
RLJ | RLC 2024

The Cliff of Overcommitment with Policy Gradient
Step Sizes

Scott M. Jordan∗,1,2, Samuel Neumann∗,1,2, James E. Kostas3

Adam White1,2,4, Philip S. Thomas3

{sjordan, sfneuman, amw8}@ualberta.ca, {jekostas, pthomas}@cs.umass.edu
1University of Alberta, Department of Computing Sciences
2Alberta Machine Intelligence Institute
3University of Massachusetts, College of Information and Computer Sciences
4Canada CIFAR AI Chair

Abstract

Policy gradient methods form the basis for many successful reinforcement learning
algorithms, but their success depends heavily on selecting an appropriate step size
and many other hyperparameters. While many adaptive step size methods exist,
none are both free of hyperparameter tuning and able to converge quickly to an
optimal policy. It is unclear why these methods are insufficient, so we aim to
uncover what needs to be addressed to make an effective adaptive step size for
policy gradient methods. Through extensive empirical investigation, the results
reveal that when the step size is above optimal, the policy overcommits to sub-
optimal actions leading to longer training times. These findings suggest the need
for a new kind of policy optimization that can prevent or recover from entropy
collapses.

1 Introduction

Reinforcement learning (RL) algorithms, like any optimization software, should reliably solve many
problems without requiring the user to understand how the algorithms work. However, RL algo-
rithms are not easy to apply because they require carefully selection of hyperparameters (e.g., step
size and policy structure), which often requires expert knowledge of both the algorithm and appli-
cation. Furthermore, domain experts, not just RL experts, will apply the algorithms as RL’s use
becomes prevalent. Thus, it is crucial to design algorithms that non-experts can easily and reliably
use.

Policy gradient methods, which aim to approximate optimal policies using stochastic gradient ascent,
are of particular interest because they can be used in continuous-action control tasks common in
industry. The effectiveness of these algorithms depends on many factors, but a particularly critical
one is the choice of step size. There are numerous policy gradient algorithms, many of which
include an adaptive step size component to address this sensitivity. For example, natural policy
gradient algorithms (Kakade, 2002; Morimura et al., 2005; Peters & Schaal, 2008) adapt the step
size to account for the parameterization of the policy and enable the policy to change quickly in
regions where the the policy is nearly deterministic. Many algorithms (Schulman et al., 2017; Mnih
et al., 2016; Henderson et al., 2018) use optimizers such as RMSProp or Adam from stochastic
optimization that adapt the step sizes based on statistics of the gradient estimate, e.g., the norm
or variance (Hinton et al., 2012; Kingma & Ba, 2015; Mei et al., 2021b). Some methods compute
an upper bound on the step size such that policy improvement is guaranteed with high probability
(Pirotta et al., 2013; Papini et al., 2019) or use line search to estimate the optimal step size for each

*These authors contributed equally to this work.



RLJ | RLC 2024

update (Schulman et al., 2015). Recent work has focused on optimizing the step size during learning
(Paul et al., 2019; Jaderberg et al., 2017), but these methods introduce additional hyperparameters.
Despite all these efforts, no method exists that quickly finds a good policy and does not require
tuning. So instead of trying to create yet another policy gradient optimizer, the goal of this study is
to further the understanding of step sizes and how they impact the performance of policy gradient
methods.

An effective adaptive step size method will make it so the algorithm can quickly and reliably converge
to a high-performing policy with a wide range of initial step sizes. In this paper, we seek insights into
what key obstacles still need to be addressed to develop an effective adaptive step size strategy. More
specifically, we want to know how the behavior of the algorithm changes when the step size is around
the optimal value and why these rescaling methods are failing. We show that these failures occur
when the step size is above the optimal value and the entropy of the policy collapses too quickly.
In turn, this results in a lack of exploration and the policy is trapped in sub-optimal behavior for a
long time. We call this point where entropy drops to quickly, the cliff of overcommitment.

2 Background

In this section, we provide background on RL and define the notation used in this paper. We
represent the environment an agent interacts with as a finite and episodic Markov decision process
(MDP). An MDP, M , is defined by the tuple (S,A, p, r, d0, γ), where S is the set of all states, A is the
set of all actions. At times t ∈ {0, 1, . . . , T −1} the agent is in state St, selects an action At, receives
a reward Rt, and transitions to state St+1, the reward function r : S ×A → R defines the expected
reward an agent receives for being in state s ∈ S and taking action a ∈ A, i.e., r(s, a) := E[Rt|St =
s,At = a], the transition function p : S × A × S → R specifies the probability of an agent entering
state s′ ∈ S after taking action a in state s, i.e., p(s, a, s′) := Pr(St+1 = s′|St = s,At = a), the initial
state distribution is defined through the function d0 : S → R, such that d0(s) := Pr(S0 = s), and
γ ∈ [0, 1] is a reward discount parameter. In this paper, we use γ = 1.0. We refer to the sequence
s0, a0, r0, . . . , sT −1, aT −1, rT −1 as an episode.

We call the mechanism an agent uses to select an action a policy, and represent it with the function
π : S × A → [0, 1], such that π(s, a) := Pr(At = a|St = s). In this paper we focus on parameterized
policies, π : S × A × Rn → [0, 1], where the policy takes as additional input parameters θ ∈ Rn to
specify the conditional distribution over actions. An agent’s objective is to find policy parameters
θ⋆ that approximately maximize ρ(θ) := E[G], where G =

∑T −1
t=0 γtRt.

