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Abstract 

New trends in edible films focus on the improvement of their functionality through the 10 

incorporation of active compounds, such as antimicrobial or antioxidant agents. 

Resveratrol is a natural antioxidant found in a variety of plant species, such as grapes, 12 

and could be used for minimizing or preventing lipid oxidation in food products, 

retarding the formation of oxidation products, maintaining nutritional quality and 14 

prolonging the food shelf life. The aim of this work was to develop and characterize two 

different polymeric composite films (made with chitosan (CH) and methylcellulose 16 

(MC)) containing different amounts of resveratrol. This compound could be 

incorporated efficiently into both films, but provoke structural changes in the matrices, 18 

which became less stretchable (65-70% reduction of deformation at break at the greatest 

resveratrol content) and resistant to fracture (26 and 54% reduction of tensile at break 20 

for MC and CH, respectively, at the greatest resveratrol content) more opaque 

(significant reduction of the internal transmittance) and less glossy (about 60-65% 22 

reduction of gloss at the greatest resveratrol content ). Film barrier properties were 

hardly improved by the presence of resveratrol; water vapour and oxygen permeability 24 

tend to slightly decrease when resveratrol was incorporated into both polymers. 
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Composite films showed antioxidant activity, which was proportional to the resveratrol 26 

concentration in the film. None of the films showed antimicrobial activity against 

Penicillium italicum and Botrytis cinerea. Thus, these films could be applied to food 28 

products which are sensitive to oxidative processes to prolong their shelf life.  

 30 

Keywords: microstructure, water vapour permeability, oxygen permeability, 

mechanical and optical properties, antioxidant activity  32 

 

1. Introduction 34 

Bioactive edible films may be considered as a natural and biodegradable alternative to 

chemical preservatives in order to extend food shelf life. Besides acting as protective 36 

barriers, these films can be used as carriers of bioactive compounds, such as 

antimicrobials and antioxidants. Among the biopolymers used to formulate edible films, 38 

cellulose derivatives such as methylcellulose (MC), are interesting film forming 

compounds, as they are odourless, tasteless and biodegradable (Krochta and Mulder-40 

Johnston, 1997). Another biopolymer with excellent film forming ability is chitosan (Li 

et al. 1992). This non-toxic compound, obtained by deacetylation of chitin, a structural 42 

component present in the shell of some crustaceans, presents antimicrobial properties.  

Edible films should be designed to fulfil a number of requirements, such as having 44 

proper mechanical properties, good appearance (adequate gloss and transparency) and 

water and gas barrier properties.  46 

Resveratrol (3,5,4’-trihydroxystilbene) is a  natural polyphenol found in a variety of 

plant species such as grapes, mulberries and peanuts. This molecule possesses 48 

interesting antioxidant and antifungal properties. Antioxidant capacity of resveratrol has 

largely been studied in vitro by applying physico-chemical methods. Murcia and 50 
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Martínez-Tomé (2001) characterized the antioxidant activity of this stilbene and 

compared it with those obtained for other antioxidants (alfa-tocopherol, vanillin, 52 

butylated hydroxytoluene (BHT), butylated hydroxyacetone (BHA), phenol, propyl 

gallate, sodium tripolyphosphate). Among the tested molecules, only BHA showed a 54 

greater antioxidant activity than resveratrol to inhibit lipid peroxidation.  Soto-Valdez et 

al. (2010) reported that resveratrol had a higher radical-scavenging capacity than propyl 56 

gallate, ascorbic acid, and α-tocopherol. Gulçin (2010) demonstrated that 30 µg/mL of 

resveratrol inhibited 89.1% of the lipid peroxidation of a linoleic acid emulsion.   58 

As regards the antifungal activity, Hoos and Blaich (1990) and Adrain et al. (1997) 

described inhibitory effects of resveratrol on B. cinerea conidia in solid and liquid 60 

culture medium. Filip et al. (2003) reported the effectiveness of resveratrol against 

filamentous fungi Penicillium expansum and Aspergillus niger and yeast. A.niger 62 

remains the most sensitive strain out of the three tested genera.  

Little information about the incorporation of resveratrol into films is available at the 64 

moment. Only some works on resveratrol incorporation into polylactic acid (PLA) 

based films, obtained by a blow-extrusion process, have been found (Soto-Valdez et al. 66 

2011). The effect of resveratrol on PLA film properties was studied, and the kinetics of 

the diffusion of resveratrol from the PLA matrix into ethanol was analysed. These 68 

authors recommended these films be used as antioxidant release membranes for a 

variety of pharmaceutical, medical, and food applications. 70 

The aim of this work was to characterize films based on different polysaccharides 

(chitosan or methylcellulose) containing resveratrol in different polymer:resveratrol 72 

ratios (1:0.01 and 1:0.1) by analysing their microstructure, water vapour and oxygen 

barrier, mechanical and optical properties and to study the effect of resveratrol 74 

incorporation on their antioxidant and antifungal properties. 
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 76 

