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Abstract:  

Non-oxidative methane dehydroaromatization (MDA:6CH4↔ C6H6 + 9H2) using shape-

selective Mo/zeolite catalysts is a technology to exploit stranded natural gas reserves by direct 

conversion into transportable liquids. The reaction, however, faces two major issues: the one-

pass conversion/yield is limited by thermodynamics, and the catalyst deactivates fast due to 

the kinetically-favored formation of coke. Here we show that integration of an 

electrochemical BaZrO3-based membrane exhibiting both proton and oxide ion conductivity 

into an MDA reactor enables high aromatic yields and outstanding catalyst stability. These 

effects originate from the simultaneous extraction of hydrogen and distributed injection of 

oxide ions along the reactor length. Further, we demonstrate that the electrochemical co-ionic 

membrane reactor enables high carbon efficiencies (up to 80%) significantly improving the 

techno-economic process viability, and sets the ground for its commercial deployment. 

One Sentence Summary: The integration of a co-ionic membrane in a MDA reactor 

remarkably enhances aromatics yield and catalyst lifetime. 

Main text: 

Natural gas constitutes a large and relatively clean fraction of the fossil hydrocarbon 

resources, but high capital cost of multi-stage industrial conversion via syngas leaves much of 

it stranded. Non-oxidative methane dehydroaromatization (MDA) is a promising catalytic 

route allowing direct conversion of natural gas into valued petrochemicals such as benzene. 

The MDA reaction is conventionally run at around 700ºC in presence of bifunctional catalysts 

comprising carbided molybdenum nanoclusters dispersed in acidic shape-selective zeolites 

such as ZSM-5 and MCM-22 (1). The process suffers from two major hurdles that challenge 

its further development and industrial implementation: The per-pass conversion to aromatics 

is limited by thermodynamics, and the catalyst activity rapidly drops with time on stream 

owing to the accumulation of polyaromatic-type coke on the external zeolite surface that 

impedes the access to internal active sites (2, 3). Attempts to overcome thermodynamic 

limitations by selective removal of the co-product hydrogen from the MDA reactor using, for 

instance, Pd-type (4) or ceramic (La5.5W0.6Mo0.4O11.25-δ) (5) membranes were not satisfying 

due to enhanced coke formation that accelerated catalyst decay. Strategies based on fine-

tuning the zeolite acidity and porosity and co-feeding small amounts of CO2, CO, H2, and 

H2O with methane were applied to stabilize the catalyst by restraining coking, but with 

limited success (2, 6, 7). Recently, a direct non-oxidative methane conversion path on single-

iron sites embedded in a silica matrix (Fe@SiO2) with almost no coke formation and high 

stability has been reported (8). This however requires very harsh conditions (950ºC) and 

produces ethylene (rather than liquids) as the major product with selectivity of ca. 55%. 



We here present a novel approach to circumvent the current limitations of MDA 

reaction by integrating an ion-conducting membrane in the catalytic reactor. We report an 

innovative catalytic membrane reactor (CMR) for intensification of the MDA process, 

resulting in high and prolonged aromatic yields. The CMR is driven by a tailored co-ionic 

membrane that enables fast and accurate simultaneous control of hydrogen extraction and 

injection of oxygen species along the catalyst bed (Fig. 1A). The concerted action of both 

functions leads to unprecedented gains in terms of aromatics yield and catalyst stability, and 

consequently enabling the MDA technology. 

The electrolyte of the membrane is based on acceptor doped BaZrO3 which takes up 

protons from steam and exhibits high proton (H
+
) and minor oxide ion (O

2-
) conductivity at 

elevated temperatures (9). Applications using its protonic conductivity have shown promising 

results (10-12), but, as shown here, it is in fact the co-ionic transport property of the material, 

more specifically the conduction ratio of protons and oxide ions, that allows the successful 

implementation into the MDA process. The tubular membrane consists of a dense 25µm thick 

BaZr0.7Ce0.2Y0.1O3-δ (BZCY72) electrolyte film on a porous BZCY72-Ni support which also 

works as the cathode (11). The metallic Ni has sufficient catalytic activity for the hydrogen 

evolution and reduction of steam (Fig. 1B). A Cu-based anode is applied on the electrolyte 

film so as to face the catalyst. It activates the electrochemical oxidation of H2 into protons 

while preventing secondary conversion of hydrocarbons into coke as typically reported for 

Ni- or Pt-based electrodes (13). As the current density is increased, both hydrogen extraction 

and oxygen injection increase proportionally, where the amount of oxygen injected is about 

0.3% that of extracted hydrogen (Fig. 1C). 

