental map it must be rebuilt each time the map topology changes.
Because we introduced a continuous likelihood field, it is not the likelihood that is cached in a
grid, but instead an Fuclidean distance grid. Therefore, the Euclidean distance grid, denoted

82



£, is what we need to recalculate. If the map m has a dimension ¢ X j then the calculation
of £ can run in linear time bounded by O(ij) (Felzenszwalb and Huttenlocher, 2004). But as
the map grows in size, there will be a dimension ¢ x j such that the computation time of ¢ is
bigger than the period of measurements. Furthermore, a single change in the map m triggers
a full calculation of €. To address the shortcomings of the likelihood field in a SLAM context,
we propose the development of a dynamic likelihood field capable of adjusting to incremental
changes.

To solve the execution time degradation we seek to employ an incremental strategy to
construct the Euclidean distance grid €, an integral part of the likelihood field. The reasoning
behind an incremental update is that changes to the topology of the map m are local, therefore
the update of the Euclidean distance are, for the majority of cases, bounded to a local area.
The dynamic Euclidean transform proposed by [Lau et al.| (2013) is a good fit for the proposed
incremental strategy. It updates only the cells affected by the change of state, i.e. from
occupied to free and vice versa, involved in the update of the occupancy grid map that reflects
the current perceived state of the environment. The algorithm expects the information about
the change of state to be provided by the caller. This information can be created by tracking
the changes of state that occur at each update of the map m. Additionally, the maximum
Euclidean distance €y,ax defines an upper bound to the propagation of the Euclidean distance
change to an object in the map. This is a trade-off between information and computation
—the lower the distance the faster the update.

5.1.2 Incremental Mapping

In this approach, the environment is represented by a probabilistic occupancy volumetric
grid that captures its shape. Typically, the occupancy probability of each cell is modelled by a
binary random variable that specifies whether a cell is occupied or free (see [subsection 2.3.1).
But localization can be improved by using reflection probability grids that model the occu-
pancy probability by the relation between the number of hits and misses that are counted for
each cell (Bennewitz et al., 2009). The number of hits corresponds to the number of times
an endpoint of a ray hits (or is reflected) by an object in that cell and the number of misses
matches the number of times a cell is visited by a ray without a hit (or reflection). The cells
that are visited by a ray are calculated through ray-casting using the Bresenham algorithm
(Bresenham), |1965). In this reflection model the occupancy probability of a cell, defined by
Deell, at location (z,y), is given by

hitsg

e | , 5.3
pcell(x y) hztsx,y—i—missesz,y ( )

and a cell is assumed to be occupied when its probability is above a certain value

true, if pcell(ma y) > OCCthresh

) (5.4)
false, otherwise

occupied(z,y) = {

Here, occipresn is the threshold that defines the occupancy and in our solution we used a value
equal to 0.25. The implication of this value is that a reflected object has higher persistence
in the occupancy map than visited free space.

As discussed in the previous section, the localization algorithm uses a dynamic likelihood
field as measurement model that is supported by an Euclidean distance map with dynamic

83



adaptation to the changes. The mapping procedure has to construct not one but two maps:
an occupancy grid map and an Euclidean distance grid that reflects the current changes
to the former grid map. The pseudocode of the incremental mapping process is shown in
and the dynamic update of the Euclidean distance — updateDistanceMap —
was already presented in Section as part of the implemented models with
the sparse-dense mapping framework. The volumetric grids used for mapping are implemented
with the sparse-dense mapping framework to take advantage of its efficient space management,
including transparent size growth and online data compression.

Algorithm 17: Incremental mapping process.

updateMaps(x;, m, &, z;) updateOcc(O)
Z4— X Dz // Use world coordinates C+ 10 // List of changed cells
X, ¢ SensorOrigin() foreach (x,y) € O do
O« // Occupied cells state < occupied(z, y)
F +x, // Free cells hitsy , <= hitsg , +1
foreach (x,y) € z do if —state A occupied(z,y) then
O« O+ (z,y) | C+«+ C+{(z,y)
// ray casting end
Bresenham(x,, (z,y), F) return C' // Cells changed to occupied
end
updateFree(F)
// Update occupancy and track changes C+0 // List of changed cells
O, < updateOcc(O) foreach (z,y) € F do
F; < updateFree(F) state < occupied(z, y)
) . MISSESy oy ¢— MISSESy y + 1
// Update the Euclidean dlst.anc? map if state A —occupied(z,y) then
foreach (x,y) € O; do setOccupied(é, (z,y)) | O« C+(z,y)
foreach (x,y) € F; do setFree(é, (z,y)) end ’
updateDistanceMap(e) return C // Cells changed to free

5.1.3 Evaluation and Benchmarking

We seek to analyze the quality of the trajectories and maps generated by our SLAM
proposal, and also its computational efficiency. For that purpose, we used a set of publicly
available datasets provided by The Robotics Data Set Repository (Howard and Roy, 2003),
and ran them through our algorithm. The datasets in question are the ACES Building, the
Intel Research Lab, the MIT CSAIL Building and the Freiburg Indoor Building 079. For
reference, all experiments were run in a MacBook Pro with an Intel Core i7 2.8GHz and
16GiB of RAM, and all data was used without pre-processing.

The outputs of the SLAM solution presented in this paper are influenced by its parameters.
The most relevant parameters are: the accumulated translation p and rotational ¥ motions
between each scan processing; the maximum Euclidean distance &n,,x of the dynamic likelihood
field; and the strategy used for optimization, that may be the Gauss-Newton (GN) or the
Levenberg-Marquardt (LM) method. To find the best outcome, we did a grid search over
all parameters with p € {0.01m, 0.02m,...,0.5m}, ¢ € {0.01rad, 0.02rad, ..., 0.5rad}, émax €
{0.5m, 1.0m,...,5.0m} and strategy € GN|LM. To compare strategies, the best outcomes
for both GN and LM are kept and presented. The parameters that provide low translational
an rotational errors in the benchmark for each dataset are shown in [Table 5.1

84



Table 5.1: Localization parameters that provide low translational and rotational errors in the experiments for
SLAM benchmark and evaluation.

Gauss-Newton Levenberg-Marquardt
p (m) | U (rad) | Emax (m) p (m) | ¥ (rad) | Emax (m)
ACES | 0.01 0.19 0.5 ACES | 0.01 0.19 0.5
Intel 0.01 0.01 0.5 Intel 0.01 0.07 0.5
CSAIL | 0.01 0.33 0.5 CSAIL | 0.01 0.23 0.5
Fr079 | 0.01 0.03 0.5 FRO79 | 0.01 0.01 0.5

There is a clear trend for the best p in all datasets for the two different optimization
strategies. It is the same low value (i.e. p = 0.01) in all situations. This is not a completely
unexpected value, as the employed local optimization works the best when the error is smaller.
It is common in other SLAM solutions to have p in the approximate range 1.0 < p < 0.5,
but that is the result of high computation needs that require a higher interval time between
scan processing. Another trend is the value of &,,x = 0.5, which is the parameter that most
influences the overall execution time, a bigger value corresponding to higher execution times.
In the grid search this value was not always the best one, but the difference between the
trajectories obtained at £,,x = 0.5 with the ones at higher values were not significant enough
to trade computational efficiency. Hence, for all datasets and strategies, Epax = 0.5 is used.

Objective Benchmark

The quality of a map, usually interpreted by visual inspection (Figure 5.1f), is correlated
with the accuracy of the obtained trajectory. But this leads us to a subjective evaluation

of the obtained results, and an apparent degraded map can actually preserve the correct
topology of the environment and therefore represent the correct local metric structure of the
environment (Kiimmerle et al. 2009).

Kiimmerle et al.| (2009) proposes an objective benchmark to evaluate SLAM solutions that
does not rely on a global appreciation of the resulting map. They introduced a set of relations
{0; ;} that are based on local displacements between robot poses, defined by ¢; ; = z; © x;,
instead of absolute poses. The benchmark metric is given by the mean error in translation

(a) ACES (c) CSAIL (d) Fr079

Figure 5.1: Constructed occupancy grid maps of the evaluated datasets using the proposed approach.

85



€trans and mean error in rotation €y calculated from the trajectory relation ¢; ; and the ground
truth relation o; i

1 1
€(6) = 5 D trans(di; © 67,)* + 1 D rot(di; ©67,)°
ij bJ

€trans €rot

where the functions trans and rot extract the translational and rotational parts of (d;; S d; ),
respectively. Another key point of this benchmark is the capability to compare different SLAM
algorithms independently of the type of map representation they use, such as occupancy grids
or feature maps. This allow us to compare our solution with other scan matching based
solutions and also with different methods such as particle filters or Graph based optimization.

The evaluation of all obtained trajectories, using the proposed approach, with the described
benchmark as well as the results reported by [Kiimmerle et al. (2009)), [Holz and Behnke| (2010)
and Hess et al| (2016)), are summarized in |Table 5.2 and [Table 5.3] Our solution is compared
against five different SLAM approaches. The first two approaches, ICP (Holz and Behnke,
2010) and Scan Matching (Kummerle et al., 2009)), are based on scan matching but differ
on the matching strategy, i.e. the former does a scan-to-map matching while the latter does
a scan-to-scan matching. The third approach is also based on scan matching but has an
additional active loop closure process (Hess et al., [2016). The fourth is a RBPF approach
(Grisetti et al.l 2007a)) while the last one is based on Graph mapping optimization (Grisetti
et al., 2007b).

The mean error and corresponding standard deviation provides a global appreciation of
the algorithm’s computational performance. But it is also interesting to understand how it
performed locally over time for the different datasets. By applying a rolling average i and
rolling standard deviation & to our errors, we smooth the information locally and at the same
time we highlight long-term trends (Figure 5.2| and [Figure 5.3)).

Table 5.2: Benchmark quantitative results for the tested datasets on the translation error with the corre-
sponding standard deviation. The best values are presented in bold.

Trans. Proposed | Proposed * Kok —_—
error (cm) (GN) (LM) ICp SM SMLC RBPF GM
ACES 42447 | 41439 [ 6.0£55 | 17+61 | 3.7+4.2 | 6.0+4.9 | 44+44
Intel 20+19 | 21+18 | 43+58 [224+29 | 22+23 | 7.0+83 | 3.1£26
CSAIL 30+£27 | 32+31 | 43+53|10£32 | 3.1+£35 |49+49 | 0.44+0.9
Fr079 39+30 | 39+32 | 5.7+43 | 254+42 | 45+35 | 6.1+45 | 56+4.2

*Scan Matching “*Scan Matching with Loop Closure ***Graph Mapping

Table 5.3: Benchmark quantitative results for the tested datasets on the rotational error with the correspond-
ing standard deviation. The best values are presented in bold.