2. Materials and methods 

2.1. Raw materials 78 

Food Grade Methylcellulose (MC, CAS number 9004-67-5), medium molecular weight 

chitosan (CH, CAS number 9012-76-4) with a deacetylation degree of 75-85% and 80 

resveratrol (R, CAS number 501-36-0), supplied by Sigma-Aldrich Química (Madrid, 

Spain), were used to prepare the film-forming dispersions. 82 

 

2.2. Preparation of film forming dispersions 84 

To obtain film-forming dispersions (FFDs), 2% (wt) methylcellulose was dispersed in 

distilled water. Chitosan (1% wt) was dispersed in an aqueous solution of glacial acetic 86 

acid (0.25% v/v) and stirred overnight at room temperature. The corresponding amount 

of resveratrol (R) was dissolved in 96% ethanol and added to the polymer solutions to 88 

reach a polymer:ethanol:resveratrol ratio of 1:1:0.01 and 1:1:0.1 in the FFDs. 

Afterwards, these were homogenized in a rotor-stator ultraturrax DI25 at 13.500 rpm for 90 

4 min. Resveratrol based FFDs were properly protected from light using amber glass 

flasks during handling. 92 

Pure methylcellulose and chitosan FFDs (resveratrol free) were characterized as 

controls. In these cases, the same ratio of ethanol as in the films containing R was 94 

incorporated into the FFD to ensure the polymer had the same aqueous media solvent 

properties in all cases.  96 

The mixtures were degasified for 10 min at room temperature by means of a vacuum 

pump (Diaphragm vacuum pump, Wertheim, Germany). 98 

 

2.3. Film preparation 100 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Films were obtained by casting. FFDs were poured onto a framed and levelled 

polytetrafluorethylene (PTFE) plate (φ = 15 cm) and were dried for 48 h, under natural 102 

convection, at 25ºC and 60% relative humidity (RH). Film thickness was controlled by 

pouring onto the PTFE plate the amount of FFD that will provide a surface density of 104 

solids in the dry films of 56 g/m2 in all formulations. The drying process was carried out 

in darkness to protect the FFDs from the light. Dry films were peeled off the casting 106 

surface and preconditioned prior to testing in desiccators at 25ºC and 75% RH (by using 

an oversaturated NaCl solution). A digital micrometer (Electronic Digital Micrometer, 108 

Comecta S.A., Barcelona, Spain) was used to measure the film thickness in at least five 

random positions around the film.  110 

 

2.4. Film characterization 112 

2.4.1. Scanning electron microscopy (SEM) 

Microstructural analysis of the films was carried out by SEM using a scanning electron 114 

microscope (JSM-6300, JEOL Ltd., Tokyo, Japan). Film samples were maintained in a 

desiccator with P2O5 for two weeks to ensure that no water was present in the sample. 116 

Then, films were frozen in liquid N2 and cryofractured to observe the cross-section of 

the samples. Films were fixed on copper stubs, gold coated, and observed using an 118 

accelerating voltage of 15 kV. 

 120 

2.4.2. Atomic force microscopy (AFM) 

The surface morphology of dried film samples (equilibrated in a desiccator with P2O5) 122 

was analysed using an atomic force microscope (Multimode 8, Bruker AXS, Santa 

Barbara, USA) with a NanoScope® V controller electronics. The resulting data were 124 

transformed into a 3D image. Measurements were taken from several areas of the film 
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surface (50x50 and 5x5 µm) using the tapping mode. According to method ASME 126 

B46.1 (ASME, 1995), the following statistical parameters related with sample 

roughness were calculated: average roughness (Ra: average of the absolute value of the 128 

height deviations from a mean surface), root-mean-square roughness (Rq: root-mean-

square average of height deviations taken from the mean data plane). Phase Imaging 130 

mode derived from Tapping Mode, that goes beyond topographical data to detect 

variations in composition, adhesion, friction, viscoelasticity, and other properties, 132 

including electric and magnetic, was also applied. Three replicates were considered to 

obtain these parameters. 134 

 

2.4.3. Film thickness 136 

A hand-held digital micrometer (Electronic Digital Micrometer, Comecta S.A., 

Barcelona, Spain) was used to measure film thickness in six different points of the same 138 

film. 

 140 

2.4.4. Moisture content 

Film samples were dried in triplicate at 60ºC for 24 h in a natural convection oven and 142 

for 24 h more in a vacuum oven in order to determine their moisture content.  

