
RLJ | RLC 2024

Investigating the Interplay of Prioritized Replay
and Generalization

Parham Mohammad Panahi1, Andrew Patterson1, Martha White1,2,3, Adam White1,2,3
1 University of Alberta 2 Alberta Machine Intelligence Institute (Amii) 3 CIFAR AI Chair
{parham1, ap3, whitem, amw8}@ualberta.ca

Abstract

Experience replay is ubiquitous in reinforcement learning, to reuse past data and
improve sample efficiency. Though a variety of smart sampling schemes have been
introduced to improve performance, uniform sampling by far remains the most
common approach. One exception is Prioritized Experience Replay (PER), where
sampling is done proportionally to TD errors, inspired by the success of prioritized
sweeping in dynamic programming. The original work on PER showed improve-
ments in Atari, but follow-up results are mixed. In this paper, we investigate
several variations on PER, to attempt to understand where and when PER may be
useful. Our findings in prediction tasks reveal that while PER can improve value
propagation in tabular settings, behavior is significantly different when combined
with neural networks. Certain mitigations—like delaying target network updates
to control generalization and using estimates of expected TD errors in PER to
avoid chasing stochasticity—can avoid large spikes in error with PER and neural
networks, but nonetheless generally do not outperform uniform replay. In control
tasks, none of the prioritized variants consistently outperform uniform replay.

1 Introduction

Experience Replay (ER) is widely used in deep reinforcement learning (RL) and appears critical for
good performance. The core idea of ER is to record state-transitions (experiences) into a memory,
called a buffer, replay them by sub-sampling mini-batches to update the agent’s value function and
policy. ER allows great flexibility in agent design. ER can be used to learn from human demonstra-
tions (pre-filling the replay buffer with human data) allowing off-line pre-training and fine-tuning.
ER has been used to learn many value functions in parallel, as in Hindsight ER (Andrychowicz
et al., 2018), Universal Value Function Approximators (Schaul et al., 2015), and Auxiliary Task
Learning (Jaderberg et al., 2016; Wang et al., 2024). ER can be seen as a form of model-based RL
where the replay buffer acts as a non-parametric model of the world (Pan et al., 2018; Van Hasselt
et al., 2019), or ER can be used to directly improve model-based RL systems (Lu et al., 2024). In
addition, ER can be used to mitigate forgetting in continual learning systems (Anand & Precup,
2024). ER has proven crucial for mitigating the sample efficiency challenges of online RL, as well
as mitigating instability due to off-policy updates and non-stationary bootstrap targets. The most
popular alternative, asynchronous training, requires multiple copies of the environment, which is not
feasible in all domains and typically makes use of a buffer anyway (e.g., Horgan et al. (2018)).

There are many different ways ER can be implemented. The most widely used variant, i.i.d or
uniform replay, samples experiences from the buffer with equal probability. As discussed in the
original paper (Lin, 1993), ER can be combined with lambda-returns and various sampling methods.
Experience can be sampled in reverse order it occurred, starting at terminal states. Transitions can
be sampled from a priority queue ordered by TD errors—the idea being transitions that caused
large updates are more important and should be resampled. Samples can be drawn with or without
replacement—avoiding saturating the mini-batch with high priority transitions. The priorities can

RLJ | RLC 2024

be periodically updated. We could use importance sampling to re-weight the distribution in the
queue, and generally we could dynamically change the distribution during the course of learning.
Despite the multitude of possible variants (Igata et al., 2021; Sun et al., 2020; Kumar & Nagaraj,
2023; Lee et al., 2019; Hong et al., 2023; Kobayashi, 2024; Li et al., 2021; 2022) simple i.i.d replay
remains the most widely used approach.1

The exception to this is Prioritized Experience Replay (PER) (Schaul et al., 2016), where experience
is sampled from the buffer based on TD errors. Like prioritized sweeping that inspired it (Moore
& Atkeson, 1993), PER in principle should be vastly more efficient than i.i.d sampling. Imagine, a
sparse reward task where non-zero reward is only observed at the end of long trajectories; sampling
based on TD errors should focus value updates near the terminal state efficiently propagating reward
information across the state space. This approach was shown to improve over i.i.d sampling in Atari
when combined with Double DQN (Schaul et al., 2016). The results in follow up studies, however,
is mixed and does not show a clear benefit for using PER generally (Fedus et al., 2020; Hessel et al.,
2018; Li et al., 2021; Ma et al., 2023; Horgan et al., 2018; Fu et al., 2022). Compared with i.i.d
sampling, PER introduces six hyper-parameters controlling importance sampling and how additional
experiences are mixed with the prioritized distribution.

In this paper, we explore several different variations of PER in carefully designed experiments in
the hopes of better understanding where and when PER is useful. Canonical PER (Schaul et al.,
2016) uses several additional components that make the impacts of prioritization harder to analyze.
We compare PER with several simplified variants using simple chain tasks where value propagation
and prioritization should be critical for performance. We find that only in tabular prediction, do all
prioritized variants outperform i.i.d replay. Combining basic prioritization with sampling without
replacement and updating the priorities in the buffer (things not done in public implementations),
further improves performance in the tabular case. Our results show that prioritization, bootstrap-
ping, and function approximation cause problematic over-generalization, possibly motivating the
design choices of PER which ultimately causes the method to function more like i.i.d sampling
under function approximation. Our results in chain domains with neural network function approx-
imation and across several classic control domains, perhaps unsurprisingly, shows no clear benefit
for any prioritized method.

We also introduce and investigate a natural extension to PER based on ideas from Gradient TD
methods (Sutton et al., 2009; Patterson et al., 2022). These methods stabilize off-policy TD updates
by learning an estimate of the expected TD error. This estimate can be used to compute priorities
and is less noisy than using instantaneous TD errors. This expected PER algorithm works well in
tabular prediction tasks and noisy counter-examples where PER fails, but is generally worse than
i.i.d sampling under function approximation and ties i.i.d in classic control problems—though it
appears more stable. Although somewhat of a negative result, expected PERs performance suggests
noise is not the explanation for i.i.d sampling’s superiority over PER and more research is needed
to find generally useful prioritization mechanisms.