Rot. error | Proposed | Proposed * o ok
(deg) (GN) (LM) ICP SM SMLC RBPF GM
ACES 04+06 | 04406 | 1.24+16|1.2+15|03+04|1.2+13 | 04+04
Intel 02+03 | 04+11 |15+30|1.7+48 | 04+1.3 | 3.0+53 | 1.3+4.7
CSAIL 04+10 | 0.5+16 | 1.6+26 | 14+45| 03+03 |06+1.2 | 0.1+0.1
Fr079 04405 | 04+£06 |[14+17|1.7£21| 054+0.7 | 06+06 | 0.6 +0.6

*Scan Matching “*Scan Matching with Loop Closure *** Graph Mapping

86




error (cm)
HENNW
ouviouio

error (deg)

10. — translation -

error (cm)
w
|
[l

- — rotation -

*2" -
1500
# relation

o | CSAIL

translation -
10 - -

error (deg)
O N W b

error (cm)

- — rotation ’J-H -

error (deg)
o N B~ O ©

# relation

Fr079

15 - | | |

10. — translation -

error (cm)
w
|
]

- — rotation -

| | B B |
200 400 600 800 1000 1200 14

error (deg)
O = N W b

I
00 1600
# relation

Figure 5.2:

mean is equal to 20.

Error rolling mean p £ 6 for the
tested datasets using the Gauss-Newton optimiza-
tion strategy. The data window used in the rolling

error (cm)

error (cm)
=
o
|
I

error (deg)

# relation
—~ 15 - | | Int\el -
c _ .
S 10 translation B
—
S s5- -
—
o 0 g i | | i -
a 4 _ I - I I I || I -
L 3 rotation
2 |
C 2
°1
-
[TN0]
# relation
CSAIL
20 _ [} I -

=)

9]

°

—_

o

j—.

— y “ N\

(] = S |

200 400 600 800 1000
# relation

—~ 15 - | | Fr\‘079 ! -
< .

S 10- translation -
—

S 5- .
—

G) al I I I I I I I I -
— 4 _ [ [ [ [ [ [ I I —
(o))

Q3. — b _
) 3

57 ]
S 1- b AR
B o MeANTERETWIEEAeRa TR

o [ S | | |
200 400 600 800 1000 1200 1400 1600
# relation

Figure 5.3: Error rolling mean p 4 6 for the tested

datasets using the Levenberg-Marquardt optimiza-

tion strategy. The data window used in the rolling

mean is equal to 20.

For all datasets our solution is capable of constructing consistent environment models with
mean errors that are comparable with well established methods, such as RBPF and Graph
Mapping. But there is one exception, the ACES map constructed with Gauss-Newton has a

local inconsistency on the top left corridor — Figure [5.4(a)|

Fortunately, this inconsistency

disappears when using Levenberg-Marquardt — Figure b)l On the translation error, the

87



Figure 5.4: Partial constructed occupancy grid maps from ACES. (a) Was built using Gauss-Newton and
contains a local inconsistency. (b) With Levenberg-Marquardt the inconsistency disappears.

absolute mean values are mostly lower than the other solutions. On the rotational error,
the best results are shared by our solution, a scan matching solution with loop closure and
Graph Mapping. The obtained errors are very similar for both strategies, Gauss-Newton and
Levenberg-Marquardt. However, because the difference in results is mostly residual, it is not
possible to discern from the benchmark alone which strategy is clearly the best choice.

Computational Efficiency Analysis

We are also interested in analyzing the computational efficiency of our SLAM solution,
more specifically, the mean processing time (or update time) between each scan Sproc, which
encloses the optimization step and mapping. The latter includes the integration of the current
scan into the occupancy grid map and the update of the Euclidean distance map used by the
dynamic likelihood field.

When performing SLAM offline to build a model of the environment the time it takes to
process the data is, in principle, of little relevance. However, there are several tasks that require
the robot to construct its internal representation of the environment during operations, as for
example, autonomous exploration of unknown space. In these scenarios time does matter. We
refer to this as the capability to perform SLAM online, or real-time if the time it takes to
process a scan is lower than the data acquisition time. Since the beginning, our SLAM solution
was designed to be fast. By using the likelihood field as a measurement model we avoided
explicit data association, usually a time consuming task, and allowed us to use least squares for
pose estimation. Also, the dynamic likelihood field addresses the execution time degradation
that arises from the dynamic nature of the incremental build of a map that is subsequently
used for localization. A summary of the execution metrics is presented in

Knowing that all datasets have a data rate of approximately 6Hz (a 166 milliseconds
period) we can state that our SLAM algorithm can run in real-time. The difference between
strategies is not significant, but from the detailed view of the execution times and
there is a visible increase of execution time during the optimization phase when
Levenberg-Marquardt is used. The low number of iterations required from both strategies is
an indication that the initial pose estimation is not far from the local minimum and/or the
least squares method has good convergence.

88



Table 5.4: Mean execution times with min-max and mean number of iterations during optimizations.

Gauss-Newton

Levenberg-Marquardt

Sproc MS | min-max | #iter Sproc MS | min-max | Ffiter
ACES [ 15£05| 05—-72 | 6£3 ACES | 1.8£0.6 | 0.6 —10.0 | 12£5
Intel |094+02| 03—74 | 4+2 Intel 1.0+£03 [04—-129 | 4+2
CSAIL | 3.0+14 |09—155| 7+4 || CSAIL | 3.8+1.7|1.1—-148 | 14+6
Fr079 | 19405 | 06—-83 | 52 || FRO7T9 | 234+£0.7 | 09—-11.7 | 10£4
. ACES ‘ ) 5. . ACES . . )
Eq = :pat?r::;iion - Eq = ?pat?n‘::zgtion -
£s ! £
Sa2- S 2-
§ 1- § 1-
x X
- 0~ ] ] w 0~ 0 0
0 5 10 15 0 5 10 15 20
Timestamp (minutes) Timestamp (minutes)
s Intel ‘ ‘ . _ss . . . Intel . . L
E 4- = ?pi?nﬁ:zgtion - g 4- = :anat:)mpli:gtion -
(] ()
E3. - E3. _
S s

0- i i i i i

]
30

0 5 10 15 20 25 35
Timestamp (minutes)
CSAIL
8- T |
E 7- EEE mapping
~ 6- mm optimization _
o
Es-
=]
55
5 3-
0 2-
%1-
i
al [l [l [l [l [l
0 1 2 3 4 5
Timestamp (minutes)
Fr079
5 | d | |
g B mapping
- 4- B optimization -
]
E3.
]
e
iel
=]
3
|9
9}
X
W

0- i i i i i i
0 2 4 6 8 10 12

Timestamp (minutes)

14

Figure 5.5: Rolling mean p £ 0 of stacked process-
ing time (mapping + optimization) using Gauss-

Newton. The data window is equal to 50.

89

Execution time (ms)

Execution time (ms)

Figure 5.6: Rolling mean p + 6 of stacked processing
time (mapping + optimization) using Levenberg-

0~ | ] ] ] ]

i
30

0 5 10 15 20 25 35 40
Timestamp (minutes)
8 ] 1 1 ICSAILI 1 1
7- B mapping N
6- mmm optimization
5-
4 -
3,
2 -
1-
0 1 2 3 4 5 6
Timestamp (minutes)
.. . . . FO79
I mapping
4 -

m optimization -

0~ | ] | | ] ]
0 2 4 6 8 10 12

Timestamp (minutes)

14 16

Marquardt . The data window is equal to 50.



Space Efficiency Analysis

Thanks to the sparse-dense mapping framework, modeling the environment with an occu-
pancy grid map does not have a significant impact in memory usage, even with the additional
FEuclidean distance grid map required by our localization algorithm. Nonetheless, by taking
advantage of online data compression the memory usage can be further reduced .

The Euclidean distance grid map consumes at least four times (4x) more memory than the
occupancy grid map. The former maintains a data structure for dynamic update that requires
16 bytes per grid cell while the latter requires 4 bytes to bookkeep the number of misses and
hits (per grid cell). For our online solution this is not a problem because it does not have to
scale beyond a single pair of grid maps. But for the foreseeable use of these grid maps in a
particle filter SLAM solution they need to scale, thus the importance of the memory usage
reduction provided by the online data compression.

ACES e . . . Intel
16~ | | | | - =
»“EE 14 - s 7 -
— 12- - T 6- -
10} —  no compression % 5 — no compression
@ 10- - 124 S - 124
g 8- - zstd - 5 4- - zstd -
> 6 3 -1
g A~ gz— _____________ -
%J 2 - — AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA g S )| IT - oliccnnccoimnonsodoosnosopeononoopon0saaaya0009aa 2e03097 3
o T ' ! ! ! - 0- ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ -
0 5 10 15 20 0 5 10 15 20 25 30 35 40
Timestamp (minutes) Timestamp (minutes)
CSAIL . Fro79
16~ Y |
FEE 14 - — no compression
; 12. — - lz4
Q. v zstd
a
S 8-
50
£ 4-
Y e T T i R S
[ | | | | | | - i i i i i i ] ]
0 1 2 3 4 5 6 0 2 4 6 8 10 12 14 16
Timestamp (minutes) Timestamp (minutes)

Figure 5.7: Memory usage during mapping for the considered datasets. All plots contain memory usage without
compression and with compression using the 1z4 and zstd data compressors. The compression mechanism is
provided by the online data compression of the sparse-dense mapping framework.

5.2 Improving Rao-Backwellized Particle Filter SLAM
with Scan Matching and Multi-Threading

The full SLAM problem defines SLAM as the posterior estimation of the entire path
together with the map:

(X1, | 216, u:t) (5.5)
where x1.; is the potential trajectory laid down by the robot over time [1,¢] given the mea-
surements z1.; and control data ui, (usually odometry). The difference between online and
full SLAM may seem subtle but its influence on the type of algorithms that can solve the full
problem is noticeable (Thrun et al., 2005]).