 144 

2.4.5. Water vapour permeability 

The water vapour permeability (WVP) of films is commonly measured by using a 146 

modification of the ASTM E96-95 (ASTM, 1995) gravimetric method using Payne 

permeability cups (Elcometer SPRL, Hermelle/s Argenteau, Belgium) of 3.5 cm 148 

diameter. For each type of film, measurements were replicated seven times and WVP 

was calculated following the methodology described by Gennadios et al. (1994), at 25ºC 150 
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and a 75-100% relative humidity gradient, which was generated by using an 

oversaturated NaCl solution and pure water, respectively. To determine WVP, the cups 152 

were weighed periodically (each 2 h, for 10 h) after the steady state was reached using 

an analytical balance (±0.0001 g). Then the slope obtained from the regression analysis 154 

(5 points) of weight loss data as a function of time was used to calculate WVP, 

according to ATSM (1995). 156 

 

2.4.6. Oxygen permeability 158 

The oxygen permeability of the films (OP) was measured in triplicate by using an 

oxygen permeation measurement system (OX-TRAN 1/50, Mocon, Minneapolis, USA) 160 

at 25ºC and 75% RH (ASTM, 2005). A sample of the film (50 cm2) was placed in a test 

cell and pneumatically clamped in place. Films were exposed to pure nitrogen flow on 162 

one side and pure oxygen flow on the other side. An oxygen sensor read permeation 

through the barrier material and the rate of permeation or oxygen transmission rate was 164 

calculated taking into account the amount of oxygen and the area of the sample. Oxygen 

permeability was calculated by dividing the oxygen transmission rate by the difference 166 

in oxygen partial pressure between the two sides of the film, and multiplying by the 

average film thickness. 168 

 

2.4.7. Mechanical properties 170 

A texture analyser (TA-XTplus, Stable Micro Systems, Surrey, United Kingdom) was 

used to measure the mechanical properties of films equilibrated at 75% HR and 25ºC. 172 

Strips of films (25.4 mm wide and 100 mm long) were mounted in the tensile grips 

(A/TG model) and stretched at a rate of 50 mm/min until breaking. The elastic modulus 174 

(EM) and tensile strength (TS) and percentage of elongation (%E) at break were 
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determined from stress-strain curves, obtained from force-deformation data. The 176 

experiments were carried out at 25ºC on twelve replicates from each film. 

 178 

2.4.8. Optical properties 

The optical measurements were taken in films previously equilibrated at 25ºC and 75% 180 

RH. CIE-L*a*b* coordinates chrome (C*ab) and hue (h*ab) of the films were obtained 

through the surface reflectance spectra determined by means of a spectrocolorimeter 182 

(CM-3600d, Minolta Co., Tokyo, Japan) with a 10 mm diameter window, using D65 

illuminant/10º observer. Measurements were taken on black and white backgrounds and 184 

the reflectance infinite (R∞) was determined.   

The whiteness index (WI) was calculated by applying equation 1: 186 

                                                                  Eq. (1) 

 188 

The internal transmittance (Ti) of the films was determined by applying the Kubelka–

Munk theory (Hutchings, 1999) for multiple scattering to the reflection spectra, 190 

following the methodology described by Pastor et al. (2010).  

The gloss of the films was measured at a 60º incidence angle according to the ASTM 192 

standard D-523 (ASTM, 1999), using a flat surface gloss meter (Multi-Gloss 268, 

Minolta Co., Tokyo, Japan). All results are expressed as gloss units (GU), relative to a 194 

highly polished surface of black glass standard with a value near to 100. 

All measurements were taken in quintuplicate for each film at room temperature. 196 

 

2.4.9. Antioxidant activity 198 

The potential antioxidant power of films was measured via the in vitro determination of 

the free radical scavenging effect on 2,2-Diphenyl-1-picrylhydrazyl (DPPH·) radical, 200 
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following the methodology described by Brand-Willians et al. (1995). This method is 

based on the reduction of DPPH· in an alcoholic solution in the presence of a hydrogen-202 

donating antioxidant, due to the formation of the non-radical form of DPPH in the 

reaction. In the radical form, this molecule shows absorbance at 517 nm, which 204 

disappears after accepting an electron or hydrogen radical from an antioxidant 

compound thus becoming a stable diamagnetic molecule (Matthäus, 2002). 206 

To this end, dry films (0.12 and 0.012 g, respectively for the film with a lower and 

higher concentration of resveratrol) were previously dissolved in 15 (for CH films) or 5 208 

(for MC) mL deionised water and maintained under magnetic stirring for 12 h at 25ºC. 

In all cases 0.5 mL of the different appropriately diluted samples were added to 3.5 mL 210 

of methanol solution of DPPH· (0.030 g l−1). 

The decrease in absorbance at 25ºC was determined by using a spectrophotometer 212 

(Helios Zeta UV-Vis, Thermo Fisher Scientific, United Kingdom) at 515 nm. 

Measurements were taken every 15 min until the reaction reached a plateau. The DPPH· 214 

concentration (mM) in the reaction medium was calculated from the calibration curve 

(Eq. 2) determined by linear regression (R2 = 0.999):  216 

                                                                        Eq. (2) 

 218 

The percentage of remaining DPPH· (%DPPH·REM) was calculated according to 

equation 3: 220 

                                                                  Eq. (3) 

where, 222 

(DPPH)T is the concentration of DPPH· at the steady state. 

