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Abstract  

In this work an N-way partial least squares regression discriminant analysis (NPLS-DA) 
methodology is developed to detect symptoms of disease caused by Penicillium digitatum in citrus 
fruits (green mould) using visible/near infrared (VIS/NIR) hyperspectral images. To build the 
discriminant model a set of oranges and mandarins was infected by the fungus and another set was 
infiltrated just with water for control purposes. A double cross-validation strategy is used to validate 
the discriminant models. Finally, permutation testing is used to select a few bands offering the best 
correct classification rates in the validation set. The discriminant models developed here can be 
potentially implemented in a fruit packinghouse to detect infected citrus fruits at their arrival from 
the field with affordable multispectral (3-5 channels) cameras installed in the packinglines.  

Keywords: hyperspectral imaging, NIR, NPLS-DA, variable selection, permutation test 	

 

1. Introduction  

Citrus production exceeded 115 million tons in 2011 [1]. They are cultivated in over one hundred 

countries world wide, being Spain one of the most important producer countries and the world 

leader in fresh citrus exports [1]. Citrus are, indeed, the most widely produced fruits for human 

consumption, especially oranges (62%) and mandarins (23%). To ensure product quality and reduce 

production losses, it is mandatory to enhance postharvest handling in citrus packinghouses. Many 

issues arise in this process due to pathological diseases in fruits. This problem can be potentially 

harmful, since a small set of rotten and sporulated fruits can contaminate the whole batch, 

especially during storage or transport. Penicillium digitatum (the cause of green mould) and 

Penicillium italicum (the cause of blue mould) are two examples of the most deleterious fungi 
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causing fruit decay, and they affect several cultivars over the world [2,3].  

Green mould lesions at early stages cannot be detected with the naked eye because the appearance 

of the damage is very similar to the appearance of sound fruit. The first symptoms of these disease 

appear as a slightly discolored soft, water soaked around a point of injury. The spot expands rapidly 

to a 30-40 mm diameter. As the infection advances, a white fungal growth appears on the surface of 

the rot [4].  Before the sporulation, the appearance of the lesions is very similar to the sound skin 

being difficult for the workers to detect damaged fruit, especially when they work on an inspection 

table, examining fruit traveling at high speed. Therefore, the application of visual inspection or 

computer vision systems based on colour images is limited. Nowadays, novel machine vision 

technologies are being incorporated in the citrus postharvest to detect this dangerous disease, mostly 

based on ultraviolet (UV) induced fluorescence. Ogawa et al. [5] presented a system to detect decay 

lesions in citrus using fluorescence images, and Blanc et al. [6] patented an automatic machine for 

in-line decay detection and fruit sorting using UV illumination. However, Momin et al. [7] 

demonstrated that different cultivars of citrus fruits have different excitation wavelengths to 

produce UV induced fluorescence in the infected areas, which makes it difficult to create a system 

valid for all cases based only on this technology. Also, this kind of automatic detection can be 

potentially jeopardized by fluorescence measurements from other non-related defects [8]. 

Alternatively, this disease can often be observed using other techniques like image backscattering 

[9,10] or hyperspectral imaging (HSI) [11]. In this sense, different hyperspectral sensors are being 

investigated to detect non-visible fruit damage [12] like decay lesions in citrus fruits [13].  

Using spectral devices, a set of images is obtained at different wavelengths, capturing a huge 

amount of chemical information. Some works have been focused on reducing the redundant 

information in this procedure, compressing the high-dimensional original variable space into a low-

dimensional one that preserves the main properties of the data. Gomez-Sanchis et al. [14] and 

Lorente et al. [15] used the features from spectral images of infected fruit as inputs for classification 

algorithms, in order to improve the discrimination between sound and symptomatic skin. In 

addition, HSI systems have also been developed to detect other dangerous diseases. Qin et al. [16] 

used a portable imaging spectrograph to acquire hyperspectral images of red grapefruits affected by 

canker and other defects. In that work, the spectral images of the different defects were analysed 

using principal component analysis (PCA) [17] and spectral information divergence as 

classification method, detecting 97.6% of infected fruits. In Qin et al. [18], the authors exploited the 

bands selected using PCA and correlation analysis to obtain a system capable of detecting the 

canker using ratios of two bands. Afterwards, a system to detect canker lesions in-line was 
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developed by Qin et al. [19]. Also, PCA and band ratios were used by Li et al. [20,21] to select 

relevant bands for the detection of this disease among other common defects.  

