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Distributed Affine Projection Algorithm Over
Acoustically Coupled Sensor Networks
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and Gema Piñero, Senior Member, IEEE

Abstract—In this paper we present a distributed affine pro-
jection (AP) algorithm for an acoustic sensor network where the
nodes are acoustically coupled. Every acoustic node is composed
of a microphone, a processor and an actuator to control the
sound field. This type of networks can use distributed adaptive
algorithms to deal with the active noise control (ANC) problem
in a cooperative manner, providing more flexible and scalable
ANC systems. In this regard, we introduce here a distributed
version of the multichannel filtered-x AP algorithm over an
acoustic sensor network that it is called distributed filtered-
x AP (DFxAP) algorithm. The analysis of the mean and the
mean-square deviation performance of the algorithm at each
node is given for a network with a ring topology and without
constraints in the communication layer. The theoretical results
are validated through several simulations. Moreover, simulations
show that the proposed DFxAP outperforms the previously
reported distributed multiple error filtered-x least mean square
(DMEFxLMS) algorithm.

Index Terms—Acoustic sensor networks, affine projection al-
gorithm, distributed adaptive filters, active noise control.

I. INTRODUCTION

ACOUSTIC sensor networks are a particular case of
the well-known wireless sensor networks [1] where the

sensors are devoted to monitor acoustic signals. They are
usually referred as wireless acoustic sensor networks (WASN)
assuming that the sensors can communicate among them
through a wireless network. One of the main tasks of the
use of WASNs is to monitor and locate acoustic sources in
outdoor [2] and indoor spaces [3], [4], or even to jointly locate
the sources and the sensors as in [5]. Regarding their use
inside rooms, another important application is to enhance the
recorded speech signals via beamforming [6]–[8]. Generally
speaking, the WASNs use the acoustic signals recorded at
the node sensors to perform some kind of signal processing
algorithm, usually in a distributed way. However, other type
of acoustic networks have been proposed whose nodes are not
only equipped with microphones, but that they can manage
one or more loudspeakers or actuators as well. This new type
of WASNs can perform all the tasks described above, but they
can also carry out other applications related to sound field
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control, as active noise control (ANC) [9], [10] or personal
sound zones [11], [12].

The emergence of the WASNs has forced a review of the
classical signal processing algorithms from different points of
view. First, the algorithms have to deal with the distributed
processing inherent to these networks, and the unavailability of
the entire system information at each node, that is, each node
knows its own signals and parameters, and has access only
to partial information provided by the network. Second, the
WASNs can present a wide variety of topologies, which can
greatly affect the distributed algorithms and their performance.
Third, WASNs need a certain degree of synchronization to
perform the sound control. On the other hand, the WASNs
present great advantages for acoustic applications as scalabil-
ity, flexibility in their deployment, and, in general, much lower
cost. Moreover, there exist scenarios where the acquisition
and generation of signals must be inherently distributed, such
as devices with low processing capabilities or transducers far
away among them. Furthermore, the majority of multimedia
user devices could serve as acoustic nodes or at least perform
the processing tasks. Indeed, commercial mobile devices have
been recently used as nodes to develop different audio appli-
cations, like an immersive audio system [13], the identification
of audio sources [14] or the acoustic-based localization of
multiple persons within a room [15].

In the particular case of ANC, it is worth highlighting the
high potential of the WASNs for the practical deployment of
the distributed ANC systems, mainly due to their versatility
and scalability. The WASNs can be composed by simple single
(few) channel(s) systems and can perform like a complex
multichannel one. Nevertheless, despite the great interest for
WASNs, very few publications deal with their application
in ANC systems. Two distributed ANC systems were first
introduced in [16] [17]. These systems are called decentralized
since the processors do not collaborate or interchange any
local information, although the computational burden is shared
among them. Therefore they cannot overcome the centralized
system performance if there exists acoustic coupling among
the actuators and microphones. In a previous work [9], we
showed how the cooperation provided by a WASN helped
ANC systems to achieve similar performance to centralized
solutions and how they could benefit from the advantages of
distributed systems. That approach assumed perfect synchro-
nization among the nodes and was based on the distributed
multiple error filtered-x least mean square (DMEFxLMS)
algorithm, where the adaptive filters update was carried out in
a distributed way over a ring topology with incremental com-
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munication [18] [19]. This type of ideal networks allows the
study of the performance of the distributed algorithms in order
to be compared to the centralized ones. It can be shown that
for WASNs with no constraints regarding the communication
among the nodes, it is possible to obtain the same performance
than in a centralized system, as long as the proper distributed
algorithm is implemented. These distributed algorithms bring
many benefits, as the acquisition and generation of signals at
every node, and the distribution of the computational burden
among the nodes, contributing to a more versatile system. The
present work is focused on the well known affine projection
(AP) algorithm [20], a robust and stable algorithm that can be a
good alternative to LMS [21] when higher convergence speed
is desired. The efficiency of AP algorithm has been reported
in a variety of applications, such as active noise control [22]–
[25], acoustic equalization [26] and echo cancellation [27].
Adaptive distributed networks based on the AP have also been
presented in some recent works such as [28], [29] where a
distributed network with a ring topology is also implemented.
Specifically, an incremental collaboration strategy is used
in [28], while diffusion collaboration schemes are considered
in [29]. However, they solve a distributed system identification
problem in which all the nodes in the network try to estimate
the same unknown vector w0. On the contrary, the present
paper addresses a different problem in which all the nodes are
acoustically coupled and therefore collaboration is essential
to reach a solution similar to the one provided by the corre-
sponding centralized system. Indeed, the solution reached at
each node also depends on the local measurement of the other
nodes of the network due to the acoustic interaction among
them. In this regard, signals involved in an ANC system suffer
from the acoustic propagation effects, unlike signals used in
[28] and [29]. This fact leads to the use of a particular adaptive
filtering structure, such as the filtered-x scheme. To further
clarify why traditional filtering approaches cannot be directly
applied to the ANC problem, it should also be highlighted that
the measurement signals such as that used in [28] and [29] are
not available in ANC problems. The acoustically generated
error signals picked up at the microphones are used instead.

