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Abstract

Simulation of the pantograph-catenary dynamic interaction has now become a

useful tool for designing and optimizing the system. In order to perform accurate

simulations, including system non-linearities, the Finite Element Method is com-

monly employed combined with a time integration scheme, even though the compu-

tational time required may be longer than with the use of other simpler approaches.

In this paper we propose a two-stage methodology (Offline/Online) which notably

reduces the computational cost without any loss in accuracy and makes it possible

to successfully carry out very efficient optimizations or even Hardware in the Loop

simulations with real-time requirements.

1. Introduction

The catenary provides the energy supply to railway locomotives through contact with the

pantograph. This overhead equipment is composed of structural elements such as masts,
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brackets and registration arms that hold the contact wire in the desired position. However,

other cables form part of the catenary. These include the messenger wire, which is hooked

to the brackets, and the droppers, which suspend the contact wire from the messenger

wire.

Current collection quality is vital for good performance and is usually measured by the

pantograph-catenary interaction force. High contact forces cause high levels of wear on the

sliding surfaces [1], while contact losses produce arcing and cut out the energy supply to

the engines [2], limiting the operational railway speed. This means numerical simulations

can be very useful in the design of improved pantographs and overhead equipment.

In recent decades a lot of effort has been put into the simulation of the pantograph-

catenary dynamic interaction (see [3] and the references therein), and has triggered Eu-

ropean projects (EUROPAC) and regulation in the field [4] (UNE 50318). Starting with

very simple models [5, 6], the Finite Element Method (FEM) now seems to be the most

suitable approach for modelling the overhead line [7]. Pantograph mathematical modelling

ranges from linear lumped parameter models to flexible multibody models [8].

Computational cost is always an issue if simulations have to be performed several times as

occurs in optimization procedures. In the catenary-pantograph field some authors have

proposed simplified catenary models [9], modal decomposition approaches [10], models

based on moving meshes [11] or even a priori model order reduction techniques [12] in

order to reduce the computational effort. However, the common feature of all these

approaches is that they are less accurate than the full FE models.

At the present time, hybrid or Hardware In the Loop (HIL) simulations are another field

in which the computational cost is crucial. The main requirement of such approaches is

a numerical model that can be solved in real-time. A wide range of applications can be

found in many fields, such as in earthquake engineering [13], electronic engineering [14] and

railway mechanics [15] to cite just a few. When testing pantographs, it is advisable to have

an accurate catenary model. Although HIL simulation techniques have been implemented

for pantograph-catenary dynamic interaction (see the pioneering works [10, 16]), even

though they all achieve real-time performance, a somewhat simplified catenary model

with a modal approach is generally used.

This paper aims to provide a realistic model of the pantograph-catenary dynamic in-

2



teraction that can be solved efficiently without losing any of the accuracy achieved by

classical FE techniques. The computational cost saves can be exploited to perform effi-

cient optimizations and furthermore, the method is suitable to be used in HIL simulations

if real-time response is achieved. Extending on the idea first introduced by Collina and

Bruni in [17] and used by Ambrósio et al. in [30], in which the non-linearities of the

model are moved to the right hand side of the equation of motion, the main novelty of

the method proposed here relies on pre-calculating as much information as possible in an

Offline stage. In this phase of the calculations, the catenary is treated as a linear sys-

tem, and then in the subsequent Online stage the non-linearities introduced by dropper

slackening and loss of pantograph-catenary contact are dealt with. The pre-calculated

information makes it possible to obtain the total system response by solving a system

with a small set of unknowns, which notably reduces the computational cost required for

the time integration.

The paper is organized as follows. After this brief introduction, the numerical models

chosen for the different subsystems are described in the next section. The static equilib-

rium formulation is a requirement for the dynamic simulation and is detailed in Section 3.

In Section 4 we explain in detail the dynamic interaction problem. The features of the

new Offline/Online approach are deduced from what we call the classical time integration

procedure and its modified versions. Some numerical examples are given in Section 5 to

validate the assumed hypotheses and also to show the saving in simulation time of the

proposed method. Finally, we provide some concluding remarks in Section 6.

2. Catenary and pantograph models

In this section we describe all the models used to perform the numerical simulations of

the pantograph-catenary dynamic interaction. There are three different subsystems which

need to be modelled: the catenary, the pantograph and the interaction between these two

subsystems.
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2.1. Catenary model

Among the different options found in the literature, the FEM is the method most fre-

quently used to model realistic catenary behaviour. In the present work the catenary

cables are modelled by a beam element based on the Absolute Nodal Coordinate Formu-

lation (ANCF) first proposed by Shabana [18] and adapted for thin beams and cables

in [19]. This formulation has also been used by other authors for railway catenary mod-

els [20, 21]. The interested reader is referred to [22, 23] for detailed comparisons between

the ANCF element and those based on the classical formulation.

For very slender beams like catenary cables, the ANCF element has only 6 degrees of

freedom per node in 3D, taking into account axial and bending deformations. Hereinafter,

this type of element is referred as ‘cable element’ and is used to model both the messenger

and the contact wires. Droppers and registration arms are modelled as a single large

displacement non-linear element, known as the ‘bar element’ throughout the paper. All

Figure 1: FE catenary model with boundary conditions.

the supports are replaced by suitable boundary conditions. The displacements at the ends

of the registration arms joined to the brackets (nodes marked with a cross in Fig. 1) are

constrained.
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Figure 2: Reference and deformed configurations of the ANCF element.

In Fig. 2 the reference and deformed configurations for a cable element is schematically

represented. The vector of degrees of freedom for an element with nodes i and j is:

qc =
[

xi yi zi
∂xi

∂χ

∂yi

∂χ
∂zi

∂χ
xj yj zj

∂xj

∂χ

∂yj

∂χ

∂zj

∂χ

]T
(1)

where χ ∈ [0, lref ] is the local coordinate, lref is the initial length of the element, xi, yi, zi

are the coordinates of node i and ∂xi

∂χ
, ∂yi

∂χ
, ∂zi

∂χ
are the slopes. In a deformed configuration,

the absolute position at a given point with local coordinate χ is defined by means of a

cubic Hermitian interpolation that can be written as:

r(χ) = Nc(χ) qc (2)

where
Nc(χ) = [Nc1I3|Nc2I3|Nc3I3|Nc4I3]

Nc1(ξ) = 1 − 3ξ2 + 2ξ3 Nc2(ξ) = lref(ξ − 2ξ2 + ξ3)

Nc3(ξ) = 3ξ2 − 2ξ3 Nc4(ξ) = lref(−ξ2 + ξ3)

(3)

The coordinate ξ = χ/lref ∈ [0, 1] denotes the normalized local coordinate and I3 is the

3 × 3 identity matrix. The C1 continuity of the solution between elements is guaranteed

with this interpolation. The degrees of freedom of a bar element are the absolute positions

of the two nodes of the element only, namely:

qb =
[

xi yi zi xj yj zj

]T
(4)

In these elements, as no bending deformations are taken into account, a linear interpola-
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tion is enough to ensure continuity of the solution,

Nb(χ) = [Nb1I3|Nb2I3]

Nb1(ξ) = −
ξ − 1

2
Nb2(ξ) =

ξ + 1

2

(5)

For simplicity in the notation, subscripts c and b will not appear henceforth unless nec-

essary.