Multivariate Image Analysis (MIA) uses a wide number of models and approaches to deal with 

hyperspectral images [22,23]. PCA is probably the most used method within MIA (some examples 

are shown in the previous paragraph), but other two-way methods are commonly used, as partial 

least squares regression (PLS) [24] or multivariate curve resolution (MCR) [25]. In some cases, it is 

convenient or interesting to use three-way models such as N-way PLS (NPLS) [26] or Tucker [27]. 

The aim of this work is to develop multivariate models based on hyperspectral images able of 

discriminating between infected and sound citrus fruits while at the same time reducing as much as 

possible the number of wavelengths used. For this, we will use NPLS discriminant analysis (NPLS-

DA) [28,29] to build a latent variable-based regression model using specific features extracted from 

a pool of images of different orange and mandarin cultivars collected at the Instituto Valenciano de 

Investigaciones Agrarias (IVIA) (Valencia, Spain). This kind of models has been succesfully 

applied in many research works within fruit industry, e.g. for tomato [30], coffee [31], loquats [32] 

and apple [33] discrimination. In our case, the present study represents an attempt to implementing 

automatic classification procedures in fruit packinghouses to prevent the storage of infected citrus 

fruits, which may ultimately rot and sporulate causing contamination of packinghouse facilities and 

spread of the disease to healthy stored fruit.  

The structure of the paper is as follows. Section 2 gives specific details on the data and the image 

acquisition. In Section 3 the data preprocessing, feature extraction and latent variable modelling are 

described. Section 4 shows the results of the multivariate discriminant. Finally, some conclusions 

are drawn on Section 5.  

 

2. Materials  

Eight different orange and mandarin varietes are analysed in this paper: Clementine, Navel Lane 

Late, Mioro, Nadorcott, Nova, Salustiana, Blood orange, and Washington Navel. In each variety, 

150 fruits were harvested from the field collection of the Citrus Germplasm Bank at the IVIA 

(Spain) [34]. After two days of storage with controlled temperature and humidity, 100 fruits of each 

variety were inoculated with a concentration of 106 spores/ml of P. Digitatum [35]. These citrus 

fruits represent the fungus group. The remaining 50 fruits were inoculated with water, and they 
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represent the control group to know if the innoculation process influences the results. Both 

inoculations were produced around 2 days after the fruit collection.  

Between 1 and 4 days after inoculation, when the fruit started to show slight external symptons of 

decay, a camera coupled with a visible/near infrared (VIS/NIR) liquid crystal tunable filter (LCTF) 

was used at IVIA to obtain a RGB and hyperspectral images from each fruit of each variety. Figure 

1 shows the RGB images of a control and an infected mandarin, in order to illustrate how difficult is 

to discriminate between both classes with visual inspection. 44 wavelentghs were registered from 

650 to 1080 nm with a resolution of 10 nm. Each image has 1040 times 1392 pixels per wavelentgh. 

Therefore, the hyperspectral images can be represented as 1040×1392×44 datacubes.  

 

Figure 1: RGB images of a control (a) and an infected (b) mandarin. 

 

3. Methods  

3.1. Data preprocessing  

The citrus fruits appear centered in the images (see Figure 2, first block of images). The spherical 

shape of the fruits causes some undesirable effects in the fruit images, one of the most important 

being that the pixels in the borders (pale blue areas around the fruit in Figure 2) appear darker than 

those in the centre of the fruit due to the reflexion laws of the light. Therefore, it is convenient to 

remove the pixels near the border from the analysis, which was done in this experiment by applying 

a mask. After defining an intensity threshold, pixels exceeding this limit were selected, representing 

the inner area of the fruit (see Figure 2, second block of images). The pixel selection is performed at 

each wavelength of the image. Then, the joint area across all wavelengths is defined as the mask for 

a) b)



	 5	

the whole image. This way, if a pixel is above the threshold for, at least, one wavelength, it is 

guaranteed that it is included in the fruit mask. This procedure is repeated for all fruits in each 

variety.  