A common method to search for θ⋆ is to use gradient ascent to update the parameters iteratively, i.e.,
θ ← θ+η∇ρ(θ), where η > 0 is a step size. The policy gradient theorem (Sutton et al., 2000) provides
an expression for the gradient, but the algorithms we study will derive approximations from the form:
∇ρ(θ) := E[GΨ], where Ψ =

∑T −1
t=0

∂ ln π(St,At,θ)
∂θ (Tang & Abbeel, 2010). For completeness, we prove

the equivalence of these two forms in Appendix A. One of the simplest stochastic gradient ascent
(SGA) algorithms for policy gradient methods is the REINFORCE algorithm (Williams, 1992),
which uses an unbiased estimate of the gradient ∇̂ = 1

k

∑k
i=1(Gi − b)Ψi, where k is the number of

episodes to sample, Gi and Ψi are the samples from the ith episode, and b ∈ R is a baseline and is
often an estimate of ρ(θ). In this paper, we investigate the following policy update methods:

SGA θ ← θ + η∇̂
RMSprop θ ← θ + η√

v+ϵ
∇̂ v ← v + β(∇̂2 − v)

where ϵ > 0 is a regulation parameter, ∇̂2 is an elementwise squaring of the gradient estimate. We use
a running average of the the scaling statistics, v, used in the step size methods, e.g., l← l+β(∥∇̂∥−l),
where β ∈ (0, 1). For our experiments, we use β = 0.05 because it performed well enough but in no
way represents an optimal choice or necessarily a reliable one for any given problem. Additionally,
it is important to note that the regularization ϵ can greatly impact the policy optimization process.
Using a small ϵ, e.g., ϵ = 10−8, can allow the step size to grow large, while a smaller ϵ, e.g., ϵ = 10−1



RLJ | RLC 2024

can prevent the step size from growing too large, but then the adaptive step size has little impact
once ϵ is larger than the other terms. We also investigate Adam optimizer but finds that it is similar
to RMSProp. We report the results for it in Appendix E

3 Policy Gradient Warm Up

The performance of policy gradient methods is sensitive to the step size because the step size
directly controls the exploration-exploitation trade-off. To see why, first consider that the step size,
η, controls how much change is allowed to the policy’s distribution over actions, where increasing
(decreasing) η leads to larger (smaller) changes in action distribution. Additionally, for some policy
parameterizations, e.g., softmax, as η → ∞, the policy becomes greedy with respect to a given
action sequence (Kakade, 2002; Wagner, 2011). If a policy becomes too deterministic, then little
exploration happens, and the policy will become trapped for long periods and will not improve
(Schaul et al., 2019). Setting η to be small will prevent the policy from becoming too deterministic
too quickly but will result in less exploitation, and improvement will be slow. So, one should select
the step size to balance exploration and exploitation throughout learning.

Balancing exploration and exploitation with η is challenging because the amount a policy will change
depends on the magnitude of the gradient estimate ∥∇̂∥. One can interpret the policy update as a
step in the direction of the unit length vector ∇̂/∥∇̂∥, with an effective step size η∥∇̂∥. The magni-
tude ∥∇̂∥ can vary significantly from problem to problem and during learning. To make stochastic
gradient ascent methods robust to changes in the magnitude of the component of the gradients, gra-
dient rescaling methods such RMSprop, Adam (Kingma & Ba, 2015), and return rescaling (Hafner
et al., 2023) change the gradient so the amount the policy changes is more consistent. The result is
that these methods often produce similar ranges of good step sizes across different problems. While
this makes it easier to search for a good step size, it does not remove the need to tune the step size
for each problem. Our goal is to understand when these rescaling methods will lead to a failure in
learning and what an adaptive step size method will need to address.

4 Experiment Settings

Start (0.5, 0.1)

(0.1, 0.3)

(0.9, 0.9)

Figure 1: This is an illustra-
tion of the 2D environment.
The red and green circles are
goal regions and give rewards
of +1 and +10, respectively.

There are many variations of policy gradient algorithms, however,
they are all based around the REINFORCE update. So we study
the basic update method first to establish our hypothesis and in-
sights, then we will check that it remains true with PPO. Further-
more, the parameterizaton of the action distribution and function
approximation can cause differences in the results. So, we investi-
gate the combinations of softmax and squashed Gaussian (tanh of a
Gaussian random variable) distributions with both linear function
approximation and neural networks.

For our experiments to be thorough, we need to be able to run
the agent many times for many different step sizes and be able to
identify what happens to the agent’s policy. For this reason, we
begin our investigation with a simple two dimensional world where
the agent needs to get to a goal state as quickly as possible. To make
this problem, slightly harder, we introduce a second goal state that
is closer to the start state and gives a smaller reward. The agent
receives a reward of −0.01 every step, a reward of +1 if it enters
the close goal, and a reward of +10 if it enters the far goal. For
discrete actions the agent has nine actions: each of the four cardinal directions, the four diagonals,
and a no-op action. For continuous actions the can choose any pair in [−1, 1]2, which leads to a
displacement in each coordinate of the agent’s position. For each settings the agent moves up to



RLJ | RLC 2024

101

102

103
It

er
at

io
n

s

Linear + SGA

101

102

103

NN + SGA

101

102

103

Linear + RMSprop

101

102

103

NN + RMSprop

10−4 101

log10(η)

−10

0

10

R
et

u
rn

10−4 101

log10(η)

−10

0

10

10−4 101

log10(η)

−10

0

10

10−4 101

log10(η)

−10

0

10

Figure 2: The top row shows the number of iterations it took for REINFORCE with a softmax
policy to find a near optimal policy for each step size. The bottom row shows the averaged return
(from the last 300 episodes) when the algorithm was allowed to run for 2,000 iterations. Each
column represent a different combination of function approximator (linear or neural network) and
optimizer. Each dot represent one run of the algorithm with a specific step size. The color of the
dot indicates success (blue) or failure (red) in finding a near optimal policy. When analyzing the
number of iterations, pay attention to the log scale on the vertical axis. The scaling means the time
it takes to find a good policy increases very quickly for a step size that is too small. Additionally,
note that some blue dots will have a final return less than the threshold, because the algorithm was
allowed to run past the point that it found a near optimal policy and got worse.

0.05 units in each direction. We illustrate this environment in Figure 1. In Section 7, we test our
findings on the MuJoCo Ant environment (Todorov et al., 2012).

5 Modeling Performance Sensitivity

In this section, we focus on understanding how performance changes as a function of the step size.
Specially, we want to understand how performance changes for step sizes above and below the
optimal step size.

