Hernando GAITÁN

ENDOMORPHISMS AND SUBALGEBRAS OF TARSKI ALGEBRAS

A b s t r a c t. In this note we prove that a Tarski algebra is determined by the monoid of its endomorphisms as well as by the lattice of its subalgebras.

1. Introduction

It is known that if \mathbf{A} and \mathbf{B} are Boolean algebras then

$$Sub(\mathbf{A}) \cong Sub(\mathbf{B}) \text{ iff } \mathbf{A} \cong \mathbf{B} \text{ iff } End(\mathbf{A}) \cong End(\mathbf{B}).$$

See [11] for the first equivalence and [8] or [10] for the second one. Implication algebras, also called Tarski algebras or semi-Boolean algebras (see [2, 9] for the basics of this kind of algebras) are the algebraic counterpart

Received 24 September 2014

2000 Mathematics Subject Classification: 03G25, 06E99

Keywords and phrases: Implication algebra, Tarski algebra, monoid of endomorphisms

of the implication fragment of classical propositional logic. Implication algebras form a variety which corresponds the $\{\rightarrow\}$ -subreducts of Boolean algebras. It is the purpose of this paper to prove that the above result is also true for Tarski algebras.

Following [4], two objects A, B in a category \mathcal{K} are equimorphic if $End(A) \cong End(B)$ and, for a cardinal α , the category is said to be α -determined if every set of non-isomorphic equimorphic objects of \mathcal{K} has a cardinality smaller than α . Using these definitions our second result assert that the category of Tarski algebras is 2- determined. In [5] we prove this result using a topological duality established in [3]. In this paper we prove the same result using the algebraic side. We think that this provide a more transparent definition of the endomorphisms involved, simplifies many of the proofs and gives the results a structure similar to the one in paper [6] were bounded distributive lattices are proved to be 3-determined.

Recall that a *Tarski algebra* is an algebraic structure $\mathbf{A} := \langle A, \rightarrow \rangle$ of type (2) that satisfies the following identities:

$$(x \to y) \to x \approx x,\tag{1}$$

$$(x \to y) \to y \approx (y \to x) \to x,$$
 (2)

$$x \to (y \to z) \approx y \to (x \to z).$$
 (3)

The identity $x \to x \approx y \to y$ is validated by **A**. We denote by 1 the element of **A** such that $1 = a \to a$ for all $a \in A$. The binary relation \leq defined on A by the prescription $x \leq y$ if and only if $x \to y = 1$ establishes a partial order on A with greatest element 1. We have that for all $a, b \in A$, $a, b \leq (a \to b) \to b = (b \to a) \to a$. We set $a \lor b := (a \to b) \to b$ and clearly, we have that $a \lor b = b \lor a$ and this element is the least upper bound of a and b in the order defined above. Indeed, $\langle A, \lor \rangle$ is a join semilattice whose principal filters are Boolean algebras.

2. Endomorphisms

Let **A** be a Tarski algebra. Recall that a filter of **A** is a non-empty subset F of A such that (i) $1 \in F$ and (ii) $a, a \to b \in F$ imply that $b \in F$. A maximal filter P is a proper filter that is not contained properly in another proper filter. In [3] (Theorem 2.4), it is proved that if P is

a maximal filter then

$$z \to y \notin P \text{ iff } z \in P \text{ and } y \notin P,$$
 (4)

In [1] maximal filters are characterized as follows:

A proper filter P is maximal iff
$$\forall a \notin P, \forall x \in A, \ a \to x \in P.$$
 (5)

Maximal filters separate non-comparable elements, that is, if $a, b \in A$,

$$a \nleq b \Longrightarrow \exists P$$
, maximal filter, such that $a \in P$ and $b \notin P$ (6)

For the proof of this result see [3], Theorem 2.4.

It is easy to show that if $g \in End(\mathbf{A})$ and F is a filter of \mathbf{A} then $g^{-1}(F)$ is a filter of \mathbf{A} .

Proposition 2.1. If Q is a maximal filter of a Tarski algebra \mathbf{A} and $g \in End(\mathbf{A})$ is such that $g^{-1}(Q) \neq A$ then $g^{-1}(Q)$ is a maximal filter of \mathbf{A} .

Proof. Suppose that $g^{-1}(Q)$ is not a maximal filter of **A**. Then, by property (5), there exists $a \notin g^{-1}(Q)$ such that $a \to b \notin g^{-1}(Q)$ for some $b \in A$. So, $g(a) \notin Q$ is such that $g(a) \to g(b) \notin Q$ and this is against the hypothesis that Q is a maximal filter, see (5).

