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SPANNING GRAPHS AND THE AXIOM OF
CHOICE

A b s t r a c t. We show in set-theory ZF that the axiom of choice

is equivalent to the statement every bipartite connected graph has a

spanning sub-graph omitting some complete finite bipartite graph

Kn,n, and in particular it is equivalent to the fact that every

connected graph has a spanning cycle-free graph (possibly non

connected).

.1 Introduction

We consider simple undirected loop-free graphs. A forest is a graph with

no cycles, a tree is a connected forest. A graph G′ is a sub-graph of G if all

its edges (and vertices) belong to G ; say that such a sub-graph is spanning

if every vertex of G belongs to an edge of G′.
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We work in Zermelo-Fraenkel set-theory ZF (without the axiom of

choice). A spanning tree of a connected graph is precisely a maximal span-

ning sub-graph with no cycles, thus AC implies that every connected graph

has a spanning tree (ST). The converse is easily seen to hold (see Propo-

sition 1). Indeed, the axiom of choice follows from the fact (SBeven) that

every connected graph has a connected spanning sub-graph without cycles of

all even lengths (see Remark 1 of Section 3), whereas no choice is needed

to establish that every connected graph has connected spanning sub-graphs

with no odd cycles at all (see Proposition 2). In fact the proofs of AC from

ST or SBeven, which statements involve connected spanning sub-graphs,

hold in systems weaker than ZF (see Section 7). We show that (in ZF)

this connectedness restriction can be relaxed, thus in particular that AC

follows from the fact (SF) that every connected graph has a spanning forest.

Indeed we prove (Section 4) that the axiom of choice is equivalent to the

statement

SC, Spanning Coppice : Every bipartite connected graph

has a spanning subgraph omitting some finite complete bipar-

tite graph Kn,n.

We also establish a correspondance between restricted choice principles and

spanning tree in restricted classes of graphs (Section 6).

.2 Definitions

.2.1. Graphs

The graphs that we consider are simple undirected graphs ; loops or isolated

vertices are irrelevant to the present purpose ; thus these graphs can just

be specified by their edge-sets : let us call graph any set of two-element

sets. Then the edges of a graph G are just its elements, the vertices of G

are the elements of its union-set ∪G and the subgraphs of G are just its

subsets. Two vertices are adjacent (or linked) if they make-up an edge ; the

neighbourhood of a vertex x is the set of vertices adjacent to x. A subgraph

H of G is spanning if its edges cover all vertices of G, i.e. if ∪H = ∪G.

Given a non-negative integer n, a path of length n in the graph G is a

one-to-one finite sequence (xi)0≤i≤n of vertices such that for each i < n,
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{xi, xi+1} ∈ G ; such a path joins x0 to xn. The graph G is connected if

any two vertices are joined by a path. A cycle of G (or an n-cycle) is a

path (xi)0≤i<n such that {xn−1, x0} ∈ G and n ≥ 3 ; it is an induced cycle

when {xi, xj} ∈ G ⇔ |j − i| = 1 (mod n). An odd (resp. even) cycle is a

cycle of odd (resp. even) length. A forest is a graph with no cycles ; a tree

is a connected forest.

A graph is bipartite if there exists an equivalence relation on its vertex-

set, with at most two classes, and such that no adjacent vertices are equiv-

alent. Such a graph has no odd cycles (cf. Remark 5 Section 5). Given

two disjoint sets A and B, denote by KA,B := {{a, b} : (a, b) ∈ A×B} the

complete bipartite graph with parts A and B. Now say that a graph G is a

coppice if there is an integer n such that G does not admit any complete

bipartite subgraphs with both parts of size n (in which case say that G is

an n-coppice).

.2.2. About AC

In this paper, we work in Zermelo-Fraenkel set-theory ZF without the

axiom of choice :

AC (Axiom of Choice) : For every family (Xi)i∈I of non-

empty sets, there is a function f of domain I such that for each

i ∈ I, f(i) ∈ Xi.

Notice that this statement is equivalent to its restriction to families of pair-

wise disjoint sets : replace each Xi by Xi × {i}.

As usual, when stating that a sentence is not provable from ZF, it is to

be understood unless ZF is inconsistent.

