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Garćıa-Cerezoa
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Abstract

Autonomy on rovers is desirable in order to extend the traversed distance, and therefore, maximize the
number of places visited during the mission. It depends heavily on the information that is available for the
traversed surface on other planet. This information may come from the vehicle’s sensors as well as from
orbital images. Besides, future exploration missions may consider the use of reconfigurable rovers, which are
able to execute multiple locomotion modes to better adapt to different terrains. With these considerations, a
path planning algorithm based on the Fast Marching Method is proposed. Environment information coming
from different sources is used on a grid formed by two layers. First, the Global Layer with a low resolution,
but high extension is used to compute the overall path connecting the rover and the desired goal, using
a cost function that takes advantage of the rover locomotion modes. Second, the Local Layer with higher
resolution but limited distance is used where the path is dynamically repaired because of obstacle presence.
Finally, we show simulation and field test results based on several reconfigurable and non-reconfigurable
rover prototypes and a experimental terrain.
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1. Introduction

Autonomy is an essential capability for rovers to
explore the surface of other planets. The distances
from Earth entail big latencies in communications
between the rover and the terrestrial ground sta-5

tion. As an example, there is a radio transmission
delay of several minutes between Earth and Mars
(Lester and Thronson, 2011; Lester et al., 2017).
Therefore, direct teleoperation arises as a difficult
task to be carried out remotely from Earth. Be-10

sides, communications with rovers at the red planet
generally occur only a few times per Martian sol
(solar day) due to the availability of Deep Space
Network antennas, conforming a limited time-slot
for providing commands and retrieving data from15
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the rover (Bajracharya et al., 2008). These facts are
contrary to the necessity of increasing the number
of scientificly interesting places visited by rovers.
Providing higher autonomy would allow them to
traverse longer distances. However, new issues arise20

since rovers tackle a high uncertainty when they are
traveling, i.e., they may encounter unexpected sit-
uations, mostly due to terrain shape and/or com-
position, as well as the existence of stones. These
issues affect the traversability for the vehicle. The25

improper evaluation of the terrain could lead to a
fatal situation of the vehicle, compromising the mis-
sion as a result. This was the case of the Spirit
rover, which got stuck in loose sand, making it
impossible to continue driving (Ono et al., 2015)30

and thus bringing the mission to an end. By us-
ing traversability information, autonomy can be im-
proved thanks to the use of path planning algo-
rithms, which allow the vehicle to compute onboard
a safe path from one location to another.35
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Path planning has been used in Mars exploration
missions along with rovers Spirit, Opportunity and
Curiosity. A path planning approach, based on
two levels (global and local), was deployed on these
rovers (Maimone et al., 2007). The main reason be-40

hind it is to use data relative to rover surroundings
while also considering information relative to the
location of elements, such as obstacles, in other ar-
eas. As global planning algorithm, the Field-D* was
used, initially introduced by Ferguson and Stentz45

(2006b). With this algorithm, a potential field is
computed on a regular grid starting from the goal
position to the rover location. Main particularity
of this method is the use of an interpolation tech-
nique that assigns the values of this potential field50

to each node, based on the values of its already
visited neighbors. By considering that edges con-
necting nodes are crossable by the path, it results to
be smoother than previous methods like D*, where
paths are strictly restricted to go through node lo-55

cations. This algorithm has also re-planning ca-
pability, meaning the path can be updated during
rover traverse in case the cost of any node is modi-
fied. This can happen any time the rover detects an
obstacle on its way using its onboard sensors. Be-60

sides, this algorithm has been adapted to the use of
multi-resolution grids (Ferguson and Stentz, 2006a)
to minimize computational resources, saving com-
putation in areas where the level of detail can be
simplified. However, it is not clear neither the com-65

putational cost of this algorithm nor the steps to
extract a path from it, leaving this operation to an-
other algorithm that only focuses on the local plan-
ning. In the case of Mars rovers, the GESTALT
local planner has been used (Carsten et al., 2007).70

It basically generates a series of arcs starting from
the vehicle position, which are later evaluated ac-
cording to the potential field created by the global
planner. As result, the arc with the best evaluation
is chosen to be followed by the rover.75

An alternative path planning solution to Field-
D* is the Fast Marching Method (FMM), originally
introduced by Sethian (1999). It is a numerical
method that solves the so-called eikonal equation,
which is an expression defining the behavior of a80

wave that propagates over a continuous 2D scalar
function – also extendable to 3D. Unlike Field-D*,
only a quadratic expression can be used along each
node of the grid to compute a continuous potential
field. Such a potential field represents the arrival85

time of the wave at each location of the grid. Be-
sides, in contrast to Field-D*, the computational

cost of FMM is clearly stated, this being O(ζlogζ),
where ζ is the number of nodes the grid is com-
posed of. After computing the potential field, the90

path is extracted by just making use of a gradient
descent method on it (Kimmel and Sethian, 2001;
Liu and Bucknall, 2015). However, this path plan-
ning solution is not originally meant to include a re-
planning capability. Previous research (Philippsen95

et al., 2008) has focused on the modification of
FMM to make it dynamic, obtaining as result an
algorithm called E*. Nevertheless, it does not con-
sider the use of maps with multiple resolutions. An
example of FMM using a multi-resolution map, but100

not dynamic re-planning, can be seen in the work
of Petres et al. (2005), where an already-known en-
vironment is modeled with different levels of detail,
obtaining as result sub-optimal but fast-computed
paths.105

In most cases, path planning algorithms con-
sider traversability data to decide whether a path
should go through a certain area or not. It heavily
depends on the underlying physics of the terrain-
vehicle interaction, i.e. terramechanics. Shape and110

composition of terrains determine the dynamic be-
havior of any body in contact with it (e.g. fric-
tion and slipping effects). The kinematic config-
uration of the vehicle, together with the distribu-
tion of its masses and inertias, affects the forces115

exerted on the surface, influencing on traction, as
well as on the energy required to move the vehi-
cle. While the terrain features cannot be changed,
the rover kinematic configuration could be adapted
to it. This is the case for vehicles categorized as120

reconfigurable, which are able to perform several lo-
comotion modes, each one adapted to a particular
terrain. A notable example of this feature is the
ExoMars rover, which is being conceived to search
for signs of life on Mars in the future ExoMars 2020125

mission, lead by the European Space Agency (Vago
et al., 2015, 2017). The particularity, with respect
to other rovers, is the use of additional joints on
top of its legs. Such joints are initially meant to
deploy the wheels once the rover has landed on130

