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Abstract. Denoising of biomedical signals using wavelet transform is a widely used technique. The use of undecimated 
wavelet transform (UWT) assures better denoising results but implies a higher complexity than discrete wavelet transform 
(DWT). Some implementation schemes have been proposed to perform UWT, one of them is Cycle Spinning (CS). CS is 
performed using the DWT of several circular shifted versions of the signal to analyse. The reduction of the number of shifted 
versions of the biomedical signal during denoising process used is addressed in the present work. This paper is about a vari-
ant of CS with a reduced number of shifts, called Partial Cycle Spinning (PCS), applied to ultrasonic trace denoising. The 
influence of the choice of PCS shifts in the denoised registers quality is studied. Several shifts selection rules are proposed, 
compared and evaluated. Denoising results over a set of ultrasonic registers are provided for PCS with different shift selec-
tion rules, CS and DWT. The work shows that PCS with the appropriate choice of shifts could be the best option to denoise 
biomedical ultrasonic traces. 
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1. Introduction 

Ultrasonic equipment is very often used in medical diagnosis. In most cases the acquired biomedical 
ultrasonic signals are corrupted with noise coming from the reflection of the ultrasonics by the tissue's 
microstructure. This noise shares spectrum with the ultrasonic signal and is usually non-stationary. 
The reduction of noise in ultrasonics has been widely discussed and different techniques based on spa-
tial or frequency diversity have been proposed [1]. 

Wavelet transform has been used for denoising different kinds of signals including biomedical ultra-
sonic traces [2-6]. The most common denoising techniques are based on discrete wavelet transform 
(DWT) defined as [7] 
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where x(n) is the discrete time signal to analyze, ψ(t) the mother wavelet, n2j the shift and j the de-
composition level. 

DWT is not a shift-invariant transform and produces different denoise results depending on the 
shift. To overcome this limitation undecimated wavelet transform (UWT) was introduced in ultrasonic 
denoising problems [8-12]. 
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Basic denoising processing using wavelets is performed in three stages. In the first stage the wavelet 
coefficients of the register to denoise are obtained. The second stage performs the denoising process 
over the wavelet coefficients, usually by using thresholding. Different types of thresholding can be 
used, usually soft or hard thresholding, and different threshold selection rules can be implemented, of 
which SURE, Universal and Minimax are the most used [13-15]. In the final stage, the denoised ver-
sion of the signal is recovered performing the inverse wavelet transform with the modified wavelet 
coefficients. 

Cycle spinning (CS) is a method of UWT and has been previously used for denoising purposes [8-
12]. The CS algorithm performs DWTs of shifted versions of the register to analyze, denoise the 
wavelet coefficients, make the inverse DWTs and perform a mean to obtain the final denoised ultra-
sonic A-scan. The denoised traces show better characteristics using CS than using DWT, but the com-
plexity in the CS case is much greater than in the DWT one.  

CS analysis generates redundant coefficients. In [16, 17] it was shown that the wavelet coefficients 
were repeated when the number of shifts involved in CS were higher than 2J, with J being the maxi-
mum decomposition level in DWT analysis. More recently, CS wavelet coefficient redundancy has 
been studied in [11]. Based on this redundancy, the use of a reduced version of CS for denoising with 
the processing of only a limited number of shifts is studied in this work. This algorithm is called Par-
tial Cycle Spinning (PCS). 

PCS involves a selection of shifts. One previous work [10] proposed the selection of shifts in a ran-
dom way for ultrasonic A-scan denoising purposes. Although random selection of shifts generated 
good denoising results, in this work the performance obtained with different selection rules of the PCS 
shifts and the influence of the selected shifts in the final denoised trace quality were studied. This cur-
rent paper compares three types of shift selection: random selection, consecutive selection, and fixed 
sparse selection. The obtained results are compared and evaluated taking as reference the results ob-
tained using a complete CS denoising procedure.  

This paper is set out in the following manner. Section 2 describes the PCS denoising method. Sec-
tion 3 describes the experiments to evaluate the variability of PCS and discusses the results obtained. 
The conclusions are presented at the end of the paper. 