Before continuing, we need to define the performance metric of interest. Two metrics categorize an
optimization algorithm’s performance, the quality of the final solution, and the time it takes for the
algorithm to terminate. However, in RL research, the algorithms are often run for a fixed amount
of time (episodes or time steps), and only the expected return of the final policy is considered,
i.e., ρ(πfinal). This paper examines something different: we run each algorithm until the policy
performance is above a chosen threshold, thresh. In this sense, we view performance as the time, in
the number of episodes, it takes for the algorithm to reach the threshold. To account for stochasticity
in estimating the ρ(π) we estimate a lower bound ρ−(π) and terminate when ρ−(π) ≥ thresh. We
construct ρ−(π) using the previous n returns, i.e., ρ−(π) = Ḡi−n+1:i − 3 σ(Gi−n+1:i)√

n
, where i is the

current episode number and Ḡi−n+1:i and σ(Gi−n+1:i) are the average and standard deviation of
the n most recent returns. This lower bound is similar to a confidence interval using z-scores but
is biased due to data reuse. We use the constant 3 to scale the interval as it eliminated almost all
false positives in initial tests. Additionally, we set an upper limit of 2,000 iterations (N = 100,000
episodes). This limit avoids the algorithm running too long, but it is high enough that we can still
see the effects for a wide range of step sizes.

For 800 randomly chosen step sizes in the range [10−8, 104], we show both the number of of iterations
to find a near optimal policy and the policy performance after 2,000 iterations on the 2D environment,



RLJ | RLC 2024

101

102

103
It

er
at

io
n

s

Linear + SGA

101

102

103

NN + SGA

101

102

103

Linear + RMSprop

101

102

103

NN + RMSprop

10−4 101

log10(η)

−10

0

10

R
et

u
rn

10−4 101

log10(η)

−10

0

10

10−4 101

log10(η)

−10

0

10

10−4 101

log10(η)

−10

0

10

Figure 3: These are the same as those in Figure 2, but correspond to using the squashed Gaussian
parameterization. The biggest difference to note is that often REINFORCE was unable to find a
near optimal policy with neural network, even when using good step sizes.

in Figures 2 and 3. The first thing to notice in these plots, is that the performance is asymmetric
around the optimum step size (the step size that minimizes the expected number of iterations to
find a near optimal policy). Step sizes that are below the optimal step size have a high likelihood
of finding a good policy. Step sizes that are above optimal quickly increase optimization time and
have a reduced chance to find a near optimal policy. We refer to this phenomenon as the cliff of
overcommitment. We investigate this further in the following sections.

6 Sensitivity around the Optimum

The performance around the optimal step size is asymmetric, with the performance above optimal
step size forming a cliff, where the step size being above optimal leads to longer training times and
reduced chance of finding a near optimal policy. Two things are apparent in Figures 2 and 3. The
first is that the optimal step size is not always the step size that achieves the fastest convergence.
The second is that the optimal step size is slightly below or just into the region where the algorithm
does not consistently find a policy above the performance threshold. This finding implies that even
if the variation of the optimal step size is moderately small, choosing a step size based on the
center of optimal step sizes means that for some problems, the algorithm will not be likely to find a
good policy. Thus, to develop reliable adaptive step size methods, we need to understand why the
algorithm fails when the step size goes above the optimal value.

There are several possible reasons for the algorithms failing to find a good policy above the optimal
step size, such as overstepping, where the policy changes too much, and performance decreases or
diverges, as is common in supervised learning. While this can happen, especially if the gradient
estimate is poor, we hypothesize a different reason: with large step sizes, the policy becomes nearly
deterministic too quickly, and there is insufficient exploration to improve the policy. To test this
hypothesis, we need to show two things: 1) that the step size has a direct impact on the rate at which
the entropy decreases, 2) that trials that successfully find a good policy have higher entropy in the
policy than the trials that fail to find a good policy, and 3) that the performance is not decreasing
as step sizes go above the optimal step size.

To test this hypothesis, we run the SGA and RMSprop update methods while recording the policy’s
returns and entropy at each iteration. We use H(θ) := −E

[
1
T

∑T −1
t=0 ln π(St, At)

]
as the measure of

policy entropy for softmax policies. For continuous actions, we discretize the action space and use
the entropy of the sampled actions overall time. See Appendix C for details.



RLJ | RLC 2024

101 103

Iterations

−10

−5

0

5

10

R
et

u
rn

101 103

Iterations

0.0

0.5

1.0

1.5

2.0

E
n

tr
op

y

101 103

Iterations

−10

−5

0

5

10

101 103

Iterations

0.0

0.5

1.0

1.5

2.0 Success

Failure

0.1

0.2

0.3

0.5

0.7

1.0

η

Figure 4: (left, middle-left) These plots show the return and entropy over each iteration for the
REINFORCE with RMSprop and softmax policies. Each line corresponds to a run of the algorithm
with randomly chosen step size and the line color indicates the step size. (middle-right,right) These
plots illustrate the same data as the other two, but are colored based on if the a near optimal policy
was successfully found or not. The lines are truncated to the point where a near optimal policy was
found. Notice how the step size directly impacts how fast the entropy decreases. Additionally, note
that the trials that go on a long time all have low entropy.

We plot the returns and entropy over time for each trial for REINFORCE with linear function
approximation, RMSprop, and softmax policy parameterization in Figure 4. We show the results
for other configurations in Appendix E. In Figure 4, the relationship between step size and the rate
of entropy reduction is apparent: a larger step size leads to a faster reduction in entropy. When the
step size is small, the rate of entropy reduction is consistent and has little variability. However, as
the step size increases, so does the noise in the entropy reduction process.

To answer the second part of our hypothesis, trials that fail to find a good policy reach low entropy
policies, we use Figure 4 to show the differences in successful and unsuccessful trials. The results
show that the algorithm will successfully terminate with a good policy for a sufficiently slow enough
drop in entropy. In some of the successful trials entropy drops quickly. This can occur if the policy
prioritizes going towards the better goal state and then becomes nearly deterministic. If this does
not happen, then it is unlikely, but still possible that the policy will find the near optimal goal and
be able to reach it. This event can be seen in middle-right plot of Figure 4, where there are two blue
spikes later in learning.

To answer the last part of our hypothesis, that the failure is due to small entropy and not due to
overstepping and finding a worse policy or diverging, we visualize the returns over time in Figure
4. We see that both successful and failed trials have overstepping where performance notably gets
worse. However, on the failed trials, performance is stuck in a performance plataeu and have low
entropy. Decreases in performance are, unsurprisingly, more common at higher step sizes. Together,
this suggests that overstepping may occur, but the policy can eventually improve if the entropy
remains high enough. Thus with step sizes larger than optimal, we say that the policy overcommits
to suboptimal actions and becomes less likely to improve.