Mars, but later, they can be further used to im-
prove traction on loose soil by the use of a locomo-
tion mode called wheel-walking (Woods et al., 2009;
Patel et al., 2010). In this sense, Azkarate et al.
(2015) performed some experiments using an Exo-135

Mars rover prototype that demonstrated this state-
ment. Other authors analyzed the performance of
a similar locomotion mode, called push-pull (Crea-
ger et al., 2015), on loose soil as well, getting to
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the same conclusions. These modes of locomotion140

may be helpful in situations where otherwise, be-
ing only capable of executing the standard roving
or normal driving locomotion mode, would result
in the rover raising its power consumption or even
getting entrapped. Having a good knowledge of the145

locomotion-terrain relation for a particular rover, a
path planning algorithm could take advantage of
this information, finding even more optimal paths.
However, the design of an algorithm that takes into
consideration different locomotion modes is still be-150

ing investigated. In previous works, path planning
algorithms have been developed aimed at the re-
configuration of the vehicle chassis. For example,
Brunner et al. (2012, 2014) proposed algorithms to
find optimal paths adapting the chassis to overcome155

obstacles in the form of stairs, while Miró et al.
(2010) carried out a research focused on maintain-
ing the stability of the vehicle using FMM. How-
ever, none of these works takes into consideration a
reconfigurable rover for long-range operations, such160

as those found in planetary exploration missions.
This paper proposes a path planning algorithm

based on FMM that works with a multiple resolu-
tion grid made up of two layers. The role of these
layers is fully explained in section 2. The first one165

is used to compute the overall path using a cost
function based on the locomotion performance ac-
cording to the terrain features. The objective is to
find the path that minimizes the power consump-
tion, taking advantage of the use of multiple loco-170

motion modes. The second layer is used to perform
a novel repairing process that dynamically modi-
fies the path, with the aim of avoiding any obstacle
detected by the rover on the spot. Later on, simu-
lation results are provided in section 3 followed by175

results from a field test. They serve as a way to
analyze the main particularities of the proposed al-
gorithm within several planetary exploration situa-
tions. From these results, in section 4 are extracted
a series of conclusions and some ideas for future180

work.

2. Path Planning

The proposed path planning algorithm is de-
scribed in this section. Figure 1 shows a schematic
containing its different parts.185

The first one is the Multi-layered Grid, which con-
tains two layers, each of them with different resolu-
tion and range. First, the Global Layer uses infor-
mation provided by satellites to determine the dis-
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Figure 1: Schematic containing the different parts and inter-
faces of the proposed path planning algorithm.

tribution of the different types of terrain present in190

the mission area. Orbital images, such as the Digi-
tal Elevation Maps (DEMs) from HiRISE (McEwen
et al., 2007) or the thermal images from Mars
Reconnaissance Orbiter THEMIS (Fergason et al.,
2006), provide useful data relative to morphology195

and physical properties of the surface. From DEMs,
slopes can be easily computed as well as the lo-
cation of non-traversable areas, while composition
of terrain is not trivial to estimate at first. How-
ever, the research carried out by Cunningham et al.200

(2019) shed light on the problematic of estimating
terramechanic parameters in advance using thermal
images. This may prove useful to estimate as well
the performance of certain locomotion modes by us-
ing models previously defined, such as those created205

in a previous work (Pérez-del Pulgar et al., 2017).

Secondly, the Local Layer employs information
relative to the obstacles detected by the rover dur-
ing its traverse. As will be seen later, the Local
Layer is created by subdividing the nodes of the210

Global Layer and updated with data provided by
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the onboard sensors. These layers are used by two
processes, Global Path Planning and Local Path Re-
pairing respectively. The first process has the aim
of finding a path connecting two points: the rover215

position and the location of the desired destination.
The criteria to determine the shape of this path is
based on the available locomotion modes on the ve-
hicle and their performance on the different iden-
tified terrains. The Local Path Repairing has the220

function of updating such path whenever necessary
in order to avoid those obstacles the rover finds in
its way. This path is then used by the rover naviga-
tion systems, such as the Path Following proposed
by Filip et al. (2013), which are out of the scope of225

this paper.

2.1. Multi-layered Grid

Resolution of maps affects both the computa-
tional power needed to work with them and the
required size of memory storage. For the same stor-230

age, a lower resolution allows to make use of maps
with higher range. This is useful to cover a larger
area for the mission. However, the drawback of
this is that elements like stones that are too small
for that resolution cannot be represented, and still235

these need to be taken into account during the rover
traverse. That is why it is essential to make use of
local maps with higher detail, which entails an in-
crement in the memory size proportional to the area
covered. This paper proposes a way to use informa-240

tion describing the environment using multiple sizes
and resolutions. This is thanks to a grid that con-
tains two layers as can be seen in Figure 2. These
two layers are named Global Layer and Local Layer,
being the first one meant to be used with low res-245

olution but large areas (e.g. orbital maps) and the
second one with high resolution maps covering just
certain areas visited by the vehicle (e.g. maps of the
surroundings of the rover obtained from its sensors).
Each of these layers are formed by nodes, which are250

basically square areas with a center point and dis-
tributed uniformly over the grid. Global Nodes and
Local Nodes are contained in the Global Layer and
the Local Layer respectively. Although the Local
Layer overlaps the Global Layer, its extension is255

only defined by the number of Global Nodes that
are subdivided into Local Nodes. In other words,
the area covered by the Local Layer is less or equal
to the area covered by the Global Layer. In Figure
2, for example, only four Global Nodes are subdi-260

vided, covering Local Layer lesser area than Global
Layer. Distance between two neighboring Global

Figure 2: Illustrative image of the multi-layered grid. Two
layers are overlapped: Global Layer, composed by Global
Nodes, and Local Layer, composed by Local Nodes. Each
Global Node indicates the type of terrain that is contained
in its area (τ1 and τ2 in this example case) and occupies
the same area as a finite number of Local Nodes, each of
them providing an indication of its state relative to nearby
obstacles.