2.2. Pantograph model

A number of accurate pantograph models can be found in the bibliography. Although

these models are based on FEM or multibody approaches [8, 24] and are able to account

for deformable bodies, the most widely used pantograph model in the literature is a

lumped mass model with 2 or 3 vertical degrees of freedom. We have assumed a model

with 3 masses, which is depicted in Fig. 3.

Figure 3: Lumped mass pantograph model.
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2.3. Interaction model

In order to model the pantograph-catenary interaction, approaches like the imposition of

unilateral constraints by Lagrange multipliers [25] or an Hertzian type contact force with

internal damping [26] are found in the literature. However, in this work the pantograph-

catenary interaction is simulated by a simple and widely used penalty method. This

method introduces a high stiffness elastic element which connects the pantograph head

with the contact wire in order to accomplish the impenetrability constraint. A scheme of

this type of interaction is represented in Fig. 4. According to the reference model in [4],

the value of the penalty constant is set at kh = 50000 N/m. The contact or interaction

force vector is assumed to be oriented vertically and its value can be computed as:

fi =







kh(z1 − zcw) if z1 ≥ zcw

0 if z1 < zcw

(6)

where z1 and zcw are the vertical absolute coordinates of the mass 1 of the pantograph

and the contact point on the contact wire respectively.

Figure 4: Pantograph-catenary interaction scheme.
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3. Static equilibrium configuration

As in any cable structure, the first step in the simulation consists of solving the so-called

shape finding problem. During catenary stringing certain constraints must be fulfilled by

the cabling. In the problem at hand, the main constraints are the initial tensions of the

messenger and contact wires, contact wire height and the separation between droppers.

In this initial configuration problem, the non-deformed element lengths and the nodal

degrees of freedom are therefore set as the unknowns. A detailed explanation of this

problem is thoroughly discussed in [27].

Here we assume that the non-deformed element lengths are known and that Ω represents

the spatial domain of the catenary. This domain is discretised into Ne non-overlapping

elements with a domain Ωe that fulfil Ω =
⋃Ne

e=1 Ωe. The virtual work principle states

that the virtual work produced by the internal forces must be equal to the virtual work

produced by the external ones,

Ne
∑

e=1

δW e
int − δW e

ext = 0 (7)

For a certain element e belonging to a cable with cross-sectional area A, Young’s modulus

E and second moment of area I, the internal virtual work is produced by a combination

of axial and bending strains:

δW e
int =

∫

Ωe
(EAδεa εa + EIδκ κ) dχ (8)

where εa is the axial strain and κ is the curvature. During catenary stringing, the cables

undergo large displacements, so that a non-linear measure of the deformation is required.

Using the Green strain tensor, the axial deformation is defined as:

εa =
1

2

(

dr

dχ
·

dr

dχ
− 1

)

(9)

Since the cables undergo small deformations, we can assume ds ≈ dχ and therefore
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curvature can be approximated by [28]:

κ ≈

∣

∣

∣

∣

∣

d2r

dχ2

∣

∣

∣

∣

∣

(10)

The only external force applied to the system is the force of gravity. The virtual work

produced by this force is:

δW e
ext =

∫

Ωe
δr · gdχ (11)

where the vector g = [0 0 − gAρ]T , while g is the gravitational constant and ρ is the

density of the cable. By combining all the previous expressions, the static equilibrium

problem consists of finding the field r(χ) for any admissible δr, such that:

Ne
∑

e=1

∫

Ωe

[

EI
d2δr

dχ2
·

d2r

dχ2
+

EA

2

dδr

dχ
·

dr

dχ

(

dr

dχ
·

dr

dχ
− 1

)

− δr · g

]

dχ = 0, ∀δr (12)

where the first term related with bending strain vanishes for the bar elements since I = 0

for them.

After the assembly process, taking into account all the Dirichlet boundary conditions, the

non-linear algebraic system of equations

fint(q) − fext = 0 (13)

is obtained, which can be solved using for example the Newton-Raphson method.

4. Dynamic interaction problem

Catenary

The dynamic behaviour of the catenary system is characterized by the small cable dis-

placements. A common assumption is to linearise the dynamic problem with respect to

the static equilibrium position of the catenary cables.

Once the static equilibrium position of the catenary cabling r0 has been calculated by

solving Eq. (12), a new absolute position r = [x y z]T can be computed as r = r0 + u,
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where u = [u v w]T are the displacements with respect to the static equilibrium position.

Note that subscript 0 refers to the configuration for which the system has been linearised.

If Eq. (12) is linearised and we add the inertial term, the linear dynamic problem for the

catenary consists of finding u for any compatible δu such that:

Ne
∑

e=1

∫

Ωe

[

ρAδu · ü + EI
d2δu

dχ2
·

d2u

dχ2
+

EA

2

dδu

dχ
·

[

2
dr0

dχ

(

du

dχ
·

dr0

dχ

)

+

du

dχ

(

dr0

dχ
·

dr0

dχ
− 1

)]]

dχ = 0, ∀δu

(14)

Introducing the interpolations defined in Section 2.1 for each type of element, the mass

and stiffness matrices of the catenary are:

Mcat = Ae

∫

Ωe
ρANT N dχ

Kcat = Ae

∫

Ωe

[

EIN
′′T

N
′′

+ EA
((

N
′ T

N
′

q0

)(

qT
0 N

′T
N

′

)

+

1

2

(

N
′T

N
′

)(

qT
0 N

′T
N

′

q0

)

−
1

2
N

′T
N

′

)]

dχ

(15)

where A is the assembly operator, N is the shape functions matrix for both cable and bar

elements whose derivatives are N
′

= dN

dχ
and N

′′

= d2
N

dχ2 .

