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Abstract 
This paper contributes empirical evidence about the usefulness of remote sensing 
imagery to quantify the degree of poverty at the intra-urban scale. This concept is based 
on two premises: first, that the physical appearance of an urban settlement is a reflection 
of the society; and second, that the people who reside in urban areas with similar 
physical housing conditions have similar social and demographic characteristics. We 
use a very high spatial resolution (VHR) image from one of the most socioeconomically 
divergent cities in the world, Medellin (Colombia), to extract information on land cover 
composition using per-pixel classification and on urban texture and structure using an 
automated tool for texture and structure feature extraction at object level. We evaluate 
the potential of these descriptors to explain a measure of poverty known as the Slum 
Index. We found that these variables explain up to 59% of the variability in the Slum 
Index. Similar approaches could be used to lower the cost of socioeconomic surveys by 
developing an econometric model from a sample and applying that model to the rest of 
the city and to perform intercensal or intersurvey estimates of intra-urban Slum Index 
maps. 
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1. Introduction 

The majority of the global population today is urban. The percentage of urban dwellers increased 

from 43% in 1990 to 52% in 2011, and it is expected to grow to 67% by 2050 (United Nations, 

2007, 2008, 2012). All population growth from 2011 to 2050 is expected to be absorbed by 

urban areas, and most of this growth will occur in cities of less developed regions (United 

Nations, 2012). In developing countries, rapid urban growth normally exceeds the capacity for 

local governments to deliver services and infrastructure, which increases urban poverty and 

intra-urban inequalities (Duque et al., 2013).  

 

The monitoring of poverty is a key issue for policy makers because it can help prevent poverty 

traps and crime nests and allocate public investments where they are needed most (Duque et al., 

2013). Urban poverty is a multidimensional phenomenon; as such, there are many ways to 

measure it. These measures usually include information from at least one of the following 

dimensions: income/consumption, health/education, and housing (Carr-Hill & Chalmers-Dixon, 

2005; Moser, 1998). They are computed from survey or census data, which are quite expensive, 

time consuming, less frequently produced, and often statistically significant for spatial units that 

are too large to capture the intra-urban variability of phenomena. This last feature creates 

inference problems such as the ecological fallacy (I. Baud, Kuffer, Pfeffer, Sliuzas, & 

Karuppannan, 2010; Robinson, 1950) or aggregation bias (Fotheringham & Wong, 1991; 

Paelinck & Klaassen, 1979). 

 

This study works toward overcoming these problems by exploring the possibility of using remote 

sensing imagery to measure urban poverty. This proposal is based on the premise that the 

physical appearance of a human settlement is a reflection of the society in which it was created 

and on the assumption that people living in urban areas with similar physical housing conditions 

have similar social and demographic characteristics (Jain, 2008; Taubenböck et al., 2009). The 

main advantage of using remote sensing imagery for urban poverty quantification is that this type 

of data can be obtained faster, at higher frequencies, and for a fraction of the cost required for 
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field surveys and censuses. Poverty mapping usually follows two types of approaches: the 

expenditure-based econometric approach linked to a poverty line used by World Bank, and the 

value-focused approach used by United Nations Development Programme (UNDP) based on the 

Human Development Index (I. S. A. Baud, Pfeffer, Sridharan, & Nainan, 2009). The Index of 

Multiple Deprivations (I. Baud, Sridharan, & Pfeffer, 2008), the Slum Index (Weeks, Hill, Stow, 

Getis, & Fugate, 2007), and the Slum Severity Index (Patel, Koizumi, & Crooks, 2014) all 

follow the value-focused approach that integrates several dimensions of deprivation in one single 

measure.   

 

We chose the Slum Index to corroborate this possibility because this measure is based on the 

physical aspects of dwelling units. A slum household is defined as a group of individuals living 

under the same roof in an urban area that lacks one or more of the following: durable housing of 

a permanent nature, sufficient living space (not more than three people sharing the same room), 

easy access to safe water at sufficient amounts and at an affordable price, access to adequate 

sanitation in the form of a private or public toilet shared by a reasonable number of people, and 

security of tenure (UN-Habitat, 2006). Weeks et al. (2007) presented the calculation of the Slum 

Index from census and survey data as the sum of the fractions of households that lack one or 

more of the five conditions mentioned above. The value can range from 0, meaning that no slum-

like households are present in an area, to 5, where all households in an area lack all five of the 

features defined by UN-Habitat. The proportion of slum dwellers in cities is strongly correlated 

with the Human Development Index, which integrates three development indicators: per capita 

GDP, longevity and educational attainment (UN-Habitat, 2003). Thus, the presence of slums in a 

city is an indicator of poverty, and the Slum Index is a good proxy variable for urban poverty at 

the intra-urban level. This paper implements spatial econometric models using data from 

Medellin (one of the most unequal cities in the world) to assess whether the Slum Index can be 

estimated using image-derived measures. 