In this paper, and motivated by the good tradeoff between
convergence speed and computational cost of the AP algo-
rithms, we focus on a distributed version of the multichannel
filtered-x AP (FxAP) algorithm [22] [23] over a WASN with
incremental communication among the nodes. In this regard,
and on the basis of the metodology introduced in [30], we
develop an approximated version of the FxAP for WASNs
where the computational burden is efficiently shared among
all the processors and every node collaborates to obtain the
overall solution, in a similar way to [9]. This means that
each node contributes to the network solution by computing
a portion of it that depends only on its local data. Thus,
the overall solution is obtained from the contributions of
all the nodes. The proposed algorithm is called distributed
filtered-x AP (DFxAP) algorithm, and we demonstrate through
simulations with real acoustic channel responses that, though
the steady-state solution of this algorithm is different to the
multichannel FxAP, it can outperform the DMEFxLMS in
terms of convergence speed. Another key contribution of this
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Fig. 1. Acoustic network using incremental ring topology for active noise
control.

paper is the analysis of the mean and mean-square deviation of
the network weights in order to evaluate the performance of the
resulting WASN. The theoretical results have been validated
through simulations for ring networks of different sizes, and
also for different projection orders and different noise variance
at the microphones.

The rest of the paper is organized as follows. In Section II
we derive the DFxAP algorithm for WASNs by introducing
an optimization problem with constraints. In Section III,
we analyze the performance of the distributed algorithm in
terms of mean weight and mean-square deviation. Section IV
presents a comprehensive set of simulations supporting the
validity of the results. Finally, Section V highlights the main
conclusions of the paper.

Notation: Throughout the paper the following notation is
used: boldface upper-case letters denote matrices (e.g. A),
boldface lower-case letters denote vectors (e.g., a), and italics
denote scalars, (e.g. a or A). The Euclidean norm and the
mathematical expectation are denoted by ‖ · ‖ and E(·),
respectively. Tr{·} is the trace of a matrix ,(·)T stands for
matrix or vector transpose, and Ia is the a-size identity matrix.

II. DISTRIBUTED FILTERED-X AFFINE PROJECTION
ALGORITHM

We consider a distributed acoustic network of K single-
channel nodes that will support a multichannel ANC system
composed of K error sensors and K secondary sources, see
Fig. 1. In order to clarify the exposition, all the nodes of the
network are equipped with a single microphone and a single
loudspeaker. An unwanted noise reaches the microphones,
being dk(n) the undesired signal picked up at the microphone
of the kth node and pk(n) the impulse response characterizing
the propagation of the noise up to the microphone. The aim
of the ANC system is to minimize the noise signal at the
microphone locations. For this purpose, each node should
update its own adaptive filter relying only on local data and
on some available network information, and computational
burden should be distributed among the different nodes. Taking
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into account this requirements, we introduce in the following
the distributed AP algorithm, the DFxAP.

In order to cancel the undesired signals dk(n), the following
equation must be fullfiled at the kth node, with k = 1, ...,K

dk(n) =
K∑
j=1

[−yj(n) ∗ hjk(n)], (1)

where ∗ denotes the discrete linear convolution, hjk(n) is
the impulse response of the M -lenght FIR filter that models
the acoustic channel between the loudspeaker of the jth
node and the microphone of the kth node, and yj(n) is the
signal generated by the loudspeaker of the jth node. The
response hjk(n) can be written in vector form as hjk =
[hjk(0), hjk(1), ..., hjk(M − 1)]T .

Let us define a network [KL×1] adaptive filter vector w(n)
as the ordered concatenation of all the adaptive filter vectors
of each node.

w(n) =
[
w1(n)T ,w2(n)T , . . . ,wK(n)T

]T
, (2)

where wk(n) vector contains the L-coefficient filter that
operates at node k.

Thus, output signals are obtained as

yj(n) = wj(n)T [X(n)](:,1) (3)

where X(n) is a toeplitz matrix of L×M size defined as

X(n) =
[

x(n) x(n− 1) · · · x(n−M + 1)
]
, (4)

x(n) is a [L×1] vector with the most recent L samples of the
reference signal x(n), which is common to all nodes and is
correlated with the unwanted noise. Furthermore [X(n)](:,1) is
the [L× 1] vector corresponding to the first column of X(n).