For each maximal filter Q of \mathbf{A} and each $x \in A, x \neq 1$, define the function $f_{Q,x}: A \longrightarrow A$ by the formula

$$f_{Q,x}(t) = \begin{cases} 1, & \text{if } t \in Q; \\ x, & \text{if } t \notin Q. \end{cases}$$

One can check that $f_{Q,x} \in End(\mathbf{A})$. The constant function from A into itself with constant value 1 is clearly an endomorphism. We denote this constant function by 1_A . For maximal filters P and Q of \mathbf{A} and $g \in End(\mathbf{A})$, the following equalities are easily checked:

$$f_{P,x} \circ f_{Q,y} = \begin{cases} f_{Q,x}, & \text{if } y \notin P; \\ 1_A, & \text{if } y \in P. \end{cases}$$
 (7)

$$g \circ f_{P,x} = f_{P,q(x)}. \tag{8}$$

$$f_{P,x} \circ g = \begin{cases} f_{g^{-1}(P),x} & \text{if } g^{-1}(P) \neq A ;\\ 1_A, & \text{if } g^{-1}(P) = A. \end{cases}$$
 (9)

In what follows, A_1 and A_2 are Tarski algebras and

$$\Phi: End(\mathbf{A}_1) \longrightarrow End(\mathbf{A}_2)$$

is a monoid isomorphism.

Proposition 2.2. $\Phi(1_{A_1}) = 1_{A_2}$.

Proof. Assume, on the contrary that $\Phi(1_{A_1}) \neq 1_{A_2}$. Then, there exists $y \in A_2, y \neq 1$, such that $\Phi(1_{A_1})(x) = y$ for some $x \in A_2$. Clearly, $x \neq 1$. As $1_{A_1} \circ f = f \circ 1_{A_1} = 1_{A_1}$ for all $f \in End(\mathbf{A}_1)$ then

$$\Phi(1_{A_1}) \circ g = g \circ \Phi(1_{A_1}) = \Phi(1_{A_1}) \ \forall \ g \in End(\mathbf{A}_2). \tag{10}$$

Due to property (6) we can choose a maximal filter P such that $y \notin P$. From $\Phi(1_{A_1})(x) = y$ and equality (8) it follows that $\Phi(1_{A_1}) \circ f_{P,x} = f_{P,y}$. By (10), the left-hand side of this equality is $\Phi(1_{A_1})$, so $\Phi(1_{A_1}) = f_{P,y}$; but this is a contradiction because, using (8), it follows at once that $f_{P,y}$ does not enjoy property (10).

Our next proposition asserts that endomorphisms of Tarski algebras of the form $f_{P,x}$, where P is a maximal filter, are preserved under monoid isomorphisms.

Proposition 2.3. Let P be a maximal filter of \mathbf{A}_1 and $x \in A_1 \setminus \{1\}$. Then $\Phi(f_{P,x}) = f_{R,y}$ for some maximal filter R of \mathbf{A}_2 and $y \in A_2 \setminus \{1\}$.

Proof. Let $u \in A_2 \setminus \{1\}$ and pick a maximal filter Q of \mathbf{A}_2 . Set $\Psi := \Phi^{-1}$ and $\rho_u := \Psi(f_{Q,u})$. By Proposition 2.2, we can choose $t_u, y_u \in A_1, y_u \neq 1$ such that $\rho_u(t_u) = y_u$. Set $g_u := \Phi(f_{P,t_u})$ and $h_u := \Phi(f_{P,y_u})$. By (8), $\rho_u \circ f_{P,t_u} = f_{P,y_u}$. Applying Φ to both sides of this equality we receive $f_{Q,u} \circ g_u = \Phi(f_{P,y_u}) = h_u$ and by (8) we obtain

$$\Phi(f_{P,y_u}) = f_{g_u^{-1}(Q),u}.$$

Set $R := g_u^{-1}(Q)$. Since clearly f_{P,y_u} is not the constant endomorphism of value 1, due to Proposition 2.2 and Proposition 2.1, R is a maximal filter of \mathbf{A}_2 .

Next we assert that there exists $u \in A_2$ such that $y_u \notin P$. For otherwise, due to (7), we have $f_{P,x} \circ f_{P,y_u} = 1$ and consequently $\Phi(f_{P,x}) \circ f_{R,u} = 1$ for all $u \in A_2$ and this means that $\Phi(f_{P,x})(u) = 1$ for all $u \in A_2$, a contradiction.