2 Background, Problem Formulation, and Notation

In this paper, we investigate problems formulated as discrete-time, finite Markov Decision Processes
(MDP). On time step, t, the agent selects an action At ∈ A in part based on the current state, St ∈ S.
The MDP transitions to a new state St+1 and emits a reward signal Rt+1 ∈ R. The agent’s action
choices are determined by it’s policy At ∼ π(·|St), and the goal of learning is to adjust π to maximize
the future expected return Eπ[Gt|St = s, At = a] = Eπ[Rt+1 +γRt+2 +γ2Rt+1 + . . . |St = s, At = a],
where γ ∈ [0, 1]. The expectation is dependent on future actions determined by π and future states
and rewards according to the MDP.

We focus on action-value methods for learning π. In particular, Q-learning estimates the state-action
value function qπ(s, a) .= Eπ[Gt|St = s, At = a] ∀ s, a ∈ S ×A via temporal difference updates from

1See Wittkuhn et al. (2021) for a nice review.

RLJ | RLC 2024

sample interactions: q̂(St, At) = q̂(St, At) + αδt, where δt
.= Rt+1 + γ maxa q̂(St+1, ·) − q̂(St, At)

is called the TD-error with learning-rate parameter α ∈ R+. Actions are selected according to an
ϵ-greedy policy: selecting At = arg max q̂(St, ·) 1 − ϵ percentage of the time and a random action
otherwise. In many tasks, it is not feasible to learn an action-value for every state. In these cases,
we use a non-linear parametric approximation of the value, q̂w(St+1, At+1) ≈ qπ(s, a), where w are
the parameters of a neural network (NN), which are adjusted via semi-gradient Q-learning rule.

Semi-gradient Q-learning when combined with NNs is often unstable, and so DQN is often preferred.
The DQN algorithm combines: target networks, ER, and an optimizer (Mnih et al., 2015). Target
Networks replace maxa q̂w(St+1, ·) in the TD-error with an older copy of the network. In this paper
we use the Adam optimizer (Kingma & Ba, 2015). Experience Replay is used to perform mini-batch
updates to q̂w from a finite, first-in-first-out buffer. Sampling from the buffer is uniform or i.i.d
meaning the value estimate on the current step is updated based experiences observed in the recent
past, not necessarily the most recent transition. The appendix contains the pseudo code for DQN
and its key hyperparameters.

In control tasks we learn q̂ and π, however, in prediction tasks π is given and fixed and we are
interested in learning the state-value function: v̂(s) ≈ vπ(s) .= Eπ[Gt|St = s]. This can be done
using the Temporal Difference learning algorithm (Sutton, 1988), the state-value analog of TD
update above, which has a semi-gradient variant for learning v̂w : S → R. See Sutton & Barto
(2018) for an extensive overview of all these topics.

3 Variants of Prioritized Replay

In this section, we define two variants of PER that we use to better understand the role of prioritiza-
tion. We use the name DM-PER for Schaul et al. (2016)’s prioritized replay algorithm and Uniform
to refer to classic i.i.d replay.

0 80k
Time Steps

0.0

0.05

Mean
Squared

Value
Error

Uniform
EPER
Naive PER
DM-PER

Figure 1: Prioritization can be problem-
atic in noisy prediction with NNs. Re-
sults averaged over 30 trials; shaded re-
gion are 95% bootstrap Confidence In-
tervals (CI).

We start by describing a simplified prioritized replay algo-
rithm, which we will call Naive PER. Starting from a uni-
form replay, the Naive PER algorithm modifies only the
sampling strategy from uniform to proportional to TD er-
ror. We record the TD-error as soon as a sample is added
to the buffer, then update that TD-error when a transi-
tion is sampled. We do not mix in uniform sampling, we
do not squash the priorities with an exponential hyperpa-
rameter, and we do not use importance weights. In this
way, the Naive PER algorithm closely resembles tabular
prioritized sweeping, except we sample probabilistic ac-
cording to the priorities rather than use a priority queue.
The full pseudocode for Naive PER can be found in the
appendix.

In order to study the effects of noise on the prioritization strategy, we introduce a new prioritization
variant expected PER (EPER). Instead of using the sample TD-error, δt, which can be noisy when
the reward or the transition dynamics are stochastic, EPER uses an estimate of the expected TD-
error E [δt | St = s]. This expectation averages out random effects from action selection, transition
dynamics, and the reward signal.

Learning this expectation can be formulated as a simple least-squares regression problem with sam-
ples δt as the target, yielding the following online update rule: θt+1 ← θt + α(δt − hθ(St))∇θhθ(St),
where hθ is a parametric approximation of δt with parameters θ. This secondary estimator forms
the basis of the gradient TD family of methods (Sutton et al., 2009; Patterson et al., 2022) making
it natural to combine with recent gradient TD algorithms such as EQRC (Patterson et al., 2022).
In other words, if we use EQRC instead of DQN, we can use EPER to attain a less noisy signal for
computing priorities with no extra work because EQRC is estimating hθ anyway.

RLJ | RLC 2024

Figure 1 demonstrates the potential benefits of EPER over Naive PER. The task is to estimate the
state-value function of a random policy in a Markov chain with the only reward on the terminal
transition (described in more detail in the next section). The terminal reward is polluted by zero
mean non-symmetric noise. The hyperparameters of all methods are systematically tuned, and still
we see Naive PER is negatively impacted. The DM-PER algorithm is robust in this case, which is
not surprising given its use of importance sampling and mixing in i.i.d samples. EPER is not as
robust, but achieves this with a much simpler approach.