We consider the [L × N ] matrix Xjk(n) that contains the
reference signal x(n) filtered through hjk

Xjk(n) =
[

xjk(n) xjk(n− 1) · · · xjk(n−N + 1)
]

(5)
where N is the projection order and xjk(n) denotes an [L×1]
vector obtained by filtering the most recent L samples of the
reference signal x(n) through hjk:

xjk(n) = X(n)hjk . (6)

If we consider slow convergence of the adaptive filters, by
applying (3) and (6) in (1) we get

dk(n) =
K∑
j=1

[−xT
jk(n)wj(n)]. (7)

We consider that the distributed algorithm converges to a
specific solution w0. This allows us to rewrite (7) in vector
form as

dk(n) =


dk(n)

dk(n− 1)
...

dk(n−N + 1)

 = −AT
k (n)w0 (8)

with the KL-length vector defined as

w0 =


w01

w02

...
w0K

 , (9)

and the KL×N matrix defined as

Ak(n) =


X1k(n)
X2k(n)

...
XKk(n)

 . (10)

In order to obtain the network coefficients w0, an opti-
mization problem with constraints based on the minimum
disturbance rule [31] must be solved. Thus

∆w(n) = w(n)−w(n− 1) (11)

is minimized in the mean-square sense, that is

‖∆w(n)‖2 = [∆w(n)]
T

∆w(n) (12)

is minimized subject to the constraints

dk(n) + AT
k (n)w(n) = 0 for k = 1, ...,K. (13)

According to (12) and (13), and following the method of
Lagrange multipliers [32], the following cost function is built

J(n) = ‖∆w(n)‖2+
K∑

k=1

[dk(n)+AT
k (n)w(n)]Tλk(n) (14)

where λk(n) is the N × 1 vector that comprises the N
Lagrange multipliers corresponding to the N constraints at
the kth node. To solve (14), we obtain the gradient of J(n)
with respect to the weight vector w(n) as

∇wJ(n) =
∂J(n)

∂w(n)
= 2[w(n)−w(n− 1)] +

K∑
k=1

Ak(n)λk.

(15)
The minimum of J(n) is obtained by setting (15) to zero.

This condition leads to

w(n) = w(n− 1)− 1

2

K∑
k=1

Ak(n)λk. (16)

Since the objective is to calculate the adaptive filter coeffi-
cients w(n) in a distributed way over a ring topology with
incremental learning, every node will add one term to the
summation in (16). We assume that at time n, node k = 1
has available the updated global vector obtained at time n−1,
w(n− 1). Then at node k = 1 the following equation can be
computed:

w1(n) = w(n− 1)− 1

2
A1(n)λ1 . (17)

Afterwards node 1 transmits its local version of the global
vector to node 2, and this node updates its local version as:

w2(n) = w1(n)− 1

2
A2(n)λ2 . (18)
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Then, by induction, the update equation at the kth node
becomes

wk(n) = wk−1(n)− 1

2
Ak(n)λk . (19)

In order to supress the Lagrange multipliers in (19), and
bearing in mind (13), we assume that at each iteration the
coefficients estimated at every node tend to be the coefficients
vector, namely wk(n) ≈ w(n). By substituting (19) in the
constraint relation (13) yields

dk(n) = −AT
k (n)wk−1(n) +

1

2
[AT

k (n)Ak(n)]λk. (20)

It should be noted that (20) could also be derived as a
particular solution of the minimization problem in (11) subject
to the constraints

∑K
k=1[dk(n) + AT

k (n)w(n)] = 0 when we
assume that wk(n) = w(n) for all k, as well as each of
the terms of the summation in the previous equation is zero.
Solving (20) for the kth Lagrange vector, we have

λk = 2[AT
k (n)Ak(n)]−1ea

k(n), (21)

where
ea
k(n) = dk(n) + AT

k (n)wk−1(n) (22)

is the a priori error vector. Finally, substituting (21) in (19) and
introducing both a step-size parameter µ to control changes
in the weight vector from one iteration to the other, and a
regularization factor δ, the following update equation for the
DFxAP algorithm is given

wk(n) = wk−1(n)− µAk(n)[AT
k (n)Ak(n) + δIN ]−1ea

k(n).
(23)

Finally, once the global updated vector at time instant
n has been obtained as w(n) = wK(n), their values are
disseminated to the rest of the nodes. The kth node output
signal is given by

yk(n) = wT
k (n) [X(n)](:,1) , (24)

where wk(n) is the [L×1] vector that contais the coefficients
L(k − 1) + 1 to Lk of w(n). It should be noted that every
node only uses a part of the estimated global solution to
generate the signals that will feed the corresponding secondary
sources. Taking into account the practical implementation
of this algorithm, two considerations should be highlighted.
First, matrices Ak(n) defined in (10) require the real acoustic
channels but only an estimate of them can be available (ĥjk).
Secondly, ANC systems based on the conventional filtered-
x structure [23] do not provide the desired signal dk(n) to
calculate the required a priori error vector. Therefore, the
DFxAP algorithm can use past samples of the error signal
e(n) to estimate ea

k(n), ea
k(n) ≈ ek(n) = [ek(n) ek(n −

1) ... ek(n−N + 1)]T . This approximation provides a signif-
icant computational saving since it avoids to compute (22) at
each iteration and at each node. Moreover, it provides a fairly
accurate guess in the usual case of slow filter variations.

A summary of the algorithm instructions executed per
sample time n, including the required multiplications involved
in each operation is given in Algorithm 1. The number of
multiplications can be directly calculated from the equations,
obtaining a computational cost of the DFxAP algorithm per

Algorithm 1 DFxAP algorithm.