Let $y_u \notin P$. Then, by (7), $f_{P,x} \circ f_{P,y_u} = f_{P,x}$. Consequently $\Phi(f_{P,x}) = \Phi(f_{P,x}) \circ f_{R,u}$ and by (8) we have that

$$\Phi(f_{P,x}) = f_{R,v}$$
 where $v := \Phi(f_{P,x})(u)$.

The assertion in the following two lemmas are in the context of Proposition 2.3. There, P and P' are maximal filters of A_1 , Q and Q' are maximal filters of A_2 , $x, x' \in A_1 \setminus \{1\}$ and $y, y' \in A_2$.

Lemma 2.4. $\Phi(f_{P,x}) = f_{Q,y}$ and $\Phi(f_{P,x'}) = f_{Q',y'}$ imply Q = Q'.

Proof. Pick $x'' \notin P$. Due to Proposition 2.3, $\Phi(f_{P,x''}) = f_{Q'',y''}$, for some maximal filter Q'' of \mathbf{A}_2 and $y'' \in A_2$. By (7), $f_{P,x} \circ f_{P,x''} = f_{P,x}$ and by applying Φ on both sides of this equality we get $f_{Q'',y} = f_{Q,y} \circ f_{Q'',y''} = f_{Q,y}$, the first equality being due to (7) (observe that $x'' \notin P$ implies $y'' \notin Q''$). Hence, Q = Q''. Similarly we get Q' = Q''. So, Q = Q'.

Lemma 2.5. Let P and P' be maximal filters of \mathbf{A}_1 and $x \notin P, P'$. Set $\Phi(f_{P,x}) = f_{Q,y}$ and $\Phi(f_{P',x}) = f_{Q',y'}$. Then y = y'.

Proof. By (7), $f_{P,x} \circ f_{P,'x} = f_{P,'x}$ and since Φ is and isomorphism we have that $f_{Q,y} \circ f_{Q',y'} = f_{Q',y'}$ which implies that $y' \notin Q$ ($y' \in Q$ implies $f_{Q,y} \circ f_{Q',y'} = 1_{A_2} \neq f_{Q',y'}$). As $f_{Q,y} \circ f_{Q',y'} = f_{Q',y}$ as well, $f_{Q',y'} = f_{Q',y}$; so, y = y'.

Define the function $\phi: A_1 \longrightarrow A_2$ by the following prescription:

$$\phi(1) = 1$$

and, for $x \neq 1$,

$$\phi(x) = y$$
 if $\Phi(f_{P,x}) = f_{Q,y}$

where P is a maximal filter of \mathbf{A}_1 such that $x \notin P$ and Q is the maximal filter of \mathbf{A}_2 given by Proposition 2.3. By Lemma 2.5, this function is well defined and by Lemma 2.4, it is one to one. Indeed, by symmetry, the assignment $\psi: A_2 \longrightarrow A_1$, defined similarly with $\Psi = \Phi^{-1}$ instead of Φ , is such that $\phi^{-1} = \psi$. So, ϕ is a bijective function.

In what follows, we will prove that ϕ is an isomorphism. With this purpose, set

$$\phi(x \to x') = z$$
, $\phi(x) = u$ and $\phi(x') = u'$. (11)

We want to show that $u \to u' = z$. If x = 1 or x' = 1 or $x \le x'$ (i.e., $x \to x' = 1$) the equality is easy to prove. So we assume that $x, x', x \to x' \ne 1$. First we assert that $u \to u' \le z$; for otherwise, we can choose a maximal filter Q of \mathbf{A}_2 such that $u \to u' \in Q$ but $z \notin Q$. By definition of ϕ , there exists a maximal filter P of \mathbf{A}_1 such that $\Psi(f_{Q,z}) = f_{P,x\to x'}$ or, equivalently, $\Phi(f_{P,x\to x'}) = f_{Q,z}$. Pick now a maximal filter K of \mathbf{A}_1 such that $x \notin K$. Then, again by the definition of ϕ we may set

$$\Phi(f_{K,x}) = f_{U,u} \text{ and } \Phi(f_{P,x'}) = f_{U',u'},$$
(12)

where U and U' are maximal filters of \mathbf{A}_2 . Observe here that since $z \notin Q$ then $x \to x' \notin P$ and consequently, $x \in P$ and $x' \notin P$. So, $f_{P,x \to x'} \circ f_{P,x'} = f_{P,x \to x'}$ and consequently, $f_{Q,z} \circ f_{U',u'} = f_{Q,z}$. It follows from this that $u' \notin Q$. Also, as $x \in P$, $f_{P,x \to x'} \circ f_{K,x} = 1$ and therefore, $f_{Q,z} \circ f_{U,u} = 1$ and this means that $u \in Q$; so, by (4), $u \to u' \notin Q$, a contradiction. This proves that $u \to u' \leq z$.