In addition to this linearisation, if we analyse Eq. (14) in more detail, another simplifica-

tion can be introduced for the dropper elements. The vector dr0

dχ
= nd has the direction of

the dropper in the configuration in which the problem has been linearised (i.e. the static

equilibrium position) and its modulus is l0
lref

. Therefore, the virtual work produced by

axial strains can be decomposed into two terms. For a single dropper element, the first

of them reads:

∫

Ωe
EA

(

dδu

dχ
· nd

)(

du

dχ
· nd

)

dχ =
∫

Ωe
EA

(

l0
lref

)2
dδu

dχ
(n̂d ⊗ n̂d)

du

dχ
dχ (16)

where the unitary vector n̂d = nd

‖nd‖
. The second term is:

∫

Ωe

EA

2

dδu

dχ
·

du

dχ





(

l0
lref

)2

− 1



 dχ =
∫

Ωe
EAεa,0

dδu

dχ
·

du

dχ
dχ =

∫

Ωe
T0

dδu

dχ
·

du

dχ
dχ (17)
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where εa,0 and T0 are the axial strain and the tension in the static equilibrium position

respectively.

If T0 ≪ EA
(

l0
lref

)2

, the components of (17) aligned with the dropper can be neglected.

Furthermore, assuming that the movements in the perpendicular directions to the dropper

are small (what is not applicable for the messenger and contact wires), the fully contri-

bution of the term (17) is negligible and therefore, the simplified stiffness matrix for a

dropper element is:

kd =
∫

Ωe
EA

(

l0
lref

)2

N
′T
b n̂T

d n̂dN
′

b dχ (18)

Once the inertial and elastic properties of the catenary have been defined, proportional

Rayleigh damping is also introduced. This leads to a catenary damping matrix Ccat =

αrMcat + βrKcat, where αr and βr are the damping parameters. Finally, the matrix form

of the linear dynamic equations of the catenary system is:

Mcatücat + Ccatu̇cat + Kcatucat = 0 (19)

Pantograph

The lumped mass model chosen for the pantograph is linear and it only introduces vertical

degrees of freedom. Applying the Lagrange equation of motion to the system, we obtain:

m1ẅ1 + c1(ẇ1 − ẇ2) + k1(w1 − w2) = 0

m2ẅ2 + c1(ẇ2 − ẇ1) + c2(ẇ2 − ẇ3) + k1(w2 − w1) + k2(w2 − w3) = 0

m3ẅ3 + c2(ẇ3 − ẇ2) + c3ẇ3 + k2(w2 − w3) + k3w3 = Fpan

(20)

where wi, i = 1, 2, 3 denotes the displacement of the lumped masses with respect to

the equilibrium position zref . This position is defined as the z0 (third component of

r0) coordinate of the initial interaction point in the catenary (see Fig. 4). Fpan is the

external uplift force applied to the mass 3 of the pantograph. Besides, all three masses

of the pantograph are assumed to be in equilibrium at zref . In matrix form, the previous

equations become:

Mpanẅpan + Cpanẇpan + Kpanwpan = Fpan (21)
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Interaction

The interaction force fi depends on the position of mass 1 z1 and the contact wire height

zcw which varies as the train moves. Using a penalty method, the virtual work produced

by the interaction force is:

δzi fi = (δz1 − δzcw)kh(z1 − zcw) = (δw1 − δwcw)kh(zref + w1 − z0,cw − wcw) (22)

where kh is the penalty constant defined in Section 2.3. The subindex cw shows that the

variable is particularized at the interaction point on the contact wire. From now on, if

one variable requires more than one subindex they will be separated by a comma.

From Eq. (22), the interaction stiffness matrix, which couples the catenary and pantograph

degrees of freedom, is:

ki =





ki,cc ki,cp

ki,pc ki,pp



 = kh





























N2
c1 Nc1Nc2 Nc1Nc3 Nc1Nc4 | −Nc1

Nc2Nc1 N2
c2 Nc2Nc3 Nc2Nc4 | −Nc2

Nc3Nc1 Nc3Nc2 N2
c3 Nc3Nc4 | −Nc3

Nc4Nc1 Nc4Nc2 Nc4Nc3 N2
c4 | −Nc4

− − − − − − − − − − − − − − −

−Nc1 −Nc2 −Nc3 −Nc4 | 1





























(23)

where all the shape functions are evaluated in the local coordinate of the contact wire

cable element particularized at the interaction point. Furthermore, a force that only

depends on the static equilibrium position from Eq. (22) has also to be considered:

si = [si,cc si,pp]
T = kh(zref − z0,cw) [−Nc1 − Nc2 − Nc3 − Nc4 | 1]T (24)

At this point, all the matrices are available to be combined, leading to the semidiscrete

dynamic equations of the whole system. If the global vector of displacements is defined

as u = [ucat wpan]T , and the different matrices m, c, k, f and s presented above are

assembled, the dynamic equation of the global system is:

Mü + Cu̇ + Ku = F (25)
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where:

M =





Mcat 0

0 Mpan





C =





Ccat 0

0 Cpan





K =





Kcat 0

0 Kpan



+





Ki,cc Ki,cp

Ki,pc Ki,pp





F =





0

Fpan



−





Si,cc

Si,pp





(26)

and the capital letters denote that the variable has been expanded to the global size.

The initial conditions necessary to begin the time integration are now obtained by solving

the small displacements linearised problem with the uplift force Fpan as external force.

Hence, u0 is found after solving the linear system of equations Ku0 = F. When the pan-

tograph pushes up the catenary some droppers may be compressed. In order to consider

the effect of dropper slackening we apply here the same iterative procedure as will be

explained in Section 4.1. Finally, since the whole system is at rest at the initial time, u̇0

and ü0 are null.

4.1. Classical time integration procedure

In order to solve Eq. (25) and therefore obtain the displacements, velocities and accel-

erations of the whole system, we use the Hilber-Hughes-Taylor (HHT) time integration

scheme [29]. This time integrator can be seen as a generalization of the well-known New-

mark method. It uses a constant time step ∆t and some parameters α, β and γ which

control the stability and the numerical damping introduced by the method.

We assume a bilinear behaviour of the droppers, as shown in Fig. 5, where the force-

elongation curve for a dropper d of the linearised catenary is depicted. In this figure,

fd represents the internal force of the dropper while sd is the value of its traction force

in the static equilibrium configuration, i.e. in the configuration in which the equations

are linearised. The horizontal axis denotes the elongation of the dropper, δ0,d being the
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value of elongation at the static equilibrium position. It is also shown that in traction the

dropper presents stiffness kd, while in compression it is null.