1: Initialize: w(0) = wk(0) = [0, . . . , 0]T , ∀k ; X(0) = 0L×M

2: n = 1 {Start sample time}
3: repeat
4: w0(n) = w(n− 1) {Needed at node k = 1 in line 12}
5: {Obtain reference signal x(n)}
6: for all Node 1 ≤ k ≤ K do
7: wk(n) = [wk(n− 1)](L(k−1)+1:Lk)

8: yk(n) = wT
k (n) [X(n)](:,1) (Multipl.: L)

9: for all 1 ≤ j ≤ K do
10: xjk(n) = X(n)ĥjk (Multipl.: KM )
11: Xjk(n) =

[
xjk(n), [Xjk(n− 1)](:,1:(N−1))

]
12: end for
13: ek(n) = [ek(n) ek(n− 1) · · · ek(n−N + 1)]T

14: Ak(n) =
[

XT
1k(n) XT

2k(n) · · · XT
Kk(n)

]T
15: εk(n) = [AT

k (n)Ak(n) + δI]−1ek(n)
(Multipl.: [KL+ 1]N2 +O(N3))

16: wk(n) = wk−1(n)− µAk(n)εk(n)
(Multipl.: N [KL+ 1])

17: end for
18: w(n) = wK(n) {Updated vector}
19: for all Node 1 ≤ k ≤ (K − 1) do
20: wk(n) = w(n) {Disseminate updated vector}
21: end for
22: n = n+ 1 {Update sample time}
23: until convergence is achieved

iteration and per node of L + KM + (KL + 1)N + (KL +
1)N2+2N3 multiplications. It should be noted that the matrix
multiplication [AT

k (n)Ak(n)] in line 15 involves KLN2 mul-
tiplications. However, this product can be iteratively computed
reducing the multiplications to 2N2. Thus, the DFxAP algo-
rithm would require only L+MK+3N2+(KL+1)N+2N3

multiplications per iteration and per node. It can be easily
verified that when low N values are used, the DFxAP algo-
rithm exhibits a slightly higher computational cost than the
DMEFxLMS algorithm, that involves L(K + 1) + KM + 1
multiplications [9]. The computational complexity of both
algorithms, the DFxAP and the DMEFxLMS is summarized
in Table I, where a typical case is also illustrated for K = 4,
L = 20, M = 256, and N = 2 and 4.

TABLE I
SUMMARY OF THE COMPUTATIONAL COMPLEXITY OF THE DFXAP AND

THE DMEFXLMS. COMPLEXITY IS MEASURED AS THE NUMBER OF
MULTIPLICATIONS PER ITERATION. TYPICAL CASE: M = 256, K = 4

AND L = 20.

Algorithm Multiplications Typ. case
DFxAP (N = 2) L+KM+ 3N2 + (KL+ 1)N+ 2N3 1234
DFxAP (N = 4) L+KM+ 3N2 + (KL+ 1)N+ 2N3 1544

DMEFxLMS L(K+ 1) +KM+ 1 1125

III. PERFORMANCE ANALYSIS

The performance of the DFxAP algorithm is studied in
terms of the mean and the mean-square deviation (MSD) of
the network weights. The closed-form expressions are derived
for the last node of the network as this node provides the
network global state at time n, see step 18 in Algorithm 1.

As we need to deal with the expectation operator, we shall
rely on several assumptions in the following analysis. First, we
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TABLE II
THE LIST OF ASSUMPTIONS USED IN THE PAPER

A.1) The matrix Ak(n) (and consequently the matrix Qk(n), which depends on the same data as Ak(n))
is uncorrelated with w(∞).

A.2) The matrix Ak(n) (and consequently the matrix Qk(n)) is uncorrelated with rk(n).
A.3) The matrices ΨK(n) and ΦKK(n) (which depend on the same data as Ak(n)) are uncorrelated

with both rk(n) and w̃K(n).
A.4) rk(n) is uncorrelated with w̃K(n).
A.5) rk(n) is uncorrelated with rp(n) for p 6= k.

will introduce some approximations due to statistical consider-
ations between different vectors and matrices. These assump-
tions are collected in Table II. Secondly, at steady-state when
n → ∞, it is found that E

(
wK(n)

)
= E

(
wK(n− 1)

)
=

E
(
wK−p(n)

)
= E (w(∞)) for 1 ≤ p < K.

A. Mean steady-state weight behaviour

The aim of this section is to analyse the mean value of the
network weights (2) of the proposed DFxAP algorithm. This
analysis describes the mean weight behaviour of the adaptive
weights at each node and provides the corresponding steady-
state mean weight vector.

The DFxAP algorithm updates the weights at every node
according to (23). Particularizing this equation for node K
(the last node of the network), we get
wK(n)
= wK(n− 1)

−µ
K−1∑
p=0

QK−p(n)ea
K−p(n)

= wK(n− 1)

−µ
K−1∑
p=0

QK−p(n)[dK−p(n) + AK−p(n)TwK−p−1(n)]

= wK(n− 1)− µ
K−1∑
p=0

QK−p(n)dK−p(n)

−µ
K−1∑
p=0

QK−p(n)AK−p(n)TwK−p−1(n),

(25)
where Qk(n) is a KL × N matrix defined as Qk(n) =
Ak(n)[AT

k (n)Ak(n) + δIN ]−1.
By taking expectations of both sides and applying the limit

as n→∞, expression (25) becomes

lim
n→∞

E

(
K−1∑
p=0

QK−p(n)dK−p(n)

)

= − lim
n→∞

E

(
K−1∑
p=0

QK−p(n)AK−p(n)Tw(∞)

)
.