The set {0, 1, 2, . . . } of integers is denoted by N. Such notation as

X = ∪̇i∈IXi (resp. X = X1∪̇X2) stresses the fact that the set X is the

union of the pair-wise disjoint Xi’s.

.3 SPANNING TREE yields AC

Although ST ⇒ AC of Proposition 1 below can be considered as a corollary

of SC ⇒ AC of the main Theorem 1 (next Section), it admits an easy

specific proof which holds in weak systems (see Remark 8).
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Proposition 1. AC ⇐⇒ ST.

Proof. AC ⇒ ST : Given a connected graph, observe that any max-

imal subgraph with no cycles must be a spanning tree ; the existence of

such a maximal subgraph follows from Zorn’s Lemma.

ST ⇒ AC : Given a non-empty family (Xi)i∈I of pair-wise disjoint

non-empty sets, consider a one-to-one family (Oi)i∈I such that no Oi be-

longs to any Xj , and some r 6∈ ∪̇i∈I(Xi∪̇{Oi}) (see Remark 9). Let

V := {r}∪̇
(

∪̇i∈I(Xi∪̇{Oi})
)

. Define a connected graph G with vertex-

set V as follows : for each i ∈ I and x ∈ Xi, link x to Oi and to r. (See

the left-hand side of Figure 1.) Then, using ST, consider a spanning tree

T in the graph G. For each i ∈ I, every path in G joining Oi to r “does

pass through a unique element of Xi” : it is of the form (Oi, x, r) for some

x ∈ Xi. As a spanning connected subgraph of G, T has at least one such

path, and at most one, since it has no 4-cycles ; let xi denote the element

of Xi this path goes through. Now (xi)i∈I belongs to
∏

i∈I Xi. �

Remark 1. For each integer n ≥ 3, call n-bush any connected graph

with no n-cycles ; call even-bush a graph which is an n-bush for some even

n ≥ 4. So a tree is a graph which is a n-bush for every n, and it is also an

even-bush. In particular SBeven and each of the statements SBn (n ≥ 3)

below follows from ST :

SBn (Spanning n-Bush) : Every connected graph admits a

spanning n-bush.

SBeven (Spanning Even Bush) : Every connected graph ad-

mits a spanning even-bush.

Notice that the proof of ST ⇒ AC above in fact shows that SB4 ⇒ AC.

More generally, for every even integer n ≥ 4, AC ⇔ SBn. Indeed, given

the non-empty family (Xi)i∈I of pair-wise non-empty disjoint sets and an

integer n = 2(k+1) ≥ 4, consider a graph Gk obtained by slightly modifying

the graph G of the above proof : Instead of directly linking each x ∈ Xi

to Oi, join x to Oi via some path of length k ; in other words replace the

vertex x by a path of length k − 1. (See Figure 1.) We also claim that still

AC ⇔ SBeven. Indeed, given the family (Xi)i∈I , ”amalgamate” the Gk’s



SPANNING GRAPHS AND THE AXIOM OF CHOICE 169
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Figure 1:

above on their ”roots” and each Oi, formally getting the graph

Gω := ∪i∈I ∪k∈N\{0} ∪x∈Xi

{

{r, (x, 1, k)}, {(x, 1, k), (x, 2, k)}, . . . ,

{(x, k − 1, k), (x, k, k)}, {(x, k, k), (Oi , k)}
}

,

where the Oi’s are pair-wise distinct and belong to no Xj × {1, · · · , k},

and the root r belongs to no
(

(Xi × {1, · · · , k})∪̇{Oi}
)

× {k}. A spanning

2(k +1)-bush H in the connected graph Gω yields a choice function for the

family (Xi)i∈I : for each i ∈ I, there is a unique x ∈ Xi, let it be xi, and a

unique k such that
(

(Oi, k), (x, k, k), · · · , (x, 1, k), r
)

is a path in H.

Remark 2. In the case of finite graphs, there are polynomial algo-

rithms which compute spanning trees in connected graphs (for example,

Prim and Kruskal’s algorithms). These algorithms extend to the case

of well-orderable graphs, and in particular they yield WO ⇒ ST. As for

Kruskal’s algorithm for instance, given a connected graph G endowed with

a well ordering <, define a spanning tree T as follows : an edge e of G be-

longs to T if and only if the graph it makes-up together with the previously

selected edges, namely {d ∈ T : d < e} ∪ {e}, has no cycles.