2. Partial Cycle Spinning Denoising. 

PCS analysis is based on the calculation of the DWT of a reduced number of shifted versions of the 
trace to be denoised. The wavelet coefficients obtained by performing the PCS analysis contain several 
sets of DWT coefficients, one set for each shift. In fact, the PCS process is similar to the CS apart from 
the number of the shifts used during implementation. PCS shifts are a subset of CS shifts. Fig. 1 shows 
a schematic representation of the PCS analysis with M shifts. The denoising is performed over the 
wavelet coefficients at the output of this stage. 

The PCS synthesis performs several inverse DWTs with the wavelet coefficients associated to each 
shift. Each inverse DWT recovers a shifted version of the original trace which is passed through a un-
shift stage to recover the original trace. In fact, if wavelet coefficients have not been modified, the 
original trace is recovered several times, one time for each shift. In practice, wavelet coefficients are 
modified for denoising purposes and the last step of the process consists of performing the mean of all 



the recovered versions of the initial trace. Fig. 2 shows the synthesis process. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1. PCS analysis stage.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. PCS synthesis stage. 
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Denoising is applied over the wavelet coefficients at the output of the analysis stage, over coeffi-
cients ds,j and as,j of Fig. 1. A soft thresholding [18] is applied to these coefficients and the resulting 
denoised coefficients, d's,j and a's,j, which can be seen  in Fig. 2, act as input for the PCS synthesis stage. 
Three thresholds have been used and compared to study the variability in PCS: Universal [14, 15], 
Minimax [13] and SURE [15]. Each threshold is calculated and applied during denoising to each set of 
wavelet coefficients, ds,j, obtained for a shift s and a decomposition level j. 

The Universal threshold is calculated by the expression: 
 jjs
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where Nj is the number of wavelet coefficients ds,j at decomposition level j and js,ŝ  is: 
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The Minimax threshold is calculated as follows: 
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where the value of function λ*(Nj) is obtained using Table 1 of [13]. 

The SURE (Stein’s unbiased risk estimation) threshold in the case of soft thresholding uses the risk 
function: 
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where { }TXi i ≤:#  is the cardinality of the set in brackets. 
The SURE threshold is the value that minimizes that risk function (6) for the vector of transformed 

coefficients: 
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3. Variability in PCS 

The differences between PCS and CS implementation methods are due to the shift selection. The 
objective of PCS is to reduce the number of shifts while maintaining the denoising quality of CS. A 
reduced number of shifts are selected in the case of PCS and three different rules for choosing the 
shifts are evaluated: sequential shifts, random shifts and fixed sparse shifts. In the case of sequential 
shifts the difference between two consecutive shifts is only one time unit while in the other cases it is 
greater than one. The random shift case selects the shifts in a random way over the whole range while 
the fixed sparse shifts method chooses the sparse shifts in a pre-determined way.   

The PCS procedure involves a selection of the time shifts. As a consequence there is an intrinsic 
variability in the denoising results depending on the shifts selected. Some results using ultrasonic trac-
es concerning performance variability are presented in this section. 

Different sets of ultrasonic traces have been generated for experiments. The A-scans are formed by 
the addition of a normalized ultrasonic pulse to a normalized ultrasonic noise register. The ultrasonic 
noise registers have been simulated in the frequency domain by the expression [19]: 

N(f) = [N1(f)f 2H(f)]exp(α0 f.4) + N2(f)     (8) 



where f is frequency, H(f) is the frequency response of the piezoelectric ultrasonic transducer, N1(f) 
represents the scatters distribution of tissue and α0 is the frequency dependent attenuation factor with a 
selected value α0= 1.8 x 10-26. N2(f) is an additive Gaussian noise included to simulate the effects of 
the ultrasonic and measurement systems. In the traces used in this work N2(f) contributes 33,3% to the 
total power of N(f). 