(26)

The previous expression has been derived by using the
steady-state condition. Moreover, we make use of the follow-
ing assumption. A.1) The matrix Ak(n) (and consequently the

matrix Qk(n), which depends on the same data as Ak(n)) is
uncorrelated with w(∞). Using A.1) (26) becomes

E(w(∞)) = − lim
n→∞


[
K−1∑
p=0

E(QK−p(n)AT
K−p(n))

]−1
[
K−1∑
p=0

E(QK−p(n)dK−p(n))

]}
. (27)

Note that (27) is the steady-state mean weight vector at
the kth node but it also provides the steady-state behaviour
of the global network, since all the nodes converge to the
same solution. Furthermore, in the specific case of a one-
node network, the DFxAP algorithm is equivalent to the
centralized FxAP and therefore they provide the same steady-
state solution. Thus, by setting K=1 in (27), we can derive the
steady-state mean weight vector for a one-node network

E(w(∞))

= − lim
n→∞

{[
E
(
Q1(n)AT

1 (n)
)]−1

E (Q1(n)d1(n))
}
,

(28)
which is equivalent to that derived in [22] for the FxAP.
Moreover, the elements of the matrices Qk(n) and Ak(n)
involved in (27) and (28), are different for both solutions,
the distributed and the centralized one, except in the case of
K = 1. Thus, matrices Q1(n) and A1(n) in (28) are the same
as those used by the FxAP in [22].

B. Mean Square Deviation analysis of the DFxAP

In this section the evolution of the global filter vector with
respect to the global optimal solution is analyzed. To this aim,
the mean square deviation (MSD) at iteration n is derived as

MSD(n) = E(‖w̃(n)‖2) = E(w̃T (n)w̃(n)), (29)

where w̃(n) = w0 −w(n) is the weight-error vector.
Till now we considered that the convergence of the algo-

rithm provides at each node the global solution w0, such that
the kth undesired signal vector is given by (8). However, this
result is not achieved in practice and it is more realistic to use,

dk(n) = −AT
k (n)w0 + rk(n), (30)

where rk(n) is modeled as an N × 1 Gaussian noise vector
of zero mean and σ2

k variance that is statistically uncorrelated
with the reference signal. Therefore, we introduce the follow-
ing assumption. A.2) The matrix Ak(n) (and consequently
the matrix Qk(n)) is uncorrelated with rk(n). In case the real
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ANC system fulfils the model in (30), and taking into account
the hyphotesis in A.2), we prove in Appendix A that

E(w(∞)) = w0. (31)

This result is similar to that derived in [22] for the centralized
FxAP algorithm.

The general form of the filter updating at each node given
in (23) can be compactly written as

wk(n) = wk−1(n)−Ψk(n)ea
k(n), (32)

where the [KL × N ] data matrix has been defined as
Ψk(n) = µAk(n)[AT

k (n)Ak(n) + δIN ]−1, and it is assumed
that w0(n) = wK(n− 1) = w(n− 1).

If the weight error vector at the kth node is defined as
w̃k(n) = w0 − wk(n), then, taking into account (22), (32)
can be rewritten as

w̃k(n) = Φk(n)w̃k−1(n) + Ψk(n)rk(n). (33)

where Φk(n) = IKL −Ψk(n)AT
k (n) is a KL×KL matrix.

From (33) the updating equation for node K is obtained as,

w̃K(n) = w̃(n) = ΦK(n)w̃K−1(n) + ΨK(n)rK(n). (34)

Then, in an iterative manner, w̃K−1(n) in (34) is expressed
as a function of w̃K(n− 1),

w̃K(n) = ΦKK(n)w̃K(n− 1) + ΨK(n)rK(n) + Φ′K(n),
(35)

where ΦKK(n) is the KL×KL matrix defined as

ΦKK(n) =
1∏

i=K

Φi(n), (36)

and Φ′K(n) =
K−1∑
k=1

ΦKk(n)rK−k(n), being

ΦKk(n) =

[
K−k+1∏
i=K

Φi(n)

]
ΨK−k(n), 1 < k < K − 1

(37)
a KL×N matrix.

Following the methodology introduced in [33], we bring out
the following model[

rK(n+ 1)
w̃K(n)

]
=

[
Z 0

ΨK(n) ΦKK(n)

] [
rK(n)

w̃K(n− 1)

]
+

[
r′K(n+ 1)

Φ′K(n)

]
,

(38)
where r′K(n+ 1) is an N ×1 vector whose first component is
equal to rK(n+ 1) and the rest equal zero. 0 is an N ×KL
matrix of zeros and

Z =

[
0′T 0

I(N−1) 0′

]
(39)

is an N × N matrix, being 0′ an (N − 1)-length vector of
zeros.