90



A way to solve the SLAM problem defined by (5.5) was presented by Murphy| (1999). It
introduces Rao-Backwellized particles filters (RBPF) as an efficient method to solve the full
SLAM problem. The posterior over trajectories and maps is defined by the factorization

p(X1:t, M | 210, wtt) = p(X1 | 216, wr) pOm | X1at, 21:4) - (5.6)

localization mapping

Here, the mapping posterior p(m | X1., 21.¢) can be calculated efficiently by handling it as a
problem of mapping with known poses. The localization posterior p(xi. | 21.¢,u1.t) can be
estimated by a particle filter in which every particle has its own map. The map is built given
the measurements z1.; and the trajectory xi.; of the corresponding particle. The evolution of
the robot’s trajectory is defined by the robot’s own motion, thus the proposal distribution is
approximated by the probabilistic odometry motion model.

The most commonly used variant of particle filters is the sampling importance resampling
(SIR) filter which approximates a probability distribution by a weighted set of N particles

SR D)

where x[! is a hypothetical pose (i.e. a sample of x) and wll is the weight of that sample.
A Rao-Blackwellized SIR filter, used for incremental mapping, integrates the available data
(i.e. measurements and odometry) as they are available. This integration updates the particles
(or samples) that represent the posterior of the robot’s trajectory and map. The update
procedure can be summarized in the following four steps:

1. Sampling: The first step of the filter is to generate the next set of particles {xy]} from

the current set {X,EZ}_l} by sampling from a proposal distribution 7. A close form of the
posterior is not usually available, therefore, a popular and simple choice for the proposal
distribution is the motion model that represent the change of state over time (Dellaert
et al.l [1999; Montemerlo et al., |2002; Eliazar and Parr, 2003)

2. Importance Weighting: After the sampling process, an individual importance weight
wll is calculated for each particle and is defined by
, (7] ' .
Tr(xlzt | zl:taulzt)

Note that the use of the importance weight w!! accounts for the fact that the proposal
distribution is not equal to the true distribution of the robot’s change of states. This
formulation requires the calculation of the weight for the complete trajectory when a
new measurements is available, which is not efficient. According to|Doucet et al.|(2001)) a
recursive formulation of the importance weight can be obtained by imposing the following
restriction to the proposal distribution :

(X1 | 2108, U:) = T(Xe | X115 2008, Unst) - T(X1ie—1 | Z10—1, U:t—1) - (5.9)

Now, expanding (5.9)) into (5.8]) the importance weight is computed as

i _ p(2t | ml[tﬂ7xl[ei]) P(Xz[ti] | Xgi]_put) [i]
wys =1 Swy

mhal . (5.10)
(! | x 21, )

where 7 is the normalization factor from the Bayes’ rule and is the same for all particles.

91



3. Resampling: In this step, samples with low importance weight w are potentially re-
placed by other samples that hold a higher importance weight. This step is required
because the number of particles to approximate the distribution is finite and allows the
application of the filter in situations where proposal distribution is different from the
true distribution. However, the resampling step can also delete good samples and lead
to particle depletion (Van Der Merwe et al., 2000; Thrun et al., [2005). To prevent such
effect it is necessary to define a criterion to when the resampling step occurs.

4. Map Estimation: The final step of the filter is to update the map m,[ﬂ

using the corresponding pose X,[ﬂ and current observations z;. The map m?}, although
built incrementally, is the reflection of the trajectory and history of measurements ac-

of each particle

cording to p(x[f:]t | 21:, u1:t).-

The efficiency of the particle filter is grounded on the proposal distribution and the reduction of
the particle depletion problem. The work of |Grisetti et al.| (2005) addresses these two issues for
grid-based RBPF SLAM by presenting an improved proposal distribution that samples around
a local maximum found by a scan matching process and an adaptive resampling technique
based on the so-called effective number of particles (Liu, |1996).

Our proposal for an efficient grid-based RBPF SLAM is based on similar ideas: an im-
proved proposal distribution supported by scan matching and adaptive resampling controlled
by the effective number of particles. Additionally, the particle filter update is speeded by a
pool of multithreaded workers that leverages the independence between particles.

5.2.1 A Proposal Distribution with Scan Matching Refinement

The sampling step of the particle filter needs to draw samples from a proposal distribution
7 that is close to the true distibution p(x1. | 21.4, u1.¢) as much as possible, nonetheless the
choice being arbitrary. As previously discussed, the motion model is a common choice for the
proposal distribution. Because it models the motion of the robot, i.e the change of state of
the robot, and is easy to calculate, it is a natural candidate for the proposal distribution:
Xl[fz} ~ p(X£Z] | ngll’ut) (5 11)
~N(xi—1 ®ug, X) 0 3 o uy
where A is a multivariate normal distribution with covariance 3 proportional to the magnitude
of the motion control data u;. By using the motion model as the proposal distribution 7 the
importance weight is given by the measurement model p(z; | m,x¢), as it can be shown by
replacing 7 in with the motion model p(x; | x;—¢, ut)
a e md X)) pe ) w) g
Wy =1n- [i] ] CWg
p(xp | x5 ue) (5.12)
1 ] (4]

Ocp(zt‘mz[flvxt ) - wyy

In mobile robots the perception of motion is captured by odometers that are susceptible
to errors induced by sliding and/or skewing, thus to approximate the true distribution a high
number of particles is required. Our approach to reduce the errors introduced by the odometry
is to use a scan matching process to correct it, a process similar to Hahnel et al.| (2003) that

92



uses scan matching to correct the odometry before sampling. But such approach requires the
modeling of the scan matching process error for sampling that depends on several factors (e.g.
sensor accuracy). To avoid this necessity our proposal inverts the order: first we sample from
the motion model and then we refine the pose of the sample using scan matching. This way
we avoid the necessity of integrating the scan matching uncertainty into the sampling process.

One of the problems of scan matching algorithms is their greedy nature of following the
closest local maximum, discarding any possible local maximum with higher likelihood. But,
by sampling from the motion model there is a higher chance of covering more areas of high
likelihood with the current sample set . With this method, samples under the
same likelihood area will converge to the same maximum, therefore, the required number of
samples to represent the localization distribution can be drastically reduced. The downside
of this approach is the eventual convergence to a highly peaked distribution with low sample
diversity that results from the resampling step of the filter. To prevent this effect we must
guarantee a sufficient diversity before generating the next sample set. This can be achieved
by using an adaptive resampling technique (Grisetti et al., 2005)).

discarded local maximum likelihood found local maxima — likelihood
—— odometry distribution

—— local maxima frontier

—— likelihood
—— local maxima frontier

found local maximum

discarded local maximum found local maximum

pose hint pose hint

(a) (b) (c)

sample57

Figure 5.8: Handling the greedy scan matching local search by sampling from motion. In scenario (a), the
initial pose for scan matching optimization is under the area of the highest local maximum, so highest local
maximum is found. However, if the initial pose fall under the area of a lower local maximum, like in scenario
(b), the highest local maximum is discarded. By using multiple samples drawn form motion, e.g. scenario (c),
both local maxima are found.

5.2.2 Adaptive Resampling

The resampling step is necessary since the number of particles to approximate the poste-
rior distribution is finite. Particles with higher importance weight are more likely to generate
new particles for the next generation, which will result in the elimination of particles with low
importance weight. Particles with lower importance weight are not necessarily bad samples
and their elimination can result in an impoverishment of the sample set. To avoid the deple-
tion of good samples it is important to define a criterion for deciding when to perform the
resampling process. The effective sample size metric, defined as Ngg, was introduced by |Liu
(1996) and it estimates how well the current particle set represents the target posterior. Its
application in grid-based RBPF SLAM to control the resampling process was first proposed
by |Grisetti et al.| (2005) with good results, and in some scenarios it was essential. The value
of this metric is calculated according to the following formulation (Doucet et al., 2001):

N
1 i
Neg = ——— with Y w/ =1 (5.13)
) i=1

93



If the samples were to be drawn from the target (or true) distribution, their importance
weight would be the same, which follows the importance-sampling principle. But a bad ap-
proximation of the target distribution results in a sample set with importance weights of high
variance. The value of N.g can also be seen as a measure of the dispersion of the importance
weights, thus it is a valid metric to evaluate the quality of the posterior approximation by the
current particle set. Following Grisetti et al.| (2005), the resampling step is executed whenever
Neg drops below the threshold of N/2; with N being the number of particles.

When equipped with accurate sensors, such as laser ranger finders, the importance weight
of each particle can differ significantly due to the peaked likelihood function of the measure-
ment model even when close to an area of interest. As consequence, a single sample can
dominate the importance weight of the complete set, e.g. Figure [5.9(a)|, which will not prevent
particle depletion. This can be handled by smoothing the likelihood function to avoid low
importance weight of particles that are close to the relevant area:

[1] [2] (1]

5 1 o
U_]y] =wsN  with w=w;" xp(z | m,[f],xt ) - wpy (5.14)

where w,@“ is the smoothed importance weight and g is the gain value that smooths the

likelihood (see [Figure 5.9)).

. ‘chfz‘l.OO‘ g=1 Ng=17.27
Lo v 0.16 - | Lo |
g S 0.14-
= 08- S
5 EO‘ 0.12 -
o 0.6 - ‘o 0.10-
2 2
v o 0.08-
g 0.4- e
s < 0.06 - -
5 £ 0.04- -
il ﬂﬁ Iitter
" 00 ‘ ‘ ‘ : - 0.00- T TTTTT T TTT ! ! TTT?T
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Sample Sample
(a) (b)
g:2 Neff:26.49 g:3 Neff:28.48
0.08 ! ! ! 0.06 - ! (R——— !
®
S 0.07- 5 0.05 -
£ 0.06- = *
2 0.05- 2 0.04-
2 2 ]
o 0.04- o 0.03-
2 0.03 - 2
[CH © 0.02-
+ +
5 0.02- - 5
g 0.01 - [ - 8 0-01-
0.00 - ' ! ' ' ' - 0.00 - ! '
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Sample Sample
(c) (d)

Figure 5.9: Handling highly peak importance weights with likelihood smoothing (N=30). In (a), likelihood
smoothing is not used and a single sample dominates the importance weight of the set. In (b)(c)(d), likelihood
smoothing is used and as the gain g value increases the variance of the importance weights decreases.

94



5.2.3 Multithreaded RBPF SLAM

The Rao-Blackwellized particle filter assumes independence between particles, therefore,
at each update step every particle has an isolated scan matching process and consequent
map update. The non existence of data flow between particles should allow their update
to be parallelized. However, the particles are not completely isolated. To reduce the space
complexity of the filter, partial content of the particle’s map is shared among its siblings. This
detail introduces additional concurrency to the parallel update of the particle set.