Figure 2 shows results of MDA experiments, comparing our CMR with a fixed bed 

reactor (FBR) under otherwise similar conditions utilizing 6Mo/MCM-22 as catalyst. The 

catalyst behaviour in the FBR is fully representative of the state-of-the-art at standard MDA 

conditions: the aromatics yield initially increases during the induction period, reaches a 

maximum of ca. 10%, and rapidly falls as the reaction progresses. In contrast, by applying an 

electrical current to the CMR (ON mode) the aromatics yield continues to increase beyond the 

induction period and attains a maximum of ca. 12% after which the catalyst activity starts to 

decline (Fig. 2A). Worth to note is the almost instant catalytic response (also for conversion, 

see Fig. S2) to ON-OFF switching as well as to changes in the intensity of the imposed 

electrical current, which empowers our CMR system with the ability to accurately tune the 

catalytic performance. Interestingly, the enhancement in conversion/yield observed upon 

current application occurs while maintaining the characteristic high selectivity to aromatics, 

particularly to benzene (>85% on a coke-free basis, Fig. 2B) of the shape-selective 

6Mo/MCM-22 catalyst. Note, however, that operation in the CMR produces some CO, albeit 

in relatively low selectivity (vide infra). The most striking result in Fig. 2A is, certainly, the 

excellent stability of the catalyst in the CMR, with an average decay rate about one order of 

magnitude lower than that observed in the conventional FBR. In consequence, while the 

aromatics yield lowers to only ∼1.5% in the FBR after 45 h of reaction, it remains as high as 

∼9% in the CMR, translating into a two-fold increase in the cumulative yield (Fig. 2C). The 

remarkable stability exhibited by the catalyst in the CMR arises from a decreased coke-

forming tendency, which becomes more evident at increasing reaction times (Fig. 2C).  

Thermodynamic calculations predict that in situ H2 extraction increases methane 

conversion and shifts selectivity towards heavier aromatics (and ultimately coke) at the cost 

of benzene and C2 hydrocarbons (Fig. S3), as experimentally proved using H2 permselective 

membranes (14, 15). While thermodynamics thus account for the increase in methane 

conversion, the high benzene selectivity and improved catalyst stability during the galvanic 



operation in our CMR cannot be anticipated by considering merely effects related to the in 

situ H2 extraction. 

The BZCY72 membrane enables the concomitant transport of oxide ions towards the 

catalytic reaction medium where they rapidly oxidize the produced H2 to steam at the 

electrode (16). We therefore investigated the isolated effect of steam on the performance of 

6Mo/MCM-22 catalyst in the FBR by co-feeding 0.25-0.9 mol% steam together with 

methane, corresponding to steam concentrations within the range achieved by the oxygen 

injection in our CMR. Whereas the observed decrease in both conversion and aromatics 

selectivity (Fig. S4) is thermodynamically consistent (17), post-reaction characterization of 

the spent catalysts by TGA and TPO analyses shows that the improved stability achieved in 

the CMR is ascribed to the inhibition of coke formation by the in situ generated steam (Fig. 

S5). The steam-promoted coke suppression during MDA has also been reported for an 

oxygen-permeable membrane reactor (18) and likely occurs by a mechanism involving 

scavenging of reactive carbon from the catalyst surface via steam reforming (19), which 

accounts for the observed formation of CO (Fig. 2b). It is worth noticing the superior stability 

achieved in our CMR as compared to the FBR experiment with an equivalent steam 

concentration (0.25 mol%). This indicates that the controlled and distributed oxygen injection 

is more effective in improving the catalyst stability than the continuous external addition of 

steam. Additionally, the analysis of the XANES spectra at the Mo K-edge and XPS Mo3d 

spectral signals (Fig. S5-Table S1) did not reveal appreciable changes in Mo speciation during 

CMR operation with respect to the FBR fed with pure methane. Conversely, a higher average 

Mo oxidation state is inferred for the catalyst used in the FBR experiment co-fed with 0.9 

mol% steam, which might imply a certain loss of active molybdenum carbide species by re-

oxidation (19). We highlight that the crystalline structure of the zeolite host remained almost 

intact upon contact with the in situ generated steam under MDA conditions (Fig. S5). 

Therefore, the distributed O2 injection allowed by the BZCY72 membrane effectively reduces 

the coking rate while preserving the structural integrity of the zeolite and active Mo-carbide 

sites. 

