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Abstract 24 

The urban spatial structure reflexes the local particularities produced during the historical 25 

development of a city. Currently high spatial resolution imagery and LiDAR data are used to 26 

derive numerical attributes to characterize the intra-urban structure and morphology. The urban-27 

block boundaries have been frequently used to define the units to extract metrics from the 28 

remotely sensed data. In this paper, we propose to complement those metrics with a set of 29 

descriptors of the streets surrounding the urban blocks that numerically characterize the 30 

geometry, presence of vegetation, and relationship with buildings. To carry out this purpose we 31 

also introduce a methodology to define the street area related with an urban block from which 32 

derive the urban metrics referred to the street. The assessment of these metrics is fulfilled using 33 

one-way ANOVA procedure and decision trees classifier. These results reveal that street 34 

metrics, and particularly those describing the street geometry, are suitable to enhance the 35 
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discrimination of complex urban typologies. Thus, the overall classification accuracy increases 36 

from 72.7% to 81.1% when adding the street descriptors. The results of this study demonstrate 37 

the usefulness of the metrics describing the street properties to complement the information 38 

derived from the urban blocks and to improve the characterization of urban areas. 39 

 40 

Highlights 41 

We propose a set of urban metrics to describe the streets with remotely sensed data 42 

A methodology to relate the street space to urban blocks is defined 43 

Results show that street metrics are useful to improve the characterization of cities 44 

 45 

Keywords: 46 

Urban morphology; urban metrics; remote sensing; high-resolution imagery; LiDAR 47 

 48 

1. Introduction 49 

Landscape metrics were defined by McGarigal and Marks (1995) as measurements that enable 50 

to numerically quantify and summarize the spatial patterns of the land-use/land-cover (LULC) 51 

classes of a geographic area. The urban spatial structure reflects the processes that occur during 52 

the historical development of a city, so urban districts constructed in different time periods show 53 

significant differences in building density and structures (Anas et al., 1989; Yu et al., 2010). 54 

The geometry of open spaces and built-up areas composing a city and their topological 55 

relationships determine the appearance of urban environments, and display local particularities 56 

related to a spatial identity (Laskari et al., 2008). Therefore, the various urban structural 57 

typologies can be depicted through metric attributes quantifying characteristics such as shape, 58 

land cover composition, spatial arrangement, or contextual relationships. The use of those urban 59 

metrics has become a trend in a wide range of studies and applications (Ji et al., 2006), e.g., 60 

environmental monitoring (Robinson, 2006; Edussuriya et al., 2011), energy efficiency 61 

assessment (Neidhart and Sester 2006; Geiß et al., 2011; Kellett et al., 2013; Tooke and Coops, 62 

2013), socio-economic analysis (Patino and Duque, 2012; Tompalski and Wężyk, 2012; Gong 63 

et al., 2013), hydrological studies (Canters et al., 2007), or, with significant importance, in 64 

LULC mapping and change detection (Furberg and Ban 2008; Novack et al., 2010; Malinverni, 65 

2011; Hermosilla et al., 2012a; Hermosilla et al., 2012b). 66 

 67 

Remote sensing data have a relevant role to provide automatic and massive structural 68 

descriptions of urban areas (Puissant et al., 2012). High spatial-resolution multi-spectral 69 

information acquired from satellites or airborne sensors enable a detailed characterization of 70 

urban areas. In addition, airborne LiDAR (Light Detection And Ranging) systems facilitate a 71 

three-dimensional description of the landscape providing point clouds representing the height 72 
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distribution of the observed terrain and the aboveground elements. When working with remotely 73 

sensed data, urban characterization is commonly undertaken applying two stage approximation 74 

methods (Bauer and Steinnocher, 2001). Initially, the principal LULC or the basic elements, 75 

such as buildings or vegetation, are identified. Then this information is analyzed in a spatial 76 

context to define urban metrics describing aspects such as the geometry, dimensions, or the area 77 

covered by buildings, vegetation, or other construction materials. In this analysis of urban 78 

morphology, remote sensing may take advantage of the physical explicitness represented by 79 

urban blocks, since roads and/or cadastral maps incontrovertibly delimit them (Yoshida and 80 

Omae, 2005). An urban block is defined as the group of private or public buildings and open 81 

space composing an island surrounded by public roads or streets (Gil et al., 2012). Using urban 82 

blocks would facilitate combining multiple datasets to analyze and characterize urban areas, and 83 

also integrating the information derived from remotely sensed data into GIS (Geographic 84 

Information Systems) (Gamba et al., 2005). As a consequence, numerous authors have 85 

employed urban blocks – or occasionally parcels – to define units from which extract metrics 86 

from high-spatial resolution images (Zhan et al., 2000; Kressler et al, 2001; Bauer and 87 

Steinnocher, 2001; Wijnant and Steenberghen, 2004; Pan et al., 2008; Wu et al., 2009; Novack 88 

et al., 2010; Vanderhaegen and Canters, 2010; Huck et al., 2011). These metrics are 89 

complemented with height information and volumetric descriptor sets whether three-90 

dimensional information is available (Yoshida and Omae, 2005; Wu et al., 2009; Yu et al., 91 

2010; Hermosilla et al., 2012a; Heiden et al., 2012; Taubenböck et al., 2013). 92 

 93 

In addition to bounding the blocks, urban-block cartography enables to delimitate as its 94 

complementary area the public streets. Street properties such as shape and geometry, or the 95 

presence of diverse vegetation are also factors determining the appearance of the urban space 96 

(Lillebye, 1996). Hence, the characterization of the streets surrounding an urban-block may 97 

provide a contextual frame to highlight the differences between urban structural typologies. 98 