This hypothesis does not explain all observations in Figures 2 and 3. Specially, that when optimizing
neural network policies there are failures even when using small step sizes. This was particularly
common for the squashed Gaussian policies. We discuss some plausible explanations for these failures
in Section 8, but leave a precise answer to future work. Although these events are unexplained, our
hypothesis is well supported and explains most of the observations.

7 Evaluating Entropy Collapse in PPO

While the experiments in the previous section illustrate the overcommitment cliff with the basic
REINFORCE method in a simple environment, we need to check and make sure it is present with



RLJ | RLC 2024

10−4 101

log10(η)

0

1

2
E

n
tr

op
y

Linear + SGA

RF

0.0

0.001

0.01

10−4 101

log10(η)

0

1

2

NN + SGA

10−4 101

log10(η)

0

1

2

Linear + RMSprop

10−4 101

log10(η)

0

1

2

NN + RMSprop

Figure 5: These plots show the final entropy of a softmax policy after 2,000 iterations for each step
size. The red dots correspond to runs of REINFORCE (RF), while the other colors indicate PPO
with a different entropy coefficient. Each version of PPO has at least 500 individual runs.

methods in environments typically seen in RL research. In this section, we investigate PPO in our
simple 2D environment and the MuJoCo Ant environment.1 Since PPO uses a an reward bonus
of −α ln π(s, a, θ), where a larger coefficient α encourages the policy to have more entropy, we also
explore the impacts of entropy regularization in PPO on the cliff of overcommitment.

For the simple 2D environment, we repeat the experiment above and measure the number of itera-
tions, final return, and final entropy of the policy for each step size. The results are very similar to
REINFORCE, with the exception of the final entropy. So, we show the final entropy in Figure 5 and
show the other measurements in Appendix E. The first thing we noticed was that PPO also exhibits
the cliff of overcommitment. However, the impact of step size on final entropy is much different and
depends on the entropy coefficient.

PPO has different relationship with final entropy than REINFORCE. In REINFORCE, as the step
sizes increase the final entropy in the policy decreases. PPO with linear function approximation also
behaves similarly. However, in PPO with neural networks, even with no entropy regularization, the
entropy has ‘U’ shaped relationship with the step size. While the final entropy initially decreases
with increasing step sizes, it eventually starts to increase. It then suddenly drops of at the cliff of
overcommitment. This observation suggests there is some interesting property of the dynamics of
PPO that impact entropy.

We repeat the investigation of PPO on the Ant environment, but we run the algorithm for a fixed
amount of time for each step size and estimate the performance at the end of training. Additionally,
we use a Gaussian policy parameterization instead of a squashed Gaussian because the action space
was not bounded. So, instead of measuring entropy, we compute the logarithm of the standard
deviation averaged over each action as it will reflect the spread of the actions. Figure 6 shows the
results for PPO on the Ant environment with both the results at the end of optimization and during
learning.

The results, generally, follow the same trend as in the other environments, e.g., the standard devi-
ation gets smaller as the step sizes goes above the optimal value. However, at very high steps the
standard deviation begins to grow larger, which, combined with the decreasing performance, likely
indicates divergence. Based on these results we conclude that the overcommitment cliff is a common
phenomenon across policy gradient methods.

8 Discussion and Conclusion

As mentioned before, the step size cliff does not explain all the failures in the above results, particular
those with neural networks and squashed Gaussian policies. While these results make it clear that
optimizing neural network policies is more challenging than linear policies, it is not clear why smaller

1Appendix D describes a simple modification to the Ant environment used in the experiments.



RLJ | RLC 2024

10−5 10−4

log10(η)

0

5000
F

in
al

R
et

u
rn

10−5 10−4

log10(η)

−4.0

−3.5

−3.0

F
in

al
ln

(σ
)

0.00 0.25 0.50 0.75 1.00

time steps ×108

0

5000

R
et

u
rn

0.00 0.25 0.50 0.75 1.00

time steps ×108

−4

−2

0

ln
(σ

)

5× 10−6

1× 10−5

3× 10−5

1× 10−4

2× 10−4

lo
g

1
0
(η

)

Figure 6: These plots represent the average return (left) and average log standard deviation (right)
of the policy from the last 300 episodes (top row) and at each time step (bottom row) of PPO on
the Ant environment. For each dot, the algorithm is run for 100,000,000 time steps. In the right
plot, the log standard deviation is averaged for each action and each of the episodes. The algorithm
is run 20 times for each step size. The per time step plots, average data from each run and use a
windowed average to smooth the data.

step sizes were insufficient. We speculate that this has to do with with feature collapse (Lyle et al.,
2022; Dohare et al., 2023), which makes it more difficult for the network to switch to another policy.
For Gaussian policies, we hypothesize the extra failures are due to the policy not being able to
represent actions that can go to both goals. This hypothesis is consistent with other findings that
unimodal continuous action distributions can make optimization difficult (Lim et al., 2018; Sasaki &
Matsubara, 2019). Nevertheless, these other failures indicate that a well tuned step sizes, alone, may
be unable to have reliable convergence to a near optimal solution. There will need to be independent
and compatible approaches to address each of these failures.

When designing an adaptive step size it can be tempting to think of trust region methods, which
model the objective function and take a step relative to the trust of the model, as a solution. The
goal of these methods is to ensure that ρ(θ + η∇̂) ≥ ρ(θ), and this approach has been presented in
several forms (Pirotta et al., 2013; Papini et al., 2019; Furmston & Lever, 2015; Schulman et al.,
2015; Paul et al., 2019), but our results suggest this approach is insufficient. To see why, consider
that becoming greedy with respect to any action a such that qπ(s, a) > vπ(s) will improve the policy,
but then be suck and unable to keep exploring. A different objective is needed to ensure a better
policy keeps being reached until it finds the optimal policy.