Considering that in steady state (29) can be expressed by
using the weight-error vector at node K and at iteration n,

MSD(n) = E
(
w̃K(n)T w̃K(n)

)
, (40)

 

27 cm 

20 cm 

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 

K=8 

K=2 
K=4 

Fig. 2. Sketch of the nodes used in the experiments. Nodes selected for each
presented WASN are indicated.

we define the covariance matrices of[
rK(n+ 1)T w̃K(n)T

]T
as[

R(n) S(n)
ST (n) P(n)

]
= E

{[
rK(n+ 1)

w̃K(n)

]
[

rTK(n+ 1) w̃K(n)T
]}

(41)

Thus, the MSD evolution at node K can be expressed
as MSD(n) = Tr

{
E
(
w̃K(n)w̃K(n)T

)}
= Tr (P(n)). To

analyze the matrices defined in (41) we first postmultiply the
transpose of (38) to itself followed by the expectation, leading
to[

R(n) S(n)
ST (n) P(n)

]
= E

([
Z 0

ΨK(n) ΦKK(n)

] [
rK(n)

w̃K(n− 1)

]
×
[

rK(n)T w̃K(n− 1)T
] [ ZT ΨK(n)T

0T ΦKK(n)T

])
+ E

([
Z 0

ΨK(n) ΦKK(n)

] [
rK(n)

w̃K(n− 1)

]
×
[

r′K(n+ 1)T Φ′K(n)T
])

+ E

([
r′K(n+ 1)

Φ′K(n)

] [
rTK(n) w̃K(n− 1)T

]
×
[

ZT ΨK(n)T

0T ΦKK(n)T

])
+ E

([
r′K(n+ 1)

Φ′K(n)

] [
r′K(n+ 1)T Φ′K(n)T

])
.

(42)
Furthermore, assuming that A.3) the matrices ΨK(n) and

ΦKK(n) (which depend on the same data as Ak(n)) are
uncorrelated with both rk(n) and w̃K(n), as explained in
Appendix B, the following recurrence relations can be derived:

R(n) = ZR(n− 1)ZT + σ2
Ka1a

T
1 (43)

S(n) = ZS(n− 1)ΦKK(n)T + ZR(n− 1)ΨK(n)T (44)

P(n) = ΦKK(n)P(n− 1)ΦKK(n)T

+ΨK(n)R(n− 1)ΨK(n)T

+ΨK(n)S(n− 1)ΦKK(n)T

+ΦKK(n)S(n− 1)TΨK(n)T + ΩK(n),

(45)

where ΩK(n) is a matrix of KL dimensions defined as

ΩK(n) =
K−1∑
k=1

σ2
K−kE(ΦKk(n)ΦKk(n)T ), (46)
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and a1 represents an N -length vector whose first element is
1 and the others are zeros.

Since Z is nilpotent (i.e. Zn = 0), when n→∞, R(n) =
σ2
KIN . Using A.3), matrix S(n) in (44) becomes zero. Then,

(45) can be rewritten as

P(n) = ΦKK(n)P(n− 1)ΦKK(n)T

+ΨK(n)R(n− 1)ΨK(n)T + ΩK(n).
(47)

The initial values of the covariance matrices in (47) have been
selected as follows: P(0) = β2IKL, with β � 1, and R(0) =
σ2
KIN . Finally, the MSD evolution is obtained by computing

the trace of P(n).
IV. SIMULATION RESULTS

In this section, we show the performance of the proposed
DFxAP algorithm and compare the theoretical analysis with
simulations. All the simulated WASNs use real acoustic re-
sponses measured inside a listening room of 9.36 m long
by 4.78 m wide and 2.63 m high, with a reverberation time
T60 ' 200 ms located at the Audio Processing Laboratory of
the Universitat Politecnica de Valencia. These responses have
been modelled as FIR filters of M = 256 coefficients with
a sample rate of 2 kHz. We have simulated several acoustic
networks of two, four or eight nodes considering the same
setting of microphones and loudspeakers. The K loudspeakers,
K = {2, 4, 8}, were selected from a linear loudspeaker array
with a uniform separation of 20 cm between adjacent lodus-
peakers. The corresponding K microphones were mounted on
a linear platform with an equal separation of 20 cm between
adjacent microphones. The microphones were placed opposite
to the loudspeakers and separate 27 cm away from them. A
sketch of the system is depicted in Fig. 2. The nodes selected
for each presented WASN are: nodes 6 and 7 for K = 2,
nodes 6 to 9 for K = 4, and nodes 1 to 8 for K = 8. The
WASN uses a ring topology with incremental communication.
Moreover, the communication among the network nodes does
not experiment any constraint that could affect data rate or
computational load. The WASN tries to cancel an unwanted
noise at the microphones by means of K sources. The reference
signal (unwanted noise) is a Gaussian random noise of zero
mean and unit variance that is provided to all the nodes of
the WASN as well as to the primary signal loudspeaker. This
reference signal has been generated by a primary loudspeaker
located 2 m away from both the secondary loudspeakers and
error microphones.

A. Convergence speed performance

In the first set of experiments we evaluate the convergence
speed of the proposed algorithm for an incremental network
of two, four and eight nodes (K=2, 4 and 8), compared to
the DMEFxLMS. The evaluation of the algorithms behavior is
based on the instantaneous relative residual sound level at node
k, SLk(n), defined as the ratio in dB between the instantaneous
estimated error power with and without the application of the
active noise controller,

SLk(n) = 10log10

[
e2k(n)

d2k(n)

]
, (48)

where dk(n) is the signal that would be measured by the mi-
crophone of the kth node if the ANC system was inactive, and
ek(n) is the signal that is measured by the same microphone
when ANC is active. Moreover, we define

SL(n) = 10log10


N∑

k=1

e2k(n)

N∑
k=1

d2k(n)

 (49)

as the instantaneous relative residual sound level in the whole
network. The relative residual sound level (SL) from (49) or
(48) can be depicted versus the number of iterations providing
the learning curves for each node or for the overall network,
respectively.