A key hypothesis motivating the CMR is that in situ extraction of H2 will shift the 

equilibrium of the formation of aromatics and this will have major consequences in the 

process industrialization. In Fig. 3A the experimentally obtained yield of aromatics is plotted 

as a function of the magnitude of both H2extracted and O2 injected. High H2 extraction rates 

(>60%) with respect to the H2 produced in the MDA reaction can be achieved by using the 

electrochemical cell reactor. By increasing the magnitude of the imposed co-ionic current, the 

aromatic yield raises and surpasses the theoretical equilibrium yield (12.3%) at H2 extraction 

rates above 50%. As expected from the coke-suppression mechanism operating in the CMR, 

CO formation is negligible when no current is imposed and raises parallel to the aromatics 

yield with increasing co-ionic currents (Fig. 3A). These results unambiguously prove the 

galvanic-driven solid-state injection of atomic oxygen ions. As a consequence of the oxide ion 

supply and the resulting reduced coking, the catalyst degradation rate drastically drops by a 

factor of 6 with respect to the FBR at low extraction rates and then continues decreasing 

smoother at increasing currents (Fig. 3B). 

To assess the practical implications of the described CMR we have performed process 

simulations using Aspen tools. Fig. 4A schematizes a complete gas-to-liquid process based on 

our MDA reactor architecture and includes recycling of the reactant methane stream. In this 

process, the critical parameter for maximizing the per-pass conversion is the hydrogen 

concentration in the recycle loop. By including a methanation stage, CO is converted to 

methane and steam giving a typical H2 concentration of 5% at the reactor inlet (Fig. S7). 

Experimental CMR results under recycle operating conditions (5% H2 co-feed) gives 



aromatics yields ca. 6.5% with near-zero degradation rate (Fig. 4B). The process performance 

metrics (Fig. 4C) for different extraction rates (60- 80%) are compared with (i) a plant based 

on a conventional MDA reactor, implementing downstream gas fractioning using polymeric 

membranes (FBR-PolyM) (20); and (ii) a plant based on a CMR employing Pd-membranes 

(Pd-CMR) (4). Carbon efficiency is superior for our CMR system, improving steeply with 

increasing extraction rates. At rates above 80%, the carbon efficiency achieved is similar to 

that exhibited by large and optimized Fischer-Tropsch (FT) plants. The difference between 

both processes relies on plant size and complexity. While traditional FT process requires 

multiple steps including syngas production, the MDA co-ionic CMR produces aromatics 

directly. This feature allows for modularity and flexibility to adapt to the size of the natural 

gas field in contrast to FT plants that become uneconomic at small/medium scale (1 to 10 

metric tons hour
-1

). 

 

Fig. 1. Current controlled co-ionic membrane reactor. (A) Methane is converted to benzene 

and hydrogen over Mo/zeolite. Hydrogen is transported as protons to the sweep side. Oxide 

ions are transported to the reaction mediumto react with H2 and form steam as intermediate 

before to react with coke to form CO and H2. (B) SEM images of themembrane electrode 

assembly (FIB section). Cathode porosity formed upon reduction of NiO can be observed 

beneath the dense electrolyte. (C) H2 extracted and O2 injected (%) versus current density at 

700°C.Cathode is swept with H2/CH4 (10/90) and anode with H2O/H2/Ar (3/5/92). 



 

 

Fig. 2. FBR and co-ionic CMR performance in MDA over Mo/MCM-22 (710°C, 1500 mL g
-1

 

h
-1

, 1 bar and current density of 40 mA/cm
2
). (A), Aromatics (benzene, toluene and 

naphthalene) yield versus time on stream. Greyed areas indicate when hydrogen is extracted. 

(B) Methane conversion and selectivity to main products after 5 and 9 h on stream. (C), Coke 

deposition in Mo/MCM-22 catalyst and cumulative aromatics production in gram per gram of 

catalyst. 

 
Fig. 3. Effect of co-ionic membrane reactor.(A)Aromatics (benzene, toluene and naphthalene) 

and CO yield as a function of H2 extracted and O2 injected at 700 °C and 1 bar. (B) 

Deactivation rate constant, assuming first-order catalyst decay, as a function of H2 extracted 

and O2injected to the feed side. 



 

 
Fig.4. Synloop process for MDA using co-ionic CMR. (A) Flow diagram of process using co-

ionic CMR. (B) Aromatics (benzene, toluene and naphthalene) yield versus time on stream at 

700 °C, 3000 mL g
-1

 h
-1

, 3 bar and 5% H2 co-feeding.Greyed area indicates when hydrogen is 

extracted. (C) Carbon efficiency of a synloop process using co-ionic CMR (700 °C, 3 bar) for 

two different H2 extraction: 50 and 80% compared with plants based on Pd-membrane CMR 

(4) and FBR with external H2 removal (polymer membrane) (20). 
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