.4 SPANNING COPPICE yields the AXIOM OF CHOICE

In this section, we prove that the statement Spanning Coppice SC is equiv-

alent to AC ; thus Spanning Forest SF also is equivalent to AC. Indeed, we
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show that SC is equivalent to some choice principle sMC, itself equivalent

to AC in ZF (but not in ZFA for instance). For a ”quicker and direct”

proof of SF ⇒ AC, see Remark 4 below.

For every set A and positive integer p, [A]p denotes the set of p-element

subsets of A.

Lemma 1. Given a set X and a set A which is the range of no mapping

with domain X, consider a mapping f : A −→ P(X)\{∅} (with values non-

empty subsets of X). Then

1. There are distinct a and b in A such that f(a) ∩ f(b) 6= ∅.

2. If, in addition, the set A is infinite and well-orderable, then for every

positive integer p, there is an F ∈ [A]p such that ∩f [F ] := ∩a∈F f(a)

is non-empty.

Remark 3. Notice that, in ZF, for every set X there is indeed an

ordinal onto which there is no mapping with domain X : A mapping ϕ

of domain X and range an ordinal is characterized by the binary relation

≺ϕ on X given by “y ≺ϕ z ⇔ ϕ(y) < ϕ(z)” ; indeed the relation ≺ϕ is

well-founded and ϕ is its rank function ; so the class of those ϕ’s is a set,

then the class of their ranges is a set too (we use the power-set axiom and

the replacement schema here, cf. Remark 8 Section 7) ; hence not every

ordinal is the range of such a ϕ.

Proof. [Proof of the Lemma]

1. Otherwise, given some c ∈ A, X would be mapped onto A by

x 7−→

{

the (only) a for which x ∈ f(a) if x ∈ f [A]

c otherwise

2. For every set B and positive integer p, consider the property R(B, p) :

For every mapping g : B → P(X)\{∅}, there exists G ∈ [B]p such

that ∩g[G] 6= ∅. The previous point asserts that R(A, 2) holds and

we have to prove that when A is well-orderable, R(A, p) holds for

every p. Clearly R(B, p) implies R(C, r) for every set C equipotent

to B and r ≤ p. Observe that for every B, C, p and q such that

R(B, p) and R(C, q) hold, if B is well-orderable, then R(B × C, pq)
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holds too : Given a mapping g : B ×C → P(X)\{∅}, for each c ∈ C

let gc : B → P(X)\{∅} map each b ∈ B to g(b, c). By assumption on

B, for each c ∈ C there is a p-subset F of B such that ∩gc[F ] 6= ∅ ;

let Fc denote the first such F w.r.t. some fixed well-ordering of [B]p

(notice that since B is well-orderable, [B]p is also well-orderable) and

let

h(c) := ∩gc[Fc] = ∩g[{c} × Fc] ∈ P(X)\{∅}

Then, by assumption on C, there is some q-subset H ⊆ C such that

∩h[H] 6= ∅, i.e. such that ∩g[G] 6= ∅ where G denotes the pq-subset

∪̇c∈H({c} × Fc) of B × C.

Now assume that A is well-orderable and infinite. In that case, for

every positive integer n, the set An is equipotent to A. Then it easily

follows from the discussion above that R(A, p) holds for every p.

�

The following strong multiple choice principle is known to be equivalent to

AC in ZF ([4]), see also [7] p. 8 :

sMC (strong Multiple Choice) : For every family (Xi)i∈I

of non-empty sets, there exist an integer n ≥ 1 and a family

(Fi)i∈I such that for each i, Fi is a non-empty subset of Xi

with at most n elements.

Theorem 1. SC =⇒ sMC.