Policy gradient methods have a few special issues that making optimization difficult. The first is
that the gradient can point in a direction that decreases the probability of the optimal action. This
is because the value of an action can be highly dependent on the policy, e.g., the optimal action a∗

can be in the sets arg mina minπ qπ(s, a) and arg maxa maxπ qπ(s, a). The second is that even if a∗ ∈
arg maxa qπ(s, a), the gradient can increase the probability of another action more than the optimal
one (Schaul et al., 2019), i.e., the change in probability is proportional to π(s, a)(qπ(s, a) − vπ(s)).
Natural policy gradients (Kakade, 2002) can fix this issue because they change the likelihood of each
action proportional to a linear approximation of qπ(s, a)− vπ(s). However, natural policy gradients
require accurate estimation of qπ(s, a∗), which is not likely if π(s, a∗) is small. If the approximation is
not sufficiently accurate then natural gradient methods are guaranteed to converge to a suboptimal
policy (Chung et al., 2021; Mei et al., 2021a).

Meta learning approaches to step size adaption from supervised learning (Sutton, 1992; Mahmood
et al., 2012; Degris et al., 2024) are not directly applicable to policy gradient methods. These



RLJ | RLC 2024

methods can optimize the step size because in supervised learning there is a loss function that can
make it clear what is or is not a too large of step, i.e., prediction error goes from negative to positive.
This is not the case for policy gradients, as we do not have an objective that specifies what is too
much commitment.

Several methods aim to reduce the impact of overcommitting: entropy regularization and intrinsic
motivation. Entropy regularization is a technique that uses a secondary objective to encourage
the policy to increase its entropy (Williams & Peng, 1991; Sabes & Jordan, 1995; Ahmed et al.,
2019; Haarnoja et al., 2018). These methods can prevent complete entropy collapse, but they
have additional hyperparameters, and it is unknown how to set or adapt these parameters reliably.
Another technique, intrinsic motivation, applies a reward bonus to encourage the policy to explore
(Agarwal et al., 2020). This last technique, in combination with restart distributions, has been
shown to guarantee polynomial convergence rates for even challenging exploration environments.

In summary, based on our findings the step size has a significant impact on how much exploration
the agent will perform and step sizes above the optimal value lead to overcommitment to suboptimal
actions and increased training times. Thus to develop an reliable adaptive step size method for policy
gradient methods, the solution will either explicitly or implicitly address the exploration exploitation
trade-off.

Acknowledgments

We want to thank Martha White for feedback on an early draft of this paper.

References
Alekh Agarwal, Mikael Henaff, Sham M. Kakade, and Wen Sun. PC-PG: policy cover directed

exploration for provable policy gradient learning. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems, NeurIPS, 2020.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy on policy optimization. In Proceedings of the 36th International Conference on
Machine Learning, ICML, volume 97 of Proceedings of Machine Learning Research, pp. 151–160.
PMLR, 2019.

Wesley Chung, Valentin Thomas, Marlos C. Machado, and Nicolas Le Roux. Beyond variance
reduction: Understanding the true impact of baselines on policy optimization. In Proceedings
of the 38th International Conference on Machine Learning, ICML, volume 139 of Proceedings of
Machine Learning Research, pp. 1999–2009. PMLR, 2021.

Thomas Degris, Khurram Javed, Arsalan Sharifnassab, Yuxin Liu, and Richard S. Sutton. Step-size
optimization for continual learning. CoRR, abs/2401.17401, 2024.

Shibhansh Dohare, Qingfeng Lan, and A Rupam Mahmood. Overcoming policy collapse in deep
reinforcement learning. In Sixteenth European Workshop on Reinforcement Learning, 2023.

Thomas Furmston and Guy Lever. A gauss-newton method for markov decision processes. CoRR,
abs/1507.08271, 2015.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
35th International Conference on Machine Learning, ICML, volume 80 of Proceedings of Machine
Learning Research, pp. 1856–1865. PMLR, 2018.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.



RLJ | RLC 2024

Peter Henderson, Joshua Romoff, and Joelle Pineau. Where did my optimum go?: An empirical
analysis of gradient descent optimization in policy gradient methods. CoRR, abs/1810.02525,
2018.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture
6a overview of mini-batch gradient descent. In Coursera: Neural Networks for Machine Learning.
Coursera Inc., 2012.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and
Koray Kavukcuoglu. Population based training of neural networks. CoRR, abs/1711.09846, 2017.

S. Kakade. A natural policy gradient. In Advances in Neural Information Processing Systems,
volume 14, pp. 1531–1538, 2002.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations, ICLR, 2015.

Sungsu Lim, Ajin Joseph, Lei Le, Yangchen Pan, and Martha White. Actor-expert: A framework
for using action-value methods in continuous action spaces. CoRR, abs/1810.09103, 2018.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in rein-
forcement learning. In The Tenth International Conference on Learning Representations, ICLR.
OpenReview.net, 2022.

Ashique Rupam Mahmood, Richard S. Sutton, Thomas Degris, and Patrick M. Pilarski. Tuning-
free step-size adaptation. In 2012 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP, pp. 2121–2124. IEEE, 2012.

Jincheng Mei, Bo Dai, Chenjun Xiao, Csaba Szepesvári, and Dale Schuurmans. Understanding
the effect of stochasticity in policy optimization. In Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems, pp. 19339–19351,
2021a.

Jincheng Mei, Yue Gao, Bo Dai, Csaba Szepesvári, and Dale Schuurmans. Leveraging non-uniformity
in first-order non-convex optimization. In Proceedings of the 38th International Conference on
Machine Learning, ICML, volume 139 of Proceedings of Machine Learning Research, pp. 7555–
7564. PMLR, 2021b.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In Proceedings of the 33nd International Conference on Machine Learning, ICML,
volume 48 of JMLR Workshop and Conference Proceedings, pp. 1928–1937. JMLR.org, 2016.

Tetsuro Morimura, Eiji Uchibe, and Kenji Doya. Utilizing the natural gradient in temporal differ-
ence reinforcement learning with eligibility traces. In International Symposium on Information
Geometry and Its Applications, pp. 256–263, 2005.

Matteo Papini, Matteo Pirotta, and Marcello Restelli. Smoothing policies and safe policy gradients.
CoRR, abs/1905.03231, 2019.

Supratik Paul, Vitaly Kurin, and Shimon Whiteson. Fast efficient hyperparameter tuning for policy
gradient methods. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Adaptive step-size for policy gradient methods.
In Christopher J. C. Burges, Léon Bottou, Zoubin Ghahramani, and Kilian Q. Weinberger (eds.),
Advances in Neural Information Processing Systems 26 (NIPS), pp. 1394–1402, 2013.