However, the discriminative potential of attributes based on the streets have been barely 99 

explored in the literature, which have been mainly focused in the geometrical description of the 100 

streets. In this sense, Loüw and Sithole (2011) characterized urban blocks with a set of street-101 

based descriptors such as street width or building-street distances; Gil et al. (2012) used 102 

properties such as dimensions, orientation, accessibility, or connectivity to describe the streets. 103 

Both works considered the streets as linear features. We propose to complete and complement 104 

the geometrical description of the streets with information computed from remote sensing data. 105 

This would enable to describe deeper the urban landscape using additional characteristics 106 

derived from the streets – considering these as polygon features –, such as the presence and 107 

distribution of vegetation, or the relationships of street geometry with the surrounded buildings. 108 
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This requires an initial process to partition the street space and to find its dependencies to the 109 

urban-blocks. 110 

 111 

This paper aims (i) to propose a methodology for partitioning the public street space and relate 112 

it to each urban block; (ii) to define a set of urban metrics based on the streets surrounding the 113 

urban blocks; and (iii) to perform a comprehensive statistical analysis of the usefulness of the 114 

proposed metrics. This is done by studying the complementariness of the street metrics to urban 115 

blocks metrics for discriminating among several urban typologies in the metropolitan area of 116 

Valencia (Spain). The paper is structured as follows. In Section 2 the study area, the high-spatial 117 

resolution images and the LiDAR data are described. Section 3 describes the methodology 118 

followed: definition of urban typologies within the studied area, procedure to derive the street 119 

area related to the urban block, the compilation of the urban-block based metrics and the 120 

definition of street-based descriptors, and finally the methodology followed to assess the 121 

metrics. The statistics and classification results are presented and discussed in Section 4. Section 122 

5 provides the conclusions. 123 

 124 

2. Study area, data and preprocessing 125 

We performed this study in the city of Valencia, the third most populated city in Spain. The 126 

demolition of the medieval wall and the subsequent processes of annexation of nearby villages 127 

as own neighbourhoods in the second half of the nineteenth century leaded a process of urban 128 

expansion relatively concentric to the historical city. The strong industrialization process 129 

experienced in the 1950s-1960s and the rapid increase of population produced by the urban 130 

exodus disturbed the planned urban model. The subsequent processes to connect the city to the 131 

sea directed the urban sprawl eastwards, producing an absorption of satellite historical 132 

settlements within the new city (Balsa-Barreiro and Lois-González, 2009). 133 

 134 

Remotely sensed data – high spatial-resolution imagery and LiDAR – were acquired in the 135 

frame of the Spanish National Plan of Aerial Orthophotography (PNOA). The images were 136 

collected in August 2008, with 0.5 m/pixel spatial resolution, 8 bits radiometric resolution, and 137 

four spectral bands: infrared, red, green, and blue. The images are distributed orthorectified and 138 

georreferenced, panchromatic and multispectral bands fused, and with mosaicking and 139 

radiometric adjustments applied. LiDAR data were collected in September 2009 using a RIEGL 140 

LMS-Q680 laser scanner with a scan frequency of 46 Hz, 70 kHz of pulse repetition rate and a 141 

scanning angle of 60º. The mean flying height was 1,300 meters, a nominal density of 0.5 142 

points/m
2
 and an average density value of 0.7 points/m

2
. A normalized digital surface model 143 

(nDSM), i.e., the difference between the digital surface model (DSM) and the digital terrain 144 

model (DTM), representing the physical heights of the elements present over the terrain, was 145 
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generated from LiDAR data. The DTM was computed using an algorithm that iteratively selects 146 

minimum elevation points and eliminates points belonging to any aboveground elements, such 147 

as vegetation or buildings (Estornell et al., 2011). 148 

 149 

Urban block boundaries are provided in vector-format cadastral cartography with a scale of 150 

1:1,000. These maps are produced by the Spanish General Directorate for Cadastre (Dirección 151 

General de Catastro). 152 

 153 

Numerous urban metrics defined are based on the building and vegetation covers, which were 154 

obtained using an automatic building detection technique consisting of applying a multiple-155 

threshold based approach over the normalized difference vegetation index (NDVI) image and 156 

the nDSM. This methodology is fully described and assessed in Hermosilla et al. (2011). 157 

 158 

3. Methodology 159 

3.1. Urban typologies 160 

We defined eight urban typologies representing different historical periods of edification and 161 

urban planning of Valencia, and selected samples based on the visual analysis of the urban 162 

structure over the high-spatial resolution images. The urban typologies defined are: 163 

 Main historical town (historical1) which constitutes the historical core of the city. Their 164 

irregular geometrical shape characterizes blocks, which are surrounded by very narrow 165 

streets and few green zones. The buildings show a variety on their heights (Figure 1.a). 166 

 Secondary historical town (historical2): it refers to minor historical settlements 167 

integrated now within the city. Urban-blocks are spatially arranged with varied 168 

regularity, and the buildings are usually lower than in the main historical town (Figure 169 

1.b). 170 

 Late XIX century expansion (rXIX) – denoted ensanche in Spanish –  developed in 171 

regular grid plan, with significant mid-block open spaces. Although initially the height 172 

of the buildings was related to the adjacent streets, most these requirements were later 173 

modified (Figure 1.c). 174 

 Residential areas built in 1950 and 1960 decades (r1950-60): these neighbourhoods 175 

were developed with hurry in order to shelter the displaced population due to the rural 176 

flight. This typology is composed by average-height buildings placed in barely regular 177 

urban-blocks, which are usually delimited by narrow streets (Figure 1.d). 178 

 Residential areas from 1970 and 1980 decades (r1970-80): composed by especially tall 179 

apartment towers and open public spaces like plazas and gardens (Figure 1.e). 180 
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 Residential areas built-up during 2000 decade (r2000) present also high buildings and 181 

abundance of gardens – both within public and private locations –, in urban-blocks 182 