Proof. Given a non-empty family (Xi)i∈I of pair-wise disjoint sets, let

X := ∪̇i∈IXi. We consider a family (Ai, <i)i∈I of well-ordered sets such

that, for each i ∈ I, Ai is disjoint from X and the other Aj’s, and there

is no mapping with domain Xi and range Ai : let for instance A be some

well-orderable set which is the range of no mapping with domain X (see

Remark 3), and let Ai := (A × {i}) × {∞} for some ∞ 6∈ ∪ ∪ X (see

Remark 9) together with the obvious well-ordering <i. Then given some

r /∈ X∪̇(∪̇i∈IAi) let V := {r}∪̇X∪̇(∪̇i∈IAi). We define a connected graph

G with vertex-set V : for each i ∈ I and x ∈ Xi, link x to r and to every

element of Ai.

With SC, there exists an integer n ≥ 2 such that G admits a spanning

n-coppice F. We now build a family (Fi)i∈I with each Fi a non-empty
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finite subset of Xi with less than n elements : For each i ∈ I, let fi : Ai →

P(Xi)\{∅} map each element of Ai to its neighbourhood in F. A family of

well orderings on the [Ai]
n’s is definable from the family (<i)i∈I . So one can

choose, for every i ∈ I, a finite n-subset Hi ⊆ Ai such that ∩fi[Hi] 6= ∅.

Each Fi := ∩fi[Hi] has less than n elements, since KHi,Fi
is a subgraph of

the n-coppice F. �

Corollary 1. AC ⇐⇒ SC.

Remark 4. Notice that the argument in the proof of Theorem 1 above

directly shows SF ⇒ AC, not relying on sMC ⇒ AC nor on the second

Point of Lemma 1 : Indeed, given a non-empty family (Xi)i∈I of pair-wise

disjoint sets, consider the very same graph G as in the proof above, then,

using SF, a spanning forest F. Now, given any i ∈ I, notice that, for each

element ζ of Ai, its neighbourhood in the graph F is a subset of Xi (since F

is a subgraph of G) and is non-empty (since F is spanning and ∪E = V ) ;

then let ϕi : Ai → P(Xi)\{∅} map each element of Ai to its neighbourhood

in F ; observe that, for distinct ζ and ξ in Ai, ϕi(ζ)∩ϕi(ξ) has at most one

element, because two of them, say y and z, would yield a cycle (ζ, y, ξ, z) in

the forest F ; now, with the first Point of Lemma 1 above, there are tuples

(ζ, ξ) of distinct elements of Ai such that ϕi(ζ) ∩ ϕi(ξ) is non-empty, then

a singleton ; let xi be the element of ϕi(ζ) ∩ ϕi(ξ), for the first such tuple

w.r.t. the lexicographical ordering on Ai × Ai (see Figure 2).

Ai

Xi

r

xi

Figure 2:

Problem 1. From the proof of Theorem 1 above, it also follows that AC

is implied by : every connected graph admits a spanning subgraph without

induced 4-cycles. On the other hand SC follows from : every connected

graph admits a spanning subgraph without cycles of all even lengths (a
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weakening of SBeven). Do the following weakenings respectively of SB2k

(k > 1 fixed) and of SBeven (see Remark 1) imply AC ? SB′
2k : Every

connected graph admits a spanning subgraph without any induced cycles

of length 2k (resp. SB′
even : without induced cycles of all even lengths).

Notice that the answer is positive for k = 2, since SB′
4 ⇒ SC : given

a bipartite graph, a spanning graph without any induced square is a 2-

coppice.

.5 Bipartite graphs

Let us observe that in ZF, every connected graph admits a spanning sub-

graph with no odd cycles.

Proposition 2. Every connected graph has a connected spanning bi-

partite subgraph.

In particular, for every odd integer n ≥ 3, ZF |= SBn (see Remark 1).

Proof. Given a connected graph G, fix some vertex r ∈ V := ∪G

(unless V is empty, in which case nothing has to be done) and let δ : V → N

map each vertex to the least length of a path from r to that vertex. Consider

the binary relation B on V given by

xBy :⇐⇒ δ(x) = δ(y) mod 2

This is an equivalence relation with at most two classes neither of which

includes any edge of the following subgraph of G (which graph is then

bipartite) :

H :=
{

{x, y} ∈ G : x 6By
}

.