Figure 5: Force-elongation curve for dropper d in the linearised problem.

This bilinear behaviour requires the use of an iterative scheme in order to obtain the

solution in each time step. Moreover, an additional non-linearity appears from the fact

that the pantograph can be detached from the contact wire with the interaction force

vanishing. By applying the HHT algorithm to Eq. (25), as described in Appendix A, the

displacements at time step t, t = 1, ..., Nstp, and iteration j are obtained by solving the

following linear system of equations:

At
ju

t
j = bt

j (27)

where

At
j =

[

(1 + α)
[

Kt
j + b4Ct

j

]

+ b1M
]

bt
j = −αFt−1 + (1 + α)Ft

j + Ft
IC

(28)

being

Ft
IC = α

(

Kt−1ut−1 + Ct−1u̇t−1
)

+ M
(

b1ut−1 − b2u̇t−1 − b3üt−1
)

+

(1 + α)Ct
j

(

b4ut−1 − b5u̇t−1 − b6üt−1
) (29)

All the bi, i = 1, ..., 6 depend on the time step and the method’s parameters α, β and γ.

Once ut
j has been obtained we have to evaluate the state of any dropper. The internal

14



force at node n of dropper d is f t
d,j =

[

kdut
d,j

]

n
, where the operator [·]n selects only the

components of the force applied at the node n of the dropper. This vector is aligned with

sd due to the use of the simplified stiffness matrix considered in (18). Projecting it in the

direction of dropper d in the static equilibrium configuration nd (which is equivalent to

calculating its modulus) we obtain f t
d,j . The slackening criterion is then:

if f t
d,j + sd ≤ 0 then dropper d is slackened

if f t
d,j + sd > 0 then dropper d is tensioned

(30)

from which the slackening state D is defined.

The elemental stiffness kd and damping cd matrices of the slackened droppers have to

be removed from the global ones, and also the internal force of the element in the static

equilibrium position must be included in the next iteration j + 1 in order to account for

this state change. Then the given changes are:

Kt
j+1 = Kt −

Nsd
∑

d

Kd

Ct
j+1 = Ct −

Nsd
∑

d

Cd

Ft
j+1 = Ft +

Nsd
∑

d

Sd

(31)

where Nsd is the total number of slackened droppers. These modifications imply changes

in both, the global time-step matrix At
j and the right hand side of Eq. (27) bt

j at every

iteration.

Before moving to the next iteration, the value of the interaction force fi must be obtained

from Eq. (22) and then we enforce the contact loss criterion which defines the state C .

This consists of setting the contact force to 0 if its value is negative, i.e. if there is contact

loss, or leaving it unchanged otherwise.

Now we are ready to start the next iteration j + 1, compute ut
j+1, check the slackening

criterion on each dropper, recalculate the interaction force and apply the contact loss

criterion. This iterative procedure is schematised in Algorithm 1. It keeps going until the

dropper slackening state D and the contact loss state C are identical in two consecutive
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iterations. When this happens, we can also move to the next time step t + 1.

The main feature of this classical approach is that a different system of equations of the

global problem size is solved several times in each time step, which requires a significant

computational effort. Another disadvantage of this method emerges when changes in

the pantograph model are studied, because it entails a different resolution of the whole

dynamic interaction problem for every change introduced in the pantograph model.

Algorithm 1 Classical time integration.

for t = 1...Nstp do

Find the interaction point;
Initializations: j = 0; D t

j−1 = D t
j = D t−1; C t

j−1 = C t
j = C t−1;

while
(

D t
j−1 6= D t

j and C t
j−1 6= C t

j

)

or j = 0 do

j = j + 1
D t

j−1 = D t
j ; C t

j−1 = C t
j ;

Obtain the displacements ut
j by solving (27);

Apply the slackening criterion (30): D t
j ;

Update the global matrices and vectors as defined in (31);
Apply the contact loss criterion: C t

j ;
end while

end for

4.2. Modified time integration procedures

As mentioned above, the main drawback of the classical approach is the reassembling the

global matrix at each time step, which makes this procedure inappropriate in practice, due

to the high computational cost required. Some ideas have been proposed to circumvent

this issue in [17] and exploited in [30], considerably improving the computational cost.

Specifically, the non-linearities of the system are moved to the right hand side of the

dynamic equilibrium equation, and are therefore treated as non-linear forces. In this

way, the global time-step matrix At
j does not vary in time, keeping the analysis linear.

Hence, it can be factorised only once, reducing the computational effort. In practice, this

modification of the classical approach can be carried out according to the following two

procedures:

• Method 1: The global matrix of the system does not include the stiffness and
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damping of all dropper elements. They are fully treated as non-linear forces instead.

• Method 2: The droppers’ stiffness and damping are fully accounted for in the global

matrix of the system as in [30]. In this case, the non-linear force term added to the

right hand side of the dynamic equation compensates for the slackened droppers.

Despite the clear advantages of these approaches over the classical method, in order to

account for the non-linear behaviour of the droppers and the pantograph loss of contact,

the iterative procedure requires solving a global size system several times in each time

step in which the nodal displacements are still the unknowns of the problem.

4.3. Offline/Online time integration methodology

Starting from the ideas of the modified Method 2, we try to concentrate as much computa-

tional effort as possible on the Offline stage, leaving the minimum number of calculations

to the so-called Online stage, in which the time integration itself takes place. Another

important feature of the proposed methodology is that both the pantograph and the

catenary are treated as independent systems, which makes it easier to deal with different

pantograph models, or even a real system, as in HIL simulations.

In the Offline phase of the algorithm, the catenary is treated as a fully linear system in

which the droppers are not able to slacken. Several single time step problems are solved

and stored at this stage. In the Online calculations, the superposition principle is applied

and both the initial conditions of movement and all the non-linearities of the system are

considered, i.e. dropper slackening and pantograph contact loss. Using the information

calculated in the Offline stage, these non-linearities are accounted for iteratively by solv-

ing a very small system of equations in which the unknowns are no longer the nodal

displacements, but the slackening compensating forces and the pantograph-catenary in-

teraction force. This small set of unknowns is responsible for reducing the computational

cost of the solution method.
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4.3.1. Offline stage

All the calculations which take place before the time integration loop are called Offline

stage. In this phase we solve several sub-problems whose solution will be used afterwards

in the Online computations. All these sub-problems are aimed at obtaining the single

time-step forced response of the system under a unitary external load and null initial

conditions. These unitary external forces are applied at the interaction point and at the

dropper ends, as shown in Fig. 6.