To complete the proof we need to show that $z \leq u \to u'$. We assume the contrary, i.e., $z \nleq u \to u'$ and look for a contradiction. By (6), there exists a maximal filter T of \mathbf{A}_2 such that $z \in T$ but $u \to u' \not\in T$. By (4), $u \in T$ and $u' \not\in T$. Setting $\Psi(f_{T,u'}) = f_{P'',x''}$ and knowing that $\Psi(f_{U',u'}) = f_{P,x'}$ we have, by Lemma 2.5, that x'' = x'. Thus, $\Psi(f_{T,u'}) = f_{P'',x'}$. Observe that, as $u' \not\in T$, $x' \not\in P''$. Now, by Lemma 2.4, $\Psi(f_{T,u}) = f_{P'',t}$ for some $t \in A_1$ and now, since $\Phi(f_{K,x}) = f_{U,u}$, by Lemma 2.5 we have that t = x. (Observe that, as $u \in T$ then $x \in P''$ and since $x' \not\in P''$ then $x \to x' \not\in P''$). Summarising we have:

$$\Phi(f_{P'',x'}) = f_{T,u'}; \quad \Phi(f_{P'',x}) = f_{T,u} \text{ and } \quad \Phi(f_{P,x\to x'}) = f_{Q,z}.$$
(13)

It follows now from Lemma 2.5 and Lemma 2.4 that $\Phi(f_{P'',x\to x'}) = f_{T,z}$; but this is a contradiction because $x\to x'\notin P''$ implies $z\notin T$. We have proved this way the following result:

Theorem 2.6. $End(\mathbf{A}_1) \cong End(\mathbf{A}_2)$ iff $\mathbf{A}_1 \cong \mathbf{A}_2$.

3. Subalgebras

Through this section, if **A** is a Tarski algebra, $Sub(\mathbf{A})$ will denote the lattice of subalgebras of **A**. For $S \subseteq A$ we denote by $\langle S \rangle$ the subalgebra of **A** generated by S. Clearly, $\{1,a\}$ is a subuniverse of **A** for each $a \in A$. In fact, the atoms of the lattice $Sub(\mathbf{A})$ are all the subalgebras $\langle a \rangle$ with universe $\{1,a\}$ for each $a \in A \setminus \{1\}$ and the trivial Tarski algebra $\langle 1 \rangle$ with universe $\{1\}$ is the least element of this lattice. So we have the following easy result:

Proposition 3.1. If $Sub(\mathbf{A}_1) \cong Sub(\mathbf{A}_2)$ then $|A_1| = |A_2|$.

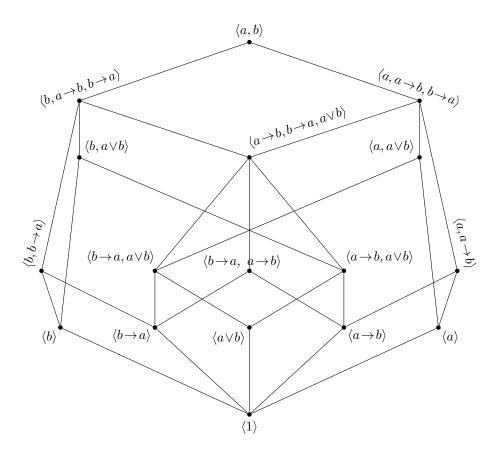
If $\Phi: Sub(\mathbf{A}_1) \longrightarrow Sub(\mathbf{A}_2)$ is a lattice isomorphism, define $\phi: \mathbf{A}_1 \longrightarrow \mathbf{A}_2$ by the prescription

$$\phi(x) = y \text{ iff } \Phi(\langle x \rangle) = \langle y \rangle.$$
 (14)