(DPPH)T=0 is the concentration of DPPH· at the initial reaction time. 224 
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The percentage of remaining DPPH· was plotted versus the molar ratio of antioxidant to 226 

DPPH· (moles of resveratrol/mol DPPH·) to obtain the amount of antioxidant necessary 

to decrease the initial DPPH· concentration by 50% (EC50). This parameter was used to 228 

measure the antiradical activity of the films. EC50 values were expressed in terms of 

moles of resveratrol per mole of DPPH· and also in terms of kg film per mole DPPH·.  230 

The antioxidant activity of 8.98 M resveratrol ethanol solution was also determined, 

using the same methodology. 232 

 

2.4.10. Microbiological analysis 234 

To determine the possible antimicrobial activity of the films, P. italicum (CECT 2294) 

and B. cinerea (CECT 2100) (CECT 2574) supplied by Colección Española de Cultivos 236 

Tipos (CECT, Burjassot, Spain) were used. Both were kept frozen (-25ºC) in Potato 

Dextrose Broth (PDB) (Scharlab, Barcelona, Spain) supplemented with 30% glycerol 238 

(Panreac, Barcelona, Spain). The fungi were inoculated on Potato Dextrose Agar (PDA) 

and incubated at 25ºC until sporulation. Then the cells were re-suspended in 240 

physiological water with 0.1% Tween 80. The cells were counted in a haemocytometer 

and diluted to a concentration of 105 spores per mL. Aliquots of PDA (20 g) were 242 

poured into Petri dishes. After the culture medium solidified, the diluted spore solution 

was inoculated on the plate surface and films of the same diameter as the Petri dishes 244 

were placed on the inoculated surface (adapted from Kristo et al. 2008). Inoculated and 

uncoated PDA Petri dishes were used as control. Plates were then covered with parafilm 246 

to avoid dehydration and stored at 20ºC for 5 days. All tests were run in duplicate. 

 248 

2.5. Statistical analysis 
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A statistical analysis of data was performed through a one-way analysis of variance 250 

using Statgraphics® Plus for Windows 5.1. Homogeneous sample groups were obtained 

by using LSD test (95% significance level). 252 

 

3. Results and discussion 254 

3.1. Film microstructure  

Figure 1 shows the SEM micrographs of the cross section of the obtained films with CH 256 

or MC with and different amounts of resveratrol. Pure CH film showed a smooth 

appearance in agreement with an ordered packaging of polymer chains whereas when it 258 

contains resveratrol a coarse aspect can be appreciated, more accused when the 

resveratrol concentration increases. This suggests that the presence of stilbene difficult 260 

the chain entanglements giving rise to more disordered network. In the case of MC, 

SEM micrographs does not reveal appreciable irregularities in the polymer matrix when 262 

resveratrol was incorporated at any concentration, but an increase in the film thickness 

was promoted, the greater the resveratrol concentration, the thickest the film. This was 264 

also observed for the CH films as can be seen en Table 1, where the values of the 

different film thicknesses are shown. These features reveal that resveratrol molecules 266 

affect the chain rearrangement in the films for both, MC and CH, modifying the film 

microstructure. The changes are more intense for CH films where the enhancement of 268 

film thickness is near 30% (only 14% for MC) and the cross section of the film shows 

more pronounced irregularities. 270 

Figure 2 shows the AFM images of the surface of the films where the changes in the 

surface topography induced by resveratrol incorporation can be seen. These are 272 

especially relevant when the highest concentration was used, where a notable increase 

in the surface roughness can be appreciated for the CH films. For MC films, a different 274 
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surface aspect due to the resveratrol incorporation can be observed, but statistical 

roughness parameters (Ra, Rq) did not reveals an actual increase in roughness.  276 

A Phase Imaging analysis was also obtained from the Tapping Mode AFM data, which 

allows us to detect variations in composition, adhesion, friction, viscoelasticity and 278 

other properties in the material surface, providing material property contrast. Figure 3 

shows the phase images of the obtained films, where very clear differences can be 280 

observed between samples at the nano-scale level. Surface of CH films shows two 

different phases which could correspond to a more crystalline (less hydrated, harder) 282 

zones, dispersed in an amorphous (more hydrated, softer) zone. Zhang et al. (2006) 

described the development of crystallinity in CH matrices due to the formation of 284 

hydrogen bonds between flexible chains showing a characteristic X-ray diffraction 

pattern with two pecks; the strongest one at 2θ of about 20º and a weak peak at 10º 286 

(crystal forms II and I, respectively). The more dominate polymorph corresponds to 

hydrated crystals where water molecules are incorporated in to the crystal lattice which 288 

is normally detected by a broad crystalline peak in the corresponding X-ray pattern 

(Wan et al. 2006). It is remarkable that the presence of resveratrol modify the size and 290 

distribution of the “crystalline” zones, as much as its concentration increases in the film. 