RLJ | RLC 2024

Philip N. Sabes and Michael I. Jordan. Reinforcement learning by probability matching. In Advances
in Neural Information Processing Systems 8, NIPS, Denver, CO, USA, November 27-30, 1995,
pp. 1080–1086. MIT Press, 1995.

Hikaru Sasaki and Takamitsu Matsubara. Multimodal policy search using overlapping mixtures of
sparse gaussian process prior. In International Conference on Robotics and Automation, ICRA,
pp. 2433–2439. IEEE, 2019.

Tom Schaul, Diana Borsa, Joseph Modayil, and Razvan Pascanu. Ray interference: a source of
plateaus in deep reinforcement learning. CoRR, abs/1904.11455, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning,
ICML, volume 37 of JMLR Workshop and Conference Proceedings, pp. 1889–1897. JMLR.org,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017.

Richard S. Sutton. Adapting bias by gradient descent: An incremental version of delta-bar-delta. In
William R. Swartout (ed.), Proceedings of the 10th National Conference on Artificial Intelligence,
pp. 171–176. AAAI Press / The MIT Press, 1992.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural informa-
tion processing systems, pp. 1057–1063, 2000.

Jie Tang and Pieter Abbeel. On a connection between importance sampling and the likelihood ratio
policy gradient. In Advances in Neural Information Processing Systems 23, pp. 1000–1008. Curran
Associates, Inc., 2010.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Paul Wagner. A reinterpretation of the policy oscillation phenomenon in approximate policy iter-
ation. In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and
Kilian Q. Weinberger (eds.), Advances in Neural Information Processing Systems 24, (NIPS), pp.
2573–2581, 2011.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268, 1991.



RLJ | RLC 2024

A Policy Gradient Form Equivalence

In this section, we prove that the two policy gradient forms: the policy gradient theorem and the
episodic form are equivalent. We make these connections explicit but the correctness of each form
has already be established and we include it here for completeness. We first start by proving a few
lemmas that are helpful in proving that the forms are equivalent.

We begin by proving two lemmas regarding the episodic form.

Lemma 1 (Episode Probability). The probability of an episode τ occurring is

Pr(τ) = Pr(S0 = s0, A0 = a0, R0 = r0, . . . , ST −1 = sT −1, AT −1 = aT −1, RT −1 = rT −1)

= d0(s0)
T −1∏
t=0

π(st, at, θ) Pr(Rt = rt|St = st, At = at)p(st, at, st+1).

Proof. By the Markov property

Pr(At+1 = at+1, Rt+1 = rt+1|St+1 = st+1, St = st, At = at, Rt = rt, . . . ) = Pr(At+1 = at+1, Rt+1 = rt+1|St+1 = st+1)

and Pr(St+1 = st+1|At = at, Rt = rt, St = st, . . . ) = Pr(St+1 = st+1|At = at, St = st). Thus,

Pr(τ) = Pr(S0 = s0, A0 = a0, R0 = r0, . . . , ST −1 = sT −1, AT −1 = aT −1, RT −1 = rT −1, ST = s∞)

= Pr(S0 = s0)
T −1∏
t=0

Pr(St+1 = st+1|St = st, At = at) Pr(At = at, Rt = rt|St = st)

= Pr(S0 = s0)
T −1∏
t=0

Pr(St+1 = st+1|St = st, At = at) Pr(Rt = rt|At = at, St = st) Pr(At = at|St = st)

= d0(s0)
T −1∏
t=0

p(st, at, st+1) Pr(Rt = rt|At = at, St = st)π(st, at, θ)

= d0(s0)
T −1∏
t=0

π(st, at, θ) Pr(Rt = rt|At = at, St = st)p(st, at, st+1).

Lemma 2 (Episode Derivative). The direction of steepest ascent to change policy parameters θ to
make an episode more likely is

∂

∂θ
ln Pr(τ) =

T −1∑
t=0

∂

∂θ
ln π(st, at, θ).



RLJ | RLC 2024

Proof.

∂

∂θ
ln Pr(τ) = ∂

∂θ
ln
(
d0(s0)

T −1∏
t=0

π(st, at, θ) Pr(Rt = rt|At = at, St = st)p(st, at, st+1)
)

= ∂

∂θ

(
ln d0(s0) + ln

T −1∏
t=0

π(st, at, θ) Pr(Rt = rt|At = at, St = st)p(st, at, st+1)
)

= ∂

∂θ

(
ln d0(s0) +

T −1∑
t=0

ln π(st, at, θ) + ln Pr(Rt = rt|At = at, St = st) + ln p(st, at, st+1)
)

= ∂

∂θ
ln d0(s0) + ∂

∂θ

T −1∑
t=0

ln π(st, at, θ) + ln Pr(Rt = rt|At = at, St = st) + ln p(st, at, st+1)

= ∂

∂θ
ln d0(s0)︸ ︷︷ ︸

=0

+
T −1∑
t=0

∂

∂θ
ln π(st, at, θ) + ∂

∂θ
ln Pr(Rt = rt|At = at, St = st)︸ ︷︷ ︸

=0

+ ∂

∂θ
ln p(st, at, st+1)︸ ︷︷ ︸

=0

=
T −1∑
t=0

∂

∂θ
ln π(st, at, θ).

The primary difference between the episodic form and the policy gradient theorem is that the episodic
form uses all rewards (past and present) to weight the quality of an action. To show these forms are
equivalent we need to show that the contribution of past rewards to future actions does not change
the update direction of θ.

Lemma 3. For any t < t′,

E
[
Rt

∂

∂θ
ln π(St′ , At′ , θ)|St = s

]
= 0.



RLJ | RLC 2024

Proof. Let ψ(s, a) = ∂
∂θ ln π(s, a, θ).