4 An Empirical Investigation of Prioritization in Replay

In most situations the value function is approximated using a parameterized function such as a neural
network. Neural networks are known for their generalization power, where updates to estimated value
of one state will effect many other states. The only source of value propagation in the tabular setting
is bootstrapping—information about reward moves from one state to a neighbor state. When using
neural networks to estimate the value function however, any update will affect numerous states.
The idea of prioritized replay is based on the tabular notion of value propagation and the interplay
between neural network generalization and prioritized replay remains an open question. This section
explores the combined effect of prioritized replay and neural network generalization in RL agents.

4.1 Comparing Sample Efficiency in Prediction

In this section we ask several questions in a sparse reward task where rapid value propagation should
require careful sampling from the replay buffer. Does naive prioritization improve performance over
uniform replay? Do the additional tricks in DM-PER reduce the efficiency of value propagation
when they are not really required? Finally, does robustness to noisy TD errors, as in EPER, matter
in practice? We investigate these questions with tabular and neural network representations.

We consider both policy evaluation and control problems in a 50-state Markov chain environment
visualized in Figure 2. This is an episodic environment with γ = 0.99 chosen to present a difficult
value propagation problem. In every episode of interaction, the agent starts at the leftmost state
and at each step takes the left or right action which moves it the corresponding neighbour state.
The only reward in this environment is +1 when reaching the rightmost state at which point the
episode terminates.

Figure 2: The 50-state Markov chain environment.
In the policy evaluation experiments, the objective is to estimate the state value function of the
random policy. The data for the replay buffer is generated by running the random policy, making this
an on-policy prediction task. The performance measure is the Mean Squared Value Error (MSVE)
between estimated value function and true value function: MSVE(w) =

∑
s d(s)(vπ(s) − v̂w(s))2

where d(s) is the state visitation distribution under the uniform policy. In this experiment we
have two settings, one where the value function is tabular and one where it is approximated by a
two layer neural network with 32 hidden units in each layer and rectified linear unit (ReLU). We
systematically tested a broad set of learning rates, buffer size, and batch sizes—over 50 combinations
with 30 seeds each. The sensitivity to learning rate can be found in the Appendix. In Figure 3 we
shown a representative result with batch size 8, buffer size 8000, and learning rate 8−4 in the tabular
setting and 8−5 in the neural network setting. The remaining results are in the Appendix.

Figure 3 shows the learning curves of different replay methods for policy evaluation in the 50-state
Markov chain over time. All three prioritized replay variants perform similarly and they are more
sample efficient than uniform replay. The heatmaps show estimated values across states over time.
Comparing the heatmap of tabular uniform replay with tabular Naive PER shows an increase in
value propagation through the chain when using prioritization.

RLJ | RLC 2024

0.0

0.01

Mean
Squared

Value
Error

0.0

0.04
Uniform
EPER
Naive PER
DM-PER

1

50
Uniform

0 80k
Time Steps (Tabular)

1

50
Naive PER

0 80k
Time Steps (Neural Network)

-1

0

1

Figure 3: Prioritized methods can im-
prove sample efficiency in prediction
on the 50-state chain in tabular (left)
and NN prediction (right). With NN
function approximation Naive PER
exhibits an increase in MSVE during
early learning. The heatmaps show es-
timated values of the states, 1 to 50,
over time. Results are averaged over
30 seeds; shaded regions are 95% boot-
strap CI.

In the neural network setting, the error of Naive PER increases during early learning and then
drops to the level of other prioritized replay methods. The gap between other prioritized methods
(DM-PER and EPER) and uniform replay is smaller in the neural network setting compared with
the tabular setting. Additionally, these two prioritized methods do not exhibit an increase in the
MSVE like Naive PER.

Perhaps Naive PER over-samples a few transitions which causes the network to spend a lot of its
capacity minimizing the error of those transitions at the cost of a worse prediction in other states.
It is possible that EPER can mitigate the over-sampling issue because the initial estimates are
randomized which helps avoid over-sampling certain transitions. DM-PER reduces the negative
effect of over-sampling by using importance sampling weights to reduce the magnitude of updates
with high priority transitions.

To better understand what is going on we visualize the probability of updating a state over time in
Figure 4. This probability is calculated by summing over the probabilities of sampling a transition
starting from a given state at a given time based on transitions in the replay buffer. We use the
same hyper parameter settings as in Figure 3.

1

50

Tabular

0 80k
Uniform

1

50

NN

0 80k
Naive PER

0 80k
DM-PER

0 80k
EPER

0

0.15

Figure 4: Proba-
bility of sampling
a transition start-
ing from each state
(1 to 50) from the
buffer at each time
point, in the 50-
state Markov chain
for one run.

The sampling distribution of tabular Naive PER follows the intuition from prioritized sweeping
by putting most of the probability mass on the rewarding transition at the end of chain, then,
increasing the probability of nearby states in a backward fashion to help value propagation. Under
neural network function approximation the pattern is similar but more uniform. This is caused
by the random initialization of network parameters which generates non-zero TD errors across the
state space. The sampling distribution of both DM-PER and EPER are, on the other hand, more
structured. Both feature non-terminal transitions with high probability (bright spots) and striping.
It is hard to speculate why this occurs, nevertheless, these patterns provide evidence that combining
prioritization with NNs can result distributions very different from the tabular case.

4.2 Overestimation due to Prioritization, Generalization, and Bootstrapping

In the previous section we saw that Naive PER exhibited a spike in early learning, but why? One
possible explanation is that Naive PER is oversampling the terminal transition which causes the NN

RLJ | RLC 2024

to inappropriately over-estimate nearby states, causing more oversampling, and so on, spreading
across all state. The heatmap in Figure 4 provides some evidence of this. One way to prevent
over-generalization is to employ target networks. We use the same setup as in figure 3 and only
consider Naive PER with neural nets.