A pulse P(t) of a 1MHz ultrasonic transducer, acquired with sampling frequency 64 Ms/s, is used to 
complete the ultrasonic A-scans. The resulting trace is 

         TA(t)= N(t) +A.P(t)                                   (9) 
where parameter A is related with the signal to noise ratio (SNR) of the initial traces. SNR is defined 
by:   

  trace  wholein  thedeviation   standard
 areat  in   targe  epeak  valuSNR =     (10) 

 
Several experiments were performed using different sets of traces with controlled SNR. PCS varia-

bility performance was studied using three different selections of shifts: sequential, random and fixed. 
For wavelet processing, Daubechies 6 was selected as mother wavelet, the maximum decomposition 
level was 7 and the number of selected shifts for PCS was 8 over a maximum of 128 [11, 16, 17].  

The eight shifts selected for the sequential case were: 0, 1, 2, 3, 4, 5, 6 and 7. The shifts applied in 
the random PCS procedure were obtained randomly from a uniform distribution in the range 0 to 127. 
For the case of fixed selection of shifts, three sets of shifts were used. The shifts of set number 1 were: 
0, 15, 30, 45, 60, 75, 90 and 105. The shifts of set number 2 were: 7, 21, 35, 49, 78, 92, 106 and 120. 
The shifts of set number 3 were: 1, 17, 33, 49, 65, 81, 97, and 113.  

Two quality parameters were analyzed for each experiment and threshold. The first one is the SNR 
defined by equation (10) and the second one is the mean square error defined as: 
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where x'(n) is the recovered denoised trace normalized in amplitude (see figure 2) and R(n) the refer-
ence trace obtained eliminating the noise component of equation (9) which includes the pulse normal-
ized in amplitude without noise. 
 

3.1. Experiment 1. 

Two experiments were performed to evaluate the PCS variability with shifts. In the first experiment 
several sets of 1000 synthetic ultrasonic A-scans were generated following equations (8) and (9). To 
each trace 7 different denoising procedures were applied using 3 soft thresholds (Universal, Minimax 
and SURE), thus each trace is denoised with 21 different methods. The 7 different denoising proce-
dures were: DWT, PCS with sequential shifts, PCS with fixed set number 1 of shifts, PCS with fixed 
set number 2 of shifts, PCS with fixed set number 3 of shifts, PCS with random selection of shifts and 
CS.  

Table 1 summarizes the mean values and standard deviations of the resulting SNRs and MSEs for a 
set of 1000 A-scans with a mean SNR of 4.83. The results are classified depending of the threshold 
used: Universal, Minimax and SURE. The eight rows contain the results for different types of pro-
cessing. The first row shows the results of the original traces without processing. Five rows include 
results of PCS with different selections of shifts. Additionally, the denoising results obtained for the 



same set of A-scans but using CS and DWT denoising algorithms are included to compare perfor-
mances.  

Table 1 

Quality parameters of 1000 denoised ultrasonic A-scans using different procedures 

 Universal Minimax SURE 
mean 
SNR 

std 
SNR 

mean 
MSE 

std 
MSE 

mean 
SNR 

std 
SNR 

mean 
MSE 

std 
MSE 

mean 
SNR 

std 
SNR 

mean 
MSE 

std 
MSE 

Initial  4.83 0.57 0.0360 0.0113 4.83 0.57 0.0360 0.0113 4.83 0.57 0.0360 0.0113 
DWT 4.86 3.51 45.93 569.86 7.94 1.72 0.0239 0.1938 7.08 1.24 0.0125 0.0214 

PCS with  
sequential shifts 5.38 2.96 23.08 7161.4 7.96 1.61 0.0151 0.0551 7.46 1.16 0.0100 0.0108 

PCS with  
fixed shifts 1 6.16 2.54 5.75 83.48 8.19 1.36 0.142 0.297 7.48 1.09 0.0992 0.117 

PCS with  
fixed shifts 2 6.82 2.19 0.40 5.25 8.62 0.97 0.0048 0.0034 7.79 0.91 0.0065 0.0042 

PCS with  
fixed shifts 3 7.09 2.35 1.92 41.02 8.66 1.03 0.0043 0.0043 7.60 0.96 0.0067 0.0052 

PCS with 
 random shifts 6.53 2.43 12.44 379.2 8.53 1.07 0.0054 0.0055 7.68 0.95 0.0070 0.0048 