 

Weeks et al. (2007) and Stoler et al. (2012) used land cover descriptors and texture measures 

from medium to very high spatial resolution satellite imagery to develop spatial econometric 
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models for predicting the Slum Index as a function of remote sensing-derived variables. This 

work builds on these previous studies by analyzing a wider set of remote sensing variables on 

land cover composition, image texture and urban layout spatial pattern descriptors to provide 

empirical evidence that either supports or refutes the hypothesis that remote sensing could be 

used to estimate the Slum Index at the intra-urban scale. As our intention was to lower the costs 

of this approach as much as possible, we use data drawn from an RGB composition of a 

Quickbird scene with a spatial resolution of 0.60 m captured in May of 2008. The imagery is 

similar in color and spatial resolution to Google Earth and Microsoft Bing images (Quickbird is a 

commercial Earth-observation satellite that collects very high spatial resolution -VHR- imagery). 

Although the conclusions of this exercise may not be valid worldwide, we seek to present new, 

innovative and low-cost means of measuring urban poverty. 

 

The structure of this paper is as follows: section 2 describes the spatial unit of analysis, the 

socioeconomic data for Slum Index calculation, the remote sensing data and variables derived 

from it and the statistical analysis for model specification. The results are presented in section 3, 

and the subsequent discussion is presented in section 4. Section 5 presents the main conclusions 

and public policy implications of this line of research for local governments and authorities. 

 

2. Methods 

Spatial unit of analysis 

Located in the northwestern Colombia (Figure 1), Medellin is the second largest city in 

Colombia with a population of 2.4 million (DANE, 2012). The urban area of Medellin has two 

levels of administrative spatial units: communes (16) and neighborhoods (243). The Slum Index 

is typically reported at the commune level from socioeconomic data available in the Quality of 

Life Survey (whose sampling process is designed to be representative at this spatial scale). There 

are two main disadvantages to using communes as the spatial unit of analysis. First, these units 

are too large for studying the spatial patterns of intra-urban poverty levels. Second, the statistical 

inference based on large administrative units may be affected by aggregation problems such as 
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the ecological fallacy (Robinson, 1950) and aggregation bias (Amrhein & Flowerdew, 1992; 

Fotheringham & Wong, 1991; Paelinck, 2000). In 2007, the average number of surveyed 

households at the neighborhood level was 84 ± 57, with values ranging from 3 to 296, and 

15.64% of the neighborhoods contained less than 30 surveyed households. Working with such 

administrative neighborhoods can result in the following three problems: a lack of statistical 

validity, a small numbers problem for rates calculation (Diehr, 1984), and the potential 

appearance of spurious spatial autocorrelation (Weeks et al., 2007). 

 

 

Figure 1. Location of Medellin in Colombia and South America. 

 

An alternative means of addressing the problems described above involves the use of analytical 

regions, which are spatial units fulfilling specific criteria (e.g., size, shape, attribute 

homogeneity, among others) that are relevant to the phenomena of study (Duque et al., 2007). 

Duque et al. (2013) designed analytical regions for the study of intra-urban poverty variations in 

Medellin. Each analytical region satisfies the following two conditions: it must be homogeneous 

in terms of socioeconomic characteristics, and it must have at least 100 surveyed households to 
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ensure statistical validity. These units were delineated by applying the Max-P-Regions algorithm 

using ClusterPy (Duque et al., 2011; Duque, 2012), which grouped the 243 city neighborhoods 

into 139 analytical regions. In this paper, we excluded one analytical region at the city’s border 

because it included large portions of unoccupied green spaces that were not part of the urban 

fabric. 

 

Data 

The Slum Index was computed using data from the 2007 Quality of Life Survey of Medellin. 

This survey includes 184 questions on the following nine dimensions: housing, households, 

demography, education, social security, income and employment, social participation, gender 

and family violence, and nutrition. The sample includes 21,861 households that represent 79,912 

persons (Duque et al., 2013). Table 1 describes the variables used to calculate the Slum Index 

and the proportion of housing units in the city existing under these conditions. The proportion of 

households not connected to piped water or to the sewer system is very low in Medellin because 

of the city’s high coverage of public services, which is atypical of Colombian cities. The 

proportion of housing units that are constructed from non-durable materials is also very low for 

this city. Figure 2 shows the Slum Index map at the analytical region level. Slum Index values 

are highly variable throughout the city, ranging from 0.17 to 0.86, and the map shows a 

directional spatial pattern with wealthier neighborhoods located in the south and higher values of 

the Slum Index in the north. 

 

Table 1. Variables used to calculate the Slum Index from the 2007 Quality of Life Survey of 
Medellin and the proportion of housing units under those conditions. Modified after Duque et al. 
(2013). 

Variable 
 

Description Dimension Housing units (%) 

Material Walls are not made of durable 
material 

Housing 0.14 

Overcrowding Three or more persons per 
room 

Households 16.77 

Water Absence of piped water Housing 0.01 
Toilet Toilet not connected to a sewer Housing 3.77 
Ownership Residents are not the owners Households 35.46 
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Figure 2. Medellin’s Slum Index map at the analytical region level. 