As the pantograph moves forward throughout a dynamic simulation, the contact point

changes in each time step. The goal of the first sub-problem in this stage is to calculate

the response of the catenary system considering a unitary vertical force pushing upwards

at each point at which the pantograph interacts with the contact wire (dashed arrows in

Fig. 6). We have to solve as many linear problems of the form

Acatu
∗,t
i,cat = F

∗,t
i,cat (32)

as total time steps Nstp in order to find the displacements u
∗,t
i,cat. Recalling the idea

introduced in [17], it is important to underline that the matrix of this linear system

Acat = [(1 + α) [Kcat + b4Ccat] + b1Mcat] (33)

does not change in each time step t and therefore for any load position. Hence, it can

be factorised as Acat = LcatUcat, where Lcat and Ucat are lower and upper triangular

matrices, respectively. Applying the Cuthill-McKee reordering algorithm [31] to matrix

Acat, it is possible to obtain very sparse matrices Lcat and Ucat which will reduce the

computational cost in the Online calculations.

The other necessary catenary responses, which also will be used in the next stage, are

obtained considering the unitary external forces acting on the ends of each of the Nd

droppers of the catenary (solid arrows in Fig. 6). These external forces are aligned with

droppers. The displacement field u∗
d,cat is obtained as the solution of the one time-step

problem:

Acatu
∗
d,cat = F∗

d,cat (34)

in which now d = 1, ..., Nd. Note that Nstp + Nd linear problems for the catenary must be
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solved, but as mentioned above they are performed Offline and only once.

Figure 6: Unitary external forces applied in the Offline stage.

Finally, we only need the pantograph response under a unitary force pushing downwards

on the top mass where the interaction with the contact wire takes place. The dynamic

response of one time step provided by the HHT integrator is w∗
i,pan, which does not depend

on the time step. The only problem to solve related with the pantograph is:

Apanw∗
i,pan = F∗

i,pan (35)

where the matrix

Apan = [(1 + α) [Kpan + b4Cpan] + b1Mpan] (36)

is also constant regardless the time step that is being solved.

The velocities and accelerations of all the sub-problems described above are also computed

following the rules of the HHT time integrator.

4.3.2. Online stage

In this stage the time integration is carried out taking into account the non-linearities

introduced by dropper slackening and pantograph contact loss. In order to obtain the
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formulation of the proposed approach we start from Eq. (27). Proceeding as in the

modified approaches introduced in Section 4.2, the terms involving the interaction, as

well as the corrections forces for the slackened droppers, are moved to the right hand side

of the dynamic equation. It results in:



(1 + α)









Kcat 0

0 Kpan



+ b4





Ccat 0

0 Cpan







+ b1M



ut = Ft
IC + Fpan−

α



−St−1
i − Kt−1

i ut−1 +
Nsd
∑

d

St−1
d + Kt−1

d ut−1 + Ct−1
d u̇t−1



+

(1 + α)



−St
i − Kt

iu
t +

Nsd
∑

d

St
d + Kt

dut + Ct
du̇t





(37)

where, by the use of the hypotheses assumed in the HHT algorithm, the velocity u̇t =

b4(u
t −ut−1)+ b5u̇t−1 + b6üt−1. It is also important to mention that in this rearrangement

there is no coupling between pantograph and catenary degrees of freedom in the system

of equations. By grouping terms, the previous equation can be rearranged as:

A ut = Ft
kn + (1 + α)



Ft
i +

Nsd
∑

d

Ft
d



 (38)

where

Ft
kn = Ft

IC + Fpan − α



−St−1
i − Kt−1

i ut−1 +
Nsd
∑

d

(

St−1
d + Kt−1

d ut−1 + Ct−1
d u̇t−1

)





Ft
i = −St

i − Kt
iu

t

Ft
d = St

d + Kt
dut + Ct

du̇t

(39)

In this expression, Ft
kn groups all the known forces: those coming from the initial condi-

tions, the constant uplift force and the forces arising from the previous time step. Thus,

the unknown forces at time step t are the interaction force Ft
i and the slackened dropper

correction forces Ft
d, since they depend on the sought displacements ut.

The total displacement ut in Eq. (38) is the response of two linear systems (catenary and

pantograph) subjected to the three different actions defined in Eq. (39), two of which

depend on ut itself. Hence, the total response of the system can be computed as the sum

of the responses caused by these forces acting separately. Denoting as ut
Fkn

, ut
Fi

and ut
Fd
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the displacement produced respectively by the forces Ft
kn, Ft

i and Ft
d, the total response

of the system is computed as:

ut = ut
Fkn

+ (1 + α)



ut
Fi

+
Nsd
∑

d

ut
Fd



 (40)

or equivalently, taking benefit from the responses under unitary forces calculated in the

Offline stage, and explicitly splitting the system in terms of catenary and pantograph:





ut
cat

wt
pan



 =





ut
Fkn,cat

wt
Fkn,pan



+ (1 + α)



f t
i





u∗t
i,cat

w∗
i,pan



+
Nsd
∑

d

f t
d





u∗
d,cat

0







 (41)

Now, the magnitude of the interaction force f t
i and the internal forces of slackened

droppers f t
d for d = 1, ..., Nsd at instant t, are the set of unknowns of the problem.

ut
Fkn,cat and wt

Fkn,pan are easy to compute because you only must solve the systems

Acatu
t
Fkn,cat = Ft

kn,cat and Apanwt
Fkn,pan = Ft

kn,pan. Although the first of these systems

of equations can be quite large, we remember that the matrix of the system has been fac-

torized in the Offline stage into two sparse triangular matrices. Thus, solving the whole

system consists of applying forward and backward solvers which are computationally very

efficient. Besides, this global size system need only be solved once at each time step, un-

like the Methods 1 and 2 defined in Section 4.2, which require several solutions of systems

of this size in every time step.

To deal with the non-linearities, we define the vector f = [f t
i f t

1 · · · f t
Nsd

]T , which contains

all the unknowns of Eq. (41). Note that although they are forces, only their magnitude

is unknown, since their direction has been previously established. It is also important to

emphasize that the number of unknowns is significantly smaller than the total number

of degrees of freedom of the system. In order to find these unknowns, due to the non-

linearities introduced by the dropper slackening and the pantograph contact loss, we must

set and solve iteratively a system of equations of variable size because we do not know

which droppers are slackened.