1 100

500

Figure 5: Target
Networks can mit-
igate Naive PER’s
poor performance
in the 50-state
Markov chain pre-
diction task with
NNs. Red num-
bers above curves
indicate Target
Network update
rate.

The results in Figure 5 show the performance of Naive PER with three different target network
update rates (1, 100, 500). An update rate of 1 is identical to not using target networks at all.
As we update the target network less frequently we see the spike in the learning curves is reduced.
Notice that heatmap for the value function with an update rate of 500 is very similar to Naive PER
in the tabular case (see Figure 3). We only see a minor performance improvement over uniform
replay in Figure 5, but this is expected because updating the target network infrequently is reducing
the update rule’s ability to propagate value backwards via bootstrapping.

4.3 Comparing Sample Efficiency in Control

In this section we turn our attention to a simple control task, again designed in such a way that
value propagation via smart sampling should be key. Here our main question is: do the insights
about the benefits of prioritization persist when the policy changes and exploration is required.

In the tabular setting, we use Q-learning (without target networks) and in neural network setting
we explore two setups: (1) DQN (with target refresh rate of 100) and (2) EQRC (as an alternative
method without target network). We report steps to goal as the performance metric for the 50-state
Markov chain problem. Buffer size is fixed to 10000, batch size 64, and we pick the best learning
rate for each method (see the Appendix for details). Each control agent is run for 100000 steps with
an ϵ-greedy policy with ϵ = 0.1.

EPER

Naive PER

DM-PER

Uniform

Figure 6: Prioritization
is not more sample ef-
ficient than uniform for
control in the 50-state
Markov chain environ-
ment. Results averaged
over 50 seeds; shaded
regions are 95% boot-
strap CI.

The results in Figure 6 are somewhat unexpected. The dotted line depicts the performance of the
optimal policy. Even in the tabular case, Q-learning with uniform replay is a better than all the three
prioritized methods. DM-PER performs just as well as uniform replay, but this could be explained
by the fact that DM-PER’s sampling is closer to uniform compared with the other prioritization
schemes as shown previous in Figure 4. Naive PER eventually reaches the near optimal policy
and EPER performs poorly. Under neural network approximation, all tested algorithms have a

RLJ | RLC 2024

wide overlapping confidence regions, even with 50 seeds, making clear comparison between methods
difficult and non conclusive. It seems good performance in prediction does not necessarily translate
into improvement in control, even in the same MDP.

4.4 Sampling Without Replacement & Updating Priorities

In this section we explore two simple but natural improvements to replay that could improve perfor-
mance. There are many possible refinements, and many have been explored in the literature already.
Here we select two that have not been deeply explored before, specifically (1) sampling transitions
with or without replacement, and (2) recomputing priorities of samples in the buffer.

When sampling a mini-batch from the replay buffer, one has the option to sample transitions with
or without replacement. This decision is important in PER because sampling with replacement can
cause a high priority transition to be repeatedly sampled into the same mini-batch. This certainly
happens on the first visit to the goal state in the 50 state chain. Uniform replay avoids this problem
by design. Most reference implementations of PER sample with replacement. We hypothesize
that duplicate transitions in the mini-batch reduces the sample efficiency of prioritized methods,
effectively nagating the benefit of mini-batches.

We compare Naive PER with and without replacement sampling and uniform replay in the 50-state
Markov chain prediction domain under tabular and neural net function approximation. We used a
two layer network with 32 hidden units and ReLU activation, a batch size of 8000 and experimented
with several mini-batch sizes (1, 8, 64, 256). With batch size 1, with and without replacement are
identical. We report a representative result with learning rate of 8−4 in the tabular setting and 8−5

in the neural network setting and report MSVE under the target policy over training time.

0

0.01

MSVE
(Tabular)

0 80k
Batch Size 1

0

0.04

MSVE
(NN)

0 80k
Batch Size 8

0 80k
Batch Size 64

0 80k
Batch Size 256

wo.replace
Uniform
w. replace

Figure 7: Sampling
without replacement
improves the perfor-
mance of Naive PER
in the tabular setting
but not with neural
nets. Results are aver-
aged over 50 seeds and
shaded regions are 95%
bootstrap CI.

Figure 7 shows that sampling without replacement provides a minor improvement on the performance
of Naive PER in tabular prediction, where Naive PER was already working well, but does not help
when combined with NN function approximation. In fact, we again see Naive PER’s characteristic
spike due to over-generalization and bootstrapping. This poor performance is somewhat mitigated
by larger batch sizes, but still uniform replay is better. Note, as expected, the performance of
uniform replay suffers with smaller batch sizes.

Now we turn to the control setting to evaluate the impact of sampling without replacement. We
tested tabular Q-learning and neural network DQN settings. The DQN agent has a two layer network
with 32 hidden units and ReLU activation with target refresh rate 100. All agents have buffer size
10000 and a series of batch sizes similar to the previous experiment. The learning rate of each agent
is selected by sweeping over a range of step sizes and maximizing over average performance (sweep
details in the Appendix). Figure 8 summarizes the results.

In tabular control we see a significant improvement in Naive PER when sampling without replace-
ment, whereas with function approximation the result is less clear. In tabular, the gap in performance
between with and without replacement steadily increases and eventually Naive PER becomes nearly
statistically better than uniform. With DQN (function approximation), larger batch sizes mostly
result in ties, though Naive PER without replacement is the only method to always reach optimal
on average.

RLJ | RLC 2024

50

1000

St
ep

s t
o

Go
al

(Q
-L

ea
rn

in
g)

0 100k
Batch Size 1

50

1000

St
ep

s t
o

Go
al

(D
QN

)

0 100k
Batch Size 8

0 100k
Batch Size 64

0 100k
Batch Size 256

wo. replace
Uniform
w. replace
Optimal Policy

Figure 8: Sampling with and without replacement in control using Naive PER with tabular and NN
representations. Without replacement sampling only helps in the tabular setting. Results averaged
over 50 seeds; shaded regions are 95% bootstrap CI.