 

We used a VHR image from 2008 to calculate land cover, structure and texture features at 

analytical region level. We applied two basic image-processing techniques to enhance the 

information contained in the three color bands: we used principal component analysis to 

summarize the spectral information contained in the three bands (the first principal component, 

PC1, explained 98% of the spectral variability contained in the three bands), and we made the 

band ratios red/blue and green/red to enhance the spectral information for a better differentiation 

of surfaces that reflected red and green. 

 

Land cover features describe the composition of the urban scene in terms of the amount of basic 

land cover types (vegetation, soil, and impervious surfaces) and an additional land cover: clay 

roofs, which quantifies the presence of this roofing material. We used the first principal 

component (PC1) and both band ratios as inputs to a supervised per-pixel classification to 

Slum index

0.17 - 0.38
0.39 - 0.48
0.49 - 0.57
0.58 - 0.70
0.71 - 0.86

1
Km
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differentiate the following land cover classes: vegetation, impervious surfaces without clay roofs, 

soil, water, shadows, and clay roofs. The classification accuracy was assessed using a point-

based technique with a reference dataset of randomly selected points (we collected a sample of 

ground truth points and divided it randomly into two datasets: 80% as the classification training 

set and 20% as the validation set). Table 2 shows the confusion matrix of this classification. The 

vegetation, water, impervious surface and clay roofs classes reached producer and user 

accuracies over 90%, while the shadow and soil classes reached accuracies from 76% to 87%. 

We then calculated the percentage of each land cover class present in each analytical region to 

build the land cover features (Figure 3). 

 

Table 2. Accuracy assessment of image classification results. 

Ground truth Vegetation Impervious 
surfaces 
without clay 
roofs 

Water Shadow Soil Clay roofs Total 

Training 
samples 

2952 5636 1732 768 800 2920 14808 

Validation 
samples 

738 1409 433 192 200 730 3702 

        
Classified as        
Vegetation 712 24 0 26 0 14 776 
Impervious 
surfaces 
without clay 
roofs 

10 1356 6 1 9 0 1382 

Water 0 0 400 0 0 0 400 
Shadow 6 0 18 165 0 0 189 
Soil 10 29 9 0 186 8 242 
Clay roofs 0 0 0 0 5 708 713 
Total 738 1409 433 192 200 730  
        
Producer’s 
accuracy (%) 

96.48 96.24 92.38 85.94 93.00 96.99  

User’s 
accuracy (%) 

91.75 98.12 100.00 87.30 76.86 99.29  

Overall 
classification 
accuracy (%) 

95.27 

Kappa value 0.94 
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Figure 3. Example of the input VHR image and classified land cover types within analytical 
regions.  

 

Structural and texture features are abstract variables with great potential to quantitatively 

differentiate organic, crowded and cluttered spatial patterns from the more structured, ordered 

and homogeneous urban layouts typical of wealthy neighborhoods. We expected some of these 

variables to be related to the Slum Index at the analytical region level. The PC1 band and 

analytical region polygons were entered into the FETEX 2.0 software program, an interactive 

computer package for image, object-oriented feature extraction (Ruiz, Recio, Fernández-Sarría, 

& Hermosilla, 2011) to calculate structural and texture variables (FETEX 2.0 is available at the 

Geo-Environmental Cartography and Remote Sensing Research Group website: 

http://cgat.webs.upv.es). 
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Structural variables provide information on the spatial arrangement of elements within the 

polygons in terms of randomness or regularity of the distribution of the elements, and these data 

were computed in FETEX using the experimental semivariogram approach (Balaguer, Ruiz, 

Hermosilla, & Recio, 2010; Balaguer-Beser, Ruiz, Hermosilla, & Recio, 2013). The 

semivariogram is a suitable tool for the quantitative characterization of spatial patterns because it 

quantifies the spatial associations of the pixel intensity values and measures the degree of spatial 

correlation between different pixels in an image (Ruiz et al., 2011). Structural features are 

derived from a zonal analysis defined by a set of singular points on the semivariogram: the first 

maximum, first minimum, and second maximum. Table 3 shows the description of the ten 

different structural variables that were calculated using this approach (for a full description of 

these features see Balaguer et al., 2010; Ruiz et al., 2011). 

 

Texture variables describe the spatial distribution of intensity values in an image and provide 

information on contrast, uniformity, roughness, etc. (Baraldi & Parmiggiani, 1995). The 

histogram of pixel values and the Grey Level Co-occurrence Matrix (GLCM) inside each 

polygon were used for texture feature extraction in FETEX. The histogram is used to compute 

the kurtosis and skewness features. The GLCM describes the co-occurrences of the pixel values 

that are separated at a distance of one pixel inside the polygon (Baraldi & Parmiggiani, 1995), 

and it is used to calculate a set of texture variables proposed by Haralick, Shanmugam, & 

Dinstein (1973) that are widely used in image processing: uniformity, entropy, contrast, inverse 

difference moment, covariance, variance, and correlation. The edgeness factor is a feature that 

represents the density of edges present in a neighborhood (Sutton & Hall, 1972), and FETEX 

also computes the mean and standard deviation of the edgeness factor within this set of texture 

features. Table 3 shows the complete list of remote sensing variables used in the statistical 

analysis. 