We intend to prove that ϕ is an isomorphism of Tarski algebras. Certainly, ϕ is well defined and it is a bijective function. For $a, b \in A_1, a \neq b$, $\langle a, b \rangle = \langle a \rangle \vee \langle b \rangle$ and since Φ is a lattice isomorphism we have that $\Phi(\langle a, b \rangle) = \Phi(\langle a \rangle) \vee \Phi(\langle b \rangle) = \langle \phi(a) \rangle \vee \langle \phi(b) \rangle = \langle \phi(a), \phi(b) \rangle$; so,

$$\Phi \mid_{Sub(\langle a,b\rangle)} : Sub(\langle a,b\rangle) \longrightarrow Sub(\langle \phi(a),\phi(b)\rangle)$$

is a lattice isomorphism. There are, up to isomorphisms, three Tarski algebras with two generators namely: (i) $\{1, a, b\}$ where $a \to b = b$, $b \to a = a$. (ii) $\{1, a, b, b \to a\}$ where $a \to b = 1$ and (iii) the free algebra with two generators (it is described in [2] p.179).



The lattice $Sub(\langle a, b \rangle)$ in the case $\langle a, b \rangle$ is the free algebra with two generators is depicted above. We see that in this lattice, the subalgebra $\langle a, a \rightarrow b \rangle$ is the join of two atoms; more precisely,

$$\langle a, a \to b \rangle = \langle a \rangle \vee \langle a \to b \rangle.$$

In these equalities 'V' obviously stands for the join operation in the lattice. Now, since Φ is a lattice isomorphism, in $Sub(\langle \phi(a), \phi(b) \rangle)$ we have that

$$\Phi(\langle a, a \to b \rangle) = \Phi(\langle a \rangle) \vee \Phi(\langle a \to b \rangle) = \langle \phi(a), \phi(a \to b) \rangle.$$

As $\operatorname{Sub}(\langle a,b\rangle)\cong\operatorname{Sub}(\langle \phi(a),\phi(b)\rangle)$ and $\langle a,b\rangle$ is the free algebra with two generators, so is $\langle \phi(a),\phi(b)\rangle$. In this algebra, the element which is the join of two atoms, one of them being $\langle \phi(a)\rangle$, is $\langle \phi(a),\phi(a)\to\phi(b)\rangle$; therefore we have that

$$\langle \phi(a), \phi(a) \to \phi(b) \rangle = \Phi(\{1, a, a \to b\}) = \langle \phi(a), \phi(a \to b) \rangle$$

from which it follows that $\phi(a \to b) = \phi(a) \to \phi(b)$. The other two cases of two-generated Tarski algebras are treated similarly arriving in both of them to the same conclusion, namely that $\phi(a \to b) = \phi(a) \to \phi(b)$. So we have proved the following result.

Theorem 3.2. $Sub(\mathbf{A}_1) \cong Sub(\mathbf{A}_2)$ iff $\mathbf{A}_1 \cong \mathbf{A}_2$.

References

- [1] M. Abad, D. Castaño and J. P. Díaz Varela, Zariski-type topology for implication algebras, *Math. Log. Quart.* **56**:3 (2010), 299–309.
- [2] J. C. Abbott, Semi-Boolean algebras, Mat. Vesnik 19:4 (1967), 177–198.
- [3] S. A. Celani, L. M. Cabrer, Topological duality for Tarski algebras, *Algebra Universalis* **58** (2008), 73–94.
- [4] V. Koubek and H. Radovanská, Algebras determined by their endomorphism monoids. Cahiers de topologie et géométrie différentielle catégoriques 35:3 (1994), 187–225.
- [5] H. Gaitán, Endomorphisms of impliaction algebras, Demostratio Math. Vol. XLVII, No 2 (2014), 284–288.
- [6] R. McKenzie and C. Tsinakis, On recovering a bounded distributive lattice from its endomorphism monoid, *Houston Journal of Mathematicas* **7**:4 (1981), 525–529.
- [7] C. J. Maxon, On semigroups of Boolean ring endomorphism, *Semigroup Forum* 4 (1972), 78–82.
- [8] K. D. Magill, The semigroup of endomorphisms of a Boolean ring, it J. Austral. Math. Soc. 11 (1970), 411–416.
- [9] H. Rasiowa, An algebraic approach to non-classical logics, North Holland, Studies in Logic and the Foundations of Mathematicas, Vol 78, Amsterdam, 1974.
- [10] D. Sachs, The lattice of subalgebras of a Boolean algebra, Canad. J. Math. 14 (1962), 451–460.
- [11] B. M. Schein, Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups, *Fund. Math.* **68** (1970), 31–50.

Departamento de Matemáticas Facultad de Ciencias Universidad Nacional de Colombia Ciudad Universitaria, Bogotá, Colombia

hgaitano@unal.edu.co