Taken together, the results which use sampling without replacement suggest a minor benefit. It
always helps in the tabular case, at times outperforming uniform replay, and with function approx-
imation it mostly does not hurt performance.

Another factor that can potentially limit the benefit of prioritization is non-informative and outdated
priorities in the buffer. The priority of a transition is updated only when the transition is sampled.
This means that at any given time the priority of almost all items in the replay buffer are outdated
with respect to the current value function. We can update the priority of all transitions in the buffer
by recomputing their TD error using the current value function estimate periodically.

We tested this idea in prediction setting in the 50 state chain. We compared the performance of
Naive PER, EPER, and DM-PER recomputing the priorities every 10 and 1000 steps. Again we
looked at tabular and NN representations with a two layer neural net of size 32 with ReLU activation
for the latter. The buffer size is fixed to 8000, batch size to 8, and learning rate to 8−4 for tabular
and 8−5 for neural net agents. Figure 9 summarizes the results. In short, we see no benefit from
recomputing priorities in the function approximation settings and marginal benefit in the tabular
case with Naive PER. Interestingly, for DM-PER recomputing too often, every 1000 steps vs every
10 steps, hurts compared to the default—updating only when a transition is first added or resampled.
Note the over-generalization of Naive PER with neural nets is also not reduced more by up-to-date
priorities.

10

1000
never

Figure 9: Recomputing pri-
orities in chain prediction us-
ing Naive PER, EPER, and
DM-PER with tabular (top)
and NN (bottom) representa-
tions. Generally, recomputing
does not help. Results aver-
aged over 30 seeds; shaded re-
gions are 95% bootstrap CI.

As a final experiment in the chain problem, we investigate if combining sampling without replacement
and recomputing priorities every 10 steps, together, can improve the performance of Naive PER.
We conduct this experiment in the control chain problem and repeat the experiment for tabular
Q-learning and DQN with a two layer neural net with 32 hidden units and ReLU activation with
target refresh rate of 100. The buffer size is fixed to 10000 and batch size is 64, we select the learning
rate over a range of values that attained the best average performance. As we see in Figure 10, in
the tabular case, Naive PER with both modifications achieves the best performance, but barely

RLJ | RLC 2024

more than either modification in isolation. Unfortunately, as expected, there is no clear benefit in
the function approximation setting.

0 100k
Time steps

50

1000

Steps
To

Goal

Q-Learning (Tabular)
wo. replace
Uniform
update priority

0 100k
Time steps

DQN (Neural Net)
Naive PER
Both Mods
Optimal Policy

Figure 10: Combining recom-
puting priorities and without
replacement sampling for tab-
ular (left) and NN (right) con-
trol in the chain. Results av-
eraged over 50 seeds; shaded
regions are 95% bootstrap CI.

4.5 Comparing Sample Efficiency in Classic Control Domains

Our previous experiences in the chain were designed to represent an idealized problem to highlight
the benefits of smarter replay, and in this section we consider slightly more complex, less ideal tasks.
In the chain, we only saw clear advantages for prioritization in prediction and also in control with
small batch sizes. The main question here is do these benefits persist or perhaps prioritization will
be worse supporting the common preference for uniform replay in deep RL.

We consider four episodic environments which are significantly more complex than the chain, but
are small enough that smaller NNs can be used and extensive experimentation is possible. The
first three environments, often refered to as classic control feature low dimensional continuous state
and discrete actions. MountainCar (Moore, 1990) and Acrobot (Sutton, 1995) are two control tasks
where the goal is to manipulate a physical system to get to a goal at the end of a long trajectory.
We also include Cartpole due to the unstable dynamics of the balanced position (Barto et al., 1983).
Finally we include the tabular Cliffworld (Sutton & Barto, 2018) because the reward for falling off
the cliff is a large negative value which causes rare but large spikes in the TD error, which might
highlight the benefit of EPER. The details about these environments can be found in the Appendix.
We set the discount factor γ = 0.99. The episodes in MountainCar, Acrobot, and Cartpole are cutoff
every 500 steps, but there is no episode cutoff in Cliffworld.

In this experiment we use DQN with a two layer network of size 64 with ReLU activation and
target refresh rate 128. Batch size and buffer size are fixed to 64 and 10000 respectively and the
learning rate is selected using a two stage approach to avoid maximization bias (Patterson et al.,
2023). First each agent is run for 30 seeds sweeping over many learning rate parameter settings,
then the hyperparameter which achieved the best average performance is run for 100 new seeds
(see details in the Appendix). We include Modified PER, which combines Naive PER with without-
replacement sampling and recomputes the priorities every 10 steps. Figure 11 summarizes the results.
Unsurprisingly, prioritization does not improving the sample efficiency over uniform replay in any
of the four domains.

0 100k
MountainCar

-500

-100

Return

0 100k
Cartpole

0

500

0 100k
Acrobot

-500

-100

0 100k
Cliffworld

-12k

0

Uniform
Naive PER
Modified PER
DM-PER

Figure 11: Performance
of DQN replay agents
on classic control prob-
lems. No clear benefit
for prioritization. Re-
sults averaged over 100
seeds; shaded regions
are 95% bootstrap CI.

Looking closely at the learning curve for Cliffworld in Figure 11 we see a small blip in the performance
with uniform replay. Recall, we suspected that EPER might show benefit in this MDP due to outlier
rewards when the agent falls off the cliff. Average learning curves can hide the stucture of individual
runs, so we plotted all the runs individually for each method in Figure 12. Here we see DQN with
uniform replay periodically performs quite poorly, even late in learning. This is true to a less extent

RLJ | RLC 2024

for DM-PER, Naive PER, and Modified PER. Interestingly, Naive PER variants based on EPER
appear substantially more stable with less collapses in performance.