bounded by wide avenues (Figure 1.f). 183 

 Single-family suburban areas (suburban): groups of detached and semi-detached 184 

individual buildings, often surrounded by vegetation and located at certain distance of 185 

the core of the city (Figure 1.g). 186 

 Industrial areas (industrial): planed zones populated with buildings and structures for 187 

manufacturing, transforming, repairing, storing, and distributing goods. Constructions 188 

are usually extensive and arranged to the street network (Figure 1.h). 189 

 190 

3.2. Urban block related street area (UBRSA) definition 191 

We state public street as those areas in the city that are enclosed by no urban block. The urban-192 

block related street area (UBRSA) polygon is the specific public street surrounding each urban 193 

block, and this is understood as the street area related by an urban block. We developed a 194 

methodology to define spatially the UBRSA polygons by triangulating the public street and 195 

detecting the intersections of the streets. As result, the street is divided in street segments, which 196 

are afterwards merged producing the UBRSA polygons related to each urban-block, from which 197 

the metrics are derived.  198 

 199 

First, the contour of urban-blocks is simplified using the point remove algorithm, an enhanced 200 

version of the Douglas-Peucker algorithm (Douglas and Peucker, 1973), in order to remove 201 

unrelevant details and increase processing efficiency (Figure 2.a). Next, the public street 202 

polygon is extracted as the complementary area of urban block polygons (Figure 2.b). 203 

 204 

The street polygon is then partitioned in street segments delimited by the street crossing 205 

boundaries. This process is based on the triangulation of the public street polygon, which is a 206 

computational geometry process where for a set of points in a plane (the street polygon vertices) 207 

produces a triangulated irregular network (TIN). These triangles represents a surface as a set of 208 

non-overlapping contiguous triangular facets with irregular size and shape (Fowler and Little, 209 

1979). That way, every triangle of the TIN within the street polygon (Figure 2.c) is analysed to 210 

detect the street crossings. Thus, a triangle belongs to a street intersection area if none of its 211 

edges is adjacent to an urban block. Once these triangles are detected, street crossing boundaries 212 

are determined by drawing a line from its centroid to each of its vertices (Figure 2.d). If several 213 

adjacent triangles are contained in a street intersection, the centroid computed is the one referred 214 

to the polygon composed by all these triangles. Figure 3 shows examples of how street crossing 215 

boundaries are defined for one (Figure 3.a), two (Figure 3.b), or three (Figure 3.c) triangles 216 

contained within a street intersection. Next, the triangles are merged keeping the street crossing 217 
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boundaries (Figure 2.e) and producing, as a result, the division of the street polygon in several 218 

street segments (Figure 2.f). 219 

 220 

The last step is the creation of the UBRSA polygons. Thus, the UBRSA polygon of an urban-221 

block is produced by merging every adjacent street segment to that block. Since a street segment 222 

is likely adjacent to several urban-blocks, most UBRSA polygons of neighbouring blocks will 223 

overlap among them, as shown in Figure 4. 224 

 225 

3.3. Descriptive urban metrics 226 

We defined two groups of urban metrics: urban-block-based metrics, and street-based metrics 227 

derived from the UBRSA polygons. To characterize the urban-blocks three kinds of metrics 228 

were used: (i) descriptors of the shape and geometrical properties of urban-block polygons, (ii) 229 

geometric and volumetric attributes regarding buildings, and (iii) features describing vegetation 230 

patches. Most of these urban-block metrics, or variations thereof, have been repeatedly used in 231 

urban characterization (Boffet and Rocca-Serra, 2001; Yoshida and Omae, 2005; Neidhart and 232 

Sester, 2006; Laskari et al., 2008; Goodwin et al., 2009; Van de Voorde et al., 2009; Lu et al., 233 

2010; Yu et al., 2010; Tooke et al., 2011; Heiden et al., 2012; Hermosilla et al., 2012a; Peeters 234 

and Etzion, 2012, Berger et al., 2013; González-Aguilera et al., 2013). The geometry of the 235 

urban-block polygons is described with the area and perimeter, meanwhile the contour 236 

complexity is numerically quantified using the shape factors: compactness, shape index, and 237 

fractal dimension. Compactness (or circularity) measures the degree to which the shape is close 238 

to a circle (Bogaert et al., 2000). Shape index estimates how similar to a square a shape is. 239 

Fractal dimension provides a numerical characterization of fractal patterns by computing their 240 

complexity as a ratio of the change in detail to the change in scale (Krummel et al., 1987; 241 

McGarigal and Marks, 1995). Buildings are described in terms number, area, height, and 242 

volume. The built-up area is characterized by means of the building coverage area (BCA) and 243 

the building covered ratio (BCR). BCR is obtained by normalizing the BCA by the area of the 244 

urban block, expressing the result as percentage. The number of buildings within the urban 245 

block (NB) is also computed. The height of the buildings is characterized using the mean (𝐵𝐻̅̅ ̅̅ ), 246 

maximum (maxBH), and standard deviation (sdBH) values obtained from the nDSM. Using this 247 

model, the volumetric properties of the buildings are also derived. In addition to the built-up 248 

volume (VolumeB), the mean built-up volume per building (𝑉𝑜𝑙𝑢𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝐵), and the built-up volume 249 

normalized by the urban-block area (nVolumeB) are computed. Analogously, vegetation metrics 250 

computed are vegetation covered area (VCA), vegetation covered ratio (VCR), vegetation 251 

volume, and vegetation volume normalized by urban-block area. Table 1 compiles the equations 252 

to compute the urban-block based metrics. 253 

 254 
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The street-based urban metrics characterize the UBRSA in terms of four aspects: geometry, 255 

neighbouring block connectivity, presence of vegetation, and relationship with the urban-block 256 

buildings. The geometry of the streets is quantified by means of the area (AreaUBRSA) and 257 

descriptors of the width of the street segments composing the UBRSA of an urban block. The 258 

width of each street segment is computed by initially enclosing an oriented bounding rectangle. 259 