To conclude that H is a connected spanning subgraph of G, it remains to

check that every vertex of G is joined to r by a path in H : Given a vertex

x and a path (xi)0≤i≤δ(x) of minimal length joining r to x in G, observe

that for each j ≤ δ(x), (xi)0≤i≤j is still a path of minimal length joining r

to xj , and in particular δ(xj) = j ; hence for any j < δ(x), the two vertices

xj and xj+1 are non B-equivalent vertices making-up an edge of G, so they

make-up an edge of H also ; thus (xi)0≤i≤δ(x) is indeed a path in H. �
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Remark 5. No bipartite graph has odd cycles. Conversely, every con-

nected graph without any odd cycles is bipartite. However, the fact that

every graph with no odd cycles is bipartite is equivalent to the axiom of

choice for families of pairs ([6]), and therefore is not provable from ZF.

.6 “Sparse” graphs

.6.1. Locally finite and thin graphs

A graph is locally finite if every vertex has only finitely many neighbours.

Say that a graph is strongly thin if, between any two vertices, there are

only finitely many paths ; say that it is weakly thin if it is empty or admits

a vertex r with the property that for any vertex x, there are only finitely

many minimal paths from r to x.

Notice that every forest is strongly thin, but a forest need not be locally

finite. On the other hand, in a locally finite graph, from any given point,

there start only finitely many paths of a given finite length ; in particular

such a graph is weakly thin ; but it may fail to be strongly thin.

Now, consider the following restriction of ST to “sparse” graphs :

ST`F (Spanning Tree for Locally Finite connected graphs)

Every locally finite connected graph has a spanning tree.

STsT (Spanning Tree for Strongly Thin connected graphs)

Every connected strongly thin graph has a spanning tree.

STwT (Spanning Tree for Weakly Thin connected graphs)

Every connected weakly thin graph has a spanning tree.

Then consider the axiom of choice restricted to families of finite sets

and further to countable such families :

ACfin (Axiom of Choice for Finite sets) For every non-

empty family (Xi)i∈I of finite non-empty sets, the product set
∏

i∈I Xi is non-empty.
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ACfin
ω (Axiom of Countable Choice for Finite sets) For

every non-empty sequence (Xn)n∈N of finite non-empty sets, the

product set
∏

n∈N
Xn is non-empty.

Clearly ACfin implies ACfin
ω ; but the converse does not hold (see [2]).

We prove :

Theorem 2. STwT ⇐⇒ STsT ⇐⇒ ACfin =⇒ ACfin
ω ⇐⇒ ST`F.

In fact, the left-hand equivalences, which may be considered as proper-

ties of the class of finite sets, rely essentially on two ad hoc properties of

that class, namely on its closure under image and product ; in particular

the analogue will hold with the class of countable sets, and more generally

with the class of sets sub-potent (resp. strictly sub-potent) to a given ordinal

(see Remark 7-5 below). These equivalences will follow from Proposition 3

below, so stated as to include all these cases (Corollary 2). Let us prove

right now the rightmost equivalence :

Proof. [Proof of the rightmost equivalence] ACfin
ω ⇒ ST`F : First,

let us mention the equivalence between ACfin
ω and the fact that every

union of a countably many finite sets is countable (see [2]). Now, let

G = (V,E) be some non-empty locally finite connected graph. Then V is

countable : consider some r ∈ V ; for each integer n ≥ 1, let Vn := {v ∈ V :

dG(r, v) = n} ; each Vn is finite (by local finiteness) and V = ∪n∈NVn (by

connectedness) ; then from ACfin
ω it follows that V is countable, so that G

is countable too, hence it has a spanning tree (see Remark 2).

ST`F ⇒ ACfin
ω : Let (Xn)n∈N be a sequence of non-empty finite sets.

Without loss of generality, assume that the Xn’s are pair-wise disjoint,

and, letting X := ∪̇n∈NXn, consider two one-to-one sequences (On)n∈N and

(rn)n∈N such that O := {On : n ∈ N} and R := {rn : n ∈ N} are disjoint

from one another and from X. Let V := X ∪̇O∪̇R. For each n ∈ N, link rn

to rn+1 and to every element of Xn ; also link On to every element of Xn.