The scan matching process performs read-only operations to the map’s content, so it is
not a problem for simultaneous access and can be parallelized without much effort. This
is shown by |Gouveia et al| (2014) by parallelizing the GMapping scan matching for-loop
with a single OpenMPE| compiler directive. By parallelizing the scan matching process, the
filter update already gains noticeable speedup. Unfortunately, the map update process of
GMapping can not be parallelized because it fails when read-write concurrency is at place,
loosing the opportunity for further speedup. Unlike the current state-of-the-art, our RBPF
SLAM proposal seeks to take full advantage of the ubiquitous existence of multi-core systems
with several execution threads by parallelizing both scan matching and map update processes
with concurrency support.

The parallelization used in our solution is based on the fixed size Thread Pool model (see
Figure 5.10). Instead of launching a new thread for each task, a fixed number of threads
(named workers) are pre-allocated and have the capability to receive new tasks and execute
them. Their status and state are monitored and controlled by a pool that is responsible for
assigning the asynchronous execution of requested tasks. This model prevents the continuous
creation and destruction of threads that introduces an additional execution overhead and
implementation complexity. Instead, the user can push all tasks to the queue and then wait for
their completion. The number of pre-allocated thread workers is user-defined, which delegates
to the user the adequate amount of computational resources to be allocated.

Thread Pool

............................................................................................

main cycle

>

new task tasks queue

00000

completed tasks

Figure 5.10: Diagram of an asynchronous thread pool. A thread pool has a queue of task that are assigned to
thread workers that execute the tasks. Tasks are only assigned to idle thread workers. If all workers are busy
the pool will wait. Once a task is completed its completion is reported to the caller. The number of thread
workers is fixed during operations but the initial amount can be defined by the user.

2http://www.openmp. org

95


http://www.openmp.org

The integration of the proposal distribution with scan matching refinement and adaptive
resampling enhanced by multithreading is summarized in Each time a new
measurement pair (z;, u¢) is obtained, the particle filter is updated with the following steps:

(7]

1. The robot’s pose x;  of particle ¢ is sampled from a normal distribution with mean

obtained from the previous pose x,[f] and odometry measurement u; with covariance
proportional to the magnitude of u;. Then, the scan matching pose refinement procedure
(4]

using x; as initial hint and the previous map m[] is added to the thread pool for
asynchronous execution.

2. Wait until all scan matching tasks are completed.

3. Now that all particle poses are refined, we update their respective smoothed impor-
tance weight w[ . The map update process is then added to the thread pool for asyn-
chronous execution. At this step we can already add a new sample to the sample set
with the refined pose, the updated importance weight and a reference to particle’s map

< (] (4] > )

Xe, Wy, My
4. Wait until all map update tasks are completed.
5. Normalize all importance weights and calculate the effective number of samples Ngg.

6. Do resampling if the number of effective sample size Nog if lower than N/2.

Algorithm 18: Improved Multithreaded Rao-Blackwellized Particle Filter SLAM.

updateFilter(z;, us, g, S;_1,P)
St =1} // The new sample set

forall (xg] 1 wF] 1,mt 1> € 8,1 do

x,[f} ~N(xp—1 Dug,X) 0 2 o< uy // Sample from motion
P+~ {XL] = argmax p(zt|xt ,mg] 1)} // Enqueue scan matching pose refinement
[b]
end
waitFor AllTasks(P) // Block until all tasks are completed
forall %\ do
[] = p(z \m “ 1 xy]) wﬂl // Calculate the sample importance weight
1
= ()™ // Smooth the sample i i
i ple importance weight
P {my] = mtegrateMeasurement(XF],my] 1 zt)} // Enqueue grid maps update
S= SU(xt,wi], M) // Update sample set
end
WaitForAllTasks(P) // Block until all tasks are completed
forall wg] do wt = /Z wt // Normalize the sample importance weight
Nog = 1/25\] (711,?])2 // Calculate the effective sample size
if Negg < N/2 then S; = resample(S;)
return S,

96



The core components of the proposed grid-based RBPF SLAM are the scan matching
procedure and the data structure that supports the volumetric grid. These are considered core
components because, in theory, they can be implemented by any solution, that is, the filter is
not bound to a specific scan matching algorithm or volumetric data structure. Nonetheless,
the efficiency of the SLAM solution is the reflection of the choices for the core components.

The scan matching solution used in our RBPF SLAM is the same used for localization
with a likelihood field, proposed in this thesis in Chapter [3] with the necessary adaptations
for online SLAM, also proposed in this thesis in Section [5.1} The solution has proven to be an
accurate and computationally efficient scan matching algorithm. Its computational efficiency
is a desirable feature, specially in the context of a particle filter where each particle runs its
own scan matching procedure. The downside of this scan matching solution is the requirement
of a second volumetric grid that holds the Euclidean distance map. If not handled properly,
it can introduce a significant space overhead in the exchange for lower execution times.

The volumetric grid data structure that is used to support the occupancy map and Eu-
clidean distance map is the Sparse-Dense framework proposed in this thesis for efficient map-
ping (see Chapter. It provides a transparent management of space (e.g. automatic growth)
with additional features: implicit data sharing and online data compression. The implicit
data sharing provides an efficient method to share data between particles that are siblings
(i.e. generated from the same parent particle), thus reducing space complexity. It also support
multithreading by means of a thread-safe CoW mechanism that guarantees data consistency.
The multithreading RBPF SLAM is only possible due to this mechanism. The online data
compression is a feature that allows further reduction of space complexity without compro-
mising executions times. This feature is used to reduce the amount of memory allocated by
the Euclidean distance map and occupancy map. Additionally, the procedure used to update
the maps of each particle is the same used in our online SLAM solution, see Subsec [5.1.2]

If the particle filter is reduced to a single particle, the SLAM solution is conceptually no
different from our online solution. It executes the same scan matching method for localization
and the same incremental mapping for capturing the geometric shape of the environment.
Every particle in the filter is independent, therefore, when multiple particles are used, the
RBPF SLAM solution has in practice a running online SLAM process in each particle.

5.2.4 Experiments and Analysis

To validate our RBPF SLAM solution we used a variety of indoor environments that
demonstrate its efficiency and accuracy. The environments that are part of the experiments
are the same used in the evaluation and benchmark of our online SLAM (see section
but with the addition of an environment (also part of the The Robotics Data Set Repository)
that could not be solved by the online solution. This extra environment, named MIT Killian
Court, has several long loops, contains nested loops and covers a large area ,
which makes it a challenging problem to be solved by a Rao-Blackwellized mapper due to
particle depletion (Grisetti et al., 2005).

The objective of this section is to evaluate and compare the results of our RBPF SLAM
solution with the current state-of-the-art, GMapping. This includes the capacity to generate
topologically correct maps and to be computational and space management efficient. The
benchmarking of the quality of the obtained trajectories is not considered, however, because
part of our solution is based on an online SLAM with good benchmarks scores, which can
potentially be transferred to the RBPF SLAM.

97



Mapping Results

In total, five datasets representing different environments were use in the experiments:
ACES Building, Intel Research Lab, MIT CSAIL Building, Freiburg Indoor Building 079 and
MIT Killian Court. For all of them, our RBPF SLAM solution was capable of creating a
topologically correct map with good quality. For most datasets the filter is only updated after
accumulating 0.5m of movement or 25° of rotation. The exception is the Fr09 environment
for which an accumulated movement of 0.15m was necessary to handle its erratic odometry.

The maps of the first four environments are similar to the ones obtained by the online
SLAM solution but in general they have a higher quality, specially on locations where a
loop closure exist, e.g. This quality was achieved using no more than 15 particles.
Excluding the MIT Killian Court from the dataset pool, it is possible to obtain a topologically
correct map in 80% of the time using 5 particles.

The MIT Killian Court proved to be a challenging dataset. Due to its long and nested
loops, particle depletion happens frequently. In this experiment, the adaptive resampling with
smoothed likelihood and a higher number of particles were essential to obtain a topologically
correct map. Nonetheless, our filter requires 50 particles to obtain a map without artificial
double walls while GMapping requires 80 particles for the same result, an increase of 60%.

Computational Efficiency Analysis

Having a computationally efficient mapper has several advantages, for example: it frees
computational resources for others tasks; it makes the mapping cycle until the ideal param-
eters are found faster; and it opens the possibility for a real-time grid-based RBPF SLAM

Figure 5.11: MIT Killian Court map. The robot starts and finishes Figure 5.12: Example of map quality in-
the data capture around the point labeled by 1. The point a is provement on a loop closure location. The
the first loop that is visited. Then, it move to b, ¢ and returns to top map was obtained with the online
a and 1 before visiting the loops e and f. The environment has a SLAM solution and the bottom map was
size of 248m x 222m and its map was generated with 60 particles. obtained with the RBPF SLAM solution.

98



solution. In this section, we present the total execution times for each dataset as well as their
mean execution times for our approach and GMapping. Their comparison is based on the
single-thread implementation of both approaches, afterwards we will present and analyse the
advantages of our multithread version. The number of particles used for mapping is 30 for
all datasets except for the MIT Killian Count, for witch we used 60 particles. For reference,
all experiments were run in a HP ProLiant with two (2x) Intel Xeon 2.5GHz and 32GiB of
RAM for a total availability of 12 cores and 24 execution threads. This provides enough
computational and memory resources to evaluate our multithreading RBPF SLAM solution.

The obtained single-threaded execution times are shown in which contain
a comparison between our solution and GMapping with the corresponding speedup. The
difference in execution times is significant. It provides a speedup to the dataset processing
that ranges from 6 to 25 times faster. The speedup is provided by our core components,
the scan matching and the space management data structure that have good computational
efficiency. In both solutions, the total execution time to process the datasets is always bellow
the data time span. However, it does not assure that the solution is running in real-time.
To evaluate such property, the mean update time is a better metric. A summary of single-
threaded mean update times is presented in witch contains a comparison between
our solution and GMapping and the corresponding speedup. Notably, our solution provides
a considerable speedup over GMapping. Considering that all datasets have a measurement
period no greater than 166 milliseconds (i.e. a 6Hz frequency) a mean update time bellow this
threshold is a strong indicator that the solution is capable of operating in real-time, even in
the worst case where an update occurs at every single measurement. That is the case of our
solution, where the single-threaded mean update time is below the threshold for all datasets.