The major axe orientation is then used as guide to draw perpendicular transects separated apart 260 

one metre, as it is shown in Figure 5.a. The median width of all transects is assigned as the 261 

specific width of the street segment. Finally, the mean (𝑆𝑊̅̅̅̅̅), standard deviation (sdSW), 262 

minimum (minSW), and maximum (maxSW) of the width of the adjacent street segments are 263 

computed (see Figure 5.b). The number of neighbouring urban blocks (NNUB) of each UBRSA 264 

polygon provides the degree of neighbouring block connectivity. The vegetation metrics 265 

characterizing the streets are vegetation covered area (VCAUBRSA), vegetation covered ratio 266 

(VCRUBRSA), vegetation volume (VolumeVUBRSA), and vegetation volume normalized by UBRSA 267 

area (nVolumeVUBRSA). The last group of street-based metrics aims to relate the structure of the 268 

buildings of an urban block to the geometry of the surrounding streets, and to exploit the 269 

dependency relationships among them. The metrics computed are the ratio between the BCA of 270 

a block and the area of its UBRSA (RatioArea), and the ratio between the built-up volume within 271 

a block normalized by the UBRSA area (RatioVolume). Table 2 summarizes the equations to 272 

compute the street based metrics. 273 

 274 

3.4. Assessment of the metrics 275 

Initially, we studied the metrics independently by applying the one-way ANOVA procedure to 276 

estimate the ability of each urban metric to describe the differences among the eight urban 277 

typologies. The F-test in the ANOVA table, which is defined as the ratio of the between-group 278 

variance estimate to the within-group variance estimate, evaluate whether there are any 279 

significant differences amongst the means. In addition, the Fisher's least significant difference 280 

(LSD) procedure (Milliken and Johnson 1992) is also employed to determine which means are 281 

significantly different from which others in such a way that if two means are the same then their 282 

intervals will overlap 95% of the time. To avoid the effects of outliers, we also have applied the 283 

Kruskal-Wallis test to compare median instead of mean values. 284 

 285 

To evaluate the performance of the proposed street urban metrics, we performed two 286 

classifications: one considering the urban-block metrics, and other combining these with the 287 

street metrics. We applied the C5.0 algorithm using See5.0 software (Quinlan, 1993). Preceding 288 

the creation of the rules for each classification, an initial selection of the metrics was performed 289 

in order to reduce number of descriptive attributes to be used into the classifier, in addition to 290 

estimate their impact in the classification. This process, denoted winnow (Littlestone, 1988), 291 
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numerically estimates the importance of the descriptive attributes for the particular classification 292 

problem analyzed, enabling to choose the useful metrics among unhelpful ones. The selected 293 

attributes are then ranked by importance, numerically showing for each attribute the percentage 294 

increase in error rate if that attribute is excluded from the classification. 295 

 296 

The C5.0 algorithm defines decision trees were constructed based on training samples. A 297 

decision-tree is defined as a set of conditions organized in a hierarchical structure in such a way 298 

that the class assigned to an object is determined following the conditions that are fulfilled from 299 

the initial dataset to any of the assigned classes. A two-step pruning process was applied to the 300 

decision trees to reach a better predictive accuracy by reducing the over-fitting. Initially, the 301 

degree to which the initial tree fits the training data was constrained by fixing a minimum of 302 

five training cases that each node must follow. Later, the parts of the decision trees predicted to 303 

have a relatively high error rate were removed. This was first applied to every sub-tree to decide 304 

if it should be replaced by a leaf or sub-branch or not, and then a global stage considers the 305 

performance of the tree as a whole (Murthy, 1998). 306 

 307 

Decision trees were applied in combination with the boosting technique, which allows for the 308 

increase of the classifier accuracy by constructing multiple decision trees (Freund et al., 1999). 309 

This technique relies on assigning weights to the training samples, so the greater the weight of a 310 

sample, then the greater its influence on the classifier. After each tree construction, weights are 311 

adjusted to show the model performance. Samples erroneously classified maintain their 312 

assigned weights, whereas correctly classified samples reduce their weights. As result, the 313 

model obtained in the subsequent iteration provides more relevance to the earlier incorrectly 314 

classified samples. We used ten iterations to define the rules. After the construction of the 315 

decision tree set, the class assigned to an object considers the estimated error produced in the 316 

construction of each tree, being the weight assigned to a tree inversely proportional to the 317 

estimated error. The summation of the weights of the trees predicting the same class is then 318 

computed, and the class with the highest value is finally assigned. 319 

 320 

The accuracy of the classification models was assessed using leave-one-out cross-validation 321 

technique (Fukunaga, 1990). Both classifications were evaluated by analyzing the confusion 322 

matrix (Congalton, 1991), which relates the class assigned to each test sample with its reference 323 

class. We computed the overall accuracies of the classifications, and for each class, producer's 324 

and user's accuracies, which respectively estimate the mission and commission errors. 325 

 326 

4. Results and discussion 327 
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The one-way ANOVA results show that the p-value of the F-test for all metrics is lower than 328 

0.05, meaning that there are statistically significant differences between the mean values of the 329 

urban typologies with 95% confidence level. In addition, the results of the Kruskal-Wallis test 330 

show significant differences for all variables among the medians of the eight urban typologies 331 

with 95% confidence. Table 3 identifies with letters (A, B, C, etc.) the resulting homogeneous 332 

groups using the Fisher's LSD multiple comparison procedure to discriminate among the means. 333 