Nodes is represented by the constant Λ, which is,
also, the side length of the Global Node square area.
Analogously, λ is the constant defining the gap be-265

tween Local Node neighbors.

Global Nodes are meant to be used along terrain
information deduced from orbital images. For any
Global Node Nij , where i, j refers to the horizontal
and vertical coordinates in the Global Layer, τij in-270

dicates the type of terrain located inside the area
of such node. This type is classified within a finite
set according to its associated features, in a simi-
lar way some terrain classifiers work (Brooks and
Iagnemma, 2012; Rothrock et al., 2016). In this275

way, by just knowing τij , terramechanic parameters
affecting locomotion performance, such as friction
and/or slippage, can be directly associated to it.

Unlike Global Nodes, Local Nodes do not contain
information relative to the type of terrain, but in-280

formation about their state with respect to nearby
obstacles. For this purpose the parameter rab, also
referred here as risk, is contained in any Local Node
nab, being a and b the horizontal and vertical coor-
dinates relative to the Global Node Nij from which285

is obtained. This parameter uses values going from
two limits, 0 and 1. Lower limit or 0 means the
node is located on the safe area, while a value of
1 is equivalent to an obstacle. Intermediate values
correspond to nodes located on the surroundings of290

the obstacles and they are computed via an opera-
tion called Risk expansion, which is later detailed.
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2.2. Global Path Planning

Initial phase of the proposed path planner is the
use of FMM on the Global Layer. The main idea295

behind the Global Path Planning is to obtain a ma-
trix T that forms a potential field. Each value Tij
of this matrix is associated to a Global Node Nij
and indicates the value of the Total Cost required
to go from its location to the final destination. In300

other words, Tij is the minimum amount of Cost in-
tegrated along the curve connecting both locations,
i.e., the optimal path. In this case the Cost Cij con-
sists of a scalar value that represents the difficulty
for the vehicle to traverse the area of a Global Node305

Nij . It can be deduced that the value of the Total
Cost at the Global Node corresponding to the des-
tination, Ndest, is zero (Tdest = 0), since from there
it is not required for the rover to move to another
position until the goal location is changed. From310

Ndest the values of Total Cost of the neighboring
Global Nodes are iteratively computed by using the
eikonal Equation (1). This equation basically de-
fines how the values of the Total Cost are increased
as the FMM visits further Global Nodes from Ndest.315

In other words, functioning of FMM can be seen as
the numerical viscous solution of a wave propaga-
tion, expanding from the Global Node where Tij = 0
(initial condition/desired destination) at a rate de-
termined by the Cost values of each node, Cij .320

||∇Tij || = Cij (1)

From the resulting potential field, the optimal
path can be later extracted, connecting the loca-
tion of the rover and the goal position. Since it is
intended to minimize the energy required by the ve-
hicle to perform its traverse and reach the desired
destination, this parameter is the one considered
here as the Total Cost. Thus, the Cost is also de-
fined here in energetic terms and is shown in Equa-
tion (2). Since it is the spatial derivative of the To-
tal Cost, and energy is the integration of power over
time, Cost is here equivalent to the ratio between
the power P and the velocity v of the rover, which
in this case is considered to be a constant value.
In this way, if the Cost (power/speed) is integrated
over the length of any path obtained using FMM,
the value of the Total Cost (energy) is obtained as
result. The Power function P in Equation (2) con-
siders the use of rovers with reconfiguration capabil-
ity, providing the value of the instantaneous power
depending on the locomotion mode l, the type of
terrain τij and the value v of speed used. It can be

built upon models and/or experimentation such as
in the work of Pérez-del Pulgar et al. (2017). Lo-
comotion mode chosen to traverse the Global Node
Nij , lij , is the one that makes Cij take the mini-
mum value and is contained in the set L of all the
available modes in the rover.

Cij = min
l∈L

P (l, τij , v)

v
⇒ l = lij (2)

Following the work of Sethian (1999), the eikonal
Equation (1) is discretized by means of finite differ-
ences, having as result Equation (3). Txij and Tyij
are the values of the Total Cost of the horizontal
and vertical neighbors of the Global Node Nij re-
spectively. The criteria to choose which neighbor is
used with respect to each axis is shown in Equations
(4) and (5).(

Tij − Txij
Λ

)2

+

(
Tij − Tyij

Λ

)2

= C2
ij (3)

Txij = min {Ti−1j , Ti+1j} (4)

Tyij = min {Tij−1, Tij+1} (5)

The quadratic equation (Equation (3)) may how-
ever provide more than one solution for Tij . It is
important to ensure that the upwind condition in
Equation (6) is always true while propagating the
Fast Marching wave, so as to ensure no local mini-
mums are created in the process.

(Tij > Txij) ∨ (Tij > Tyij) (6)

The final implementation of the propagation
equation, complying with the upwind condition (6),
is shown in Equation (7). As can be deduced, in
those cases where the discretized eikonal does not
ensure the condition in (6), an alternate way to
compute Tij is used, corresponding basically to the
Dijkstra method.