 

The VHR image data and image processing methods are the same as those used by Patino, 

Duque, Pardo-Pascual, & Ruiz (2014) to build a database of remote sensing-derived variables for 

the study of the relationship between homicide rates and the urban layout in Medellin.  
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Table 3. Remote sensing-derived variables. 

Group Variable Description 

Land cover 
features 

VEG_P Percentage of vegetation cover 
IMP_SURF_P Percentage of impervious surface cover including the clay roof 

cover 
SOIL_P Percentage of bare soil cover 
CLAY_ROOFS_P Percentage of clay roof cover 
F_CLAYR_IMPS Fraction of clay roof cover over impervious surfaces 

Structural 
features 

RVF Ratio variance at first lag 
RSF Ratio between semivariance values at second and first lag 
FDO First derivative near the origin 
SDT Second derivative at third lag 
MFM Mean of the semivariogram values up to the first maximum 
VFM Variance of the semivariogram values up to the first maximum 
DMF Difference between the mean of the semivariogram values up to the 

first maximum and the semivariance at first lag 
RMM Ratio between the semivariance at first local maximum and the 

mean semivariogram values up to this maximum 
SDF Second order difference between first lag and first maximum 
AFM Area between the semivariogram value in the first lag and the 

semivariogram function until the first maximum  

Texture 
features 

SKEWNESS Skewness value of the histogram 
KURTOSIS Kurtosis value of the histogram 
UNIFOR GLCM uniformity 
ENTROP GLCM entropy 
CONTRAS GLCM contrast 
IDM GLCM inverse difference moment 
COVAR GLCM covariance 
VARIAN GLCM variance 
CORRELAT GLCM correlation 
MEAN_EDG Mean of the edgeness factor 
STDEV_EDG Standard deviation of the edgeness factor 

 

Model 

We developed a model for Slum Index estimation based solely on remote sensing data from a 

VHR image to assess the performance of the remote sensing-derived variables for this purpose 

and to examine the associations between urban fabric characteristics and urban poverty. The 

proposed model has the following general form:  

 

Slum Index = f (land cover, structure, texture) 
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We used survey data to compute the Slum Index from socioeconomic variables following the 

method outlined by Weeks et al. (2007) and a VHR image to extract a wide set of remote 

sensing-derived measures. Although VHR imagery of higher spectral resolution exists, we 

deliberately chose to work with an image of a spatial and spectral resolution similar to many 

aerial color photographs and to Google Earth and Microsoft Bing imagery to make this approach 

repeatable for analyses of other urban areas around the world. Although the value of the 

variables that comprise the Slum Index cannot be measured directly from remote sensing data, 

the spatial characteristics of urban land cover elements can be quantified to serve as a proxy for 

the Slum Index (Weeks et al., 2007). These characteristics can provide a framework for the 

analysis of intra-urban variations of poverty so that urban planners and policy makers can 

identify which areas require the most attention (Stoler et al., 2012). 

 

Stoler et al. (2012), Stow et al. (2007) and Weeks et al. (2007) developed spatial econometric 

models to estimate the Slum Index in Accra, Ghana, as a function of within-neighborhood 

measures of vegetation, impervious surface and soil as well as a texture measure from remote 

sensing imagery. Owen and Wong (2013) reviewed indicators derived from remote sensing 

imagery and digital elevation data that have been reported to be useful for slum detection. Using 

information on Guatemala City, the authors found that the variables that best distinguished 

informal from formal settlements include the entropy of roads, vegetation patch size, vegetation 

compactness, profile convexity, road density and soil coverage. Following these previous 

studies, a model for Slum Index estimation using remote sensing imagery should include 

information on not only land cover materials but also on the spatial pattern of the urban fabric. 

 

Figure 4 outlines the image processing methodology, neighborhood delineation and statistical 

analysis used to develop the econometric model. The section of the diagram with a gray 

background portrays the basic steps applied by Duque et al. (2013) that were used to delineate 

the analytical regions. Due to collinearity among the structural and texture variables, we 

conducted a factor analysis using the principal components method to consolidate the variables 

into their main uncorrelated factors. For easier interpretation of factors, we applied Orthogonal 
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Varimax rotation to maximize the loading of each variable on one factor while minimizing it in 

others. 

 

 

Figure 4. Flow diagram showing the steps for model specification of the Slum Index as a 
function of remote sensing variables from a VHR image of the urban scene. 

 

As this is the first time that these structural and textural variables have been used to estimate the 

Slum Index and there is no theoretical model for reference, we used stepwise regression 

(backward, forward and both) based on the Akaike Information Criterion (AIC) as the variable 

selection criteria for model specification using R software (R Core Team, 2013) and ran an 

Ordinary Least Squares (OLS) regression. The use of OLS with spatial data is problematic due to 

the potential presence of spatial autocorrelation within the model residuals, which violates the 

assumption of the independence of residuals. We evaluated the OLS residuals for evidence of 

spatial autocorrelation following the specification search strategy proposed by Florax et al. 