Figure 6 visually shows examples of buildings and vegetation occupation and height 334 

distribution for the various urban typologies defined. Finally, Figure 7 and Figure 8 illustrate the 335 

relationship of the urban typologies with the urban block metrics and the street metrics, 336 

respectively, using box-and-whisker plots showing median, interquartile range (IQ), and 337 

extreme values. Circles indicate atypical outliers (values 1.5–3×IQ), and asterisk represents 338 

extreme outliers (values >3×IQ). 339 

 340 

As Table 3 shows, when only urban block metrics are considered, it is difficult to discriminate 341 

among both historical-town typologies (historical1 and historical2), since few urban metrics 342 

enable to establish significant differences between them, i.e., mean built-up height, maximum 343 

built-up height, vegetation covered ratio, and normalized vegetation volume. As seen in Figure 344 

7.a, buildings from historical2 typology are lower than the ones from historical1, and also the 345 

coverage and volume of vegetation inside the urban-blocks are lower. One of the most 346 

noteworthy dissimilarities between both historical typologies is expressed by the street 347 

geometry descriptors, as evidenced the statistically significant differences showed by the 348 

metrics: mean street width, maximum street width, and minimum street width. Typically, 349 

historical1 and historical2 categories show narrower streets than the rest of urban typologies 350 

(Figure 8.a and Figure 8.b). There is also a clear difference in mean and median values of both 351 

historical-town typologies when taking into account the vegetation in the streets. Thus, 352 

historical2 presents substantial lower values for UBRSA vegetation covered ratio metric, as 353 

Figure 8.c shows. 354 

 355 

The mean and median values of the metrics characterizing the urban-block area and perimeter 356 

are significantly larger for industrial than for the rest of typologies (Figure7.d). Nevertheless, 357 

those geometry-related metrics show similar values for r1950-60, r1970-80, r2000, and 358 

suburban. Urban-block shape descriptors (compactness, shape index, and fractal dimension) do 359 

distinguish among those urban typologies, as seen in Table 3, although in this case the mean 360 

reached for industrial is not significantly different from that obtained in both historical 361 

typologies. In this case, the public street area surrounding each urban block (AreaUBRSA) enables 362 

to discriminate among r1950-60, r1970-80, and r2000 urban typologies. 363 

 364 



11 

 

The metrics describing the height of the buildings show that lowest heights are given for 365 

suburban typology, followed by industrial and historical2 (Figure 7.a). The high variability 366 

presented by r2000 typology on the mean built-up height values is especially noticeable (Figure 367 

7.b). Building coverage area values are strongly linked to the attributes characterizing the urban 368 

block dimensions, which determine the range of values that this metric can achieve. BCR avoids 369 

that limitation and it allows to discriminate among r2000, suburban, and industrial, and these 370 

from the rest of categories, since urban blocks containing these typologies are usually not 371 

completely occupied by constructions. This is particularly remarkable for suburban typology 372 

(Figure 7.e). Moreover, the ratio between the built-up coverage area and the UBRSA area 373 

promote the distinction among rXIX, r1970-80, and r2000. That metric values decrease for these 374 

typologies as more recent the constructions are (Figure 7.e and Figure 8.e). 375 

 376 

The vegetation covered ratio inside urban blocks also significantly discriminates suburban 377 

among the other typologies (Figure7.c). This metric, however, is not as efficient in 378 

distinguishing the rest of classes, especially historical1, rXIX, and r1970-80 (Table 3). If we 379 

consider the distribution of vegetation in the streets surrounding the urban blocks through the 380 

UBRSA vegetation covered ratio metric, it is noticeable that r1950-60 lacks of green zones 381 

(Figure 8.c). Accounting the vegetation volume in the streets, the normalized UBRSA 382 

vegetation volume metric enables to discriminate rXIX from the rest of categories (Figure 8.d). 383 

This typology, given in consolidated areas, has a profuse abundance of voluminous vegetation 384 

in public spaces. Additionally, this metric permits to difference r2000 from rXIX, r1970-80, and 385 

suburban, because vegetation in more recently built up neighbourhoods, though plentiful, is less 386 

voluminous. Complementing the above mentioned metrics we found that the ratio between the 387 

built-up coverage area within an urban block and the UBRSA area (RatioArea) enables to 388 

separate most recent constructions (r2000 and suburban) from the oldest (historical1 and rXIX ) 389 

as is shown in Figure 8.d and Table 3. In turn, the ratio between the built-up volume and the 390 

UBRSA metric (RatioVolume) contribute to enhances the discrimination provided by the urban-391 

block metrics: built-up volume and mean built-up volume (Figure 7.f), by boosting the 392 

differences concerning rXIX and suburban. 393 

 394 

The results of applying the winnow algorithm show that the vegetation covered ratio is 395 

determined as the most relevant classification attribute when only considering urban block 396 

metrics, as shown in Table 5. This metric, as well as vegetation covered area, vegetation 397 

volume, and normalized vegetation volume, enables to easily distinguish suburban from other 398 

typologies (Figure 7.c). Furthermore, the vegetation covered ratio enables discriminate between 399 

historical2 and historical1, and historical1 with r2000 and suburban (Table 3). This metric 400 

reaches the highest F-ratio value in the one-way ANOVA procedure among all analyzed 401 



12 

 

metrics. The height of the buildings is also relevant being the mean built-up height ranked the 402 

2
nd

, and the standard deviation of the buildings the 4
th
. 403 

 404 

When urban-block and street metrics are combined the mean street-width value is ranked as the 405 

most significant attribute. These findings are in line with the reported by Loüw and Sithole 406 

(2011), who also stated the mean street-width as the most efficient attribute for classification. 407 

Although the metrics characterizing aspects of the streets different to the geometry – such as 408 

vegetation, or street geometry-buildings ratios – present a lower overall impact, they are still 409 

suitable for discriminating some particular urban typologies, as shown in Table 3. 410 