In order to generate the performance curves, 30 independent
experiments were performed and averaged. The adaptive filters
to be designed have a length of L = 100 coefficients. The
step size has been chosen in order to provide the fastest
stable convergence speed for each algorithm. For the DFxAP
algorithm, the regularization factor is set to δ = 10−8 and a
projection order from N = 1 up to N = 6 is used. Figs. 3-5
show the learning behavior of both algorithms in terms of SL
for a WASN with K = 2 (Fig. 3), K = 4 (Fig. 4) and K = 8
(Fig. 5), in the network (Figures 3-5.(a)) and in a specific
node ((Figures 3-5.(b)). As it was expected, the proposed
algorihm outperforms the DMEFxLMS at the transient state
and a similar behavior is exhibited at the different nodes of
the network. Moreover, the convergence speed of the DFxAP
increases with the projection order at the expense of higher
computational requirements, though in this particular scenario
for N > 6 the convergence speed does not increase.

B. Mean steady-state weight behaviour

The aim of this subsection is to evaluate the mean weight
behaviour at steady-state. We have compared the theoretical
expression derived in (27) with the averaged value of the
filter weights obtained after filter convergence for the sim-
ulations carried out. We have used the same examples than
in the previous subsection. For the simulations, the value
obtained after 500,000 iterations has been considered. For the
theoretical results, the expectations involved in evaluating the
mean behaviour have been computed by ensemble averaging
at every node the matrices Qk(n), AT

k (n), and vector dk(n).
Figure 6 illustrates the magnitude spectrum in dB of the
simulated weights after filter convergence and their predictions
by using (27) in a two-node WASN with N = 2 (Figure 6.(a)
and (b)) and with N = 5 (Figure 6.(c) and (d)). The results
show a close match between the theoretical and the simulated
values.

C. Mean Square Deviation performance

In the last set of experiments, we demonstrate how the
MSD steady-state values of the DFXAP are predicted by the
analysis proposed in subsection III-B. Consider two networks
with K = 2 and 4 nodes, and a global adaptive filter of
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Fig. 3. Relative residual sound level obtained using a two-node WASN for the DFxAP with different projection orders and the DMEFxLMS algorithm. SL
in the network (a), and in the first node (b).
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Fig. 4. Relative residual sound level obtained using a four-node WASN for the DFxAP with different projection orders and the DMEFxLMS algorithm. SL
in the network (a), and in the fourth node (b).
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Fig. 5. Relative residual sound level obtained using an eight-node WASN for the DFxAP with different projection orders and the DMEFxLMS algorithm.
SL in the network (a), and in the fifth node (b).

L = 20 coefficients. For the simulations, the MSD is obtained
as the difference between the simulated coefficient vector and
the optimal coefficient vector w0 following expression (29).
Furthermore, the undesired signal at every node is generated
from (30) where the noise term rk(n) is a Gaussian random

signal of zero mean. The simulated curves are obtained by
averaging 20 independent runs. The theoretical results are
calculated by using expression (45) and its approximated
version (47) as well. Note that the last term in both expres-
sions involves the computation of the expectation of matrices
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Fig. 6. Magnitude spectrum of the simulated mean steady-state weight values and their predictions using (27) for DFxAP in a two-node WASN with: (a) and
(b) N = 2, and (c) and (d) N = 5.
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Fig. 7. Simulated MSD values and their predictions for DFxAP in a four-node WASN (a) with N = 4 and (b) with N = 2 and σk = 10−6 at node 2 and
at node 4.

dependent on the reference signal as it can be seen in (46).
Figure 7.(a) depicts the MSD curves for different σk values
using the same value for all the nodes in the network and
N = 4. The theoretical values are in good agrement with
simulated value. Moreover, increasing the value of σk leads
to a degradation of the prediction. In addition, it has been

analyzed the MSD performance at each node defined as
follows

MSDk(n) = E
(
‖w̃k(n)‖2

)
= E

(
w̃T

k (n)w̃k(n)
)
, (50)

where w̃k(n) = w0−wk(n) is the weight-error vector at the
kth node. Figure 7.(b) illustrates the comparison between the
theoretical and the simulated values of MSD at two different
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nodes of a four-node WASN with N = 2 and σk = 10−6. In
this case only (45) has been used to depict the MSD curves
since the results of both models are very similar. Again, the
predicted values show a good match with the simulation results
in steady state.

V. CONCLUSION

In this paper, we have proposed a distributed affine projec-
tion algorithm suitable to be used over acoustically coupled
networks with incremental communication among the nodes.
Specifically, the distributed filtered-x AP (DFxAP) has been
used to control the sound field in an active noise control
system. While the DFxAP is an approach of the multichannel
AP that distributes the computation among the nodes, we
have verified through numerical simulations that it exhibits
good convergence speed and low steady-state residual error.
It can also be observed that it outperforms the DMEFxLMS
algorithm, previously introduced as the distributed version of
the centralized MEFxLMS, in terms of convergence speed.
An analytical model has been derived for the mean and mean-
square deviation behavior of the network weights. Numerical
simulations have showed that both models accurately predict
the mean and mean-square behavior, even for high values of
the noise variance.