Tij =


Txij+Tyij+

√
2(ΛCij)2−(Txij−Tyij)2

2 ,

|Txij − Tyij | ≤ ΛCij

min {Txij , Tyij}+ ΛCij ,

otherwise

(7)

Next, it is given here an explanation about how
FMM visits each Global Node to execute Equation
(7), as well as the respective pseudo-code used,
which can be found in Algorithm 1. Initially the
state of all Global Nodes, Nij .s, is labeled as Far,325

meaning the algorithm has not yet reached them.
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Algorithm 1: Global FM Propagation

1 Tij =∞, ∀Nij ∈ Global Layer
2 Nij .s = Far, ∀Nij ∈ Global Layer
3 Tdest ← 0
4 Ndest.s = Accepted
5 FWlist← {}
6 FWlist← Nij ∀Nij ∈ Ndest.nb | Cij 6=∞
7 Nij .s← Considered, ∀Nij ∈ Ndest.nb | Cij 6=
∞

8 Tij ← min {Tij , Eq.(7)} , ∀Nij ∈ Ndest.nb |
Cij 6=∞

9 repeat
10 Nnext ← Nij | minNij∈FWlist Tij
11 Erase Nnext in FWlist
12 Nnext.s← Accepted
13 FWlist← Nij ∀Nij ∈ Nnext.nb | Nij .s =

Far
14 Nij .s← Considered, ∀Nij ∈ Nnext.nb |

Nij .s = Far
15 Tij ← min {Tij , Eq.(7)} , ∀Nij ∈ Nnext.nb |

Nij .s = Considered
16 until (Nrover.s = Accepted) ∨ (FWlist = {});

One of these Global Nodes, Ndest, has its state la-
beled as Accepted and its value of Total Cost, Tdest,
is set to zero. The state Accepted means its value
of Total Cost is already computed and definitive.330

Then, a list called FWlist is initialized, empty at
first, and is meant to contain Global Nodes with
the state labeled as Considered. These Considered
Global Nodes form the front wave of the propaga-
tion process, acting as frontier between Far and335

Accepted Global Nodes. The next step is to label all
von Neumann neighbors of Ndest, Ndest.nb, as Con-
sidered (except those containing obstacles, which
can be distinguished by its corresponding value of
cost Cij being equal to∞) and introduce them into340

FWlist, computing for them preemptive values of
Total Cost using Equation (7). From this point,
a loop is continuously executed until either FWlist
gets empty or the Global Node containing rover lo-
cation, Nrover, is labeled as Accepted. This loop345

consists of a series of steps as follows: first, the
Global Node from FWlist with the lowest value of
Total Cost, Nnext, is extracted, then it is labeled
as Accepted and finally, for each of its von Neu-
mann neighbors, Nnext.nb, the value of Total Cost350

is re-computed in case it is yet preemptive and, also,
they are introduced into FWlist if their state is Far,
updating them as Considered in the process.

Once the potential field of T values is computed,
the next step is the extraction of the path that
minimizes the Total Cost. To do this, a gradi-
ent descent method is applied over the field using
Equation (8), starting from a waypoint placed at
the location of the rover. In order to better dis-
tinguish between waypoints computed using Global
Layer from those using Local Layer, the first ones
are referred to as Global Waypoints and the sec-
ond ones as Local Waypoints. Γk is the k Global
Waypoint of the trajectory. The number of Global
Waypoints will depend on both the length of the
resulting path and the chosen step size ρ (which is
a value lower than 1). The last Global Waypoint is
placed further than a certain distance (1.5 Λ in our
case) of the goal position since the gradient at that
location degenerates because of the discretization
method used.

Γk = Γk−1 − ρ∇Tk−1 ∀k = 1, 2, ... (8)

Finally, the computation of ∇Tk−1 is done us-
ing linear interpolation with the values of T of the355

nearby 4 Global Nodes, which are also computed
using finite differences.

2.3. Local Path Repairing

Although the Global Path Planning stage can ini-
tially provide a path, the information it is based on360

can be too imprecise to ensure the rover advances
safely. This is mainly due to the possibility of en-
countering elements such as rocks that were not vis-
ible due to the low resolution of the global map.
Therefore, the rover must have a means to update365

the path shape whenever its sensors detect an ob-
stacle. However, the resolution of the Global Layer,
usually in the order of the size of the rover, can be
too big to represent it with the proper level of detail.
Thus, this paper proposes a new stage, called Local370

Path Repairing, which basically consists of the ap-
plication of a heuristic version of FMM, called FM*,
on the Local Layer, using a small area of the map
but with higher resolution. As a result, a section
of path is computed, which serves to avoid obsta-375

cles as well as to guide the rover to a safe Global
Waypoint from which it can continue its traverse.
Depending on the criteria chosen to determine such
Global Waypoint, we can distinguish between two
possible approaches for the Local Path Repairing :380

the Sweeping approach, which results on comput-
ing an all-new path, or the Conservative approach,
which tries to continue the previous planned path
as soon as possible.
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triggerer

start

reference

(a) Example case where the rover (green) encounters
three obstacles (in red) on its way that were not con-
sidered during the Global Path Planning stage.

(b) On the Local Layer, obstacles are mapped into the
grid and the risk values r of the areas around them are
computed. Next, depending on the chosen approach
(either Conservative or Sweeping), FM* is executed to
create the local section of the repaired path.

Figure 3: The Local Path Repairing process is composed by
several operations. First, when obstacles are in the way of
the rover the process is triggered (a). Local Nodes are created
and an operation called Risk Expansion computes the values
of r for them (b). Finally, a heuristic FMM propagation is
computed using these r values to get a new path.

Figure 3 shows a series of operations that are car-385

ried out during the Local Path Repairing stage. The
first step consists of determining whether the path
must be repaired or not each time a new obstacle is
detected. As can be seen in Figure 3a, the area oc-
cupied by obstacles is dilated by a certain amount390

depending on the dimensions of the rover, ensuring
that the vehicle will not collide with them while fol-
lowing the resulting path. Then, the criterion used
to trigger the rest of the steps is whether any of
the Local Nodes containing an obstacle or part of395

it is located under a distance threshold d to any
Global Waypoint. In that case, the current path
is considered to be too close to obstacles, so the
rest of steps are executed. The distance threshold
d is chosen complying with Equation (9), so as to400

minimize the error committed by not checking in-
termediate points between consecutive Global Way-
points. The Global Waypoint Γtriggerer is marked as
the first one (following the order in which the rover
arrives at each of them) that is considered to be405

close to an obstacle so as to trigger the repairing
process. Then, from that Global Waypoint another
prior to it is searched for, called Γstart. It can be
either a Global Waypoint placed further than dis-
tance d from Γtriggerer, or even the vehicle position,410

in case it is closer to Γtriggerer. Γstart acts as the
reference position from which the rest of the path
is re-computed, meaning all waypoints prior to it
are not modified in the repairing process. Another
Global Waypoint, Γreference, is also considered later,415

and is basically the first waypoint that is placed fur-
ther than distance d after the path has gone close
to the obstacle. Figure 3a depicts three possible ar-
eas each Local Node can be part of: Obstacle area,
Risky area and Safe area. Obstacle area refers to420

those Local Nodes containing obstacles, while Risky
area are those located under distance d to the pre-
vious area. On the other hand, Safe area is formed
by those Local Nodes located further than distance
d from obstacles.425