(2003) and using the Lagrange Multiplier tests and their robust forms to determine the 

appropriate type of spatial model to use, and we ran the spatially adjusted regression using 

OpenGeoda software (Anselin et al., 2006). Following the notation of Anselin (1988), the 

general form of the spatial model is: 
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Slum Index = Xβ + ρWSlum Index + u 

u = λWu + e 

 

where X is an N by K matrix of observations of independent variables (in our case, image 

derived variables), β is a K by 1 vector of parameters associated with the independent variables, 

W is a spatial weight matrix that represents the spatial association between regions, ρ is a 

measure of the strength of that spatial association, and u is the remaining error term with λ being 

the parameter measuring the strength of the spatial association in the error term. Finally, e is a 

vector of independently distributed random terms. When neighboring values of the dependent 

variable have a direct effect on the value of the dependent variable itself, the λ parameter equals 

zero, and we obtain a spatial autoregressive or spatial lag model. When the spatial dependence 

enters through the errors rather than through the systematic component of the model, the ρ 

parameter equals 0, and we obtain a spatial error model. 

 

We first parameterized the spatial weight matrix, which defines the areas that are considered 

neighbors of a given area, using the Rook and Queen specification of contiguity matrices. The 

Rook specification states that two polygons are neighbors if they share a border, while the Queen 

specification states that two polygons are neighbors if they share a border or a vertex. As these 

specifications created confusing results regarding the type of spatial dependence present in the 

model, we conducted the specification of a neighbor weight matrix based on a fixed distance 

band; thus, all neighbors within a specified distance of a given polygon are considered neighbors. 

To determine an appropriate distance band, we followed the strategy of Troy et al. (2012) and 

built the semivariogram of the endogenous variable, the Slum Index, to determine the distance at 

which spatial autocorrelation decays. The semivariogram shows how variance between 

observations pairs varies as a function of distance, and in this case it showed a terrace-type 

pattern with a sill at approximately 2 km (Figure 5). This indicated that the autocorrelation of 

observation pairs leveled off at that distance. We performed a sensitivity analysis using distance 
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bands ranging from 1.3 to 2 km and found that the models were very consistent in terms of the 

magnitude and sign of the coefficients. However, the 1.7 km distance band provided conclusive 

results on the type of spatial model to be used. 

 

 

Figure 5. Empirical omnidirectional semivariogram of Slum Index. Smoothed trend line in red. 
Gray area shows the distance interval tested for the weight contiguity matrix specification. 

 

3. Results 

The principal components factor analysis of image structure and texture variables resulted in four 

retained factors with eigenvalues above 1. These four factors account for 95% of the variance for 

the original 21 variables. Table 4 shows the rotated factor analysis results. Factor 1 accounts for 

57% of the variance among these variables. It was labeled overall complexity (OC) as it captures 

most of the structural variables with the exception of RSF and VFM as well as most of the 

texture variables with the exception of uniformity, variance and covariance. Factor 2 accounts 

for 17% of the variance and was labeled variance as it captured the texture variables VARIAN 

and COVAR. The structural variables RSF and VFM were captured by factor 3, which accounts 

for 15% of the variance. Because RSF pertains to the variability of intensity values at short 

distances and VFM is related to the variation in changes of the image intensity values as a 

function of distance (Balaguer et al., 2010), we labeled factor 3 variation of heterogeneity as a 

function of the distance (VHD). In this context, factor 3 represents the diversity of landscape 
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elements, and we interpret this factor as a local measure, which complements the global aspects 

already captured in the OC factor. Factor 4 accounts for 6% of the variance and captured only 

one texture variable, uniformity. 

 

Table 4. Rotated factor loadings (orthogonal Varimax rotation) of image structural and texture 
variables. 

 
Variable 

Factor 1: 
Overall complexity 

(OC) 

Factor 2: 
Variance 

Factor 3: 
Variation of 

heterogeneity as a 
function of distance 

(VHD) 

Factor 4: 
Uniformity 

RVF -0.6776 0.5939 0.3585 0.1426 
RSF -0.0613 -0.0453 0.9596 0.0973 
FDO 0.9671 -0.0581 -0.2174 -0.0261 
SDT 0.8796 0.1118 0.4252 0.0448 
MFM 0.9876 0.0837 -0.0453 -0.0570 
VFM -0.2237 0.3901 0.8681 -0.0340 
DMF 0.9843 0.1156 0.0218 -0.0617 
RMM -0.6349 0.4211 0.4938 -0.0544 
SDF -0.9806 0.0894 0.1219 0.0143 
AFM 0.9950 0.0412 -0.0453 -0.0410 
SKEWNESS 0.7958 0.3833 -0.3372 -0.1677 
KURTOSIS -0.7338 -0.5810 0.2399 0.1552 
UNIFOR -0.1785 0.3127 0.0117 0.9072 
ENTROP 0.8269 0.1594 -0.2220 -0.4743 
CONTRAS 0.9324 -0.0576 -0.3315 -0.0327 
IDM -0.8896 0.0873 0.1759 0.3158 
COVAR 0.1014 0.9733 0.0968 0.1397 
VARIAN 0.1880 0.9632 0.0654 0.1359 
CORRELAT -0.6808 0.6199 0.3517 0.0299 
MEAN_EDG 0.9294 -0.0378 -0.2767 -0.1728 
STDEV_EDG 0.7039 0.0208 -0.4758 0.0775 
Note: Numbers in bold represent the highest loading of each variable on one factor. 