 

Figure 2: Hyperspectral image preprocessing. First, a mask was calculated using all wavelengths for 
a particular citrus fruit, and then the area inside the limits was used to perform the feature 
extraction. A vector with first order statistics was extracted for each wavelength image.  

 

Five different data preprocessings were applied in this study. The first one consisted of analysing 

the images using the original intensities (no preprocessing), 𝑖, measured with the VIS/NIR-LCTF 

system. The second one consisted of transforming the intensities into reflectance values, 𝑟, using 

black (𝑏) and white (𝑤) references taken with the HSI system:  

𝑟 = 100×
𝑖 − 𝑖!
𝑖! − 𝑖!

 (1) 

The third preprocessing consisted of obtaining the absorbance values, 𝑎, from the reflectance. That 

is: 

𝑎 = 𝑙𝑜𝑔!"(
𝑟
100

) (2) 

�The fourth and fifth preprocessings consisted of applying multiplicative scatter correction (MSC) 

and standard normal variate (SNV) methods [36] to the absorbance values, respectively. The 

complete study presented in Section 4 was reproduced using the five different preprocessings. A 

table with the main results is shown in the Appendix.  

3.2. Feature extraction  
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Once the mask was applied, each wavelength image was converted into a one-dimensional 

numerical array using an image-based approach [23] (see Figure 2). In each vector a set of first 

order statistics were included as features describing the corresponding wavelength image. 

Specifically, the mean, standard deviation, and third to fifth order moments were used. After feature 

extraction, the data were arranged in a 3-way data cube, containing the whole set of fruits in each 

variety by rows, the features by columns, and the 44 wavelengths as third mode (see Figure 3).  

 

Figure 3: NPLS-DA modelling. The feature matrices extracted from each citrus fruit are arranged as 
row slices of the three-way array 𝐗. Then, the datacube is used jointly with the dummy variable 𝐲, 
representing the fungus/control group, in the NPLS-DA model.  

 

3.3. N-way partial least squares discriminant analysis (NPLS-DA)  

In this work we were interested in selecting a few wavelengths (ideally three to five) to discriminate 

between control and fungus oranges. For this, a variable selection performed within 2-way PLS 

could be applied. However, PLS allows for interactions between features and wavelengths, so a 

solution using a combination of different features at several wavelengths can be obtained. Since we 

were interested in using all features of a subset of wavelengths, and our data set is a three-way 

structure, we decided to apply N-way PLS. Therefore, N-way PLS [37] was proposed for studying 
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the three-way data structure with discriminant purposes between the control and fungus citrus fruits 

(i.e. NPLS-DA). NPLS is the natural extension of PLS to N-way structures, which tries to maximize 

the covariance between the 𝐗 and 𝐘 data arrays.  

In the present study, the 𝐗 (𝐼 × 𝐽 × 𝐾) data matrix is the datacube represented in Figure 3. It is 

worth noting that here we are not considering the datacube of each image (described in Section 2). 

For the NPLS-DA analysis we build a new three-way array using the (𝐾 × 𝐽) feature array (see 

Figure 2) of each of the 𝐼 oranges. Each row slice of 𝐗 represent the set of features of citrus fruit i 

(therefore 𝐾 = 44 wavelengths and 𝐽 = 5 features). Considering 𝐗 (𝐼 × 𝐽𝐾) the unfolded version of 

the datacube 𝐗, NPLS tries to find latent spaces 𝐖! and 𝐖! that maximise the covariance between 

𝐗 and, in this case, the dummy vector 𝐲 (containing 1s for the fungus citrus fruits and 0s for the 

control ones), so it can be expressed as:  

𝐗 = 𝐓(𝐖!
 
⨂𝐖!

 
)! + 𝐑 (3) 

afterwards decomposing 𝐗 from 𝐗 using the improved NPLS version expression [38], in order to 

obtain residuals with better statistical properties:  

𝐗 = 𝐓𝐆(𝐖!
 