ρ ≤ d/Λ (9)

Before computing the FM* propagation on the
Local Layer to retrieve the new path, it is neces-
sary to define the values of rab for each Local Node
nab. This is done by executing a process called Risk
Expansion, in which a gradient is created around430

obstacles to serve as a repulsive potential field and
make the resulting path get further from them. The
main idea behind this has been applied in other
research (Petres et al., 2005; Valero-Gomez et al.,
2013). The pseudo-code of this process can be435

found in Algorithm 2. While the Local Nodes con-
tained in the Obstacle area are labeled as Accepted
and have their value of risk set to 1, this param-
eter is initialized to 0 for the rest, whose state is
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Algorithm 2: Risk Expansion

1 rab = 1, ∀nab ∈ Obstacle Area
2 rab = 0, ∀nab /∈ Obstacle Area
3 FWlist← {}
4 FWlist← nab, ∀nab ∈ Local Layer
| (any n′ ∈ nab.nb, r′ = 0) ∧ (rab = 1)

5 repeat
6 nnext ← nab | maxnab∈FWlist rab
7 Erase nnext in FWlist
8 nnext.s = Accepted
9 for nab ∈ nnext.nb | nab.s 6= Accepted do

10 r′ ← Eq.(11)
11 if r’ > rab then
12 rab ← r′

13 if nab.s = Far then
14 nab.s← Considered
15 FWlist← nab

16 until FWlist = {};

set to Far. Then, all those Local Nodes that are440

within the Obstacle Area but have neighbors with
r = 0 are introduced into the list FWlist. From
these nodes is expanded a wave that will set val-
ues of r going from 1 to 0, stopping at those Local
Nodes whose value of r is already higher than the445

one the wave intends to set. The eikonal Equation
used for Risk expansion is provided in (10), as well
as its discretized version in (11). In Figure 3b can
be checked how values of r between 0 and 1 are
set forming the repulsive potential fields, contained450

inside the Risky areas.

||∇rab|| = −
1

d
(10)

rab =


rxab+ryab−

√
2(λ/d)2−(rxab−ryab)2

2 ,

|rxab − ryab| ≤ λ/d
max {rxab, ryab} − λ/d ,

otherwise

(11)

After the Risk Expansion, the values of r are used
to build Local Cost cab as seen in (12) for any Lo-
cal Node nab. This cost parameter is used in the
eikonal Equation (13), whose discretized version is
shown in (14). This equation is used for the prop-
agation of the FM* wave starting from the Local
Node closest to Γstart, as seen in Figure 3b. As
result, a potential field is obtained, from which is

Algorithm 3: Local FM* Propagation

1 tab =∞, ∀nab ∈ Local Layer
2 nab.s = Far, ∀nab ∈ Local Layer
3 nstart ← n nearest to Γstart
4 tstart ← 0
5 nstart.s = Accepted
6 FWlist← {}
7 Add nab to

FWlist ∀nab ∈ nstart.nb | nab.s = Far
8 nab.s← Considered, ∀nab ∈ nstart.nb |

nab.s = Far
9 tab ← min {tab, Eq.(13)} , ∀nab ∈ nstart.nb |

nab.s 6= Accepted
10 repeat
11 nnext ← nab | minnab∈FWlist hab
12 Erase nnext in FWlist
13 nnext.s = Accepted
14 FWlist← nab ∀nab ∈ nnext.nb | nab.s =

Far
15 nab.s← Considered, ∀nab ∈ nnext.nb |

nab.s = Far
16 tab ← min {tab, Eq.(13)} , ∀nab ∈

nnext.nb | nab.s 6= Accepted
17 until nnext satisfies either (15) or (17);

intended to later extract a series of Local Waypoints
to rebuild the path. This potential field is formed
by values of parameter tab for each Local Node nab,
which is analogous to the Total Cost in the Global
Layer.

cab = 1 + rab (12)

||∇tab|| = cab (13)

tab =


txab+tyab+

√
2(λcab)2−(txab−tyab)2

2 ,

|txab − tyab| ≤ λcab
min {txab, tyab}+ λcab ,

otherwise

(14)

In Algorithm 3 is contained the pseudo-code of
the FM* propagation using the Local Layer. It
works similarly to the propagation in Global Path
Planning, but with the main difference of work-455

ing in this case with Local Nodes instead of Global
Nodes. Another difference is the requirement to
fulfill in order to stop the propagation loop. In the
case of Local Path Repairing it consists of reaching
a safe Local Node nnext that satisfies a certain stop460
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condition. Such condition depends on whether it
is desired to strictly keep the rover close to the ini-
tially computed path or not. Therefore, we can find
up to two different approaches that also affect the
heuristic function to use during the computation of465

the propagation wave: Sweeping and Conservative
approaches (pink and green coloured lines respec-
tively in Figure 3b).

2.3.1. Sweeping Approach

In this case it is prioritized to reach a Local Node
from which the rest of Global Waypoints are com-
puted again. In other words, from the location of
such Local Node the gradient descent method in-
troduced in (8) can be applied on the Global Layer
again using the values of Total Cost. The main idea
behind this approach is that the Local Node where
the local propagation stops satisfies the condition
(15).