In practice, an update only occurs after the robot accumulates a certain amount of motion,
which binds the SLAM update to the velocity of the robot. For example, a robot traveling at
1m/s with an accumulated 0.5m of movement before updating, provides to the SLAM system
0.5 seconds to update. This can be generalized with the following formulation:

a a
t = max <7,T> = v=— (5.15)

v t
where a is the accumulated movement, v is the velocity of the robot, 7' is the measurement

period and t is the available time for update lower bounded by T. By replacing ¢t with
an estimate of the mean update time it is possible to obtain a robot velocity for witch we

100 - ‘ ‘ Total Execution Time ‘ - Speedup over GMapping
60.09 X -
27.12 30.52 23.25 30x - -
§ 10 2045 10.0210.1811.24 25 - -
2 N
= 20x - / _
IS 2 37 2 45 2.55 / '
~ . /
[J] 053 111 1.17 1.26 122 130 145 15x - ' , -
E ©10x- ‘.\ // -
GMapplng - RBPF (Iz4) o N . i
RBPF RBPF (zstd)
i ] ] ] - 0x - | | | | | -
ACES Fro79 MIT Killian Intel CSAIL ACES  Fr079 MIT Killian Intel ~ CSAIL

Figure 5.13: Comparison of single-threaded total execution times between our solution and GMapping. Note
that the time axis on the left graphic is on a logarithmic scale and our solution is labeled as RBPF. The
total execution graphic also contains our solution with online data compression activated using two different
compressors. The speedup graphic, on the right, only considers our solution without compression.

99



Speedup over GMapping

. 50x-
. ‘

- 30x - ~ - - -
0.04 004005 E / \ /

B \ /

- ZOX—‘ \ / -

S 10x- ' B

- 0x - -

Mean Update Time
10.00? d

‘146
1.00 -

0.12

| 0.09
0.10 -[N0-98 . ooe 0.07 007
0.01+ .

) = GMapping | RBPF (Iz4)
| mmm RBPF RBPF (zstd)
0.00 -

Time (seconds)

Io 16 0I16

i i i i i |
ACES Fr079 MIT Killian Intel CSAIL ACES  Fr079 MIT Killian Intel CSAIL

Figure 5.14: Comparison of single-threaded mean execution times between our solution and GMapping. Note
that the time axis on the left graphic is on a logarithmic scale and our solution is labeled as RBPF. The mean
update time graphic also contains our solution with online data compression activated using two different
compressors. The speedup graphic, on the right, only considers our solution without compression.

can operate in real-time. For the dataset with the highest mean update time, GMapping
would required the robot to move at 0.15m/s, which depending on the application can be an
acceptable velocity or not. On the other hand, our solution is not restricted by the robots
velocity because its mean update time is below the measurement period.

It is already established that our solution has a good computational efficiency. But this
is only considering its single-threaded version and our solution was design with multithread
support to further improve its computational efficiency. The obtained results are shown in
and they show that multithreading is a valuable tool to increase computational
efficiency. When compared with GMapping the difference in computational efficiency just
grows wider. The speedup curve, as the number of threads increases, grows until a saturation
point is achieved where more threads can, in fact, be a bottleneck. This is shown in the
speedup decrease in the transition from 16 to 24 threads. Note that for a different number of
particles the saturation point can also be different.

The speedup values of the MIT Killian Court dataset stands from the other datasets, as
they are higher. This happens because it uses a higher number of particles than the other
datasets and it was observed that multithreading speedup favors higher number of particles,
i.e. the higher the number of particles the higher the speedup value provided by multithreading.

ax - Speedup provided by multithreading ~ 140, SPeedup over GMapping with 16 threads
—A— ACES
—v— Intel T © 120x -
o
4y % CSAL ook
—— Fr079
O MIT Killian 80x -
ox - - 60x -
40x —
20x - -
1x - -
1 1 1 1 1 | Ox - 1 1 1 I I
1 2 4 8 16 24 ACES Fr079 MIT Killian Intel CSAIL

Threads #

Figure 5.15: Total execution time speedup provided by multithreading per dataset. The left graphic shows the
speedup that is obtained each time the number of threads is increased. The right graphic shows the speedup
of our solution over GMapping when 16 threads are used.

100



Space Efficiency Analysis

A good space (or memory) management is essential for any grid-based RBPF SLAM
solution. For sufficiently large environment with a reasonable number of particles a naive
approach can require an unmanageable amount of memory. For space management, GMapping
follows a strategy similar to |[Eliazar and Parr| (2003) where grid cells in particles that derived
from a common parent particle are shared among its siblings until they are changed. This
provides a manageable amount of memory even for a reasonable number of particles. The
caveat is that is does not support multithreading. Our solution uses of the sparse-dense
framework for data management that helps reducing the amount of memory usage. It has the
same principle of data sharing between particles but it manages blocks of several grids cells
instead of a single one and supports multithreading. The maximum memory usage reported by
our solution and GMapping are shown in and the evolution over time in [Figure 5.16

Table 5.5: Maximum memory usage reported by GMapping and our solution per dataset. Memory usage
values with 124 and zstd compression are also reported.

Dataset | GMapping RBPF RBPF (1z4) | RBPF (zstd)
ACES | 99.70 MiB 365.19 MiB 88.93 MiB 52.26 MiB
Fro79 | 73.71 MiB 137.24 MiB 56.42 MiB 41.40 MiB

MIT Killian | 234.21 MiB | 1365.38 MiB | 328.26 MiB 170.05 MiB
Intel | 99.24 MiB 199.79 MiB 77.40 MiB 48.78 MiB
CSAIL | 86.39 MiB 192.51 MiB 63.49 MiB 43.67 MiB

Without data compression, our solution has a space efficiency that is noticeable worst
than GMapping. The computational efficiency of our solution requires a second grid map as
trade-off. Unavoidably, it increases memory consumption. As already discussed, this second
grid uses at least four time (4x) more memory than the occupancy grid and it can grow
considerably as the number of particles increases. It is for situations like this that the online
data compression was developed. With the addition of a negligible computational overhead,
our space efficiency is greatly improved, reaching a level similar or even better than GMapping.

- 366 MB - 100 MB - 100 MB

ACES ACES W ACES W
f ~

- 138 MB ol 1
Frofyg_l/—"l/‘VVm Fr079 ZH;WW% Fr079 WWAW
R oV S SO, NN SR, e N § 2 7

- 1366 MB - 329 MB - 235 MB
MIT Killian /WW mIT Killiar;\W mIT Kiilianjvwmm
e e ] vV rvorr

- 200 MB - 100 MB - 100 MB
et T e Intel *@Wm Inte} mﬂ%—wﬁﬁﬂ‘t—v‘%&
gt Tt . 20

- 74 MB - 74 MB

28
- 193 MB - 87 MB - 87 MB
[— GMapping — RBPF] [— GMapping — RBPF (|z4)] [— GMapping — RBPF (zstd)J

(a) (b) (c)

Figure 5.16: Memory usage over time of our solution compared with GMapping memory usage. In (a), the
reported memory usage of our solution does not utilize online memory compression. In (b) and (c), online
memory compression with 1z4 and zstd, respectively, is used. Without online data compression our space
efficiency is noticeable worst than GMapping, but with compression the efficiency is comparable if not better
most of the times.

101



5.3 Conclusion

This chapter presents the development of two SLAM solutions, one addressing the online
SLAM problem and the other the full SLAM problem. The online SLAM solution is based on
a fast and accurate scan matching algorithm, developed in this thesis, that is adapted to the
incremental map building nature of simultaneous localization and mapping. The mapping is
supported by the sparse-dense framework, also developed in this thesis, that provides trans-
parent (and automatic) map size growth and efficient space management. The end result is
an accurate, light-weight and noticeable fast online SLAM solution with benchmark results
that supports our claims.

The full SLAM solution is based on the insights of GMapping, a state-of-the-art grid-based
RBPF SLAM introduced by |Grisetti et al.| (2005)). Our solution contains an improved proposal
distribution with samples drawn from motion and refined with scan matching, the same scan
matching used in our online SLAM. The mapping procedure has the same origin, the online
SLAM. Adaptive resampling with smoothed likelihood is used to avoid particle depletion in
environments with large and nested loops. To further improve the computational efficiency,
parallel scan matching and concurrent map update procedures are used. This is handled by
multithreading with a Thread Pool model. The end result is RBFP SLAM solution capable
of producing maps of good quality at a pace that goes from 6 to 25 times faster. Using
multithreading further widens the computationally efficiency gap, reaching speedups such as
100 times faster. In terms of space efficiency, when data compression is used, it is in the same
level of efficiency as GMapping. Considering the obtained results, our RBPF SLAM solution
is a viable alternative to GMapping.

The remaining question is which SLAM solution to use. Both provide accurate maps
with high computational and space efficiency. However, the full SLAM solution is capable
of handling the same environments as the online SLAM solution and more. On the other
hand, the latter is even more computationally and space efficient than the former. The final
answer lies in the environment to map, the available resources and choice of the user. The
online SLAM solution is a good fit for environments such as households or office spaces and
because of its low resources requirements it is ideal for real-time domestics mobile robotic
applications. Our RBPF SLAM is an “all-around” solution, capable of handling simple and
challenging environments with good scalability. As an example, when more resources are
available, such as thread count, offline mapping of a challenging large environment can leverage
the multithreading support of our solution to reduce the time it takes to find a solution.

102



Chapter 6

Conclusion

The purpose of this thesis is to contribute to the state-of-the-art of localization and map-
ping by providing improved algorithms and tools that offer better accuracy and efficiency.
Four contributions are proposed that addressed the problems of localization and mapping and
their simultaneous resolve (i.e. SLAM). The first contribution focuses on the problem of mobile
robot localization and the second on the problem of space management in grid mapping. The
third and fourth contributions address the problems of online and full SLAM, respectively.

The problem of mobile robot localization is approached using scan matching with improved
optimization and uncertainty handling. It uses a likelihood field as measurement model that is
in part responsible for its reduced computational complexity. The optimization on a manifold
showed to have fast convergence to the local minimum, which also contributed to the low
execution times. The final result is a localization algorithm that offers a viable alternative to
the current state-of-the-art with a high computational efficiency (Pedrosa et al., 2017).

A regular volumetric grid is a popular and easy to implement data structure to represent
the environment but it quickly grows in memory usage as the environment increases in size,
specially in 3D applications. In this thesis, we propose a sparse data structure that points to
dense areas of the environment. This sparse-dense approach offers the reduced data allocation
of a sparse structure but locally it still offers an access speed similar to the regular volumetric
grid. The local density assumption allows the data usage to be further compressed by using
a lossless data compression method, such as 1z4 or zstd. The mechanism that handles data
compression is based on a LRU cache and functions online and transparently during map-
ping. Additionally, for an efficiency duplication of data, an implicit data sharing mechanism
(i.e. CoW) with multithreading is also provided. The presented sparse-dense approach im-
proves the current state-of-the-art by providing a more efficient data structure in execution
time and memory usage with the additional multithreading support that can be applied to
any grid-based model that utilizes our framework.