 411 

The addition of metrics describing the streets to the classification process substantially increases 412 

the overall accuracy from 72.7% to 81.1%, which verifies that the combination of different 413 

types and contextual levels of characteristics provides a multidimensional description that 414 

significantly improves the characterization of urban structural typologies (Table 5). This 415 

outcome is consistent with the results reported by several authors (Wu et al., 2009; Gil et al., 416 

2012; Hermosilla et al., 2012a). 417 

 418 

Analyzing the particular user’s and producer’s accuracies reached by the urban typologies 419 

(Figure 9), suburban areas are better classified when only considering urban block metrics, 420 

reaching 91% and 98% for the user’s and producer’s accuracies, respectively. That is because 421 

this typology has a remarkably different appearance, featuring many vegetation and low 422 

buildings, and also the metrics describing those features are listed as the most significant for the 423 

classification (Table 4). The addition of the street metrics, however, has very limited effect on 424 

the accuracy of suburban typology. On the other hand, although historical1 reaches fair user’s 425 

and producer’s accuracies, 76% and 80% respectively, with the urban block metrics. When the 426 

description of streets is included in the classification model, both indices have significantly 427 

increase up to 92%. The lowest accuracies are reached for r1950-60 and r1970-80, which are 428 

transition typologies constructed between different eras. The addition of street metrics improves 429 

the discrimination of these typologies. This is in part accomplished due the contribution of the 430 

metrics: mean street width, vegetation covered ratio of UBRSA, and RatioArea, which cause 431 

notable accuracy increases for r1950-60, r1970-80, and also r2000. Additionally to these 432 

accuracy increments, the street metrics remarkably help to diminish the confusion between 433 

r1950-60 and r1970-80 with historical1, as well as r1950-60 and r2000 with r1970-80. Overall, 434 

r1970-80 typology has the largest number of outliers in the metrics ranked as most significant in 435 

by winnow algorithm (see Figure 7 and Figure 8), which limits the positive effects of adding 436 

street metrics to eliminate the errors given between this class and rXIX and r1950-60, 437 

respectively. 438 
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 439 

5. Conclusions 440 

This paper presents a set of urban metrics based on the description of the streets to quantify the 441 

various spatial patterns of the neighbourhoods constructed in different periods. These street 442 

metrics are proposed to complement the attributes derived from the urban blocks, providing a 443 

contextual frame to account the dissimilarities between the various construction typologies. We 444 

extract the urban metrics from high-spatial resolution multi-spectral images, airborne LiDAR 445 

data, and cadastral cartography containing the urban block boundaries. The performance of the 446 

street metrics is assessed for distinguishing among eight urban typologies within the 447 

metropolitan area of Valencia (Spain). 448 

 449 

The results of the one-way ANOVA test show how the proposed street metrics help to establish 450 

statistically significant differences among some urban typologies where the urban block metrics 451 

present particular limitations. In addition, when analysing the importance of the urban metrics 452 

for the classification with the winnow algorithm, mean street width is revealed the most 453 

significant attribute, along with vegetation covered ratio per block and mean height of the 454 

buildings, and followed distantly by the building coverage ratio. Other street metrics 455 

characterizing aspects such as the distribution of vegetation in the street, or relationships 456 

between street geometry and buildings present a lower importance, but they are also appropriate 457 

for distinguishing among some urban typologies. The combination of the urban block attributes 458 

together with the street metrics causes an increase of the overall classification accuracy from 459 

72.7% up to 81.1% with respects to use only urban block metrics. The addition of the street 460 

metrics positively affects to all the urban typologies, being the most benefited classes the main 461 

historical town, and residential areas constructed during 1950-1960 and 1970-1980. 462 

 463 

This paper shows that use of metrics describing diverse properties of the streets provides a 464 

further description of the cities that complements the attributes extracted from the urban blocks. 465 

Thus, the outcomes of this study demonstrate the convenience of describing the street properties 466 

in order to provide useful urban metrics for all those applications requiring a precise 467 

characterization of the urban areas. This is important to note that the results achieved here show 468 

the local significance of the defined metrics for the specific case and urban typologies studied. 469 

Nevertheless, those descriptors may consistently be applied in diverse scenarios, the importance 470 

of these metrics varying to highlight the particular structural differences of the analysed cities. 471 

 472 
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 646 

Figure 1. Examples of the urban typologies defined in a colour infrared composition: (a) Main 647 

historical town (historical1), (b) secondary historical town (historical2), (c) late XIX century 648 

expansion (rXIX), (d) 1950-1960s residential areas (r1950-60), (e) 1970-1980s residential areas 649 

(r1970-80), (f) 2000s residential areas (r2000), (g) single-family suburban housing areas 650 

(suburban), (h) industrial areas (industrial). 651 

  652 
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 653 

Figure 2. Steps followed to segment the public street: (a) simplified urban-blocks; (b) street 654 

polygon, computed as the complementary of the urban-blocks (in grey); (c) triangulated 655 

irregular network (TIN) of the street polygon; (d) identification of triangles within street 656 

crossings, computation of centroids, and delineation of street crossing boundaries (in red); (e) 657 

combination of neighbouring triangles; (f) resulting street segments. 658 

  659 
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 660 

Figure 3. Definition of street crossing boundaries for street intersections composed by (a) one, 661 

(b) two, and (c) three triangles. 662 
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 664 

Figure 4. Example of overlapping urban-block related street area (UBRSA) polygons. 665 
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 667 

Figure 5. (a) Scheme of transects extracted to compute the median width value characterizing a 668 

street segment. (b) Street segments conforming a UBRSA used to derive street width metrics. 669 