Tnext ≤ Tovertake (15)

where Tnext is the value of Total Cost correspond-
ing to the Local Node nnext obtained by interpolat-
ing with the values of Total Cost of the surround-
ing Global Nodes. Tovertake, on the other hand, is
the value of Total Cost corresponding to the Global
Waypoint Γreference. Therefore, by using this ap-
proach it is searched for a position beyond the ob-
stacle to be avoided keeping track of the Total Cost
values computed in the Global Path Planning pro-
cess. Due to the fact that the gradient descent
method always makes the path go towards lower
values of Total Cost, the new Global Waypoints will
be placed further from the obstacle. Then, since
in this case it is more important to search through
nodes with values of Total Cost lower than Tovertake,
the heuristic function (16) is used. χ is the distance
traversed in the path from Tstart to Tovertake. It is
worth mentioning that this function contemplates
the possibility of encountering nodes that, although
they meet condition (15), may not be safe, mean-
ing the FM* on the Local Layer should continue
propagating.

hab = tab + max

{
0,

Tab − Tovertake
Tstart − Tovertake

χ

}
(16)

2.3.2. Conservative approach470

Unlike the previous approach, this one consists of
making the local path rejoin with one of the existing
Global Waypoints placed beyond the obstacle and
risky areas. This approach is more restrictive since

the local propagation can only stop at the Local475

Node nreference, which is the closest to the location
of Γreference, as denoted in (17).

nnext = nreference (17)

As can be checked in the example case intro-
duced in Figure 3b, this rejoining tends to be less
smooth than the one done under the sweeping ap-480

proach since the local propagation does not follow
the descending direction of the Total Cost values.
It can be deduced that this strategy is not focused
on searching for the optimal solution in terms of
distance and/or power consumption, but instead485

for ensuring that the rover will stick to the orig-
inal planned path. This can be useful whenever
during a planetary exploration mission it is prior-
itized that the rover follows the original path as
closely as possible. Besides, there are some advan-490

tages in terms of computation with respect to the
previous approach: it demands less data storage,
since the rover is no longer dependant on the in-
formation provided by the Global Layer. Also, it
is not required to interpolate the values of Total495

Cost of each Local Node, so this computation pro-
cess is also avoided. Finally, as has been stated,
the computation of the Local Path Repairing un-
der this approach searches for the shortest path to
rejoin to the previous path while avoiding surround-500

ing obstacles. Therefore, the corresponding heuris-
tic function considers the distance to the position
of nreference, as can be checked in equation (18). In
this way, the Local Path Repairing prioritizes the
expansion of the propagation wave towards those505

nodes closer to nreference.p.

hab = tab + |nab.p− nreference.p| (18)

3. Results

Once the proposed path planning algorithm has
been detailed, it is validated by means of simula-
tions carried out using MATLAB software and a510

field test. The code used for the simulations and the
real experiment can be found on GitHub reposito-
ries 12. The purpose of the first simulation test is to
analyze the validity of the Global Path Planning on
long-range navigation. In particular, data related515

1https://github.com/spaceuma/ARES-DyMu_matlab
2https://github.com/ESA-PRL/planning-path_

planning
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(a) ExoMars Testing Rover
(ExoTeR).

(b) Heavy Duty Plane-
tary Rover (HDPR).

Figure 4: Close-up images of the rovers used for the simula-
tions (a) and the field test (b).

to the locomotion performance of the reconfigurable
rover shown in Figure 4a is used. This rover, called
ExoTeR, (Azkarate et al., 2015) is capable of exe-
cuting two locomotion modes: Normal driving and
Wheel-walking. The first mode is the usual locomo-520

tion used by rovers: by rolling the wheels the vehicle
advances. On the other hand, Wheel-walking con-
sists of deploying and retrieving the legs so as to
improve traction, as already stated in the Section
1. The last simulation serves to validate the use of525

the Local Path Repairing process under the sweep-
ing approach on one of the paths computed before.
Later on, results from a field test carried out with
a single-locomotion rover, shown in Figure 4b, are
also introduced, showing the performance of Local530

Path Repairing under the conservative approach.
This mobile platform has similar dimensions as the
ExoMars rover and is also equipped with a rocker-
bogie locomotion system. Its purpose is to replicate
the sensor architecture that will be located onboard535

the rover to be sent to Mars (Hewitt et al., 2018).
All of these tests were done using the Martian-

looking environment shown in Figure 5a. It consists
of a real experimental terrain3 that is located close
to the European Research and Technology Centre540

(ESA-ESTEC) in Noordwijk, The Netherlands. A
Digital Elevation Map obtained from it was used for
the simulations, and it is also the scenario where the
field test took place.

3.1. Long-range navigation545

The first experiment consists of executing the
Global Path Planning stage to obtain the optimal

3DMS Coordinates: 5212’55.0”N 425’39.1”E

(a) 3d model using an orthonormal image as texture.

(b) Digital Elevation Map.

Figure 5: Overview of the experimental terrain used to per-
form the simulation and field tests.

path to reach a certain destination. It is executed
several times, starting from various positions over
the map. To do this, the Global Layer is built using550

Λ = 1 m, storing values of elevation from a DEM
(see Figure 5b). Then, since the terrain contains
craters and big rocks, the value of slope is computed
at each Global Node, considering it an obstacle if it
is too pronounced. Besides, as can be seen in Figure555

6a, there are two traversable areas, each one corre-
sponding to one kind of terrain: Rough and Soft.
Moreover, a third type of terrain is introduced here,
named Near Obstacle. This type serves to smooth
cost transition between obstacles and traversable560

area, since cost of the first one is considered as in-
finite. In this way, resulting paths go further from
obstacles, which is desirable as well to avoid the
use of gradient descent method near them. Then,
the FMM propagation is executed. To do this, the565

values of Cij for each Global Node Nij are chosen
according to the Table 1, depending on the type
of terrain and the chosen locomotion mode. These
values come from previous work (Pérez-del Pulgar
et al., 2017), in which simulation models were used570

to analyze the power consumption of each locomo-
tion mode. Two terrain parameters were considered
for this purpose: µ and s. First of them depends
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τ µ s C(lww) C(ld)

Rough 0.07 0.05 0.236 0.088
Soft 0.45 0.5 0.236 1.074
N.O. − − 0.472 2.148
Obstacle − − ∞ ∞

Table 1: Table from which the values of cost Cij , given in kW
s/m, are set for any Global Node Nij , depending whether the
locomotion mode is Normal driving (ld) or Wheel-walking
(lww), as well as terrain parameters µ and s.