In this thesis, the simultaneous localization and mapping problem is initially approached
from an online SLAM perspective and then from a full SLAM standpoint. By adapting our
scan matching based localization algorithm to incremental building of a map, we were able
to develop an online SLAM solution that is accurate and fast. The adaptation of the local-
ization algorithm for mapping required the introduction of the dynamic likelihood field that
is supported by an Euclidean distance map that efficiently updates only the grid cell affected
by the measurements integration. The sparse-dense framework was used to model both the
occupancy grid for mapping and the dynamic Fuclidean distance grid to take advantage of its

103



compact data management. By using a SLAM benchmark we demonstrated that our solution
offers an accuracy similar or better than the current state-of-the art with the additional ad-
vantage of a high computational efficiency. The online SLAM solution proposed in this thesis
was published in [Pedrosa et al.| (2016) and it is a continuation of a previous solution published
in [Pedrosa et al.| (2013).

Like all online SLAM solutions, our approach is not capable of handling all types of
environments, more specifically, environments of significant size that contain large and even
nested loops. Therefore, our final efforts were dedicated to develop a full SLAM solution
that combines all the knowledge obtained so far. Our last proposal is a Rao-Blackwellized
particle filter SLAM that uses a proposal distribution with scan matching pose refinement,
adaptive resampling with smoothed importance weight and multithreading support. Each
particle of the filter integrates an instance of our online SLAM that, for efficiency, shares
unchanged data with its particle siblings — courtesy of our sparse-dense framework. Because
particles are independent, we speeded up the processing times of scan matching and mapping
by implementing a Thread Pool model that manages multiple concurrent executions threads.
The final result is an improved grid-based RBPF SLAM that requires less particles than
the current state-of-the-art to generate topologically correct maps and utilizes the available
computational resources more efficiently.

Autonomous mobile robots are and will be part of the future. And, as more research
is put into the field of robotics and artificial intelligence, mobile robots will be increasingly
autonomous and perform more complex operations. This increase of complexity also puts
pressure on the available resources, as more systems compete for them. Therefore, improving
the efficiency of any system should also be part of its evolution. The contribution presented
in this thesis provides a step forward in terms of space and computational efficiency without
compromising or even improving accuracy. The obtained results are aligned with the initial
statement of this thesis. It is indeed possible to further improve the quality of localization,
mapping and SLAM while reducing their computational and memory requirements. By re-
ducing the footprint of these systems, more can be done with the same resources.

6.1 Other Applications and Future Work

The scan matching algorithm presented in this thesis is not restricted to localization.
Combined with the sparse-dense framework, it was adapted to be used as a 3D template
matcher of an object partial view, obtained from an RBGD sensor, with its complete model.
An application of this method can be found in Amaral et al.|(2017)), where it is used to find
the pose of a 3D object for manipulation. Additionally, all the contributions presented in this
thesis were also applied to a contemporaneous real robot.

The extension of the scan matching algorithm to a third dimension opens the possibility of
exploring 3D robotic localization using our solution, for example, for unmanned aerial vehicles
(or drones). Consequently, extending our SLAM solutions to 3D grid-based SLAM is also a
possibility. Dense SLAM in an extra dimension is known to be computationally heavy, but
the good efficiency of our algorithms and tools can be explored to find a viable solution.

Lifelong mapping is another topic worth of consideration. Traditionally, it is assumed that
the environment being mapped is mostly static with small changes over time. But that is not
always true, since there are scenarios where the environment can change considerable within
hours, e.g. parking lot. Here, our sparse-dense framework could take a central role in providing

104



support for lifelong mapping. For example, without the direct intervention of the robotic agent
it can be used to introduce the notion of temporal validity of information where visited areas
would fade over time, thus requiring a remapping of the area. Furthermore, it should also
be possible to modify (i.e. add, delete, change) different parts of the map when requested by
the agent. Thus allowing different actions to be taken depending on the information (e.g.
semantic, topological) that is available.

105



106



References

Amanatides, J., Woo, A., et al. (1987). A Fast Voxel Traversal Algorithm for Ray Tracing. In
Eurographics, volume 87, pages 3—10.

Amaral, F., Pedrosa, E., Lim, G. H., Shafii, N., Pereira, A., Azevedo, J. L., Cunha, B., Reis,
L. P., Badini, S., and Lau, N. (2017). Skill-based Anytime Agent Architecture for Logistics
and Manipulation Tasks: EuRoC Challenge 2, Stage II - Realistic Labs: Benchmarking.
In 2017 IEEE International Conference on Autonomous Robot Systems and Competitions
(ICARSC), pages 198-203. IEEE.

Bennewitz, M., Stachniss, C., Behnke, S., and Burgard, W. (2009). Utilizing Reflection
Properties of Surfaces to Improve Mobile Robot Localization. In 2009 IEEE International
Conference on Robotics and Automation, pages 4287-4292, Kobe, Japan.

Besl, P. and McKay, N. D. (1992). A Method for Registration of 3-D Shapes. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 14(2):239-256.

Biber, P. and Strasser, W. (2003). The Normal Distributions Transform: A New Approach to
Laser Scan Matching. In Intelligent Robots and Systems (IROS), 2003 IEEE/RSJ Interna-
tional Conference on, volume 3, pages 2743-2748. IEEE.

Borenstein, J., Feng, L., and Everett, H. R. (1996). Navigating Mobile Robots: Systems and
Techniques. A. K. Peters, Ltd., Natick, MA, USA.

Bosse, M. and Roberts, J. (2007). Histogram Matching and Global Initialization for Laser-
only SLAM in Large Unstructured Environments. In Robotics and Automation, 2007 IEEE
International Conference on, pages 4820-4826.

Bosse, M. C. (2004). ATLAS: A Framework for Large Scale Automated Mapping and Local-
ization. PhD thesis, Massachusetts Institute of Technology.

Bresenham, J. E. (1965). Algorithm for Computer Control of a Digital Plotter. IBM Systems
journal, 4(1):25-30.

Burgard, W., Derr, A., Fox, D., and Cremers, A. (1998). Integrating Global Position Estima-
tion and Position Tracking for Mobile Robots: the Dynamic Markov Localization Approach.
In Intelligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ International Con-
ference on, volume 2, pages 730-735.

Burgard, W. and Hebert, M. (2008). World Modeling. In Siciliano, B. and Khatib, O.,
editors, Springer Handbook of Robotics, pages 853-869. Springer Berlin Heidelberg, Berlin,
Heidelberg.

107



Burguera, A., Gonzalez, Y., and Oliver, G. (2009). On the Use of Likelihood Fields to Perform
Sonar Scan Matching Localization. Autonomous Robots, 26(4):203-222.

Castellanos, J., Martinez-Cantin, R., Tardoés, J., and Neira, J. (2007). Robocentric Map
Joining: Improving the Consistency of EKF-SLAM. Robotics and Autonomous Systems,
55(1):21 — 29.

Censi, A. (2008). An ICP variant using a point-to-line metric. 2008 IEEE International
Conference on Robotics and Automation (ICRA), pages 19-25.

Censi, A., Tocchi, L., and Grisetti, G. (2005). Scan Matching in the Hough Domain. In
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International
Conference on, pages 2739-2744.

Cole, D. M. and Newman, P. M. (2006). Using Laser Range Data for 3D SLAM in Outdoor
Environments. In IEEE International Conference on Robotics and Automation, pages 1556—
1563, Orlando, Florida. IEEE.

Cox, I. J. (1991). Blanche — An Experiment in Guidance and Navigation of an Autonomous
Robot Vehicle. Robotics and Automation, IEEE Transactions on, 7(2):193-204.

Cox, I. J. and Wilfong, G. T. (1990). Autonomous Robot Vehicles, volume 447. Springer-Verlag
New York.

Davison, A., Reid, I., Molton, N., and Stasse, O. (2007). MonoSLAM: Real-Time Single Cam-
era SLAM. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(6):1052—
1067.

Dellaert, F., Fox, D., Burgard, W., and Thrun, S. (1999). Monte Carlo Localization for
Mobile Robots. In Robotics and Automation, 1999. Proceedings. 1999 IEEE International
Conference on, volume 2, pages 1322-1328 vol.2.

Dellaert, F. and Kaess, M. (2006). Square Root SAM: Simultaneous Localization and Mapping
via Square Root Information Smoothing. Int. J. Rob. Res., 25(12):1181-1203.

Dickmanns, E. D. and Graefe, V. (1988). Applications of Dynamic Monocular Machine Vision.
Machine Vision and Applications, 1(4):241-261.

Diosi, A. and Kleeman, L. (2007). Fast Laser Scan Matching using Polar Coordinates. Int. J.
Rob. Res., 26(10):1125-1153.

Dissanayake, M. W. M. G., Newman, P., Clark, S., Durrant-Whyte, H., and Csorba, M. (2001).
A solution to the simultaneous localization and map building (slam) problem. Robotics and
Automation, IEEE Transactions on, 17(3):229-241.

Doucet, A. (1998). On Sequential Simulation-Based Methods for Bayesian Filtering. Technical
Report CUED /F-INFENG/TR. 310, Cambridge University Department of Engineering.

Doucet, A., De Freitas, N., Gordon, N., et al. (2001). Sequential Monte Carlo methods in
practice, volume 1. New York: Springer Verlag.

108



Doucet, A., Freitas, N. d., Murphy, K. P., and Russell, S. J. (2000). Rao-Blackwellised
Particle Filtering for Dynamic Bayesian Networks. In Proceedings of the 16th Conference
on Uncertainty in Artificial Intelligence, UAI *00, pages 176-183, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Eliazar, A. and Parr, R. (2003). DP-SLAM: Fast, Robust Simultaneous Localization and
Mapping Without Predetermined Landmarks. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence, IJCAI’03, pages 1135-1142, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.

Engelson, S. and McDermott, D. (1992). Error Correction in Mobile Robot Map Learning.
In Robotics and Automation, 1992. Proceedings., 1992 IEEE International Conference on,
volume 3, pages 2555—-2560.

Eurico Pedrosa, Lau, N., and Pereira, A. (2013). Ounline SLAM Based on a Fast Scan-
Matching Algorithm. In Correia, L., Reis, L., and Cascalho, J., editors, Progress in Artificial

Intelligence, volume 8154 of Lecture Notes in Computer Science, pages 295-306. Springer
Berlin Heidelberg.