The graph thus obtained is connected and locally finite ; a spanning tree

in this graph yields a choice function for (Xn)n∈N. Cf. Theorem 1. �

Remark 6. In the proof of ST`F ⇒ ACfin
ω , the point On can be re-

placed by (An, <n) a copy of card(Xn) + 1, as in the proof of SF ⇒ AC

(Remark 4), yielding a proof of SF`F ⇒ ACfin
ω (SF`F is the statement

Spanning Forest for Locally Finite connected graphs), whence the equiva-

lence between these statements.
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rn+1

On−1 On+1

Xn

xn

rn

On

rn−1

Xn−1 Xn+1

Figure 3:

.6.2. K-thin graphs

Consider a class K of sets not containing the empty set.

1. Say that K is closed under image if K 3 x→→y ⇒ y ∈ K, where x→→y

means “there is a mapping from x onto y”.

2. Say that K is closed under product if (x ∈ K ∧ y ∈ K) ⇒ x × y ∈ K.

Remark 7.

1. Closure under image reformulates “if the domain of a function belongs

to K, then so does its range.”

2. From closure under image, it follows closure under equi-potence, i.e.

“if a set admits a bijection with an element of K, then it too belongs

to K”.

3. From closure under image, it follows closure under non-empty subsets

i.e. ∅ 6= y ⊆ x ∈ K ⇒ y ∈ K,

4. More generally, from closure under image, it follows ∅ 6= y ↪→ x ∈

K ⇒ y ∈ K, where y ↪→ x means “there is an one-to-one mapping

from y into x”. Indeed this follows from closure under equi-potence

and non-empty subsets, or more directly from the observation that

∅ 6= y ↪→ x ⇒ x→→y.

5. As mentioned just above, ∅ 6= y ↪→ x implies x→→y, but in ZF, the

converse need not hold. However when x is well-orderable, x→→y does

imply y ↪→ x. So, for a well-orderable non-empty set x, ∅ 6= y ↪→ x

if and only if x→→y, in which case, say that y is sub-potent to x, and

say that it is strictly sub-potent when in addition x is not sub-potent



SPANNING GRAPHS AND THE AXIOM OF CHOICE 177

to it (notice that if y is sub-potent to the well-orderable set x, then

it is well-orderable too).

Examples.

1. For every non-empty set x, Kx := {y : x→→y} is closed under image ;

so is K−
x := {y : x→→y 6→→x}.

2. In general {y : y ↪→ x} need not be closed under image. However

when x is well-orderable, {y : ∅ 6= y ↪→ x} = Kx and {y : ∅ 6= y ↪→

x 6↪→ y} = K−
x , so both classes are closed under image ; furthermore,

when in addition of being well-orderable, x is infinite, the classes Kx

and K−
x are closed under product.

3. For a non-zero integer n, Kn is the class of non-empty sets with at

most n elements ; it is closed under image, but not under product.

4. The classes below are closed under image and product.

• The class of all non-empty well-orderable sets.

• The class of all non-empty sets sub-potent (resp. strictly sub-

potent) to a given infinite well-orderable set. In particular :

• K−
ω is the class of finite non-empty sets.

• Kω is the class of countable non-empty sets. (By countable we

mean finite or denumerable i.e. or countably infinite.)

Given a graph G, for every vertices x and y, let PG(x, y) denote the

set of paths from x to y, and let MG(x, y) denote the set of minimal paths

from x to y. Also for every vertex x, let NG(x) denote its neighbourhood.

Now say that a graph G is strongly K-thin if, for any vertices x and

y, PG(x, y) ∈ K ; say that it is weakly K-thin if it is empty or admits a

vertex r with the property that for any vertex x, MG(r, x) ∈ K. Observe

that a weakly K-thin graph is connected, since ∅ 6∈ K. Now consider ST

restricted to K-thin graphs and AC restricted to families of sets in K :

STsK (Spanning Tree for Strongly K-Thin graphs)

Every strongly K-thin graph has a spanning tree.

STwK (Spanning Tree for Weakly K-Thin graphs)

Every weakly K-thin graph has a spanning tree.
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ACK (Axiom of Choice in sets in K) For every non-empty

family (Xi)i∈I of elements of the class K, the product set
∏

i∈I Xi

is non-empty.

Proposition 3. When the class K is closed under image, ACK ⇐⇒

STsK. When, in addition, K is closed under product, ACK ⇐⇒ STwK.