E
[
Rt

∂

∂θ
ln π(St′ , At′ , θ)|St = s

]
=

∑
rt,st′ ,at′

Pr(Rt = r, St′ = st′ , At′ = at′ |St = s)
(
rt
∂

∂θ
ln π(st′ , at′ , θ)

)

=
∑

rt,st′ ,at′

Pr(Rt = r|St = s) Pr(St′ = st′ , At′ = at′ |St = s)rtψ(st′ , at′)

=
∑
rt

Pr(Rt = r|St = s)
∑

st′ ,at′

Pr(At′ = at′ |St′ = st′) Pr(St′ |St = s)rtψ(st′ , at′)

=
∑
rt

Pr(Rt = r|St = s)rt

∑
st′

Pr(St′ |St = s)
∑
at′

Pr(At′ = at′ |St′ = st′)ψ(st′ , at′)

=
∑
rt

Pr(Rt = r|St = s)rt

∑
st′

Pr(St′ |St = s)
∑
at′

π(st′ , at′ , θ)ψ(st′ , at′)

=
∑
rt

Pr(Rt = r|St = s)rt

∑
st′

Pr(St′ |St = s)
∑
at′

∂

∂θ
π(st′ , at′ , θ)

=
∑
rt

Pr(Rt = r|St = s)rt

∑
st′

Pr(St′ |St = s) ∂
∂θ

∑
at′

π(st′ , at′ , θ)

=
∑
rt

Pr(Rt = r|St = s)rt

∑
st′

Pr(St′ |St = s) ∂

∂θ
1︸︷︷︸

=0

= 0.

Theorem 1 (Policy Gradient Form 1).

∇ρ(θ) =
∑

s

∞∑
t=0

γt Pr(St = s)
∑

a

π(s, a, θ)qπ(s, a) ∂
∂θ

ln π(s, a, θ).

Proof. See Sutton et al. (2000).

Theorem 2 (Policy Gradient Form 2). For any policy such that ∂ ln π(s,a,θ)
∂θ exists for all s, a, θ,

then the gradient of ρ(θ) is

∇ρ(θ) = E
[
G

T −1∑
t=0

∂

∂θ
ln π(St, At, θ)

]
= E

[
T −1∑
t=0

γtGt
∂

∂θ
ln π(St, At, θ)

]
.



RLJ | RLC 2024

Proof. For the first equality:

∇ρ(θ) = ∂

∂θ
ρθ = ∂

∂θ
E [G]

= ∂

∂θ

∑
τ

Pr(τ)G

=
∑

τ

∂

∂θ
(Pr(τ)G)

=
∑

τ

∂

∂θ
Pr(τ)G+ Pr(τ) ∂

∂θ
G︸ ︷︷ ︸

=0

=
∑

τ

G
∂

∂θ
Pr(τ)

=
∑

τ

Pr(τ)G ∂

∂θ
ln Pr(τ)

=
∑

τ

Pr(τ)G
T −1∑
t=0

∂

∂θ
ln π(St, At, θ) = E

[
G

T −1∑
t=0

∂

∂θ
ln π(St, At, θ)

]
.

For the second equality:

E
[
G

T −1∑
t=0

∂

∂θ
ln π(St, At, θ)

]
= E

[
T −1∑
t′=0

γt′
Rt′

T −1∑
t=0

∂

∂θ
ln π(St, At, θ)

]

= E
[

T −1∑
t′=0

γt′
Rt′

∂

∂θ

T −1∑
t=0

ln π(St, At, θ)
]

= E
[

T −1∑
t=0

T −1∑
t′=0

γt′
Rt′

∂

∂θ
ln π(St, At, θ)

]

= E
[

T −1∑
t=0

t−1∑
t′=0

γt′
Rt′

∂

∂θ
ln π(St, At, θ) +

T −1∑
t=0

T −1∑
t′=t

γt′
Rt′

∂

∂θ
ln π(St, At, θ)

]

= E
[

T −1∑
t=0

t−1∑
t′=0

γt′
Rt′

∂

∂θ
ln π(St, At, θ) +

T −1∑
t=0

T −1∑
t′

γtγt′−tRt′
∂

∂θ
ln π(St, At, θ)

]

= E
[

T −1∑
t=0

t−1∑
t′=0

γt′
Rt′

∂

∂θ
ln π(St, At, θ) +

T −1∑
t=0

T −1−t∑
k

γtγkRt+k
∂

∂θ
ln π(St, At, θ)

]

= E
[

T −1∑
t=0

t−1∑
t′=0

γt′
Rt′

∂

∂θ
ln π(St, At, θ) +

T −1∑
t=0

γtGt
∂

∂θ
ln π(St, At, θ)

]

= E
[

T −1∑
t=0

t−1∑
t′=0

γt′
Rt′

∂

∂θ
ln π(St, At, θ)

]
︸ ︷︷ ︸

=0

+E
[

T −1∑
t=0

γtGt
∂

∂θ
ln π(St, At, θ)

]

= E
[

T −1∑
t=0

γtGt
∂

∂θ
ln π(St, At, θ)

]
.



RLJ | RLC 2024

Theorem 3 (Policy Gradient Form Equivalence).

∇ρ(θ) =
∑

s

∞∑
t=0

γt Pr(St = s)
∑

a

π(s, a, θ)qπ(s, a) ∂
∂θ

ln π(s, a, θ) = E
[

T −1∑
t=0

γtGt
∂

∂θ
ln π(St, At, θ)

]
.

Proof.

∇ρ(θ) =
∑

s

∞∑
t=0

γt Pr(St = s)
∑

a

π(s, a, θ)qπ(s, a) ∂
∂θ

ln π(s, a, θ)

=
∑

s

∞∑
t=0

Pr(St = s)
∑

a

π(s, a, θ)γtqπ(s, a) ∂
∂θ

ln π(s, a, θ)

=
∞∑

t=0

∑
s

Pr(St = s)
∑

a

π(s, a, θ)γtqπ(s, a) ∂
∂θ

ln π(s, a, θ)

=
∞∑

t=0

∑
s

Pr(St = s)
∑

a

π(s, a, θ)γtqπ(s, a) ∂
∂θ

ln π(s, a, θ)

=
∞∑

t=0

∑
s

Pr(St = s)
∑

a

π(s, a, θ)E
[
γtGt|St = s,At = a

] ∂
∂θ

ln π(s, a, θ)

=
∞∑

t=0

∑
s

Pr(St = s)
∑

a

π(s, a, θ)E
[
γtGt

∂

∂θ
ln π(s, a, θ)|St = s,At = a

]

=
∞∑

t=0

∑
s

Pr(St = s)E
[
γtGt

∂

∂θ
ln π(s,At, θ)|St = s

]

=
∞∑

t=0
E
[
γtGt

∂

∂θ
ln π(St, At, θ)

]

= E
[ ∞∑

t=0
γtGt

∂

∂θ
ln π(St, At, θ)

]

= E
[

T −1∑
t=0

γtGt
∂

∂θ
ln π(St, At, θ)

]
.