The first equation of such a system comes from the force balance at the interaction point.

Looking at the second expression of Eq. (39) (or equivalently Eq. (22)) and introducing

the solution in terms of Eq. (41), the external force at the contact point that must be
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applied is:

f t
i = kh(zref + wt

pan − zt
0,cw − wt

cw) = kh

(

zref + wt
Fkn,pan + (1 + α)f t

i w∗
i,pan − zt

0,cw−

wt
Fkn,cw − (1 + α)



f t
i w∗t

i,cw +
Nsd
∑

d

f t
dw∗

d,cw









(42)

The remaining Nsd equations of the system are derived from the third expression of

Eq. (39) particularized on every slackened dropper d. By doing this we obtain the com-

pensating forces on both nodes of the slackened dropper element. In order to obtain a

scalar equation, we select only the forces on the node n and project them in the direction

nd. Finally, introducing Eq. (41) again, and its velocity counterpart, we obtain:

f t
d = nd ·

(

sd +
[

kdut
d + cdu̇t

d

]

n

)

=

nd ·



sd +



kd



ut
Fkn,d + (1 + α)



f t
i u∗t

i,d +
Nsd
∑

m

f t
mu∗

md







+

cd



u̇t
Fkn,d + (1 + α)



f t
i u̇∗t

i,d +
Nsd
∑

m

f t
mu̇∗

md













n





(43)

Rearranging Eqs. (42) and (43) in a matrix form leads to:





a b

c D



 f =





e

g



 (44)

Recalling that the index d = 1, ..., Nsd, the matrix of the system is defined by

a =
1

kh

− (1 + α)(w∗
i,pan − w∗t

i,cw) , (45)

the row vector b with the entries

bd = (1 + α)w∗
d,cw , (46)

the column vector c such that

cd = −(1 + α)nd ·
[

kdu∗t
i,d + cdu̇∗t

i,d

]

n
, (47)

22



and the squared matrix D = INsd
− G, being INsd

the identity matrix of size Nsd and G

a matrix whose entries are

gdd = −(1 + α)nd · [kdu∗
dd + cdu̇∗

dd]n (48)

The right hand side vector is composed of

e = zref − zt
0,cw + wt

Fkn,pan − wt
Fkn,cw (49)

and the column vector g with the components

gd = nd ·
(

sd +
[

kdut
Fkn,d + cdu̇t

Fkn,d

]

n

)

(50)

After solving the system defined in (44), the fulfilment of the slackening (30) and the

contact loss criteria are checked out. For the next iteration, only the droppers which

slacken will take part in the linear system of equations (44). This iterative procedure is

summarized in Algorithm 2. As in the classical approach, it lasts until in two consecutive

iterations the state of all droppers D and the contact loss state C are equal, which is

always achieved with only 3 or at most 4 iterations in the numerical examples that we

have solved. When the iterative procedure ends, one can move to the next time step of

the time integration scheme.

With this proposed method the pantograph and the catenary are absolutely independent,

which allows us to use the proposed method with a real pantograph in a HIL simulation.

In such a case, the contact force would be an input at every time step. The computational

cost of this methodology is much smaller (even achieving real-time response) than the one

required in the classical approach and its modified versions. For every time step we only

perform a unique global backward and forward resolution with very sparse triangular

matrices, and a linear system of equations of the small size Nsd +1 must be set and solved

few times, instead of solving the global size system several times at each time step, as in

the classical approaches.
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Algorithm 2 Offline/Online time integration.

OFFLINE stage:
Assemble Acat and calculate its LU factorization;
Solve the Nstp problems (32): u∗t

i,cat;
Solve the Nd problems (34): u∗

d,cat;
Solve the equation (35): w∗

i,pan;

ONLINE stage:
for t = 1...Nstp do

Obtain the initial conditions response: ut
Fkn,cat, wt

Fkn,pan;
Initializations: j = 0; D t

j−1 = D t
j = D t−1; C t

j−1 = C t
j = C t−1;

while
(

D t
j−1 6= D t

j and C t
j−1 6= C t

j

)

or j = 0 do

j = j + 1;
D t

j−1 = D t
j ; C t

j−1 = C t
j ;

Set the linear system of Nsd + 1 equations (44);
Apply the slackening criterion (30): D t

j ;
Apply the contact loss criterion: C t

j ;
end while

With Eq. (41) obtain the total displacements ut;
end for

5. Numerical examples

The numerical examples given in this section are intended to verify the simplifying hy-

pothesis we assumed for the formulation of the dynamic problem and also, to demonstrate

the significant reduction in computational cost offered by the proposed Offline/Online

method, as compared with the classical approaches.

5.1. Hypothesis verification

In the beginning of Section 4, we applied two important simplifications. The first concerns

the linearisation of the dynamic equations with respect to the static equilibrium position

of the catenary cables. With this assumption we got rid of the geometrical non-linearity

introduced by the strain measure. The second simplification is based on the small defor-

mation undergone by the droppers in the static equilibrium configuration. This leads to

an elemental stiffness matrix which is independent of the absolute position in which the
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Component E (MPa) ρ (kg/m3) A (mm2) I (mm4)

Messenger wire 9114 1.1 · 1011 94.8 1237.2
Contact wire 9160 1.1 · 1011 150 2170

Droppers 9114 1.1 · 1011 10 0

Table 1: Material and geometrical properties of the catenary components.

system has been linearised.

To check whether or not these assumptions affect the solution, we are going to simulate

the same problem formulated with the non-linear behaviour and the two versions of the

linearised dynamic equations. For the simulations we use the catenary model proposed

in [3], whose geometry is depicted in Fig. 7. This is a 3D catenary with a stagger of 20 cm

from the centre line of the track. It is composed of 10 spans 55 m long and 9 droppers each.

The material properties of the different components are listed in Table 1. A proportional

Rayleigh damping model is defined by the constants αr = 0.0125 and βr = 0.0001.

Figure 7: Catenary geometry used for the hypothesis validation.

The parameters used for the lumped mass pantograph model are shown in Table 2. The

applied uplift force is Fpan = 180 N. A time step of ∆t = 0.001 s is used for the dynamic

simulation. The pantograph moves at 270 km/h and the HHT parameters are set to

α = −0.05, β = 0.2756 and γ = 0.55. The penalty stiffness assigned for the interaction

model is kh = 50000 N/m.