 

The stepwise regression procedure involves selecting the variables that minimize the model’s 

AIC value through progressive steps, wherein improvements are made to the fitness of the model 

as each variable is included (forward option) or excluded (backward option) from the initial 

model. We run stepwise regressions through forward selection, backward elimination and 

bidirectional elimination using R software and obtained the same results. The variables that were 

included in the model are the percentage of impervious surfaces (IMP_SURF_P), the fraction of 

clay roof-cover over impervious surfaces (F_CLAYR_IMPS), the overall complexity factor 
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(OC), and the variation of heterogeneity as a function of the distance factor (VHD). This linear 

model yields a multiple R2 of 0.59 and an adjusted R2 of 0.58, which indicates that these four 

variables together can explain up to 58% of the variability of the Slum Index in Medellin. Table 

5 shows a summary of the model’s parameters estimated using OLS and the results of several 

tests for the normality of errors, heteroskedasticity and the specification robust test as well as the 

Lagrange Multiplier tests.  

 

Table 5. Multivariate OLS model of Slum Index as a function of remote sensing variables. 
Spatial unit: analytical regions. N = 138. Contiguity matrix: 1,700 m distance band, row-
standardized weights. 

Exogenous variables Coefficients  
Constant 0.900488*** 
IMP_SURF_P -0.004223*** 
F_CLAYR_IMPS -0.549229*** 
OC 0.088842*** 
VHD -0.030657*** 
  
R2 0.5918 
Adjusted R2

 0.5795 
Akaike information criterion -228.949 
Schwarz criterion -214.312 
  
Multicollinearity Condition Number 17 
  
Test on normality of errors:  
Jarque-Bera test 1.25 
  
Diagnostics for heteroskedasticity:  
Breusch-Pagan test 1.29 
Koenker-Bassett test 1.68 
Specification Robust test:  
White 13.18 
  
Diagnostics for spatial dependence:  
Lagrange Multiplier – lag 11.07*** 
Robust LM – lag 4.78** 
Lagrange Multiplier – error 6.63*** 
Robust LM – error 0.35 
Note: statistical significance is at the 1, 5 and 10% level as indicated by ***, **, and *, 
respectively. 

 

The non-significant values of the Breusch-Pagan, Koenker-Bassett and White tests indicate that 

there was no evidence of heteroskedasticity in the model. The robust version Lagrange Multiplier 
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tests indicate the presence of spatial autocorrelation in the form of a spatially lagged dependent 

variable. We adjusted this using a spatial lag model that included the lagged dependent variable 

(W Slum Index). The highly significant value of the spatial lag variable coefficient indicates that 

the spatial autocorrelation was properly addressed in the spatial lag model, and a careful 

examination of the spatial lag model residuals did not show signs of remaining spatial patterns. 

The Likelihood Ratio test, the AIC and the Schwarz criterion all indicate a better fit of the 

spatially adjusted regression over its non-spatial counterpart, and the non-significant value of the 

Breusch-Pagan test again indicates that heteroskedasticity is not present in the spatial model. 

Table 6 shows the spatial lag model coefficients and the Akaike information criterion, the 

Schwarz criterion and the results of the Breusch-Pagan test for heteroskedasticity and the 

Likelihood Ratio test. 

Table 6. Spatial Lag model of Slum Index as a function of remote sensing variables. Spatial unit: 
analytical regions. N = 138. Contiguity matrix: 1,700 m distance band, row-standardized 
weights. 

Exogenous variables Coefficients 
Constant 0.652268*** 
IMP_SURF_P -0.003116*** 
F_CLAYR_IMPS -0.460770*** 
OC 0.065046*** 
VHD -0.028614*** 
W Slum index 0.312556*** 
  
Pseudo R2

 0.62 
Akaike information criterion -236.098 
Schwarz criterion -218.534 
  
Diagnostics for heteroskedasticity  
Breusch-Pagan test 1.22 
  
Likelihood Ratio test 9.15*** 
Note: statistical significance is at the 1, 5 and 10% level as indicated by ***, **, and *, 
respectively. 