Isolated, wider “crystalline” zones together with other very small can be observed. 292 

Polidispersity of the crystalline zone size distribution increases when resveratrol 

concentration increases. This can be attributed to the fact the resveratrol molecules 294 

(more or less heterogeneously distributed) between the CH chains modify the possibility 

of the hydrogen bond formation between chains, limiting the growth of crystalline zones 296 

where the stilbene molecules are more present by creating steric hindrances for chain 

bonding. 298 
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In the case of MC a more homogenous surface can be observed from the phase analysis. 

Different authors (Donhowe and Fennema, 1993a and b) describe extensive association 300 

of MC by hydrogen bonding and hydrophobic association which induces crystallization 

likely reinforces the film matrix. The very homogeneous, ordered structure, which is 302 

revealed by phase image of MC films, is coherent with the formation of chain 

association in crystalline lattices. Nevertheless, in samples with the highest 304 

concentration of resveratrol, crystal of this compound could be observed, showing the 

typical dentritic shapes of crystal growth of pure molecular compounds. This could not 306 

be observed for MC samples with the lowest resveratrol content, but was present in all 

the observations with the highest content. This means that resveratrol separates in the 308 

MC film forming dispersion during the film drying step when its saturation level is 

reached, in the form of crystals, as described by Caruso et al. (2004). The resveratrol 310 

concentration used in the FFD is well above its critical micelle concentration (CMC 

around 12.5-37 µM, depending on pH), thus leading to a non-molecularly dispersed 312 

compound which forms molecular aggregates. These could be crystals with a planar 

structure which establishes a network through hydrogen bonds, (Caruso et al. 2004). 314 

This phenomenon was not observed for CH films probably due to the highest viscosity 

of CH in the film forming dispersions (Sánchez-González et al. 2001a) which inhibit the 316 

resveratrol crystal growth when it reach the saturation level during the film drying step.  

At the lowest concentration, probably the resveratrol saturation level was reached when 318 

the MC solution has enough viscosity to inhibit crystal formation and it remains more or 

less homogenously distributed in the matrix, at molecular level, between the MC chains. 320 

The presence of resveratrol can cause a large increase in the d101 spacing of the crystal 

lattice as occurs when plasticizers with low molecular weights are incorporated in the 322 

MC films (Donhowe and Fennema, 1993a). This will affect the films thickness, 
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increasing its value as can be seen in Table 1: the greater the amount of resveratrol in 324 

the film, the thicker the film.  

 326 

3.2. Barrier properties 

Table 1 shows the mean values and standard deviation of WVP and OP of all films 328 

equilibrated at 25ºC and 75% RH, together with the values of the film moisture content. 

The WVP values of resveratrol-free films were in the range of those reported by 330 

Sánchez-González et al. (2011a) and Vargas et al. (2011b) for chitosan and 

methylcellulose, respectively. Furthermore, the OP values of pure MC films agree with 332 

that reported by Donhowe and Fenema (1993a).  

Significant differences in water vapour and oxygen barrier properties were found due to 334 

both the nature of the polysaccharide and the concentration of resveratrol in the films. 

Due to the more hydrophilic nature of chitosan and the presence of greater amount of 336 

water molecules in the matrix (reflected in the higher values of the equilibrium moisture 

content), pure chitosan based films showed higher water vapour permeability and lower 338 

oxygen permeability than pure methylcellulose, in agreement with previously reported 

values (Vargas et al. 2011b) and with others works (Miller and Krochta, 1997). The 340 

chemical affinity of permeant and film greatly affect permeability values. In this sense, 

the low water solubility of oxygen could be responsible for the low OP values in the 342 

more hydrated CH matrix.  

The incorporation of resveratrol tended to reduce the water vapour permeability of both 344 

kinds of films. The lipophilic nature of this stilbene (López-Nicolás and García-

Carmona, 2010) explains the observed effect on the vapour water barrier properties, 346 

which were only slightly enhanced, in all likelihood due to the low concentration of the 

active compound incorporated in the film. This effect was only significant when using 348 
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methylcellulose, with very small induced differences. It seems to indicate that the 

structural changes provoked by the resveratrol addition did not imply notable changes 350 

for mass transfer rate of water molecules.   

Oxygen permeability was also slightly affected by the incorporation of resveratrol, this 352 

being only significantly reduced (p<0.05) in CH matrices. Although resveratrol seems 

to induce the formation of more open MC lattices, as commented on above, this did not 354 

significantly affect the oxygen mass transfer rate, contrary to that observed by other 

authors (Donhowe and Fennema, 1993a) for low molecular weight plasticizers. In CH 356 

films, OP decreased significantly (p<0.05), which could be related with the more 

tortuous pathway for the pass of oxygen molecules through the amorphous zones in the  358 

matrix as can be observed in Figure 3 from AFM phase image. 