⨂𝐖!)! + 𝐑′ (4) 

here, ⨂ is the Kronecker product, 𝐖! and 𝐖! refer to the weights of the wavelengths mode (3rd) 

and of the features mode (2nd), respectively; whereas 𝐓 matrix gathers the scores of the fruits at 

each component extracted, in the 1st mode, and 𝐆 is the core array of a Tucker3 decomposition 

when using 𝐓 , 𝐖!  and 𝐖!  as loadings, in order to obtain a better (or at least not worse) 

approximation of the 𝐗 3-way array [39]. Finally, 𝐑′  incorporates the residuals. More details on the 

matrices can be found in [38,39].  

3.4. Validation procedure and wavelength selection  

Proper validation of discriminant models is a subtle issue in chemometrics. Here, a double cross 

validation strategy [40] was applied. Using this procedure, the data from each variety and treatment 

(fungus/control) were split in three groups with the same number of observations in each group (16 

fruits) (see Figure 4, using the compact 3-way array 𝐗). The first group is the calibration set, used to 

build the NPLS-DA model. The second group is the test set, used for selecting the number of 

components. And the third group is the validation set, used to evaluate the predictive power of the 

NPLS-DA. 
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Figure 4: Data partition for the double cross validation procedure using images of a particular 
variety. The model was obtained using the calibration samples, the number of components was 
selected projecting the test samples, and the correct classification rate was obtained using the 
validation samples.  

 

The ultimate goal of the present study is the creation of an affordable automatic procedure to 

discriminate between sound and infected fruit in packinghouses. The main drawback of using the 

VIS/NIR-LCTF system to obtain the spectral information is the relative high price of the 

equipment. On the other hand, HSI-based systems in general capture a huge amount of data that is 

sometimes redundant and needs large time to be acquired. Hence, there is a need to reduce the 

dimensionality of the data by selecting only those important wavelengths that still retain most of the 

information. Current state of technology allows the development of multispectral cameras capable 

of working in production lines with three to five charge-coupled device (CCD) sensors that can be 

customized to capture specific wavelengths. Hence, the goal is to perform a variable selection on 

the third mode of the data, the spectral bands, to assess whether a few wavelengths (three to five) 

have enough discriminant power to classify each fruit correctly. Permutation testing was used since 

it is one of the most used techniques to perform variable selection in PLS-DA [40-43]. 

The double-cross validation and the variable selection were performed as follows: 

1. 500 different calibration, test and validation sets were built, including 32 random samples in each 

group: 16 fungus and 16 control citrus fruits. 

2. For each of the 500 group selections: 

2.1. The 32 calibration fruits were used to build NPLS-DA models, with number of components 

ranging from 1 to 25. 
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2.2. The test set was projected onto each of the 25 models to decide the number of components. The 

interest was in maximising first the 𝐹-score and then the parsimony of the final model. The 𝐹-score 

was calculated using precision and recall of the decay prediction of the NPLS-DA model. The 

precision, 𝑝, was computed as:  

𝑝 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

where 𝑇𝑃 are the true positives, i.e. fungus citrus fruits correctly classified in the model, and 𝐹𝑃 the 

false positives, i.e. control fruits classified as fungus. The recall, 𝑟, was defined as:  

𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

where 𝐹𝑁 refers to the false negatives, i.e. fungus citrus fruits classified as control. So, the 𝐹-score 

was computed as:  

𝐹 =
2𝑝𝑟
𝑝 + 𝑟

 (7) 

Therefore the 𝐹-score was maximum when all the samples were classified correctly, both control 

and fungus (first criterion). If this was achieved selecting different number of components, the 

lowest number was selected following the principle of parsimony (second criterion). See Figure 5 

for an example of this selection using Nadorcott variety. The NPLS-DA model built with the 

calibration fruits and the components selected using the test set was the called the "real model". 
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Figure 5: Predicted class for the test samples using different number of components in the NPLS-
DA model fitted with the calibration data. 5 components were selected, since it was the model with 
highest F-score and parsimony.  