 

4. Discussions 

We found spillover effects regarding the Slum Index in Medellin, which is in agreement with 

previous works that have found the same effect for different poverty measures (Duncan et al., 

2012; Holt, 2007; Okwi et al., 2007; Orford, 2004; Sowunmi et al., 2012; Voss et al., 2006). The 
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results of the statistical analysis indicate that the most important remote sensing predictors of the 

Slum Index at the analytical region level for Medellin include the percentage of impervious 

surfaces, the fraction of clay roofs over impervious surfaces, the overall complexity factor and 

the variation of heterogeneity as a function of the distance factor. These variables describe 

aspects of the land cover composition within the analytical region as well as the spatial pattern of 

the urban layout in terms of texture and structure. 

 

The model’s coefficients indicate a negative association between the Slum Index and the 

percentage of impervious surfaces, the fraction of clay roof cover over impervious surfaces and 

the VHD factor. A positive association was found between the Slum Index and the OC factor at 

the analytical region level. These associations were expected. The Slum Index is higher in the 

analytical regions with a lower percentage of impervious surfaces. However, this is only the case 

when the impervious surface is mostly comprised of surfaces other than clay roof and when the 

urban layout has both higher overall complexity and lower diversity of landscape elements 

within the analytical region. 

 

The land cover variables such as the percentage of impervious surfaces and fraction of clay roof 

cover over impervious surfaces are highly significant in both models, which means that the 

association between roofing materials and urban poverty is present in Medellin. Higher values of 

the fraction of clay roof over impervious surfaces are related to wealthier neighborhoods in 

Medellin. This is the case because clay roofs are more expensive to install and maintain than 

other roofing materials such as industrial roof tiles made from zinc or asbestos and because clay 

roofs are rarely present in the most deprived areas of the city. However, this does not mean that a 

house with a different type of roof is more deprived than a house constructed of clay roof tiles. 

The association that we found holds at the analytical region level, which can include hundreds of 

houses or buildings. Moreover, the presence and abundance of orange and red clay tile roofs in a 

city is closely related to its cultural heritage as well as the environmental conditions of each city. 

This is the case because the characteristics of tile roofs constructed depend on the availability 

and mineral composition of clays and sands used as the primary source of building materials that 



	 19	

are located within a city’s proximity. One can expect that this relationship could be similar in 

other Latin American cities that share a similar cultural heritage and that also have close access 

to orange and red clays. Whereas the most important remote sensing predictor of the Slum Index 

in Accra is the amount of vegetation (Stoler et al., 2012; Weeks et al., 2007), this variable does 

not perform in the same way for Medellin. In fact, the amount of vegetation is barely related to 

the Slum Index at the analytical region level for this city with a Pearson’s correlation coefficient 

of 0.14. This may be explained by differences in climate conditions, which influences vegetation 

abundance in a given location, as well as by cultural differences between the cities’ inhabitants. 

 

The structural and texture descriptors that were used to characterize the spatial pattern of the 

urban layout proved to be useful for Slum Index estimation, and these descriptors are easily 

computed from VHR imagery and polygon boundary data using FETEX 2.0. The use of image 

texture measures for Slum Index estimation has been reported for Accra, Ghana (Weeks et al., 

2007), and their use for slum detection and mapping has been reported in other different cities 

around the world such as Campinas and Rio de Janeiro in Brazil (Barros & Sobreira, 2005; P. 

Hofmann, Strobl, Blaschke, & Kux, 2008); Cape Town, South Africa (Peter Hofmann, 2001); 

Casablanca, Morocco (Rhinane, 2011); and Ahmedabad, Delhi, Pune and Hyderabad in India 

(Kit, Lüdeke, & Reckien, 2012; Kohli, Warwadekar, Kerle, Sliuzas, & Stein, 2013; Niebergall, 

Loew, & Mauser, 2007; Shekhar, 2012). In Medellin, these descriptors indicate that the Slum 

Index is higher in the analytical regions that registered simultaneously higher overall complexity 

(OC) and lower variation of heterogeneity as a function of distance (VHD). Figure 6 shows 

square image tiles of 500 meters in different areas of the city with low and high values of OC 

and VHD factors. The image tiles are organized according to increasing values of each factor 

from left to right to show changes in the urban scene as the value of the factors increases. From 

this figure, the reader can intuitively corroborate the associations of the Slum Index with the OC 

and VHD values found in the statistical models. 
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Figure 6. Square image tiles showing urban areas (500 x 500 meters) that have different values 
of overall complexity (OC) and variation of heterogeneity as a function of distance (VHD) 
factors. The tiles are organized from left to right according to increasing values of each factor.  

 

High OC values in the image denote that different surface covers exist within close proximity to 

one another as well as high edge density and high local heterogeneity, which are typical 

characteristics of the city’s most deprived neighborhoods. In these neighborhoods, building 

density is high, but the dwelling units are rather small with varying roofing materials and located 

in close proximity to each other. This increases the local heterogeneity and overall complexity of 

the image. Low overall complexity in the urban layout is associated with analytical regions that 

have large, homogenous surfaces such as wide roads and avenues, open green spaces, industrial 

areas that have large buildings with homogeneous roofs and large detached houses surrounded 

by vegetation. The lowest Slum Index values in this city are located in analytical regions where 

the existence of large houses surrounded by vegetation is most prevalent. High VHD values are 

associated with high landscape fragmentation due to a higher diversity of landscape elements. 