 360 

3.3. Mechanical properties 

The typical tensile strength versus Hencky deformation curves obtained during the 362 

mechanical test carried out on the films are shown in Figure 1. As can be deduced from 

this figure, CH films were mechanically more resistant to fracture (greater TS and  EM 364 

values) than MC films. The values of chitosan films coincide with those reported by 

Vargas et al. (2011a) and Sánchez-González et al. (2011a), whereas those of MC films 366 

were slightly higher than those reported by Vargas et al. (2011b). The incorporation of 

resveratrol to the films made them shorter and led to them breaking at a lower 368 

deformation degree. The greater the resveratrol concentration in the film, the more 

brittle the film.  370 

Table 2 shows the mechanical properties of films, in terms of tensile strength (TS) and 

percentage of elongation at break (E%) and elastic modulus (EM). The mechanical 372 

response of the films from both polymers showed similar trends when the resveratrol 
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was incorporated into the matrix, in terms of E% and TS. The addition of resveratrol led 374 

to a decrease in the tensile strength and deformation at break, in turn leading to films 

which were less stretchable and resistant to break. This behavior is typical of composite 376 

films, where the incorporation of non-miscible compounds provokes structural 

discontinuities in the polymer network and a reduction in the overall cohesion forces of 378 

the matrix (Sánchez-González et al. 2010 and 2011a).  

The effect of resveratrol incorporation on the elastic modulus (EM) parameter was 380 

dependent on the polymer matrix: it decreased in chitosan composite films, whereas it 

increased in MC composite films. The structural changes induced by resveratrol in the 382 

polymer matrices are responsible for this behavior. In CH films, the dominate formation 

of smaller crystalline zones will imply the reduction of the stress-strain relationships 384 

and so the elastic modulus of the films, whereas the modification of crystalline 

arrangement of MC by stilbene seems to increase the cohesion forces of the lattices 386 

probably by the action of cooperative forces with the resveratrol molecules. The 

resveratrol crystal formation in MC films could also contribute to an increase in the film 388 

rigidity. The decrease in the film stretchability, and the subsequent reduction of the 

tensile stress at break, can be also justified by the structural changes promoted by 390 

resveratrol. CH matrix with smaller and more heterogeneous crystalline zones will be 

less resistant to deformation, breaking at low extension degree, whereas the presence of 392 

resveratrol crystals in the MC films supposes discontinuities in the matrix which favors 

film rupture at lower deformation levels.   394 

 

3.4. Optical properties 396 

Film transparency was evaluated through the internal transmittance of the samples: the 

greater the transmittance value, the more transparent the film. In Figure 2, the spectral 398 
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distribution of transmittance (Ti) of films equilibrated at 25ºC and 75% RH is shown. 

As can be observed, pure MC and CH films were highly transparent and, in both cases, 400 

the incorporation of resveratrol provoked a decrease in the Ti values, thus increasing the 

film’s opacity. This effect was more pronounced at the highest resveratrol 402 

concentration. Composite films turned more opaque due to the loss of homogeneity in 

the polymer matrix, which is caused by the presence of structural heterogeneities in the 404 

films with a different refractive index, which promotes light scattering phenomena. The 

presence of smaller crystalline zones in the CH films when resveratrol was incorporated 406 

will promote light scattering, thus increasing the film opacity. In the case of MC, the 

more open crystalline lattices containing resveratrol aggregates will also reduce the 408 

specular light transmission through the films, increasing their opacity. 

Table 3 shows the values of the colour coordinates, lightness (L*), hue (h*ab) and 410 

chrome (C*ab), together with the whiteness index (WI) and the gloss of the different 

films. In MC composite films, the luminosity, hue and whiteness index significantly 412 

decreased when the resveratrol content rose, while color saturation (C*ab) increased.  

These effects were barely appreciated in the case of chitosan films probably due to the 414 

fact that no crystals of resveratrol are formed, but only changes in their semi-crystalline 

structure with lower impact in light reflection.  416 

Both composite films became less glossy (p<0.05) when the concentration of resveratrol 

increased in the films, this effect being more marked in MC composite films. This can 418 

be attributed to the presence of resveratrol crystals on the film surface, which 

contributes to an increased surface heterogeneity and so, a reduction in the gloss. This 420 

effect has been previously observed by several authors working on composite films 

(Pastor et al. 2010; Sánchez-González et al. 2010). The above described structural 422 
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changes induced by the resveratrol in the films are responsible for the observed changes 

in optical properties. 424 

 

3.5. Antioxidant activity 426 

The antioxidant activity of the films was evaluated by means of the dissolution of the 

film in a controlled amount of distilled water. Once dissolved, the method described by 428 

Brand-Willians et al. (1995) based on the DPPH free radical method was applied. At the 

pH of the dispersions (6.5 and 4.5 respectively for MC and CH), resveratrol is in 430 

protonate form, since the pH<PKa1~8.8 (López-Nicolás and García-Carmona, 2008). 