We have considered a distributed network without com-
munication constraints and the DFxAP algorithm is derived
under this assumption. Indeed, non-ideal scenarios with a
network with communication constraints will adversely affect
the algorithm performance. However, the performance will
worsen similarly to the performance of other collaborative
distributed algorithms.

APPENDIX A
DERIVATION OF (31)

Substituting (30) in (27) leads to

E(w(∞)) = lim
n→∞


[
K−1∑
p=0

E
(
QK−p(n)AT

K−p(n)
)]−1

×

[
K−1∑
p=0

E
(
QK−p(n)AT

K−p(n)w0

)]

−

[
K−1∑
p=0

E
(
QK−p(n)AT

K−p(n)
)]−1

×

[
K−1∑
p=0

E (QK−p(n)rK−p(n))

]}
.

(51)
That can be rewritten as

E(w(∞)) = lim
n→∞

w0 −

[
K−1∑
p=0

E
(
QK−p(n)AT

K−p(n)
)]−1

×

[
K−1∑
p=0

E (QK−p(n)rK−p(n))

]}
.

(52)
Under Assumption A.2), (52) results in (31).

APPENDIX B
DERIVATION OF (43)-(44)

If we assume that A.4) rk(n) is uncorrelated with w̃K(n),
and considering A.3), thus the second and third term on the
right hand side of (42) are zero. Regarding the first term
of (42), we consider the conditioned expectation instead of
only the expectation. To do this, we define the conditioned
covariance matrices by using the covariance matrices in (41)
as in equation (13) of [34]:[

R(n) S(n)
ST (n) P(n)

]
= E

{
E

([
rK(n+ 1)

w̃K(n)

] [
rTK(n+ 1) w̃K(n)T

]
|χ(n− 1))} ,

(53)
for a given set χ(n− 1) = {x(m)|0 ≤ m ≤ n− 1}. Then

E

{
E

([
Z 0

ΨK(n) ΦKK(n)

] [
rK(n)

w̃K(n− 1)

]
×
[

rTK(n) w̃K(n− 1)T
] [ ZT ΨT

K(n)
0T ΦT

KK(n)

]
|χ(n− 1))}

=

[
Z 0

ΨK(n) ΦKK(n)

]
E

{
E

([
rK(n)

w̃K(n− 1)

]
×
[

rTK(n) w̃K(n− 1)T
]
|χ(n− 1)

)}
×
[

ZT ΨT
K(n)

0T ΦT
KK(n)

]
=

[
Z 0

ΨK(n) ΦKK(n)

] [
R(n− 1) S(n− 1)
ST (n− 1) P(n− 1)

]
×
[

ZT ΨT
K(n)

0 ΦT
KK(n)

]

=



ZR(n− 1)ZT ZR(n− 1)ΨT
K(n)

+ZS(n− 1)ΦKK(n)T

ΨK(n)R(n− 1)ΨT
K(n)

ΨK(n)R(n− 1)ZT +ΦKK(n)ST (n− 1)ΨT
K(n)

+ΦKK(n)ST (n− 1)ZT +ΨK(n)S(n− 1)ΦT
KK(n)

+ΦKK(n)K(n− 1)ΦT
KK(n)

.
(54)

On the other hand, the fourth term in (42) is given by

E

([
r′K(n+ 1)

Φ′K(n)

] [
r′K(n+ 1)
Φ′K(n)

]T)
= E

([
r′K(n+ 1)r′K(n+ 1)T r′K(n+ 1)Φ′K(n)T

Φ′K(n)r′K(n+ 1)T Φ′K(n)Φ′K(n)T

])
.

(55)
The first element in (55) becomes

E
(
r′K(n+ 1)r′K(n+ 1)T

)
= E

(
r2K(n+ 1)

)
a1a

T
1 = σ2

Ka1a
T
1 ,

(56)

where a1 is an N × 1 vector whose first element is 1 and the
others are 0’s.
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Assuming that A.5) rk(n) is uncorrelated with rp(n) for
p 6= k and using A.3) into the fourth term in (42), we get

E
(
Φ′K(n)r′K(n+ 1)T

)
= E

(
K−1∑
k=1

ΦKk(n)rK−k(n)r′K(n+ 1)T

)
= 0.

(57)

After some manipulations and applying A.3) in the second
diagonal term in (55), we get

E
(
Φ′K(n)Φ′K(n)T

)
= E

(
K−1∑
k=1

ΦKk(n)rK−k(n)
K−1∑
l=1

rTK−l(n)ΦT
Kl(n)

)

=
K−1∑
k=1

σ2
K−kE

(
ΦKk(n)ΦT

Kk(n)
)

= ΩK(n),

(58)

being ΩK(n) a KL×KL matrix. Then, (55) can be rewritten
as

E

([
r′K(n+ 1)

Φ′K(n)

] [
r′K(n+ 1)T Φ′K(n)T

])
=

[
σ2
Ka1a

T
1 0

0 ΩK(n)

]
.

(59)

Finally, from (54) and (59) we can obtain expressions
from (43) to (45).
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[9] M. Ferrer, M. de Diego, G. Piñero, and A. Gonzalez, “Active noise
control over adaptive distributed networks,” Signal Processing, vol. 107,
pp. 82–95, feb 2015.
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