CS 6.74 2.28 3.50 94.78 8.63 1.00 0.0048 0.0039 7.76 0.90 0.0065 0.0043 
 
 
Results from Table 1 show that, in general, the Minimax threshold obtains better results than the 

SURE and Universal thresholds. The mean SNR is the highest for the Minimax threshold in all the 
cases, while the standard deviation of SNR is the lowest for SURE threshold. The lowest MSE mean 
and standard deviation are distributed between Minimax and SURE thresholds. The best MSE values 
correspond to Minimax threshold for the most of the cases with higher mean SNR values.  

The results of Table 1 are very regular except in the case of MSE for the Universal threshold. These 
anomalies are due to the fact that in some registers the pulse sought is lost during the denoising pro-
cess. In the registers without pulse, the normalization amplifies noise components and then MSE has a 
high value.  

Five shifts selection cases are evaluated for PCS denoising. The worst performance, very close to 
DWT performance for all the thresholds, is obtained for PCS with sequential shifts. A possible expla-
nation for this is that a selection of fixed sequential shift values can be considered as a particular case 
of PCS with very bad shift selection. In all PCS cases the number of shifts is the same but in the cases 
of fixed PCS and random PCS the shifts are distributed over the whole range. Fixed and random PCS 
procedures show the benefits in robustness obtained from the average of a few shifts which are dis-
tributed over the whole range. On the other hand, random PCS presents variability in repeated execu-
tion which could be useful in some applications. 

The selection of shifts affects the denoising results. Table 1 shows three different types of results us-
ing PCS with fixed shifts. When shift set 1 is used the results are worse than results using CS. Howev-
er, the results, when shift sets 2 and 3 are used, are similar to the CS results or even better. This varia-
bility is due to PCS being obtained as the mean of a set of denoised shifted versions of the initial A-
scan; these denoised versions include good and bad denoised shifted traces. If only good denoised ver-
sions could be selected, the recovered PCS denoised traces would have better quality than the CS de-
noised traces. CS denoised traces were obtained as the mean of all (good and bad) shifted denoised 
versions of the initial A-scan. The problem is how to select the shifts that generate the best denoised 
registers. In this experiment the pulse sought is always in the same position, so with a trial and error 
method an adequate set of shifts can be selected. However the same set of shifts is not valid for all the 



thresholds. In Table 1, shift set 3 generates the best results for Universal and Minimax thresholds, but 
the best results for SURE threshold are obtained with shift set 2. Thus PCS denoising with an adequate 
selection of shifts can obtain better results than CS denoising. However, the optimal selection of shifts 
in PCS is an open problem that will need more research in the future.      

From the results shown in Table 1 it can be concluded that the PCS is a good alternative to CS in 
denoising applications. PCS can obtain results very similar or even better than CS algorithm if the se-
lection of PCS shifts is appropriate. The PCS shift selection must be carried out over the whole set of 
shifts and additional research is necessary to find the method to select the optimal shifts. 

 

3.2. Experiment 2. 

A second experiment was carried out to study the variability of the denoising results depending of 
the selection of shifts for the PCS procedure. The selected denoising procedure for this experiment 
was random PCS in order to generate the set of shifts without any conditions. The experiment per-
formed the PCS denoising procedure to one A-scan with 1000000 different sets of shifts. The resulting 
SNR and MSE variability are evaluated. One of the A-scans used in Table 1 was selected and 1000000 
sets of 8 shifts were calculated in a random way. The objective was to cover a great range of sets of 
shifts, not the total, because the total number of possible sets of shifts is approximately 5.8x1016 for 8 
selected shifts and a decomposition level in the wavelet transform of 7. Mean and standard deviation 
of SNR and MSE for the 1000000 sets of shifts are shown in Table 2.  

Results confirm the variability depending on the shifts involved during the PCS process. In both 
SNR and MSE data the standard deviation and the difference between maximum and minimum values 
show values that imply a variability. On the other hand the best SNR and MSE mean values are for the 
Minimax threshold. 