This protonate form needs to be able to exhibit several biological activities, such as 432 

antioxidant power. From these experiments, the EC50 values were obtained from the 

plot of the % of remaining DPPH· at the steady state versus moles of resveratrol/moles 434 

DPPH· (Fig. 3). This parameter indicates the amount of antioxidant needed to reduce 

the initial DPPH concentration to 50%, once the steady-state of the reaction was 436 

reached. Thus, the lower the EC50 values, the greater the antioxidant activity of the 

tested sample. Table 4 shows the EC50 values for pure resveratrol and the different 438 

films, expressed in terms of moles of resveratrol per DPPH· moles and in kg films per 

DPPH· mol, by taking into account the amount of resveratrol in each film sample. 440 

Resveratrol was found to react slowly with the DPPH· (slow kinetic behavior) 

coinciding with that reported by Villaño et al. (2007), taking around 100-120 min to 442 

reach the steady state.  

The EC50 value found for the pure resveratrol was greater than those found by Villaño et 444 

al. (2007) and Sánchez-Moreno et al. (1998); around 0.50-0.58 moles resveratrol/mole 

DPPH·. The different solvent medium (water:ethanol and methanol, respectively) used 446 

by these authors could explain the observed differences.  
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The obtained values for EC50, expressed in terms of moles of resveratrol per mole 448 

DPPH· reflect that no losses of antioxidant activity occurred for resveratrol in the CH 

films, since no significant differences were found either in the EC50 values of pure 450 

resveratrol or of that encapsulated in the CH films. On the contrary, EC50 values for MC 

films were slightly higher, which indicates that some loss of antioxidant activity occurs 452 

in these films. This could be due to the lower extractability of resveratrol from this 

matrix which reduces the compound reaction capacity in the solvent medium, but also 454 

to some degradation of encapsulated resveratrol due to the higher OP of MC films, as 

compared with CH films.  456 

When referring EC50 values in terms of kg film per mole DPPH·, the effect of the 

antioxidant concentration in the film is clearly shown and, as can be observed, the 458 

antiradical efficiency increased in line with the resveratrol content in the film.  

The main conclusion of this test is that the antioxidant efficiency of resveratrol did not 460 

notable change during film formation, drying and conditioning, which indicates the 

great antioxidant potential of these films encapsulating resveratrol. 462 

 

3.6. Microbiological analysis 464 

Microbial analysis showed that none of the composite films show antifungal activity 

against either P. italicum or B. cinerea. Filip et al. (2003) found that resveratrol 466 

presented antifungal activity against P. expansum but no information has been found 

about P. italicum. Regarding B. cinerea, the resveratrol concentrations used were higher 468 

than the minimal inhibitory concentration (MIC) found for this fungus by Adrian et al. 

(1997). Taking into account that the release of an active agent into the medium involves 470 

several factors, such as solvent and migrant polarities and solubility (Sánchez-González 
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et al. 2011b), the low chemical affinity and solubility of resveratrol with the aqueous 472 

solvent could explain the observed effect.  

 474 

4. Conclusions 

Resveratrol was efficiently incorporated into chitosan and methylcellulose films. These 476 

composite films showed some changes in their microstructural and physicochemical 

properties, especially when the highest concentration of resveratrol was used: their 478 

water vapour and oxygen barrier properties were hardly affected by the induced 

structural changes, which implied changes in the semi-crystalline arrangement of CH 480 

and MC and the appearance of resveratrol crystals in the more concentrated MC films. 

Nevertheless, films became less stretchable and resistant to fracture, more opaque and 482 

less glossy due to structural changes provoked by resveratrol in the matrix, although 

from a practical point of view, these changes did not negatively affect to the handle, 484 

manipulation or appearance of the films.  

Composite films also exhibited antioxidant activity, which was proportional to the 486 

resveratrol concentration used and no notable losses of this activity during film 

formation and conditioning were observed. None of the films showed antimicrobial 488 

activity against P. italicum and B. cinerea.  

The obtained results points out that resveratrol based films are suitable for coating 490 

purposes. The coating of food products with these films could minimize or prevent 

oxidation processes, maintaining nutritional quality, and prolonging the food shelf life. 492 

Thus, future studies will focus on the applications of these films to food products which 

are sensitive to oxidative processes. 494 
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Highlights 

- Resveratrol was efficiently incorporated into both chitosan and methylcellulose films. 

- Composite films exhibited antioxidant properties but no antifungal activity against 

P.italicum and B. cinerea. 

- Barrier properties, films´ mechanical resistance, gloss and transparency decreased in 

composite films, especially when using the highest resveratrol concentration.  