 

2.3. The VIP values (variable importance in projection) [44,45] of the real model were collected. 

The VIP value of the variable (wavelength) 𝑘 was computed as:  

𝑉𝐼𝑃!! =
𝐾 [(𝑤!,!! )!(𝑅𝑆𝑆𝑌!!! − 𝑅𝑆𝑆𝑌!)]!

!!!

𝑅𝑆𝑆𝑌! − 𝑅𝑆𝑆𝑌!
 

(8) 

where 𝑤!,!!  is the loading value of the 𝑘th variable at the 𝑎th component, 𝐴 is the number of latent 

variables in the NPLS-DA model and 𝑅𝑆𝑆𝑌! is the residual 𝐘-sum of squares of the model with a 

components (𝑎 = 0 to 𝐴). �  
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2.4. Steps 2.1-2.3 were then repeated destroying the relationships between 𝐗 and 𝐘, thus creating a 

random model. This was done by permuting the rows of 𝐘 before applying step 2.1. Finally, the VIP 

values using the random model were collected after i) fitting the NPLS-DA model with the 

calibration set and ii) deciding the number of components using the test set. 

2.5. The remaining validation samples were projected onto the real model to obtain the correct 

classification rates. Figure 6 exemplifies the projection of the validation set in the Nadorcott variety 

using the model selected in step 2.2 (see Figure 5). 

 

Figure 6: Validation samples projected onto the NPLS-DA model with 5 components built with 
calibration samples.  

 

2.6. Steps 2.1-2.5 were repeated three times, moving the samples from group to group, that is: 

calibration-test-validation (first model, as in Figure 4), test-validation-calibration (second model), 

and validation-calibration-test (third model). 

2.7. The VIP values of both the real and the random models were averaged among the three models.  

2.8. The results of the external validation using the three real models were integrated. 

3. Once step 2 was performed for all group selections, the statistical significance between the real 

and random models was assessed. The distribution of the random VIP values represents the null 

distribution, so the real VIP values, or the their mean, 𝑚, can be compared with the previous 

distribution to compute the statistical p-value, that is the probability of obtaining at random a value 

0 5 10 15 20 25 30 35
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
5 NPLS−DA comps

Y 
pr

ed
ic

te
d

fruit
 

 

Control
Fungus



	 12	

equal or higher than 𝑚. Figure 7 shows an example using the VIP values of a particular wavelength 

in the Nadorcott variety.  

 

Figure 7: VIP values of a particular wavelength. The red line denotes the null distribution from the 
random models. The green dot represents the mean VIP value of the real models. The red area is the 
p-value associated to the green dot in the red null distribution.  

 

4. The mean p-values of each wavelength across all varietes were averaged to obtain the mean p-

values. Then, after sorting the p-values, the wavelengths with lower mean p-values were classified 

as the most discriminant variables in all fruit varieties. 

5. The mean correct classification rates were obtained using the results of the validation set in the 

500 models. 

6. Steps 2.1, 2.2, 2.5, 2.6, 2.8 and 5 (double-cross validation procedure) were repeated using the 3, 

4, 5, 10, 15, 20, 25, 30, 35, and 40 most discriminant wavelengths determined in step 4. This way, 

the degradation of the missclassifications was evaluated in all varieties in terms of the number of 

wavelengths considered in the NPLS-DA model.  

 

3.5. Software  

NPLS-DA models were fitted using N-way toolbox for MATLAB [46]. The VIP values and 

permutation testing were obtained using own code.  
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4. Results 

Figure 8 shows the p-values computed using the random and real VIPs. It is clear that different 

distributions of p-values in the wavelengths were observed among varieties. For example, 

wavelengths 4-9 have the highest discriminant power (lowest p-values) in Clementine, while the 

best ones in Mioro are wavelengths 37-43. Despite these differences in the best bands per variety, it 

seems the initial 15 wavelengths, corresponding to 650-790 nm, tend to have low p-values (high 

discriminant power).  

 

Figure 8: P-values computed using the random and the real VIPs. The darker the square, the lower 
is the corresponding p-value. Green areas mark the 5 best wavelengths attending to the highest 
mean across varieties: 1, 2, 6, 11 and 12.  

 

From a theoretical point of view, the best choice would be to fit different NPLS-DA models (step 

6.) in each variety including the wavelengths with the smallest p-values in that particular variety. 