0 100k
-12k

0

Return

Uniform

0 100k

Naive PER

0 100k

EPER

0 100k
Time Steps

-12k

0

Return

DM-PER

0 100k
Time Steps

Modified PER

0 100k
Time Steps

Modified EPER

Figure 12: Performance
of 100 individual runs
in the Cliffworld shows
performance dips using
uniform replay, Naive
PER, and DM-PER.
EPER-based methods
appear to have more
stable performance.

5 Conclusion

In this paper, we conduct a series of carefully designed experiments into prioritized replay under tab-
ular and neural network settings. We find that prioritization combined with non-linear generalization
can overestimate values during early learning. A follow-up experiment indicates a combination of
bootstrapping and neural network generalization as the reason behind this overestimation. Further-
more, we showed in a simple chain domain, several variants of PER outperform i.i.d replay in the
prediction setting but have poor sample efficiency in control. Unsurprisingly, no variant of PER
improves upon i.i.d replay in classic control domains.

We introduce EPER as a simple modification prioritizing transitions according to a learned estimate
of the expected error inspired by gradient TD methods. We showed that EPER can be more robust
to noisy reward domains and perform more reliably than PER or i.i.d replay in Cliffworld. Finally, we
explore two design decisions in PER, recomputing outdated priorities and sampling batches without
replacement, discovering that these additions can drastically improve PER in the tabular setting
but have little to no effect when using neural networks.

References
Nishanth Anand and Doina Precup. Prediction and control in continual reinforcement learning.

Advances in Neural Information Processing Systems, 36, 2024.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight Experience Replay. 2018.

Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13(5):834–846, 1983.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting Fundamentals of Experience Replay. 2020.

Yuwei Fu, Di Wu, and Benoit Boulet. Benchmarking sample selection strategies for batch reinforce-
ment learning, 2022.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney,
Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements
in deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Zhang-Wei Hong, Tao Chen, Yen-Chen Lin, Joni Pajarinen, and Pulkit Agrawal. Topological Expe-
rience Replay, 2023.

RLJ | RLC 2024

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Hideyoshi Igata, Yuji Ikegaya, and Takuya Sasaki. Prioritized experience replays on a hippocampal
predictive map for learning. 118(1):e2011266118, 2021.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
preprint arXiv:1611.05397, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, San Diega, CA, USA, 2015.

Taisuke Kobayashi. Revisiting experience replayable conditions. arXiv preprint arXiv:2402.10374,
2024.

Ramnath Kumar and Dheeraj Nagaraj. Introspective Experience Replay: Look Back When Sur-
prised, 2023.

Su Young Lee, Choi Sungik, and Sae-Young Chung. Sample-Efficient Deep Reinforcement Learning
via Episodic Backward Update. In Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019.

Ang A Li, Zongqing Lu, and Chenglin Miao. Revisiting prioritized experience replay: A value
perspective. arXiv preprint arXiv:2102.03261, 2021.

Min Li, Tianyi Huang, and William Zhu. Clustering experience replay for the effective exploitation
in reinforcement learning. Pattern Recognition, 131:108875, 2022.

Lin. Reinforcement Learning for Robots Using Neural Networks, 1993.

Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. Advances
in Neural Information Processing Systems, 36, 2024.

Guozheng Ma, Lu Li, Sen Zhang, Zixuan Liu, Zhen Wang, Yixin Chen, Li Shen, Xueqian Wang,
and Dacheng Tao. Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules and
Training Stages, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Andrew W. Moore and Christopher G. Atkeson. Prioritized Sweeping: Reinforcement Learning with
Less Data and Less Time. 13(1):103–130, 1993. ISSN 0885-6125.

Andrew William Moore. Efficient memory-based learning for robot control. Technical report, Uni-
versity of Cambridge, 1990.

Yangchen Pan, Muhammad Zaheer, Adam White, Andrew Patterson, and Martha White. Organizing
Experience: A Deeper Look at Replay Mechanisms for Sample-based Planning in Continuous State
Domains, 2018.

Andrew Patterson, Adam White, and Martha White. A generalized projected bellman error for
off-policy value estimation in reinforcement learning. 23(1):145:6463–145:6523, 2022. ISSN 1532-
4435.

Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical Design in Rein-
forcement Learning, 2023.

RLJ | RLC 2024

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal Value Function Approxima-
tors. In Proceedings of the 32nd International Conference on Machine Learning, pp. 1312–1320.
PMLR, 2015.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized Experience Replay.
2016.

Peiquan Sun, Wengang Zhou, and Houqiang Li. Attentive Experience Replay. 34(04):5900–5907,
2020. ISSN 2374-3468.

Richard Sutton, Hamid Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba Szepesvári,
and Eric Wiewiora. Fast gradient-descent methods for temporal-difference learning with linear
function approximation. volume 382, pp. 125, 2009.

Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3:9–44, 1988.

Richard S Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse
coding. In D. Touretzky, M.C. Mozer, and M. Hasselmo (eds.), Advances in Neural Information
Processing Systems, volume 8. MIT Press, 1995.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Hado P Van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in
reinforcement learning? Advances in Neural Information Processing Systems, 32, 2019.

Han Wang, Erfan Miahi, Martha White, Marlos C Machado, Zaheer Abbas, Raksha Kumaraswamy,
Vincent Liu, and Adam White. Investigating the properties of neural network representations in
reinforcement learning. Artificial Intelligence, pp. 104100, 2024.

Lennart Wittkuhn, Samson Chien, Sam Hall-McMaster, and Nicolas W. Schuck. Replay in minds
and machines. 129:367–388, 2021. ISSN 0149-7634.