  670 
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 671 

Figure 6. Details of buildings and vegetation height distribution for the urban typologies 672 

defined: (a) Main historical town (historical1), (b) secondary historical town (historical2), (c) 673 

late XIX century expansion (rXIX), (d) 1950-1960s residential areas (r1950-60), (e) 1970-1980s 674 

residential areas (r1970-80), (f) 2000s residential areas (r2000), (g) single-family suburban 675 

housing areas (suburban), (h) industrial areas (industrial). 676 
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 678 

Figure 7. Relationship between urban typologies and urban-block metrics: (a) mean built-up 679 

height, (b) standard deviation of the built-up heights, (c) vegetation covered ratio, (d) urban-680 

block area, (e) building covered ratio, and (f) mean built-up volume. 681 

  682 



28 

 

 683 

Figure 8. Relationship between urban typologies and street metrics: (a) mean street width, (b) 684 

minimum street width, (c) UBRSA vegetation covered ratio, (d) normalized UBRSA vegetation 685 

covered ratio, (e) ratio between built-up area within an urban block and UBRSA area, and (f) 686 

ratio between built-up volume and UBRSA area. 687 
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689 
  690 

Figure 9. (a) User’s and (b) producer’s accuracies reached for each urban typology when 691 

considering only urban-block-based metrics or combining these with street-based metrics. 692 
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Table 1. Metrics and equations extracted from urban blocks. 694 

Metric (units) Equation 

Area (m
2
) 𝐴𝑟𝑒𝑎𝑈𝐵 

Perimeter (m) 𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑈𝐵 

Compactness 
𝐶 =

4 ∙ 𝜋 ∙ 𝐴𝑟𝑒𝑎𝑈𝐵

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑈𝐵
2 

Shape index 
𝑆𝐼 =

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑈𝐵

4 ∙ √𝐴𝑟𝑒𝑎𝑈𝐵
 

Fractal dimension 
𝐹𝐷 = 2 ∙

log⁡(𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟𝑈𝐵 4⁄ )

log⁡(𝐴𝑟𝑒𝑎𝑈𝐵)
 

Building coverage area (m
2
) 

𝐵𝐶𝐴 =∑𝑟2
𝑏

𝑖=1

 

Building coverage ratio (%) 
𝐵𝐶𝑅 =

𝐵𝐶𝐴

𝐴𝑟𝑒𝑎𝑈𝐵
∙ 100 

Mean built-up height (m) 

𝐵𝐻̅̅ ̅̅ =
1

𝑏
∙∑ℎ𝑖

𝑏

𝑖=1

 

Maximum built-up height (m) 𝑚𝑎𝑥𝐵𝐻 = max⁡{ℎ𝑖} 
Standard deviation of building height (m) 

𝑠𝑑𝐵𝐻 = √
1

𝑏 − 1
∙∑(ℎ𝑖 − 𝐵𝐻̅̅ ̅̅ )2

𝑏

𝑖=1

 

Number of buildings 𝑁𝐵 

Built-up volume (m
3
) 

𝑉𝑜𝑙𝑢𝑚𝑒𝐵 =∑ℎ𝑖 ∙ 𝑟
2

𝑏

𝑖=1

 

Mean built-up volume (m
3
) 

𝑉𝑜𝑙𝑢𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝐵 =

𝑉𝑜𝑙𝑢𝑚𝑒𝐵
𝑁𝐵

 

Normalized built-up volume (m
3
/ m

2
) 

𝑛𝑉𝑜𝑙𝑢𝑚𝑒𝐵 =
𝑉𝑜𝑙𝑢𝑚𝑒𝐵
𝐴𝑟𝑒𝑎𝑈𝐵

 

Vegetation covered area (m
2
) 

𝑉𝐶𝐴 =∑𝑟2
𝑣

𝑖=1

 

Vegetation covered ratio (%) 
𝑉𝐶𝑅 =

𝑉𝐶𝐴

𝐴𝑟𝑒𝑎𝑈𝐵
∙ 100 

Vegetation volume (m
3
) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑉 =∑ℎ𝑖 ∙ 𝑟
2

𝑣

𝑖=1

 

Normalized vegetation volume (m
3
/ m

2
) 

𝑛𝑉𝑜𝑙𝑢𝑚𝑒𝑉 =
𝑉𝑜𝑙𝑢𝑚𝑒𝑉
𝐴𝑟𝑒𝑎𝑈𝐵

 

b: total of pixels covered by buildings within the urba-block; r: spatial resolution; hi: relative 695 

height obtained from the nDSM for the pixel i; v: total of pixels covered by vegetation. 696 

  697 
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Table 2. Metrics computed from the UBRSA. 698 

Metric (units) Formula 

UBRSA area (m
2
) 𝐴𝑟𝑒𝑎𝑈𝐵𝑅𝑆𝐴 

Mean street width (m) 
𝑆𝑊̅̅̅̅̅ =

1

𝑛
∙∑𝑤𝑖

𝑛

𝑖=1

 

Standard deviation street width (m) 

𝑠𝑑𝑆𝑊 = √
1

𝑛 − 1
∙∑(𝑤𝑖 − 𝑆𝑊̅̅̅̅̅)2

𝑛

𝑖=1

 

Maximum street width (m) 𝑚𝑎𝑥𝑆𝑊 = max⁡{𝑤𝑖} 
Minimum street width (m) 𝑚𝑖𝑛𝑆𝑊 = min⁡{𝑤𝑖} 
Number of neighbouring urban blocks 𝑁𝑁𝑈𝐵 

UBRSA vegetation covered area (m
2
) 

𝑉𝐶𝐴𝑈𝐵𝑅𝑆𝐴 =∑𝑟2
𝑣

𝑖=1

 

UBRSA vegetation covered ratio (m
2
) 