From a practical point of view, this would imply to build different digital cameras incorporating 

different wavelengths depending on the variety.  

Here, a compromise approach was applied, and we decided to select the wavelengths according to 

the list of ordered mean p-values obtained in step 4. The results in terms of fungus and total 

missclassifications can be visualized in Figure 9. The average number of missclassifications in the 
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fungus class decreases notably from 3 to 5 wavelengths, and then the values decrease slowly from 5 

to 44 wavelengths. A similar behaviour is shown in the average total number of misclassifications. 

 

Figure 9: Fungus (a) and total (b) number of missclassifications when varying the number of 
wavelengths included in the NPLS-DA model. The black lines show the mean over the 500 models 
of Clementine (upper triangles), Lanelate (’+’ symbols), Mioro (circles), Nadorcott (asterisks), 
Nova (squares), Salustiana (left triangles), Blood orange (diamonds), and Washington Navel (lower 
triangles). Also, the mean values over all varieties are shown in bold blue lines with crosses.  

 

The best combination of 5 wavelengths was 1, 2, 6, 11 and 12 (see Figure 8), corresponding to 650, 

660, 700, 750 and 760 nm. Table 1 shows the number of correct classifications and the 
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classified, in terms of disease detection, were Navel Lane Late and Clementine, with near 92% of 

correct classification rate using all wavelengths, and around 93% and 90% using five wavelengths, 

respectively. Salustiana attained the lowest classification rate. The Appendix shows the results of 

applying different preprocessings on the original images using all wavelengths, showing that for 

this variety it was better to use the absorbance values or the absorbance with SNV. For the rest of 

varieties, it was statistically better to use the intensity values (no preprocessing). The average 

correct classifications rates using all wavelengths were 95.6% and 91.2% for control and fungus 

oranges, respectively. When using five wavelenghts the percentages decreased to 93.1% and 90.0%, 

respetively. 
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Table 1: Correct classification results in all orange and mandarin varieties using all wavelengths and 
only the five most discriminant ones. * denotes a statistically better dicrimination power in the 
corresponding class (control or fungus) between using all wavelengths or only the five most 
discriminant ones. 

Variety 

All wavelengths Five most discriminant wavelengths 

Control Fungus Control Fungus 

Correct class./% Correct class./% Correct class./% Correct class./% 

Clementine 46.0* / 95.9% 44.1* / 91.8% 45.6 / 95.0% 43.3 / 90.3% 

Navel Lane 
Late 44.5* / 92.8% 44.1 / 91.8% 43.9 / 91.4% 44.8* / 93.4% 

Mioro 45.0* / 93.7& 43.0* / 89.6% 43.9 / 91.5% 42.0 / 87.6% 

Nadorcott 47.5* / 99.0% 46.2* / 96.2% 46.5 / 96.8% 46.0 / 95.7% 

Nova 45.9 / 95.6% 43.3* / 90.2% 45.8 / 95.4% 43.0 / 89.5% 

Salustiana 46.8* / 97.5% 42.3* / 88.0% 45.3 / 94.3% 40.8 / 85.1% 

Blood Orange 46.2* / 96.2% 44.1* / 91.8% 43.5 / 90.7% 42.9 / 89.4% 

Washington 
Navel 44.2* / 92.1% 43.2* / 90.0% 43.2 / 89.9% 42.3 / 88.2% 

AVERAGE 45.8 / 95.6% 43.8 / 91.2% 44.7 / 93.1% 43.1 / 90.0% 

MINIMUM 44.2 / 92.1% 42.3 / 90.2% 43.2 / 89.9% 40.8 / 85.1% 

MAXIMUM 47.5 / 99.0% 46.2 / 96.2% 46.5 / 96.8% 46.0 / 95.7% 

 

To assess the statistical differences between using 5 or 44 wavelengths, a paired t-test was applied 

on each variety. The results are presented also in Table 1. In general, the results using the selected 5 

wavelengths are statistically worse than using all wavelengths. Due to the high sample size (500) 
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used in the paired t-test, small differences in the number of correct classifications become 

statistically significant. However, comparing the results of both models, the mean loss in correct 

classification using five wavelengths instead of 44 is 0.8 and 1.1 fruits out of 48 fruits in fungus and 

control cases, respectively. Anyway, the dramatic reduction in the price of a 5-channel camera 

clearly compensates for the small reduction of correct classification. 