Eurico Pedrosa, Lau, N., Pereira, A., and Cunha, B. (2015). A skill-based architecture for
pick and place manipulation tasks. In Pereira, F., Machado, P., Costa, E., and Cardoso,
A., editors, Progress in Artificial Intelligence, volume 9273 of Lecture Notes in Computer
Science, pages 457-468. Springer International Publishing.

Eurico Pedrosa, Pereira, A., and Lau, N. (2017). A Non-Linear Least Squares Approach to
SLAM using a Dynamic Likelihood Field. Journal of Intelligent & Robotic Systems.

Eurico Pedrosa, Pereira, A., and Lau, N. (April 2018). A Sparse-Dense Approach for
Efficient Grid Mapping. In Autonomous Robot Systems and Competitions (ICARSC), 2018
International Conference on, Torres Vedras, Portugal. IEEE.

Fairfield, N., Kantor, G., and Wettergreen, D. (2007). Real-Time SLAM with Octree Evidence
Grids for Exploration in Underwater Tunnels. Journal of Field Robotics, 24(1-2):03—-21.

Felzenszwalb, P. and Huttenlocher, D. (2004). Distance Transforms of Sampled Functions.
Technical report, Cornell University.

Fischler, M. A. and Bolles, R. C. (1981). Random Sample Consensus: A Paradigm for Model
Fitting With Applications to Image Analysis and Automated Cartography. Commun. ACM,
24(6):381-395.

Fox, D. (2003). Adapting the Sample Size in Particle Filters Through KLD-Sampling. The
International Journal of Robotics Research, 22(12):985-1003.

Fox, D., Burgard, W., Dellaert, F., and Thrun, S. (1999a). Monte Carlo Localization: Efficient
Position Estimation for Mobile Robots. In Proceedings of AAAI 99, pages 343-349, Menlo
Park, CA, USA. American Association for Artificial Intelligence.

Fox, D., Burgard, W., Kruppa, H., and Thrun, S. (2000). A Probabilistic Approach to
Collaborative Multi-Robot Localization. Autonomous Robots, 8(3):325-344.

109



Fox, D., Burgard, W., and Thrun, S. (1999b). Markov Localization for Mobile Robots in
Dynamic Environments. Journal of Artificial Intelligence Research, 11:391-427.

Gouveia, B. D., Portugal, D., and Marques, L. (2014). Speeding Up Rao-Blackwellized Particle
Filter SLAM with a Multithreaded Architecture. In Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on, pages 1583-1588, Chicago. IEEE.

Grisetti, G., Kiimmerle, R., Stachniss, C., and Burgard, W. (2010a). A Tutorial on Graph-
Based SLAM. Intelligent Transportation Systems Magazine, IEEE, 2(4):31-43.

Grisetti, G., Kummerle, R., Stachniss, C., Frese, U., and Hertzberg, C. (2010b). Hierarchical
Optimization on Manifolds for Online 2D and 3D Mapping. In Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pages 273-278.

Grisetti, G., Stachniss, C., and Burgard, W. (2005). Improving Grid-based SLAM with Rao-
Blackwellized Particle Filters by Adaptive Proposals and Selective Resampling. In Robotics
and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference
on, pages 2432-2437.

Grisetti, G., Stachniss, C., and Burgard, W. (2007a). Improved Techniques for Grid Mapping
With Rao-Blackwellized Particle Filters. Robotics, IEEE Transactions on, 23(1):34-46.

Grisetti, G., Stachniss, C., and Burgard, W. (2009). Nonlinear Constraint Network Optimiza-
tion for Efficient Map Learning. Trans. Intell. Transport. Sys., 10(3):428-439.

Grisetti, G., Stachniss, C., Grzonka, S., and Burgard, W. (2007b). A Tree Parameterization
for Efficiently Computing Maximum Likelihood Maps using Gradient Descent. In In Proc.
of Robotics: Science and Systems (RSS).

Guivant, J. and Nebot, E. (2001). Optimization of the Simultaneous Localization and Map-
building Algorithm for Real-Time Implementation. Robotics and Automation, IEEE Trans-
actions on, 17(3):242-257.

Gutmann, J.-S. and Fox, D. (2002). An Experimental Comparison of Localization Methods
Continued. In Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference
on, volume 1, pages 454-459 vol.1.

Hahnel, D., Burgard, W., Fox, D., and Thrun, S. (2003). An Efficient FastSLAM Algorithm for
Generating Maps of Large-Scale Cyclic Environments from Raw Laser Range measurements.
In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 206—
211. IEEE.

Héhnel, D., Burgard, W., Wegbreit, B., and Thrun, S. (2003). Towards Lazy Data Associ-
ation in SLAM. In Proceedings of the 11th International Symposium of Robotics Research
(ISRR’03), pages 421 — 431, Siena, Italy. Springer.

Hall, B. (2015). Lie Groups, Lie Algebras, and Representations: An Elementary Introduction,
volume 222. Springer.

Herbert, M., Caillas, C., Krotkov, E., Kweon, I. S., and Kanade, T. (1989). Terrain Mapping
for a Roving Planetary Explorer. In Proceedings, 1989 International Conference on Robotics
and Automation, pages 997-1002. IEEE Comput. Soc. Press.

110



Hess, W., Kohler, D., Rapp, H., and Andor, D. (2016). Real-Time Loop Closure in 2D LIDAR
SLAM. In 2016 IEEE International Conference on Robotics and Automation (ICRA ), pages
1271-1278, Stockholm, Sweden.

Holz, D. and Behnke, S. (2010). Sancta Simplicitas - On the Efficiency and Achievable Results
of SLAM Using ICP-based Incremental Registration. In Proc. of the IEEE Int. Conf. on
Robotics € Automation (ICRA), pages 1380-1387, Alaska, USA.

Horn, B. K. P. (1987). Closed-form Solution of Absolute Orientation Using Unit Quaternions.
Journal of the Optical Society of America. A, 4(4):629-642.

Hornung, A., Wurm, K. M., Bennewitz, M., Stachniss, C., and Burgard, W. (2013). OctoMap:
An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Autonomous Robots,
34(3):189- 206.

Howard, A. and Roy, N. (2003). The Robotics Data Set Repository (Radish).

Jensfelt, P. and Kristensen, S. (2001). Active Global Localization for a Mobile Robot Using
Multiple Hypothesis Tracking. Robotics and Automation, IEEE Transactions on, 17(5):748—
760.

Jesus, F. and Ventura, R. (2012). Combining Monocular And Stereo Vision In 6D-SLAM
for The Localization of a Tracked Wheel Robot. In Safety, Security, and Rescue Robotics
(SSRR), 2012 IEEE International Symposium on, pages 1-6.

Julier, S. and Uhlmann, J. (2001). A Counter Example to the Theory of Simultaneous Lo-
calization and Map Building. In Robotics and Automation, 2001. Proceedings 2001 ICRA.
IEEFE International Conference on, volume 4, pages 4238-4243.

Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., and Dellaert, F. (2012).
iISAM2: Incremental Smoothing and Mapping Using the Bayes Tree. The International
Journal of Robotics Research, 31(2):216-235.

Kaess, M., Ranganathan, A., and Dellaert, F. (2007). iSAM: Fast Incremental Smoothing
and Mapping with Efficient Data Association. In Robotics and Automation, 2007 IEEE
International Conference on, pages 1670-1677.

Koenig, S. and Simmons, R. (1998). Xavier: A Robot Navigation Architecture Based on
Partially Observable Markov Decision Process Models. Artificial Intelligence Based Mobile
Robotics: Case Studies of Successful Robot Systems, pages 91-122.

Kohlbrecher, S., von Stryk, O., Meyer, J., and Klingauf, U. (2011). A Flexible and Scalable
SLAM System with Full 3D Motion Estimation. In Proc. of the IEEE Int. Symp on Safety,
Securitym and Rescue Robotics (SSRR), pages 155-160, Kyoto, Japan.

Konolige, K., Grisetti, G., Kummerle, R., Burgard, W., Limketkai, B., and Vincent, R. (2010).
Sparse Pose Adjustment for 2D Mapping. In TROS, Taipei, Taiwan.

Kiimmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C., and
Kleiner, A. (2009). On Measuring the Accuracy of SLAM Algorithms. Autonomous Robots,
27(4):387-407.

111



Kwok, C., Fox, D., and Meila, M. (2004). Real-time Particle Filters. Proceedings of the IEEE,
02(3):469-484.

Lau, B., Sprunk, C., and Burgard, W. (2013). Efficient Grid-based Spatial Representa-
tions for Robot Navigation in Dynamic Environments. Robotics and Autonomous Systems,
61(10):1116-1130.

Lauer, M., Lange, S., and Riedmiller, M. (2006). Calculating The Perfect Match: An Efficient
and Accurate Approach for Robot Self-Localization. In Robocup 2005: Robot soccer world
cup IX, pages 142-153. Springer.

Lee, J. M. (2003). Smooth Manifolds. In Introduction to Smooth Manifolds, pages 1-29.
Springer.

Leonard, J. and Durrant-Whyte, H. (1991). Simultaneous Map Building and Localization
for an Autonomous Mobile Robot. In Intelligent Robots and Systems ’91. ’Intelligence for
Mechanical Systems, Proceedings IROS '91. IEEE/RSJ International Workshop on, pages
1442-1447 vol.3.

Leonard, J. J. and Feder, H. J. S. (1999). A Computationally Efficient Method for Large-
scale Concurrent Mapping and Localization. In Hollerbach, J. and Koditscheck, D., editors,

Proceedings of the Ninth International Symposium on Robotics Research, pages 169-176,
Utah, USA.

Lima, P. U., Santos, P., Oliveira, R., Ahmad, A., and Santos, J. (2011). Cooperative Local-
ization Based on Visually Shared Objects. In Ruiz-del Solar, J., Chown, E., and Ploger,
P., editors, RoboCup 2010: Robot Soccer World Cup XIV, volume 6556 of Lecture Notes in
Computer Science, pages 350-361. Springer Berlin Heidelberg.

Liu, J. S. (1996). Metropolized Independent Sampling with Comparisons to Rejection Sam-
pling and Importance Sampling . Statistics and Computing, 6(2):113-119.

Lu, F. and Milios, E. (1997a). Globally Consistent Range Scan Alignment for Environment
Mapping. Autonomous Robots, 4(4):333-349.