Table 2 

PCS denoising results using 1000000 different random sets of shifts. 

 Universal SURE Minimax 
 
 
 

SNR 

initial 5.0046 5.0046 5.0046 
CS 7.6312 8.1477 9.4528 

mean with PCS 7.3824 8.0794 9.3670 
std with PCS 0.8275 0.2666 0.2554 

maximum with PCS 9.8789 9.1231 10.5405 
minimum with PCS 2.1718 6.7045 8.0412 

 
 
 

MSE 

initial 0.0297 0.0297 0.0297 
CS 0.0116 0.0030 0.0024 

mean with PCS 0.0139 0.0033 0.0027 
std with PCS 0.0057 0.0007 0.0004 

máximum with PCS 0.2114 0.0082 0.0050 
minimum with PCS 0.0049 0.0016 0.0016 

 

3.3. Graphic results. 

To show graphically the influence of the thresholds, Fig. 3 represents the initial A-scan used in Ta-
ble 2 and the results after denoising using the PCS method with the fixed shift set number 2. Results 
after applying Universal, SURE and Minimax thresholds are shown. The pulse sought is approximate-
ly between points 2100 to 2400 of the register, with the rest of the trace components being due to noise.  



 

 
a) Initial A-scan. SNR=5.0046 

 
b) Denoised with Universal threshold. SNR=6.8297. 

 
c) Denoised with SURE threshold. SNR=8.2025 

 
d) Denoised with Minimax threshold. SNR=9.5002. 

 
Fig. 3. Threshold influence in PCS denoising 

 
A second figure is included to show how the different processing methods affect a denoised A-scan. 

The selected threshold is SURE and the rest of parameters are the same as those used in previous ex-
periments. Figure 4 shows different denoising results from initial A-scan to processing with CS. Dis-
play 4d deserves special attention as in this case a SNR greater than in the case of CS (4f) is obtained 
using shift set 2 defined previously.  

 

a) Initial A-scan. SNR=5.3936.  
        b) Denoised with DWT. SNR=6.1980. 

 
        c) Denoised with PCS and sequential shifts. SNR=7.3571.  

         d) Denoised with PCS and fixed set of shifts 2. SNR=8.2129. 

 
       e) Denoised with PCS and random shifts. SNR=7.6209.      f) Denoised with CS. SNR=7.8931. 

 
Fig. 4. Shifts selection influence in PCS denoising 

 

4. Conclusions 

This paper has presented PCS as alternative to CS for signal denoising applications. PCS is based on 
CS but in this implementation a reduced number of shifts must be selected. The selection of the shifts 
has a clear effect on the final denoising results. 

Three rules for the shift selection in PCS implementation have been studied: sequential shifts, ran-
dom shifts and fixed sparse shifts. The PCS procedure with the three different kinds of shifts was ap-
plied to a set of ultrasonic A-scans, and the results were analyzed, taking as quality parameters the 



SNR and MSE of the denoised signals. The results, for fixed PCS and random PCS cases, confirmed 
SNRs and MSEs are very similar to those obtained by the CS denoising method. The sequential PCS 
method showed poorer performance than the other two procedures, thus the best selection options for 
PCS shifts are random and fixed distributed over the whole range of shifts.  

A second experiment was performed to study the PCS variability. In the experiment 1000000 differ-
ent sets of shifts were applied over the same ultrasonic A-scan, using in all cases the PCS denoising 
method. The results confirm the variability in the results with the shifts used during denoising. 

The PCS procedure for denoising purposes can obtain similar results to the CS method. To obtain 
good results with PCS, the shifts must be selected in a sparse way. Intrinsic variability is associated 
with PCS, but this variability in general is small for sparse shifts. Thus, PCS can be considered as a 
robust and efficient denoising procedure with a level of performance close to that of CS but with lower 
complexity.  

In some special cases the denoising results with PCS can be better than results obtained with the CS 
denoising procedure. This is due to the dependence of denoised trace quality on the selected shifts dur-
ing the PCS process. The way of selecting the best shifts to optimize the denoising process is an open 
problem that will need more research in the future. 
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