Common examples include residential areas with bigger houses or buildings and the presence of 

green areas and wide roads surrounded by vegetation, parks, pools, and other urban elements. 

Low VHD is associated with more crowded and organic urban layouts where small and diverse 

surfaces exist in close proximity, registering high variability over short distances but lower 

variance at a higher scale (see Figure 6, VHD tiles). 
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In Medellin, organic urban layouts are primarily, though not solely, the result of rural-to-urban 

migration to unplanned urban spaces (Juan C. Duque et al., 2013). Political violence, an ongoing 

internal armed conflict with guerrillas and paramilitary groups, and the drug war in the rural 

areas of the country have caused important rural-to-urban migrations in Colombia (Ibáñez & 

Vélez, 2008). These migrations have impacted urban population growth rates since the mid-20th 

century in Medellin. Concentrated in the northern periphery of the city, this demographic growth 

has exceeded the capacity of the local government to deliver services and infrastructure and 

caused the appearance of slums (Juan C. Duque et al., 2013). The natural population increase 

combined with structural barriers to socioeconomic advancement, such as poor access to health, 

education, and work, has also contributed to the perpetuation of slum-like neighborhoods. As 

these neighborhoods were born from self-build processes without any planning, they are 

characterized by organic layouts and almost no open spaces. After these areas were consolidated, 

local authorities provided access to electric energy, piped water, and the sewer system to replace 

illegal and unsafe electric and water connections while also seeking to decrease losses and 

increase collection of these services. 

 

We followed the approach of Orford (2004) to assess the usefulness of this model for policy 

making. We used the local Moran I coefficient, a local indicator of spatial association (Anselin, 

1995), to identify areas of concentrated poverty and affluence within the city and to see if the 

estimated Slum Index from remote sensing can identify the same areas than the survey-based 

Slum Index. Figure 7 shows a comparison of local Moran’s I maps of the survey-based Slum 

Index versus the estimated Slum Index with the remote sensing-derived variables; both created 

using OpenGeoda. Although there is not an exact match, the maps show a general good 

agreement between the High-High and Low-Low areas, which means that the Spatial Lag model 

is picking the spatial concentration of the poorest and wealthier areas of the city in a rather good 

way. The Spatial Lag Model residuals are normally distributed, with a mean of 0 and a standard 

deviation of 0.098. This means that rather than skewing toward low or high values, the model 

fitted quite well throughout the city. 
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Figure 7. LISA maps of Survey-based vs. estimated Slum Index with remote sensing-derived 
variables. Spatial clusters of high values, showed in red, indicate areas of concentrated poverty; 
spatial clusters of low values, showed in blue, indicate areas of concentrated affluence. 

 

5. Conclusions 

This paper seeks to estimate the Slum Index for one Latin American city solely using remote 

sensing data. The usefulness of remote sensing data for estimating the Slum Index at the intra-

urban level was previously tested in the case of Accra, Ghana. The findings of the present work 

corroborate these earlier results in a city with a different geographical and economic setting. In 

this work, we tested a wider set of remote sensing variables related not only to land cover 

composition but also to the spatial pattern characteristics of the urban layout.  
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The presence of spatial autocorrelation with regard to the Slum Index in Medellin indicates that 

poverty in this city could be tackled through a policy of strategically located investments and 

programs designed to boost economic development in some of the city’s neighborhoods as their 

outcomes can be expected to affect not only the neighborhoods where the investment is located 

but surrounding neighborhoods as well. From this point of view, municipal public investments 

made over the last decade including public library parks and high quality schools seem to be an 

appropriate strategy for reducing poverty in this city and should be encouraged and improved. 

 

We highlight that the input remote sensing data used in this paper are rather simple. For these 

data, the most important requirement is a very high spatial resolution to capture the differences in 

urban layout complexity and heterogeneity. We did not use near-infrared spectral information or 

other special spectral features from the satellite imagery. The structure and texture variables were 

calculated from the first principal component band after processing the red, green and blue bands 

of the color image. Any aerial color image with a very high spatial resolution could serve this 

purpose. This creates the possibility for rapid Slum Index estimation and intra-urban poverty 

pattern analysis from remote sensing data given that similar imagery could easily be obtained 

from Internet services such as Google Earth, Yahoo, or Microsoft Bing Imagery. 

 

The model developed so far for Medellin is based on the city’s unique characteristics. Future 

research should address two main issues: to test whether the same variables relate to intra-urban 

poverty measures in a similar way in other cities around the world and to verify that this 

approach provides consistent results over time. When these aspects are resolved, a similar 

approach could be used for the following purposes in urban settings with sparse socioeconomic 

data: to lower the cost of socioeconomic surveys by developing an econometric model from a 

sample and applying that model to the rest of the city and to perform intercensal or intersurveys 

estimates of intra-urban Slum Index maps. 
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