B Hyperparameter Details:

This section lists the hyperparameters used for each experiment.

For the 2D environment we used a tile coding basis function with 16 tilings of 4 tiles per dim
and a two layer neural network with 32 hidden units and relu activations. For each iteration of
REINFORCE 50 episodes were used to estimate the gradient. PPO also collected 50 episodes per
iteration, performed 10 policy updates in mini-batches, a clip ratio of 0.2, and λ = 1. We also do
not use a version of PPO with a KL divergence penalty. Both algorithms use γ = 1.

For the Ant environment PPO used a neural network with two hidden layers of size 64. It performed
updates after every 3072 time steps, using mini-batches of 32, and went over the data 10 times per
batch. The clipping parameter was set to 0.1, γ = 0.98, λ = 0.8, and no entropy bonus.



RLJ | RLC 2024

C Entropy Computation

For the continuous actions, using differential entropy can lead to negative or very large values and
not necessarily reflect the measure of uncertainty we want to capture. What we want to measure
is how much the action distribution covers the space [−1, 1]. So we discretize the action space
into 1,000 equal width bins. We then create a discrete probability distribution based on the total
probability that an action is sampled in each bin. For example for a bin ui = [ai, ai+1) with ai and
ai+1 being the lower and upper bounds of the bin, the probability of the selected bin U being ui in
state s is

Pr(U = ui) =
∫ ai+1

ai

π(s, a, θ)da = FA(ai+1)− FA(ai),

where FA is the cumulative distribution function of the action A as defined by π. We compute the
entropy of U to represent the spread of the action distribution.

This discretization has maintains the properties we care about, e.g., the entropy is maximized
when the distribution of A is uniform and the entropy goes towards 0 as the distribution becomes
deterministic. Furthermore, it is a better measure of spread than standard deviation for the squashed
Gaussian. When the standard deviation becomes large more probability mass gets put on the end
points−1,+1 than in the middle thus there would not many substantially different actions being tried
even though the standard deviation would be large. In this case the entropy discretized distribution
would be relatively small since the probability mass is mostly on two bins.

D Modification to the Ant environment

The Mujoco Ant environments (all versions) define an is_healthy status for the simulated robot that
terminates the episode if the Ant is unhealthy. Specifically, if the ant is too low to or too far from the
ground, the episode ends. However, the Ant can get stuck on its back; this is not always considered
unhealthy, and the result is that a great deal of compute may be spent on simulating the Ant stuck
upside-down. Since this is clearly an oversight, we use a modification to the Ant environment that
modifies the is_healthy logic to account for this situation. That is, the episode ends if the Ant flips
upside-down.

E Additional Results

This section shows additional resuts. Figures 7 and 8 show the measurements for each step size on
the 2D environment for both softmax and squashed Gaussian distributions. Figures 9 and 10 show
the measurements for REINFORCE using the Adam optimizers. Figure 11 shows the measurements
for PPO with a softmax distribution on the same environment.



RLJ | RLC 2024

101

102

103

It
er

at
io

n
s

Linear + SGA

101

102

103

NN + SGA

101

102

103

Linear + RMSprop

101

102

103

NN + RMSprop

−10

0

10

R
et

u
rn

−10

0

10

−10

0

10

−10

0

10

10−4 101

log10(η)

0

1

2

E
n

tr
op

y

10−4 101

log10(η)

0

1

2

10−4 101

log10(η)

0

1

2

10−4 101

log10(η)

0

1

2

Figure 7: This figure show the results of REINFORCE using the softmax parameterization.

101

102

103

It
er

at
io

n
s

Linear + SGA

101

102

103

NN + SGA

101

102

103

Linear + RMSprop

101

102

103

NN + RMSprop

−10

0

10

R
et

u
rn

−10

0

10

−10

0

10

−10

0

10

10−4 101

log10(η)

0

5

E
n

tr
op

y

10−4 101

log10(η)

0

5

10−4 101

log10(η)

0

5

10−4 101

log10(η)

0

5

Figure 8: This figure show the results of REINFORCE using the squashed Gaussian parameteriza-
tion.



RLJ | RLC 2024

101

102

103

It
er

at
io

n
s

Linear + RMSprop

101

102

103

NN + RMSprop

101

102

103

Linear + Adam

101

102

103

NN + Adam

−10

0

10

R
et

u
rn

−10

0

10

−10

0

10

−10

0

10

10−4 101

log10(η)

0

1

2

E
n

tr
op

y

10−4 101

log10(η)

0

1

2

10−4 101

log10(η)

0

1

2

10−4 101

log10(η)

0

1

2

Figure 9: This figure compares the results of REINFORCE using the softmax parameterization with
RMSprop and Adam. Notice that the shape of all the plots for the two optimizers are very similar.

101

102

103

It
er

at
io

n
s

Linear + RMSprop

101

102

103

NN + RMSprop

101

102

103

Linear + Adam

101

102

103

NN + Adam

−10

0

10

R
et

u
rn

−10

0

10

−10

0

10

−10

0

10

10−4 101

log10(η)

0

5

E
n

tr
op

y

10−4 101

log10(η)

0

5

10−4 101

log10(η)

0

5

10−4 101

log10(η)

0

5

Figure 10: This figure compares the results of REINFORCE using the squashed Gaussian parame-
terization with RMSprop and Adam.



RLJ | RLC 2024

101

102

103

L
in

ea
r

+
S

G
A

Iterations

0

1

2

Entropy

−10

0

10

Return

101

102

103

N
N

+
S

G
A

RF

0.0

0.001

0.01
0

1

2

−10

0

10

101

102

103

L
in

ea
r

+
R

M
S

pr
op

0

1

2

−10

0

10

10−5 10−1 103

log10(η)

101

102

103

N
N

+
R

M
S

pr
op

10−5 10−1 103

log10(η)

0

1

2

10−5 10−1 103

log10(η)

−10

0

10

Figure 11: This plot shows the measurements comparing PPO with softmax parameterization to
REINFORCE on the 2D environment. The red dots correspond to REINFORCE, while the other
colors indicate using a specific entropy coefficient with PPO.