on the normal force applied by the rover on the sur-
face, being the rolling resistance for Normal driving575

and the friction resistance for Wheel-walking. The
second parameter, s, is the slip ratio experienced by
the rover while it advances i.e., odometry vs ground
velocity. Two cases are considered to better clar-
ify the importance of taking more than one loco-580

motion mode into account when planning paths: in
one case, only Normal driving is available and in the
other case Wheel-walking is also used. In this way, a
typical rover with just one locomotion mode is com-
pared to a reconfigurable rover. Figure 6b shows a585

plot where it is indicated for each Global Node the
percentage of Total Cost that is reduced by con-
sidering the Wheel-walking mode. Since this is the
best locomotion mode to use in Soft terrain, it is
obvious that Total Cost is reduced within the area590

containing this type of terrain. Nevertheless, it can
be checked how in some parts of the area containing
Rough terrain the Total Cost is also reduced. This
is mainly due to the positioning of the different ter-
rains and the obstacles with respect to the desti-595

nation location. The resulting paths starting from
certain positions in both cases are shown in Fig-
ures 6c and 6d. In the second case, these paths are
more likely to go through the Soft terrain thanks to
having Wheel-walking available. Moreover, in both600

figures the computed matrix of Total Cost is pro-
vided, along with annotations about the numerical
values corresponding to each path in both cases. As
can be deduced, the Total Cost associated to some
of those paths is lower in the case of using two lo-605

comotion modes than in the first case. Therefore,
the results from this experiment justify the use of a
cost function based on locomotion-terrain interac-
tion along with the FMM for long-range navigation,
specially for those vehicles that are capable to adapt610

to certain types of terrain with different locomotion
modes.

(a) Distribution of the dif-
ferent types of terrain over
the Global Layer.

(b) Percentage of Total
Cost reduced considering
also Wheel-walking.

(c) Global Path Planning
only considering Normal
driving.

(d) Global Path Planning
considering Normal driv-
ing and Wheel-walking.

Figure 6: Results from the first experiment. The distribu-
tion of the different terrains is shown in (a). The Global
Path Planning is executed twice: one considering just Nor-
mal driving and other also taking Wheel-walking into ac-
count. In this way, Total Cost to arrive at the destination is
reduced for some areas (b). The paths starting from different
positions in both cases are also provided (c), (d).

3.2. Obstacle avoidance

The second experiment is focused on analyzing
the performance of the Local Path Repairing pro-615

cess under the sweeping approach. In order to do
this, the path starting from the bottom right cor-
ner of the map in both cases is considered as the
path to be repaired. Then, it is introduced a series
of small obstacles as can be checked in Figure 7a,620

corresponding to different situations the rover may
encounter with during a mission. The area that is
supposed to be occupied by these obstacles consists
of circles with diverse radii. Since the dimensions
of ExoTeR are 70 × 70 × 40 cm (Azkarate et al.,625

2015) and the value of Λ is 1 m, the obstacle ar-
eas are set to have a radius between 25 and 50 cm.
The chosen value of distance d is 50 cm, which com-
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(a) Resulting Paths using different values of λ.

(b) Number of processed Local Nodes.

(c) Number of times eikonal is used.

(d) Execution time in seconds.

Figure 7: Results from second experiment. The shape of
the repaired paths after executing the Local Path Repairing
process 4 times is shown (a), as well as information relative
to the computational power used, in the form of the num-
ber of processed nodes (b), the number of times the eikonal
equation is used in total and the elapsed time to do the com-
putation.

plies with Equation (9) since the value of ρ used to
compute the paths in the previous experiment was630

0.4. Then, three cases are considered in this ex-
periment, each of them corresponding to the use of
a different value of λ: 5, 10, and 20 cm. In this
way the influence of this parameter with respect to
the Global size Λ on the behavior of the Local Path635

Planning is analyzed. Figure 7a illustrates the dif-
ferences in the shape of the original path and the
ones resulting after the execution of the repairing
process for the three cases. By using a Local Layer
with a higher resolution, i.e., a lower value of λ,640

the repaired path is smoother. Besides, as can be
seen in the fourth repairing, the resulting path can
also go through smaller gaps. Nevertheless, a lower
value of λ implies a heavier computation. This is

demonstrated in Figures 7b, 7c, and 7d for the three645

cases. In Figure 7b it is measured the number of
Local Nodes visited for each repairing as well as the
average per obstacle during the Risk Expansion pro-
cess. The total number of times the eikonal equa-
tion has been called is also provided in Figure 7c,650

being Equation (14) for the repairings and Equa-
tion (11) for the Risk Expansion. In Figure 7d the
execution time can be checked for the three cases.
Besides, this data can be contrasted with the one
related to the execution of the Global Path Plan-655

ning process in the previous experiment: the to-
tal number of Global Nodes visited was 10522, the
eikonal Equation (7) is used a total of 19929 times
and the required time for the execution is 0.2 sec-
onds. Comparing these values with the results from660

the second experiment, it can be observed how the
order of magnitude of computing on Global Layer
is around 10 times longer than on Local Layer. It
is worth mentioning that Global Path Planning in
the first experiment is used on a relatively small665

area with a few hundreds of square meters, while
in other cases it could be extended to much larger
surfaces, in terms of square kilometers, increasing
the computational power needed. However, being
the overall area larger does not change the com-670

putational power required by Local Path Repairing,
since it just depends on the relation between Λ and
λ and also on the location of the obstacles with re-
spect to the path. This last statement is supported
by the results of the second experiment: in the first675

repairing the path initially goes through the mid-
dle of the obstacle, while in the second repairing is
not the case, being the computation cheaper. The
third repairing is more expensive than the previous
ones because of the amount of area occupied by680

obstacles, which are also placed too close to each
other forming a wall. The increase of computation
of the fourth repairing with respect to the third one
is also justified by the increase in obstacle area as
well as risky area. Finally, as can be noticed in685

all cases, the resulting path continues following the
descending gradient of the potential field of Total
Cost values computed on the Global Layer as much
as possible, as expected from using the sweeping
approach. This validates the Local Path Repairing690

as a method to repair the path while keeping track
of the global computation done using lower compu-
tational resources.
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Figure 8: Orthonormal image of the experimental terrain
where the field test is executed.