RLJ | RLC 2024

A Algorithms

Here we present pseudo code for the DQN algorithm used in this paper. The behavior policy of
DQN, denoted as πw(St), is an ϵ-greedy policy over the current action values q(St, .). Algorithm 1
shows the uniform replay variant and algorithm 2 shows the pseudo code for Naive PER. In both
variants, size of the replay buffer is a hyperparameter.

Algorithm 1 DQN with Uniform Replay
Input: mini-batch size b, learning-rate α, training time T , target refresh rate τ .
Initialize: q network parameters w, target network parameters wtarget = w, buffer B, ∆ = 0.
Observe S0 and choose A0 ∼ πw(S0)
for t = 1 to T do

Observe Rt, St, γt

Store transition (St−1, At−1, Rt, St, γt) in buffer B
for j = 1 to b do

Sample transition (Sj , Aj , Rj , Sj+1, γj+1) from buffer B with probability 1/|B|
Compute TD-error δj = Rj + γj maxa q(Sj+1, a, wtarget)− q(Sj , Aj , w)
Accumulate gradient ∆← ∆− δj∇wq(Sj , Aj , w)

end for
Update w← adam(w, ∆

b , α); Reset ∆ = 0
if t%τ = 0 then

Refresh target network wtarget ← w
end if
Choose action At ∼ πw(St)

end for

Algorithm 2 DQN with Naive PER
Input: mini-batch size b, learning-rate α, training time T , target refresh rate τ .
Initialize: q network parameters w, target network parameters wtarget = w, prioritized buffer
B, ∆ = 0.
Observe S0 and choose A0 ∼ πw(S0)
for t = 1 to T do

Observe Rt, St, γt

Store transition (St−1, At−1, Rt, St, γt) in buffer B with priority pt−1 = |δt−1| = |Rt +
γt maxa q(St, a, wtarget)− q(St−1, At−1, w)|
for j = 1 to b do

Sample transition (Sj , Aj , Rj , Sj+1, γj+1) from buffer B with probability pj∑
i

pi

Compute TD-error δj = Rj + γj maxa q(Sj+1, a, wtarget)− q(Sj , Aj , w)
Accumulate gradient ∆← ∆− δj∇wq(Sj , Aj , w)

end for
for j = 1 to b do

Update priority pj = |δj |
end for
Update w← adam(w, ∆

b , α); Reset ∆ = 0
if t%τ = 0 then

Refresh target network wtarget ← w
end if
Choose action At ∼ πw(St)

end for

RLJ | RLC 2024

B DM-PER Hyperparameters

In all the experiments with DM-PER, its additional hyperparameters are set to the values from
(Schaul et al., 2016) and are listed in table 1.

Priority exponent Importance sampling exponent i.i.d mix-in ratio
0.6 0.4→ 1.0 10−3

Table 1: Hyperparameters specific to DM-PER. Arrow indicates linear schedule over training time.

C Prediction Experiments in the Chain

In This section, we document the hyperparameter sweep details and additional results from the
Markov chain prediction experiment. Table 2 lists the hyperparameter selections for the prediction
agents. The agents in figure 3 use buffer size 8000, batch size 8, and learning rate 8−4 for tabular
and 8−5 for neural network agents.

Tabular agents Neural network agents
Learning rate [8−6, 8−5, 8−4, 8−3, 8−2] [8−6, 8−5/4, 8−5, 8−4/4, 8−4, 8−3/4, 8−3]

Adam optimizer β1 0.9 0.9
Adam optimizer β2 0.999 0.999

Batch size [1, 8, 64] [1, 8, 64]
Buffer size [800, 8000, 80000] [800, 8000, 80000]

Network size - 2× 32 network with ReLU activation
Training time 80000 80000

Table 2: Hyperparameters of prediction agents in Markov chain

8 6 8 5 8 4 8 3 8 2

Learning Rate

0.0

0.01

Average
Mean

Squared
Value
Error

Tabular

8 6 8 5 8 4 8 3

Learning Rate

0.0

0.02
Neural Network

Uniform
EPER
Naive PER
DM-PER

Figure 13: Sensitivity to learning rate in prediction chain task. Results are averaged over 30 seeds
and shaded region is 95% bootstrap CI.

Figure 13 shows the sensitivity of replay methods to learning rate for batch size 8 and buffer size
8000 in the chain prediction problem. Prioritized replay is more sample efficient than uniform replay
in the tabular setting, especially with smaller step sizes. But when using neural networks, the early
increase in MSVE of Naive PER, reduces its average performance below other algorithms.

Now we show additional results for those meta-parameter choices in the chain prediction domain that
are omitted from the main text. Figures 14 and 15 show the learning curves for tabular and neural
network agents respectively. The learning rate is tuned by maximizing over average performance
across 30 seeds.

As part of our investigation into PER, we experimented with sampling mini-batches without replace-
ment (see figure 7). Here we present results for all PER variants, Naive PER, DM-PER, and EPER

RLJ | RLC 2024

0

0.015

Batch 1

Buffer 800

Uniform

Buffer 8000

EPER

Buffer 80000

Naive PER

0

0.015

Batch 8 DM-PER

0 80k
Time steps

0

0.015

Batch 64

0 80k
Time steps

0 80k
Time steps

Figure 14: Performance of tabular replay agents in the prediction chain task. Results are averaged
over 30 seeds; shaded region is 95% bootstrap CI.

0

0.05

Batch 1

Buffer 800

Uniform

Buffer 8000

EPER

Buffer 80000

Naive PER

0

0.05

Batch 8 DM-PER

0 80k
Time steps

0

0.05

Batch 64

0 80k
Time steps

0 80k
Time steps

Figure 15: Performance of neural network replay agents in the prediction chain task. Results are
averaged over 30 seeds; shaded region is 95% bootstrap CI.

in the aforementioned prediction experiment. The hyperparameters of this experiment are chosen
according to table 2 sweeping over a range of batch sizes [1, 8, 64, 256]. We chose the same learning
rate as in figure 3, namely, 8−4 for tabular agents and 8−5 for neural network agents. Figure 16
shows tabular agents and figure 17 shows the neural network agents MSVE over training time.