The results shown in the figures below are focused on the contact force at the two central

spans in order to minimize unwanted contributions from boundary effects. This magnitude
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dof m (kg) c (Ns/m) k (N/m)

1 6.6 0 7000
2 5.8 0 14100
3 5.8 70 80

Table 2: Pantograph model parameters.

is considered a good representative output of the dynamic simulation. Fig. 8 shows the

interaction force obtained from two simulations, one using the non-linear formulation

(solid line) and the other with the linearised formulation (dashed line). At first glance no

difference is observed, but plotting the relative error between the two curves shows that

it does not exceed 3.4%, confirming the validity of the linearisation hypothesis.
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Figure 8: Interaction force from the linearised (solid blue line) and the nonlinear (dashed red
line) formulation. Relative error between them.

As regards the second assumption, Fig. 9 shows the interaction force obtained considering

the full dropper stiffness matrix (solid line) or its simplified version (dashed line). Again,
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the differences between the two simulations are negligible, with a mean relative error

around 1%.

Considering the two simplifications together, the mean of the relative error in the contact

force between the linearised formulation using the simplified dropper stiffness matrix and

the non-linear problem is less than 1.6%. Hence, we can conclude that using the linearised

formulation along with the simplified dropper stiffness matrix (18) does not significantly

affect the results.
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Figure 9: Interaction force using the full dropper stiffness matrix (solid blue line) or the
simplified one (dashed red line). Relative error between them.

After verifying the simplifications introduced into the formulation, we should now inves-

tigate other changes that may save computational cost. Specifically, we are going to look

for the largest time step ∆t in the HHT algorithm that provides accurate results.

For this purpose, the interaction force obtained with three different time steps is compared
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in Fig. 10. The use of ∆t = 0.002 s (dashed red curve), produces quite accurate results

when compared with the ones (solid blue curve) obtained with ∆t = 0.001 s. However,

if ∆t = 0.005 s the solution does not match with the reference interaction force at all.

Hence, in the light of these results, we can select the time step of 2 ms.
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Figure 10: Interaction force using different time steps.
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Figure 11: Relative error between the solution obtained with α = 0 and α = −0.05.

Another aspect to analyse is the value of the constant α in the HHT method. Fig. 11

represents the relative error of the interaction force obtained from α = 0 (equivalent to

the Newmark method) and α = −0.05. As can be seen, this error does not exceed 1% in
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most of the interest interval. This means the Newmark method can be used at a lower

computational cost because we do not need to include in Eq. (37) the terms evaluated in

the previous time step t − 1.

5.2. Computation time study

The classical approach and the proposed Offline/Online methodology come from the

same dynamic equilibrium equation. This means that there are no differences in the time

history of the interaction force, obtained by both methods. This is why in this section we

only compare the computational cost of the commonly used classical approaches and the

proposed Offline/Online methodology.

To carry out this comparison, four different catenary models are studied. Three of them

are 3D models with 5 (Cat.1), 10 (Cat.2) and 18 (Cat.3) spans respectively, and the other

one is a 2D model 1 km in length and with 18 spans (Cat.4).

As mentioned previously, the displacements, velocities and accelerations calculated in the

Offline stage must be stored to be used in the succeeding Online phase. This requires

a certain amount of RAM memory available in the computer in order to avoid swapping

data on the hard disk, which would slowdown the computations. For Cat.3, the biggest

example studied here, approximately 2.5 GB of RAM memory is large enough to store all

the results.

In Table 3 we compare the computational cost required to perform the simulations with

these four catenary models. The first two rows show the number of degrees of freedom of

each catenary model and the total time simulated, respectively. All the simulations are

carried out with a time step ∆t = 0.002 s, and the rest of the time integration parameters

are equal, as in the previous section. The code was implemented in MATLABr and

launched in an Intelr Core i7-6700 CPU.

The computational time required for the classical approach time integration, the two

modified methods, the Offline stage of the new approach and also the Online phase are

displayed using both HHT and Newmark methods.

The remarkably high computational cost required for the modified Method 1 is about four
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Cat.1 Cat.2 Cat.3 Cat.4

dofs 5996 11986 21570 14385
Simulated time (s) 3 5 10 10

HHT

Classical (s) 56.05 205.38 802.80 412.46
Modified 1 (s) 156.76 676.1 2575.2 1405.7
Modified 2 (s) 20.98 90.58 325.47 187.35

Offline stage (s) 0.76 2.39 9.83 5.28
Online stage (s) 1.74 5.22 19.27 10.86

Newmark

Classical (s) 52.69 218.74 785.10 417.60
Modified 1 (s) 91.99 323.89 1270 757.8
Modified 2 (s) 14.93 50.87 201.24 111.64

Offline stage (s) 0.79 2.50 9.64 5.19
Online stage (s) 1.37 4.48 15.75 9.10

Table 3: Computational time comparison.

times more than the classical algorithm. This is because the matrix of the system does

not include any information of droppers, leading to convergence problems in the iterative

procedure, which needs a large number of iterations to obtain accurate solutions. Hence,

although the system matrix has been factorised, there is no improvement in computational

cost, due to the large number of times the global size system needs to be solved.

However, there is a noticeable time gain with the use of the modified Method 2. In this

case, the time integration can be solved more than three times faster than with the classic

scheme. In this procedure, apart from taking advantage of having a factorised matrix, no

more than ten iterations are usually needed to achieve convergence with a good degree of

accuracy.

The good performance of the proposed Offline/Online method can be clearly seen in

Table 3. The same simulation with exactly the same accuracy is carried out around 25

times faster than with the classic approach. This total gain factor is slightly increased

for large catenary models, which require more computational effort. Focusing only on the

time consumed by the Online stage, in most cases it comes close to (light green boxes),

or is even less than the simulated time (green boxes), which allows real-time responses

for HIL simulations. These low computational costs are due to the way we treat the non-

linearities; for the four catenaries solved, they account for solving iteratively a system of
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maximum size of 6 equations, with only 4 iterations at most.

It is very clear that, regardless of the catenary model, the proposed approach is highly

suitable for optimization purposes, when a large number of simulations must be performed.

6. Conclusions

This paper deals with the numerical simulation of pantograph-catenary dynamic inter-

action. The catenary is modelled by FE according to the absolute nodal coordinate

formulation, while the pantograph is treated as a lumped mass system. The major diffi-

culty in the simulations lies in the nonlinearities introduced by dropper slackening and the

possible loss of contact of the pantograph. With a classical approach, a linear system of

equations of the overall size of the problem must be solved several times at each time step

in order to account for these nonlinearities. This has a considerable computational cost

and makes the approach useless for optimization purposes, in which many simulations are

required.