Lu, F. and Milios, E. (1997b). Robot Pose Estimation in Unknown Environments by Matching
2D Range Scans. Journal of Intelligent and Robotic Systems, 18(3):249-275.

Madsen, K., Bruun, H., and Tingleff, O. (2004). Methods for Non-Linear Least Squares
Problems. Technical report, Informatics and Mathematical Modelling, Technical University
of Denmark.

Martinelli, A., Pont, F., and Siegwart, R. (2005). Multi-Robot Localization Using Relative
Observations. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE
International Conference on, pages 2797-2802.

Montemerlo, M., Thrun, S., Koller, D., and Wegbreit, B. (2002). FastSLAM: A Factored
Solution to the Simultaneous Localization and Mapping Problem. In FEighteenth national
conference on Artificial intelligence, pages 593—-598, Menlo Park, CA, USA. American As-
sociation for Artificial Intelligence.

112



Montemerlo, M., Thrun, S., Roller, D., and Wegbreit, B. (2003). FastSLAM 2.0: An Improved
Particle Filtering Algorithm for Simultaneous Localization and Mapping That Probably

Converges. In Proceedings of the 18th international joint conference on Artificial intelligence,
IJCAT’03, pages 1151-1156, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Montesano, L., Minguez, J., and Montano, L. (2005). Probabilistic Scan Matching for Mo-
tion Estimation In Unstructured Environments. In Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), pages 3499-3504.

Moravec, H. (1989). Sensor Fusion in Certainty Grids for Mobile Robots. In Casals, A., editor,
Sensor Devices and Systems for Robotics, volume 52 of NATO ASI Series, pages 253-276.
Springer Berlin Heidelberg.

Moravec, H. P. (1996). Robot Spatial Perception by Stereoscopic Vision and 3D Evidence
Grids. Technical report, CMU-RI-TR-96-34. Pittsburgh: Robotics Institute.

Murphy, K. P. (1999). Bayesian Map Learning in Dynamic Environments. In Proceedings
of the 12th International Conference on Neural Information Processing Systems, NIPS’99,
pages 1015-1021, Cambridge, MA, USA. MIT Press.

Neira, J. and Tardos, J. (2001). Data Association in Stochastic Mapping Using the Joint
Compatibility Test. Robotics and Automation, IEEE Transactions on, 17(6):890-897.

Olson, E. (2008). Robust and Efficient Mapping. PhD thesis, Massachusetts Institute of
Technology.

Olson, E. (2015). M3RSM: Many-to-many multi-resolution scan matching. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 5815-5821.

Olson, E., Leonard, J., and Teller, S. (2006). Fast iterative alignment of pose graphs with
poor initial estimates. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006
IEEFE International Conference on, pages 2262—-2269.

Olson, E. B. (2009). Real-Time Correlative Scan Matching. In Proc. of the IEEE Int. Conf. on
Robotics €& Automation (ICRA), pages 4387-4393, Kobe, Japan.

Pedrosa, E., Lau, N., and Pereira, A. (2013). Online slam based on a fast scan-matching
algorithm. In Correia, L., Reis, L. P., and Cascalho, J., editors, Progress in Artificial
Intelligence, volume 8154 of Lecture Notes in Computer Science, pages 295-306, Angra do
Herofsmo, Azores, Portugal. Springer Berlin Heidelberg.

Pedrosa, E., Pereira, A., and Lau, N. (2016). A Scan Matching Approach to SLAM with a
Dynamic Likelihood Field. In Autonomous Robot Systems and Competitions (ICARSC),
2016 International Conference on, pages 35—40, Braganca, Portugal.

Pedrosa, E., Pereira, A., and Lau, N. (2017). Efficient Localization based on Scan Match-
ing with a Continuous Likelihood Field. In Autonomous Robot Systems and Competitions
(ICARSC), 2017 IEEE International Conference on, pages 61-66, Coimbra, Portugal.

Pedrosa, Eurico., Pereira, A., and Lau, N. (April 2017). Efficient Localization based on
Scan Matching with a Continuous Likelihood Field. In Autonomous Robot Systems and
Competitions (ICARSC), 2017 International Conference on, Coimbra, Portugal. IEEE.

113



Pedrosa, Eurico., Pereira, A., and Lau, N. (May 2016). A Scan Matching Approach to
SLAM with a Dynamic Likelihood Field. In Autonomous Robot Systems and Competitions
(ICARSC), 2016 International Conference on, pages 35-40, Braganga, Portugal. IEEE.

Pfister, S. T., Kriechbaum, K. L., Roumeliotis, S. I., and Burdick, J. W. (2002). Weighted
Range Sensor Matching Algorithms for Mobile Robot Displacement Estimation. In Proc. of
the IEEE Int. Conf. on Robotics & Automation (ICRA ), volume 2, pages 1667-1674, Wash-
ington, DC, USA.

Press, W. H., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical recipes in C.
Cambridge, UK: Cambridge University Press, 2 edition.

Rekleitis, 1., Dudek, G., and Milios, E. (2002). Multi-robot Cooperative Localization: A Study
of Trade-offs Between Efficiency and Accuracy. In Intelligent Robots and Systems, 2002.
IEEE/RSJ International Conference on, volume 3, pages 2690-2695 vol.3.

Roferi, T. (2002). Using Histogram Correlation to Create Consistent Laser Scan Maps. In
Intelligent Robots and Systems, 2002. IEEE/RSJ International Conference on, volume 1,
pages 625-630 vol.1.

Roth-Tabak, Y. and Jain, R. (1989). Building an Environment Model Using Depth Informa-
tion. Computer, 22(6):85-90.

Roumeliotis, S. and Bekey, G. A. (2000). Bayesian Estimation and Kalman Filtering: A Unified
Framework for Mobile Robot Localization. In Robotics and Automation, 2000. Proceedings.
ICRA ’00. IEEFE International Conference on, volume 3, pages 2985-2992 vol.3.

Salomon, D. and Motta, G. (2010). Handbook of data compression. Springer Science & Business
Media.

Schiele, B. and Crowley, J. L. (1994). A Comparison of Position Estimation Techniques Using
Occupancy Grids. Robotics and Autonomous Systems, 12(3-4):163 — 171.

Smith, R. C. and Cheeseman, P. (1986). On the Representation And Estimation of Spatial
Uncertainty. The International Journal of Robotics Research, 5(4):56-68.

Thrun, S. (2001). A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots.
The International Journal of Robotics Research, 20(5):335-363.

Thrun, S. (2002). Robotic mapping: A survey. Exploring Artificial Intelligence in the New
Millennium, pages 1-35.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics, volume 1. MIT press
Cambridge.

Thrun, S., Diel, M., and Hahnel, D. (2003). Scan Alignment and 3D Surface Modeling With a
Helicopter Platform. In In Proceedings of the International Conference on Field and Service
Robotics.

Thrun, S., Fox, D., Burgard, W., and Dellaert, F. (2001). Robust Monte Carlo Localization
for Mobile Robots. Artificial Intelligence, 128(1-2):99 — 141.

114



Triebel, R., Pfaff, P., and Burgard, W. (2006). Multi-Level Surface Maps for Outdoor Terrain
Mapping and Loop Closing. In 2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2276-2282. IEEE.

Triggs, B., McLauchlan, P. F., Hartley, R. L., and Fitzgibbon, A. W. (2000). Bundle Adjust-
ment — A Modern Synthesis. In Triggs, B., Zisserman, A., and Szeliski, R., editors, Vision
Algorithms: Theory and Practice, volume 1883 of Lecture Notes in Computer Science, pages
298-372. Springer Berlin Heidelberg.

Tsardoulias, E. and Petrou, L. (2013). Critical Rays Scan Match SLAM. Journal of Intelligent
and Robotic Systems, 72(3-4):441-462.

Van Der Merwe, R., Doucet, A., De Freitas, N., and Wan, E. (2000). The Unscented Particle
Filter. In Proceedings of the 13th International Conference on Neural Information Processing
Systems, NIPS’00, pages 563-569, Cambridge, MA, USA. MIT Press.

Weiss, G., Wetzler, C., and Von Puttkamer, E. (1994). Keeping Track of Position and Orienta-
tion of Moving Indoor Systems by Correlation of Range-Finder Scans. In Intelligent Robots
and Systems ’94. ’Advanced Robotic Systems and the Real World’, IROS ’9/. Proceedings of
the IEEE/RSJ/GI International Conference on, volume 1, pages 595-601.

Ziv, J. and Lempel, A. (1977). A Universal Algorithm for Sequential Data Compression. I[EEE
Transactions on information theory, 23(3):337-343.

115



	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Thesis Statement and Objectives
	Contributions
	Publications
	Thesis Structure

	Localization and Mapping
	Bayesian State Estimation
	Environment Interaction
	Probabilistic Evolution of Controls, States and Measurements
	Bayes Filter

	Mobile Robot Localization
	Motion Models
	Measurement Models
	A Taxonomy of Localization Problems
	Localization Approaches

	Mapping
	Mapping with a Probabilistic Occupancy Grid

	Simultaneous Localization And Mapping
	Feature-based SLAM
	Grid-based SLAM
	Graph-based SLAM


	Scan Matching Approach to Localization with a Likelihood Field
	Maximum Likelihood Pose Estimation
	Likelihood Field as Measurement Model
	Continuous Likelihood Field

	Non-Linear Least Squares Optimization
	Least Squares on a Manifold
	Handling Outliers
	Global Localization
	Experimental Results and Evaluation
	Trajectory Validation
	Accuracy of Pose Estimates
	Computational Efficiency Analysis

	Conclusion

	A Sparse-Dense Approach for Efficient Grid Mapping
	Motivation
	Mapping Framework
	Sparse-Dense Volumetric Subdivision
	Space Efficiency

	Implementation Details
	Software Architecture Overview
	Sparse-Dense Structure
	Lossless Data Compression
	Multi-Threading Support
	Implemented Models

	Evaluation
	Mapping with Known Poses
	Map Accuracy
	Optimal Density
	Time and Space Efficiency

	Conclusion

	Improved Grid-based SLAM
	An Improved Scan Matching Approach to Online SLAM
	Scan Matching Localization with a Dynamic Likelihood Field
	Incremental Mapping
	Evaluation and Benchmarking

	Improving Rao-Backwellized Particle Filter SLAM  with Scan Matching and Multi-Threading
	A Proposal Distribution with Scan Matching Refinement
	Adaptive Resampling
	Multithreaded RBPF SLAM
	Experiments and Analysis

	Conclusion

	Conclusion
	Other Applications and Future Work

	References