D Control Markov Chain Experiment Details

The hyperparameters used in control chain experiments are given in table 3. We chose the learning
rate for each agent by maximizing over average performance across a range of learning rates.

In the without replacement control experiment, we use a buffer size of 10000 and experiment with 4
different batch sizes [1, 8, 64, 256]. For each setting, the learning-rate is selected via maximizing over
a range of learning-rates. All other meta-parameters are based on table 3. Figure 18 shows results
for the tabular Q-learning setting, figure 19 shows the DQN results, and figure 20 shows the EQRC
results.

RLJ | RLC 2024

0

0.01

Na
iv

e
PE

R

0

0.01

DM
-P

ER

0 80k
Batch Size 1

0

0.01

EP
ER

0 80k
Batch Size 8

0 80k
Batch Size 64

0 80k
Batch Size 256

wo. replace
Uniform
w. replace

Figure 16: Sampling without replacement improves performance in the tabular prediction chain
problem for Naive PER and DM-PER. Results averaged over 50 seeds with 95% bootstrap CI.

0

0.04

Na
iv

e
PE

R

0

0.04

DM
-P

ER

0 80k
Batch Size 1

0

0.04

EP
ER

0 80k
Batch Size 8

0 80k
Batch Size 64

0 80k
Batch Size 256

wo. replace
Uniform
w. replace

Figure 17: Sampling without replacement does not improve performance in the prediction chain
problem under neural network function approximation. Results averaged over 50 seeds with 95%
bootstrap CI.

Q-Learning agents (tabular) DQN and EQRC agents (neural network)
Learning rate [8−7, 8−6, 8−5, 8−4, 8−3, 8−2] [8−5, 8−4, 8−3, 8−2, 8−1]

Adam optimizer β1 0.9 0.9
Adam optimizer β2 0.999 0.999

Batch size 8 8
Buffer size 10000 10000

Network size - 2× 32 network with ReLU activation
Target refresh - 100 (only DQN)
Exploration ϵ 0.1 0.1
Training time 100000 100000

Table 3: Hyperparameters of control agents in Markov chain

RLJ | RLC 2024

50
100

1000

Na
iv

e
PE

R

50
100

1000

DM
-P

ER

0 100k
Batch Size 1

50
100

1000

EP
ER

0 100k
Batch Size 8

0 100k
Batch Size 64

0 100k
Batch Size 256

Uniform
with replacement
without replacement
Optimal Policy

Figure 18: Sampling without replacement improves performance in the control chain task when
using tabular Q-learning. Results are averaged over 50 seeds; shaded region is 95% boostrap CI.

50
100

1000

Na
iv

e
PE

R

50
100

1000

DM
-P

ER

0 100k
Batch Size 1

50
100

1000

EP
ER

0 100k
Batch Size 8

0 100k
Batch Size 64

0 100k
Batch Size 256

Uniform
with replacement
without replacement
Optimal Policy

Figure 19: Sampling without replacement does not improve performance in control chain task when
using DQN. Results are averaged over 50 seeds; shaded region is 95% boostrap CI.

E Classic Control Experiment Details

E.1 Environment Description

In the last part of the paper, we experiment with classic control problems that are more difficult than
the chain. We experiment with MountainCar, Acrobot, Cartpole, and Cliffworld. In MountainCar,
the goal is to drive an under powered car up a hill in a simulated environment with simplified physics
by taking one of three actions, accelerate left, accelerate right, do not accelerate. The observations
are position and speed values of the car. The reward is -1 per step and episodes terminates when
the car crosses a threshold at the top of hill with reward 0.

In Acrobot the agent controls a system of two linear links connected by a movable joint. The goal
is to move the links, by applying torque to the joint, such that the bottom part of the link rises to
the level of its highest point upon which the episode terminates with reward 0. The reward of all
other transitions is -1 per step.

The goal of a Cartpole agent is to balance a pole on top of a moving cart by accelerating the cart
to either left or right. The reward is +1 per step if the pole is properly balanced. If the pole falls
more than 12 degrees the episodes is terminated and the pole is reset to its upright position. The
episode cutoff length is 500.

RLJ | RLC 2024

50
100

1000

Na
iv

e
PE

R

50
100

1000

DM
-P

ER

0 100k
Batch Size 1

50
100

1000

EP
ER

0 100k
Batch Size 8

0 100k
Batch Size 64

0 100k
Batch Size 256

Uniform
with replacement
without replacement
Optimal Policy

Figure 20: Sampling without replacement does not improve performance in the control chain task
when using EQRC. Results are averaged over 50 seeds; shaded region is 95% boostrap CI.

Cliffworld is a gridworld where agents start at a fixed state and pick any of cardinal directions and
move to corresponding neighbor state. The goal is to reach to the final state on the opposite side
of the starting state while avoiding a cliff near the optimal path. The reward is -1 per step except
when falling off the cliff that gives -100 reward upon which the agent is reset back to start (without
episode termination).

E.2 Hyperparameter selection

In the classic control experiments we use the hyperparameters from table 4 and tune the step size
using the two stage hyperparameter selection method (Patterson et al., 2023). For each agent we
run all learning rates for 30 seeds, selecting the value with maximum average performance, then
running the tuned agent for 100 new seeds to avoid maximization bias.

DQN agents
Learning rate [4−8, 4−7, 4−6, 4−5, 4−4, 4−3, 4−2]

Adam optimizer β1 0.9
Adam optimizer β2 0.999

Batch size 64
Buffer size 10000

Network size 2× 64 dense network with ReLU activation
Target refresh 128
Exploration ϵ 0.1
Training time 100000

Table 4: Hyperparameters of classic control experiments