Certain modifications are intended to avoid reassembling the matrix each time step by

dealing with the nonlinearities as forces keeping the global matrix constant in time. Start-

ing from these modified formulations, we developed a new strategy that notably reduces

the computational effort in each simulation without any loss of accuracy. The proposed

procedure is based on two stages: the Offline phase, performed only once, in which we

solve several single time-step problems, applying unitary forces. This is followed by the

Online stage in which we account for the initial conditions and deal with the nonlineari-

ties by only solving a very small system of equations whose unknowns are the interaction

force and the slackened dropper correction forces.

The Offline/Online method results in a highly computational-cost-saving approach, mak-

ing it a very suitable tool for optimizing the catenary and pantograph models. Further-

more, it has been shown to be capable of computing the real-time response of the catenary

unlike any other previous method in which there were no losses in accuracy. This means

that the Offline/Online approach can be used to implement HIL simulations, in which a

pantograph model is replaced by a real system.
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Appendix A. The HHT time integration method

The Hilber-Hughes-Taylor (HHT) method [29] is an implicit time integration scheme

widely used in structural dynamics. Given the linear system of equations of motion:

Mü + Cu̇ + Ku = F (51)

the HHT method is based on the Newmark hypotheses:

ut+1 = ut + ∆tu̇t +
∆t2

2

[

(1 − 2β)üt + 2βüt+1
]

u̇t+1 = u̇t + ∆t
[

(1 − γ)üt + γüt+1
]

(52)

which depend on the coefficients β and γ and the time step ∆t. The damping, elastic and

external forces in Eq. (51) are weighted in two consecutive time steps by a coefficient α

leading to:

Müt+1 + (1 + α)Cu̇t+1 − αCu̇t + (1 + α)Kut+1 − αKut = (1 + α)Ft+1 − αFt (53)

We can rearrange Eq. (52) in order to obtain üt+1 and u̇t+1 as a function of the displace-

ments ut+1 and all the variables evaluated in the previous time step as:

u̇t+1 = b4

(

ut+1 − ut
)

− b5u̇t − b6üt

üt+1 = b1

(

ut+1 − ut
)

− b2u̇t − b3üt
(54)

where the constants bi are:

b1 =
1

β∆t2
b2 =

1

β∆
b3 = 1 −

1

2β
b4 = γ∆t b1 b5 = 1 + γ∆t b2 b6 = ∆t(1 + γb3 − γ)

(55)

Then, substituting them in (53) results in:

Aut+1 = b (56)
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where

A = (1 + α) [K + b4C] + b1M

b = (1 + α)Ft+1 − αFt + α
[

Kut + Cu̇t
]

+ M
[

b1ut − b2u̇t − b3üt
]

+ (1 + α)C
[

b4ut − b5u̇t − b6üt
]

(57)

Once the displacements have been obtained by solving the system (56), it is easy to

compute the velocities and accelerations from Eq. (54).

Appendix B. List of symbols

For the sake of clarity, in the table below we list all the symbols used throughout the

paper in order of appearance:

qc, qb Vector of degrees of freedom for cable and bar elements.

r(x, y, z) Absolute position vector and coordinates.

χ, s Local reference and deformed element coordinates.

ξ Normalized local element coordinate.

lref Undeformed element length.

Nc, Nb Shape functions matrix for cable and bar elements.

mi, ci, ki, i = 1, 2, 3 Mass, damping and stiffness parameters of the pantograph model.

kh Penalty interaction stiffness.

fi Interaction force value.

z1 Absolute vertical position of the degree of freedom 1 of the pantograph.

zcw Absolute vertical position of the contact wire at the contact point.

Ω, Ωe Catenary and element spatial domains.

Ne Total number of finite elements.

δW e
int, δW e

ext Elemental virtual work produced by internal and external forces.

E Young’s modulus.

A Cross-sectional area.

I Second moment of area.

ρ Density.

g, g Gravitational force vector and gravitational constant.

εa Axial strain.
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κ Curvature.

fint, fext Internal and external equivalent nodal forces.

r0 Static equilibrium position of the catenary.

u Vector of displacements from the reference position.

u, v, w Displacements on directions x, y and z.

nd, n̂d Director vector of dropper d at the static equilibrium position and its unitary

counterpart.

εa,0, T0 Axial strain and tension of an element in the static equilibrium configuration.

kd, kd Stiffness matrix and stiffness constant for dropper d.

cd Damping matrix for dropper d.

αr, βr Proportional Rayleigh damping parameters.

Mcat, Ccat, Kcat Mass, damping and stiffness matrices of the catenary.

ucat, u̇cat, ücat Displacements, velocities and accelerations of the catenary respect to the

static equilibrium configuration.

Mpan, Cpan, Kpan Mass, damping and stiffness matrices of the pantograph.

wpan, ẇpan, ẅpan Vertical displacements, velocities and accelerations of the pantograph d.o.f.

Fpan External uplift force applied to the pantograph.

wcw Vertical displacement, respect to the static equilibrium position, of the contact

wire particularized at the contact point.

z0,cw Static equilibrium vertical position of the contact wire at the contact point.

ki, Ki Local and global interaction stiffness matrix.

si, Si Local and global interaction static force vector.

M, C, K, F Global assembled mass, damping, stiffness matrices and force vector.

u0, u̇0, ü0 Initial displacements, velocities and accelerations of the global system.

∆t Time step.

Nstp Total number of time steps.

α, β, γ HHT parameters.

bi, i = 1, ..., 6 Constant values depending on ∆t and the HHT parameters.

fd, sd Total internal force and internal force in the static equilibrium position for

dropper d.

δd, δ0,d Total elongation and elongation in the static equilibrium position for dropper

d.

�
t, �j Any variable particularized at time step t and iteration j.

A, b Global time integration matrix and force vector.

FIC Global initial conditions force vector.
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D , C Dropper slackening and contact loss state variables.

Acat, Apan Time integration matrix for the catenary and the pantograph systems.

Lcat, Ucat LU factorisation of Acat.

�
∗ Unitary force or displacement produced by a unitary force.

Nd, Nsd Number of total and slackened droppers.

Fkn, Fi, Fd Vectors of known, interaction and slackened dropper correction forces.

uFkn
, uFi

, uFd
Displacements produced by the known, interaction and slackened dropper

correction forces.

w∗
d,cw Vertical displacement of the contact wire at the interaction point, produced

by a unitary force applied on dropper d.
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