3.3. Field test

While Local Path Repairing under the sweeping695

approach has been tested in the previous simula-
tion, it still remains the conservative approach to
be validated. Thus, a field test is carried out in
which this approach is chosen. The main purpose
of this test is to replicate a planetary exploration700

case where a rover has to reach a certain position
traversing an area filled with obstacles that were not
previously considered. A rover prototype named
HDPR (see Figure 4b) is used. Although this plat-
form can make use of just one locomotion mode,705

Normal Driving, only the Local Path Repairing pro-
cess is under the scope of this test.

Figure 8 depicts the setup prepared for this field
test. During it, the rover must move from the ini-
tial position to the desired destination. On its way,710

the rover faces several obstacles that are not con-
sidered during the Global Path Planning process,
as seen in Figure 9. These obstacles were placed
randomly between both starting and goal positions.
This is done to emulate how in the real exploration715

case the only information available prior to the tra-
verse comes from orbital images. As consequence,
minor elements such as rocks are not detected due

Figure 9: HDPR performing its traverse through the exper-
imental field populated by obstacles.

to the resolution of these images. Therefore, the
same DEM with the global resolution of 1 meter720

that was used for the simulations is also employed
for this test. However, since no information related
to the power consumption of the rover is taken into
account, cost values proportional to the slope are
used. The magnitude of these cost values on the725

Global Layer can be checked on Figure 10. The in-
verse of the speed of the rover, being in this case
constant with a magnitude of (10 cm/s), is applied
to those nodes placed on flat terrain, while the cost
of Global Nodes placed on more pronounced slopes730

is penalized. Later on, the Global Path Planning
process computes the optimal and continuous path
to the goal according to this cost information.

Once the path is produced, it is time for the rover
to start following it. During the traverse, the rover735

makes use of an on-board navigation system for
the detection of obstacles based on a frontal cam-
era. The functioning of this system is out of the
scope of this paper, but thanks to it the rover is
capable to map the obstacle on the Local Layer.740

The resolution λ chosen in this case is 10 centime-
ters. Then, the obstacle area is dilated and the
values of risk are assigned to the respective Local
Nodes via the Risk Expansion process. Later on,
the Local Path Repairing process computes the Lo-745

cal Waypoints needed to reconnect to the original
path while avoiding the obstacles. As stated be-
fore, the approach chosen in this case is the conser-
vative approach. In Figure 10 are represented the
resulting paths that were produced each time the750

rover found an obstacle on its way. A total of 13
reparations were computed in real time during this
traverse. A video showing HDPR performing the
test can be found in YouTube 4. It can be con-

4https://youtu.be/X4mihNTEVGw
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Figure 10: Paths computed during the field test.

cluded how this repairing process finds the path to755

avoid any obstacle, having to deviate further from
the original path when the obstacles form a wall.

4. Conclusions

In this paper a novel path planning has been pre-
sented. It works at two scales, global and local,760

using the so called Multi-layered Grid. The grid is
composed of two layers, each of them for different
planning purposes. The path connecting the rover
initial and goal locations is computed on the Global
Layer, according to the information related to the765

terrain and the rover locomotion modes. Then, the
generated global path plan is dynamically repaired
using the Local Layer whenever an obstacle is de-
tected by the rover during its traverse.

As regards the global path planner, it has been770

demonstrated, in a simulation environment, that

the use of FMM provides an optimal, continuous
and smooth path. Besides, the global path planner
has been modified to take into consideration the use
of a reconfigurable rover, with more than one loco-775

motion mode. This improvement allows to find new
optimal paths by the combination of these locomo-
tion modes, reducing the total cost of performing
the traverse from one location to another.

When new obstacles are detected in the rover780

planned path, it is repaired by means of two meth-
ods that have been tested in a simulation and a
real environment. The first one, called sweeping ap-
proach, has demonstrated it generates the optimal
repairing, avoiding sharp turning angles once the785

obstacle has been overcome. However, this method
requires the computation of new Global Waypoints
towards the goal. On the other hand, the conser-
vative approach, which has been validated in a field
test, repairs the path by only computing the Local790

Waypoints, trying to reconnect to the global path
as soon as possible. This limitation causes the re-
paired path to be longer and less smooth during
the connection to the global path. As an advan-
tage, this approach avoids the use of the Global795

Layer each time the path is repaired. Therefore,
the rover does not need to store and process the
global layer, i.e. it only uses the initial global path.

As a future work, it is considered to extend this
works by including the detection of different kind800

of terrains in the local path repairing stage. On
the other hand, it is also intended to extend the ca-
pabilities of the Global Path Planning to take into
consideration the direction of slopes in order to de-
sign an anisotropic path planning algorithm. These805

issues are proposed as future works.
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Miró, J.V., Dumonteil, G., Beck, C., Dissanayake, G., 2010.
A kyno-dynamic metric to plan stable paths over uneven
terrain, in: IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), IEEE. pp. 294–299.
doi:10.1109/IROS.2010.5650042.900

Ono, M., Fuchs, T.J., Steffy, A., Maimone, M., Yen, J., 2015.
Risk-aware planetary rover operation: Autonomous ter-
rain classification and path planning, in: IEEE Aerospace
Conference, IEEE. pp. 1–10. doi:10.1109/AERO.2015.
7119022.905

Patel, N., Slade, R., Clemmet, J., 2010. The exomars rover
locomotion subsystem. Journal of Terramechanics 47,
227–242. doi:10.1016/j.jterra.2010.02.004.

Petres, C., Pailhas, Y., Petillot, Y., Lane, D., 2005. Un-
derwater path planing using fast marching algorithms, in:910

Europe Oceans 2005, IEEE. pp. 814–819. doi:10.1109/
OCEANSE.2005.1513161.

Philippsen, R., Kolski, S., Macek, K., Jensen, B., 2008. Mo-
bile Robot Planning in Dynamic Environments and on
Growable Costmaps, in: IEEE International Conference915

on Robotics and Automation (ICRA), IEEE. pp. 1–8.
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