𝑉𝐶𝑅𝑈𝐵𝑅𝑆𝐴 =
𝑉𝐶𝐴𝑈𝐵𝑅𝑆𝐴
𝐴𝑟𝑒𝑎𝑈𝐵𝑅𝑆𝐴

∙ 100 

UBRSA vegetation volume (m
3
) 

𝑉𝑜𝑙𝑢𝑚𝑒𝑉𝑈𝐵𝑅𝑆𝐴 =∑ℎ𝑖 ∙ 𝑟
2

𝑣

𝑖=1

 

Normalized  UBRSA vegetation volume (m
3
/ m

2
) 

𝑛𝑉𝑜𝑙𝑢𝑚𝑒𝑉𝑈𝐵𝑅𝑆𝐴 =
𝑉𝑉𝑈𝐵𝑅𝑆𝐴

𝐴𝑟𝑒𝑎𝑈𝐵𝑅𝑆𝐴
 

Ratio between the area of the buildings in a urban block 

and the area of the UBRSA 
𝑅𝑎𝑡𝑖𝑜𝐴𝑟𝑒𝑎 =

𝐵𝐶𝐴

𝐴𝑟𝑒𝑎𝑈𝐵𝑅𝑆𝐴
 

Ratio between the built-up volume and the area of the 

UBRSA (m
3
/ m

2
) 

𝑅𝑎𝑡𝑖𝑜𝑉𝑜𝑙𝑢𝑚𝑒 =
𝑉𝑜𝑙𝑢𝑚𝑒𝐵
𝐴𝑟𝑒𝑎𝑈𝐵𝑅𝑆𝐴

 

n: number of adjacent street segments; wi: street width of adjacent street segment i; r: spatial 699 

resolution; hi: relative height obtained from the nDSM for the pixel i; v: number of pixels 700 

covered by vegetation within the UBRSA. 701 
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Table 3. Statistically significant different groups determined with Fisher's least significant 703 

difference procedure with a 95% of confidence level. Homogenous groups are identified using 704 

the same capital letter and sorted according their magnitude. 705 

Metric historical1 historical2 rXIX 

r1950

-60 

r1970

-80 r2000 suburban industrial 

AreaUB A A C B B BC B D 

PerimeterUB A A C B B B B D 

Compactness B B D B A B C B 

Shape index B B A B C C A B 

Fractal Dim. C C A C D E AB BC 

BCA A A D C C BC AB E 

BCR E E E DE D B A C 

𝐵𝐻̅̅ ̅̅  D C E D F G A B 

𝑚𝑎𝑥𝐵𝐻 C B D C D E A B 

sdBH AB B D C D E A A 

𝑁𝐵 A AB AB AB BC C E D 

𝑉𝑜𝑙𝑢𝑚𝑒𝐵 B AB D C C C A E 

𝑉𝑜𝑙𝑢𝑚𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝐵 B B E D D C A CD 

𝑛𝑉𝑜𝑙𝑢𝑚𝑒𝐵 CD BC CD BCD D E A AB 

VCA A A AB AB B C E D 

VCR BC A B AB BC D E C 

𝑉𝑜𝑙𝑢𝑚𝑒𝑉 AB A C ABC C BC D C 

𝑛𝑉𝑜𝑙𝑢𝑚𝑒𝑉 BCD A BCD AB D CD E ABC 

𝐴𝑟𝑒𝑎𝑈𝐵𝑅𝑆𝐴 A A C B C D B E 

𝑆𝑊̅̅̅̅̅ A B D C E E B F 

𝑠𝑑𝑆𝑊 AB BC D C E E A  E 

𝑚𝑎𝑥𝑆𝑊 A BC D C E E AB E 

𝑚𝑖𝑛𝑆𝑊 A B F C DE EF CD G 

𝑁𝑁𝑈𝐵 E A DE CDE BCD BC B BCDE 

𝑉𝐶𝐴𝑈𝐵𝑅𝑆𝐴 A A C AB C C B D 

𝑉𝐶𝑅𝑈𝐵𝑅𝑆𝐴 B A E B D C E C 

𝑉𝑜𝑙𝑢𝑚𝑒𝑉𝑈𝐵𝑅𝑆𝐴 A A C AB C B B B 

𝑛𝑉𝑜𝑙𝑢𝑚𝑒𝑉𝑈𝐵𝑅𝑆𝐴 C A F B D BC E AB 

𝑅𝑎𝑡𝑖𝑜𝐴𝑟𝑒𝑎 F D E DE B A AB D 

𝑅𝑎𝑡𝑖𝑜𝑉𝑜𝑙𝑢𝑚𝑒 F C E D C BC A B 

 706 
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Table 4. Attributes selected by the winnow algorithm ranked by their classification significance 708 

considering only urban block metrics, or combining these with street metrics (identified with *) 709 

Urban block metrics Urban block & Street metrics 

Metric Significance Metric Significance 

VCR 33% *SW̅̅ ̅̅  44% 

BH̅̅ ̅̅  24% VCR 42% 

Compactness 10% BH̅̅ ̅̅  40% 

sdBH 10% BCR 9% 

PerimeterUB 8% *RatioArea 5% 

BCR 8% *VCRUBRSA 3% 

AreaUB 4% PerimeterUB 1% 

VolumeV 3% nVolumeV 1% 

Fractal dimension 2% *maxSW 1% 

maxBH 2% *nVolumeVUBRSA 1% 

BCA 1% Fractal dimension <1% 

VolumeB 1% VolumeB <1% 

NB 1% *NNUB <1% 

nVolumeB 1% *AreaUBRSA <1% 

Shape Index <1% *RatioVolume <1% 

VCA <1%   

nVolumeV <1%   

 710 
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Table 5. Overall classification accuracy reached considering only urban block metrics or 712 

combining these with street metrics. 713 

Urban metrics Overall accuracy 

Urban bock 72.7% 

Urban block & Street 81.1% 

 714 