 

5. Conclusions  

N-way PLS-DA applied on features extracted from a set of hyperspectral images reveals as a 

powerful tool for discrimination between infected and sound citrus fruits. The methodology applied 

on several orange and mandarin varieties shows that, on average, 91% of fruit with decay lesions 

caused by P. digitatum can be detected at early stages when the damage is barely visible or even 

invisible and therefore cannot be detected in postharvest by manual inspection. The predictive 

models were properly validated using a double cross validation procedure, computing up to 500 

models with different fruit groupings.  

Permutation testing on VIP values was used here to select a few spectral channels with the most 

discriminant power in all citrus fruit varieties. Despite the number of correct classifications 

becomes stable from five selected wavelengths onwards, there exist statistically significant 

differences between using five and all wavelengths captured by the VIS/NIR-LCTF system, being 

the latter significantly better.  

Nevertheless, there is a strong cost reduction by selecting a few wavelengths, since a digital camera 

can be customised to capture up to five filters to reproduce the VIS/NIR-LCTF hyperspectral 

system. Therefore, from a practical point of view, the NPLS-DA models including information from 

the best five wavelengths are sufficient to reduce the losses in fruit warehouses due to storage of 

infected fruits.  

The knowledge obtained in this work is a key step towards the achievement of a potential automatic 

fruit sorting system using these modified cameras in which fruits are photographed and instantly 

classified using the predictions from the NPLS-DA model. This way, suspicious fruits can be 

expelled from the commercial chain prior to affecting sound fruits.  
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Appendix  

The results of the five different preprocessings (intensity, reflectance, absorbance, absorbance + 

MSC, absorbance + SNV) obtained using 100 models from the 500 used in Section 4, are depicted 

in Table 2. Based on the results of a paired t-test applied between the intensity values and the rest of 

preprocessings, it is sensible to use the intensity values to fit the models. Only in the case of 

Salustiana, the results of absorbance and absorbance + SNV were statistically better than the 

intensity values.  

Table 2: Correct classification rates using different preprocessing (all wavelengths). The +/- 
superindices mark the statistical superiority/inferiority of the results in the preprocessing compared 
to the raw intensity values.  

Fungus oranges and mandarins 

Variety 
Intensity Reflectance Absorbance Abs. + MSC Abs. + SNV 

Corr. % Corr. % Corr. % Corr. % Corr. % 

Clementine 44.3 92.3% 43.1- 89.7% 41.7- 86.9% 41.4- 86.2% 42.2- 88.0% 

Navel Lane Late 43.8 91.3% 42.5- 88.4% 40.9- 85.1% 34.1- 71.0% 34.5- 71.8% 

Mioro 43.0 89.7% 43.0 89.6% 40.1- 83.6% 38.0 79.1% 42.7- 88.9% 

Nadorcott 46.1 96.0% 46.0 95.8% 45.1- 94.0% 41.5- 86.5% 41.7- 86.8% 

Nova 43.5 90.7% 42.0- 87.5% 40.3- 84.0% 39.0- 81.3% 41.3- 86.1% 

Salustiana 42.3 88.2% 43.0 89.6% 43.4+ 90.4% 43.8+ 91.2% 42.1 87.6% 

Blood Orange 44.2 92.0% 42.8- 89.2% 42.0- 87.5% 38.2- 79.5% 36.9- 76.8% 
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Washington Navel 43.2 90.0% 43.0 89.6% 41.8- 87.1% 35.0- 72.9% 38.2- 79.5% 

AVERAGE 43.8 91.3% 43.2 89.9% 41.9 87.3% 38.9 81.0% 40.0 83.2% 

MINIMUM 42.3 88.2% 42 87.5% 40.1 83.6% 34.1 71.0% 34.5 71.8% 

MAXIMUM 46.1 96.0% 46 95.8% 45.1 94.0% 43.8 91.2% 42.7 88.9% 
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