Thus from the remarks and examples above it will follow :

Corollary 2. For every infinite ordinal α, ACKα ⇐⇒ STsKα ⇐⇒

STwKα and ACK−
α ⇐⇒ STsK−

α ⇐⇒ STwK−
α (recall that Kα and K−

α

denote the classes of sets respectively sub-potent and stricly sub-potent to

α).

Proof. [Proof of the proposition] The graph G introduced in the proof

of Proposition 1 is weakly K-thin when the Xi’s belong to K. Furthermore,

the graph G is strongly K-thin when, in addition, K is closed under prod-

uct : Given i ∈ I , MG(r, Oi) is equipotent to Xi, and for every x ∈ Xi, MG(r, x)

is a singleton (hence an image of Xi). Furthermore, for two distinct vertices x

and y in a same Xi, PG(x, y) has two elements, then is an image of the Xi ; for

x ∈ Xi, PG(r, x) and PG(Oi, x) are both equipotent to that Xi (they contains one

path of length one and the others have length three) ; as for an x ∈ Xi ∪{Oi} and

a y ∈ Xj ∪ {Oj} with i 6= j, PG(x, y) is equipotent to Xi × Xj .

Conversely, it remains to prove that, given a weakly K-thin graph G =

(V,E), it follows from ACK that G admits a spanning tree : Assume that

G is non-empty and consider some vertex r witnessing its being weakly

K-thin. For each n ∈ N, let Vn := {v ∈ V : dG(r, v) = n} (cf. the proof of

ACfin
ω ⇒ ST`F) ; so V0 = {r} and V = ∪̇n∈NVn ; for each x ∈ V , let ρ(x)

denote the unique n such that x ∈ Vn. Now for any x ∈ V \{r}, observe

that (x0, · · · , xρ(x)) 7−→ xρ(x)−1 maps MG(r, x) onto NG(x) ∩ Vρ(x)−1. So,

by assumption, NG(x) ∩ Vρ(x)−1 belongs to K (notice however that NG(x)

need not belong to K). Then, with ACK , consider some

π ∈
∏

x∈V \{r}

(NG(x) ∩ Vρ(x)−1)

The following graph

G′ :=
(

V,
{

{π(x), x} : x ∈ V \{r}
})
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is a spanning tree of G : On the one hand G′ is connected since for each

x ∈ V ,
(

π0(x), · · · , πρ(x)(x)
)

∈ PG′(x, r). On the other hand, G′ has no

cycle ; indeed observe that for every edge {x, y} of G′, either y = π(x), or

ρ(y) > ρ(x) ; it follows that, if (xi)0≤i<k were a cycle in G′, then letting ` <

k such that ρ(x`) is maximum, x`−1 and x`+1 (the sums being considered

modulo k) would both have to equal π(x`), contradicting the assumption

that cycles are one-to-one sequences (and k ≥ 3). �

.7 Remarks about spanning trees in weaker systems

Remark 8. The proofs of ST ⇒ AC and of SBn ⇒ AC (for each

even integer n ≥ 4) above are valid in theories weaker than ZF, namely in

Kripke-Platek system KP, and the proof of SBeven ⇒ AC holds in KPI

(KP + axiom of infinity), see [1] or [5] ; indeed the proofs do not rely on

the power-set axiom and only involve the ∆0-fragments of separation and

collection schemata.

Indeed observe that the following Remark holds in KP :

Remark 9. 1. Given a set X, the set ∞X := {x ∈ X : x /∈ x} does

not belong to X. Notice that, with the axiom of foundation AF,

which belongs to ZF, one can just consider ∞X := X.

2. For every sets X and I, there is a one-to-one family (Oi)i∈I with

the property that no Oi belongs to X : let a /∈ ∪ ∪ X, for example

a := ∞∪∪X ; then Oi := (a, i) suits. Likewise, with AF, one can just

consider Oi := (X, i).

Remark 10. (See Remarks 3 and 8.) Notice that in KPI, it is not

even provable that for every set X there exists a well-orderable set, or just

simply a set, which is the range of no mapping with domain X : indeed,

in ZFC, the class HC of hereditarily countable sets is a model of KPI, in

which every infinite set maps onto any set.

Problem 2. Does KPI prove SC ⇒ AC ? In particular does KPI

prove SF ⇒ AC ?
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