- Resveratrol incorporation induced changes in the semi-crystalline arrangement of CH 

and MC, and the appearance of resveratrol crystals in the more concentrated MC films. 
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Table 1.- Thickness, moisture content, water vapour permeability (WVP) and oxygen 

permeability (OP) of films equilibrated at 25ºC and 75% RH. Mean values and standard 

deviation. 

 

Film 
Thickness 
(µµµµm) 

Moisture content 
(g H20/ g ss) 

WVP 
(g/Pa s m)x1010 

OP 
(cm3µµµµm/m2 d kPa) 

MC 51 (4)a 7.0 (0.7)b 8.7 (0.9)b 127 (20)a 

MC+R10 51 (3)a 6.73(0.13)ab 7.7 (0.7)c 125 (33)a 

MC+R100 58 (9)b 5.9 (0.3)a 6.0 (0.6)d 121 (25)a 

CH 58 (6)b 14.9 (0.7)c 12 (1)a 14.4 (0.5)b 

CH+R10 61 (7)b 14.53 (0.13)c 12 (2)a 16 (1)b 

CH+R100 74 (5)c 19.0 (0.5)d 11.9 (0.5)a 11.2 (0.4)b 
a,b,c,d Different superscripts within a column indicate significant differences 

among films (p<0.05) 
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Table 2.- Elastic modulus (EM) and tensile strength (TS), and percentage of elongation 

(E) at break of films equilibrated at 25ºC and 75% RH. Mean values and standard 

deviation. 

 

Film 
TS 
(MPa) 

EM 
(MPa) 

E  
(%) 

MC 66 (6)b 1604 (92)a 15 (2)c 

MC+R10 65 (7)b 1871 (132)b 10 (3)b 

MC+R100 49 (5)a 1903 (55)b 4 (1)a 

CH 94 (15)d 2739 (93)d 14 (7)c 

CH+R10 78 (2)c 2585 (151)c 6 (2)a 

CH+R100 43 (5)a 1550 (195)a 5.1 (0.4)a 
a,b,c,d Different superscripts within a column indicate 

significant differences among films (p <0.05). 
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Table 3.- Lightness (L*),  chrome (C*ab), hue (h*ab), whiteness index (WI) and gloss at 

60º of films equilibrated at 25ºC and 75% RH. Mean values and standard deviation. 

 

Film 
 
L* 
 

 
C* ab 
 

 
h*ab  
 

WI 
Gloss 60º 
(GU) 

MC 83.8 (0.8)d 11.3 (0.8)a 85.7 (0.8)c 80 (1)d 52 (13)c 

MC+R10 64 (1)a 20 (1)d 77 (1)b 59 (1)a 33 (13)b 

MC+R100 63 (1)a 19.7 (0.6)d 72 (1)a 58 (1)a 18 (6)a 

CH 80.7 (0.4)c 15.5 (0.6)b 89.3 (0.6)e 75 (1)c 47 (13)c 

CH+R10 79 (1)b 18 (2)c 88 (1)d 72 (2)b 36 (14)b 

CH+R100 81 (2)c 17 (3)c 90 (2)e 75 (3)c 20 (6)a 
a,b,c,d,e Different superscripts within a column indicate significant 

differences among films (p <0.05). 
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Table 4.- Efficient concentration (EC50) (amount of antioxidant needed to reduce the 

initial DPPH· concentration to 50%, once the steady-state of the reaction was reached) 

of pure resveratrol (R) and the different films. 

 

Film 
EC50

 

(moles R/mole DPPH·) 
EC50

 

(kg film/mole DPPH·) 

R 0.70 (0.07)b - 

MC+R10 0.95 (0.12)a 24 (3) 

MC+R100 0.87 (0.05)a 2.16 (0.13) 

CH+R10 0.71 (0.04)b 19 (1) 

CH+R100 0.73 (0.07)b 2.0 (0.2) 
a,b Different superscripts within a column indicate significant 

differences among films (p <0.05). 
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Figure captions 

 

Figure 1.- SEM micrographs of the cross-sections of the dried films equilibrated with 

P2O5 at 25ºC.  

 

Figure 2.- AFM micrographs of the surface of the dried films equilibrated with P2O5 at 

25ºC. Mean values and standard deviation of Rq (nm) and Ra (nm) roughness 

parameters. 

 

Figure 3.- Phase images of the dried films samples equilibrated with P2O5 at 25ºC.  

 

Figure 4.- Typical curves of tensile strength versus Hencky deformation of films 

equilibrated at 25ºC and 75% RH. 

 

Figure 5.- Spectral distribution of internal transmittance (Ti) of films equilibrated at 

25ºC and 75% RH. 

 

Figure 6.- Decrease of DPPH· as a function of the number of moles of resveratrol per 

mole of DPPH·. 
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Figure 1 
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Figure 3 
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Figure 6 


