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Juan Carlos MARTÍNEZ

ON PCF SPACES WHICH ARE NOT

FRÉCHET-URYSOHN

A b s t r a c t. By means of a forcing argument, it was shown

by Pereira that if CH holds then there is a separable PCF space

of height ω1 + 1 which is not Fréchet-Urysohn. In this paper, we

give a direct proof of Pereira’s theorem by means of a forcing-free

argument, and we extend his result to PCF spaces of any height

δ + 1 where δ < ω2 with cf(δ) = ω1.

.1 Introduction

An important series of results getting cardinal bounds on the behaviour of

the power function at singular cardinals was obtained by Shelah in the late

1980s by studying the reduced products of cardinals below the concerned
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singular cardinal. This led to the so called theory of possible cofinali-

ties, which contains many important and unexpected results in cardinal

arithmetic and which also found interesting applications in algebra and

set-theoretic topology (see [1],[5] and [11]).

If A is a set of regular cardinals, PCF(A) is defined to be

{cf(ΠA/D) : D is an ultrafilter on A}.

It is well-known that, assuming A is an interval of regular cardinals that

is progressive, i.e. it satisfies that |A| < min(A), the PCF operator is

a closure operation on subsets of PCF(A), and hence we have a natural

topology associated with it, by letting C ⊆ PCF(A) be closed iff PCF(C) =

C. The resulting topological space is compact, Hausdorff and scattered

(and hence 0-dimensional). It is known that, under Stone duality, the

notion of a compact, Hausdorff, scattered space corresponds to the notion

of a superatomic Boolean algebra (i.e. a Boolean algebra in which every

subalgebra is atomic).

By an LCS space we mean a locally compact, Hausdorff and scattered

space. Recall that for an LCS space X and an ordinal α, the αth Cantor-

Bendixson level of X is defined by Iα(X) = the set of isolated points of

X \
⋃
{Iβ(X) : β < α}. We define the height of X as ht(X) = the least

ordinal α such that Iα(X) = ∅. We refer the reader to the survey papers

[2] and [8] for a wide list of results on the existence of various types of LCS

spaces.

The following notion, which permits us to construct in a direct way

LCS spaces from partial orders, is a useful tool in the study of the PCF

operator.

Definition 1.1. Assume that T =
⋃
{T (α) : α < η} for some non-

zero ordinal η where each T (α) is a non-empty set and T (α) ∩ T (β) = ∅ for

α < β < η. Assume that for every x ∈ T , bx is a subset of T such that the

following conditions hold:

1. If x ∈ T (γ), then bx ∩
⋃
{T (ζ) : γ ≤ ζ < η} = {x} and bx ∩ T (ζ) is

infinite for every ζ < γ.

2. If x ∈ by then bx ⊆ by.
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3. If x, y ∈ T , there are finitely many elements z1, . . . , zn ∈ T such that

bx ∩ by = bz1 ∪ · · · ∪ bzn .

For x, y ∈ T , we put x � y iff x ∈ by. Clearly, � is a partial order on T .

Then, we will say that T = (T,�) is an LCS poset, whose associated space

X = X(T ) is defined as follows. The underlying set of X(T ) is T . And

for every x ∈ T , we define a basic neighbourhood of x in X as a set of the

form bx \ (bx1 ∪ · · · ∪ bxn) where n < ω and x1, . . . , xn ≺ x. Clearly, bx is

a compact neighbourhood of x for every x ∈ X. Then, we have that X is

a locally compact, Hausdorff and scattered space such that ht(X) = η and

Iα(X) = T (α) for every α < η. If Y is a subset of T , we denote by Y the

closure of Y in X. Also, we write ht(T ) = ht(X) and Iα(T ) = Iα(X) for

every ordinal α.

We want to remark that our definition of an LCS poset is equivalent

to the definition of an SBA ordering given in [7] and to the definition of

a Bonnet partial order given in [9]. However, our definition will be more

adequate to carry out the constructions of the desired spaces.

Now, we introduce the refinement of the notion of an LCS poset due

to Magidor and Foreman, in which some conditions are added in order to

reflect the fundamental properties of the PCF operator on {ℵn : n ≥ 1}.
Definition 1.2. A PCF structure is an LCS poset (θ + 1,�) where θ

is an infinite ordinal such that the following conditions are satisfied:

(PCF1) If ν ≺ µ then ν ∈ µ.

(PCF2) ω = θ + 1.

(PCF3) If I ⊆ θ + 1 is an interval, then I is also an interval.

(PCF4) ξ ≺ θ for every ξ ∈ θ.
(PCF5) For each ν ∈ θ of uncountable cofinality there is a club Cν

ν such that Cν ⊆ ν + 1.

We say that a space X is a PCF space, if there is a PCF structure T
such that X = X(T ). Note that, by condition (PCF4), every PCF space is

compact. Also, we have that the Boolean algebra associated with a PCF

space is a well-generated Boolean algebra in the sense defined in [4].

It is known that in ZFC there is no PCF structure of size ≥ ω4, and

that this result implies Shelah’s remarkable theorem that 2ℵω < ℵω4 if ℵω
is a strong limit (see [5] and [11]). On the other hand, it was shown in [6]
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that for every ordinal η < ω3 it is relatively consistent with ZFC that there

is a PCF space X such that ht(X) = η+ 1 and |Iα(X)| = ω for each α < η.

Recall that if X is a space and Y ⊆ X, the sequential closure of Y in X

is defined as lim(Y ) = {x ∈ X : there is a sequence (yn)n contained in Y

such that limn yn = x}. We say that X is sequential, if for every Y ⊆ X

with lim(Y ) = Y we have that Y is closed. It was shown by Todorcevic

that every PCF space is sequential, and a generalization of this result was

shown in [9, Section 2]. Also, recall that a space X is Fréchet-Urysohn, if for

every Y ⊆ X we have lim(Y ) = Y . Clearly, every Fréchet-Urysohn space

is sequential. By using a forcing argument based on constructions carried

out previously in [3] and [10], it was shown by Pereira in [9, Theorem 2]

that under CH there is a PCF space of height ω1 + 1 which is not Fréchet-

Urysohn. This result gives a partial answer to the question on the possible

sequential ranks of PCF spaces (see [7] and [9]).

Then, in this paper we will give a simpler and more direct proof of

Pereira’s theorem by means of a forcing-free argument and we will extend

his result from PCF spaces of height ω1 + 1 to PCF spaces of any height

δ + 1 where δ < ω2 with cf(δ) = ω1. This last result is in a certain sense

best possible, because it is known that under CH there is no PCF space of

height ω2 + 1 (see [2]). However, we do not know whether it is relatively

consistent with ZFC that there is a PCF space of height ω2 + 1 which is

not Fréchet-Urysohn.

.2 Proof of the theorems

First, we prove in a direct way the result shown in [9, Theorem 2].

Theorem 2.1. If CH holds, there is a PCF space of height ω1 +1 which

is not Fréchet-Urysohn.

Proof. As in [9], we will construct a PCF structure T = (ω1 + 1,�) of

height ω1 + 1 such that in X(T ) no sequence contained in ω converges to

ω1. Therefore, we will have that ω1 ∈ ω but ω1 6∈ lim(ω), and thus X(T )

is not Fréchet-Urysohn. We fix an enumeration {dβ : 0 < β < ω1} of the

infinite subsets of ω. We put Iα = {ω · α + n : n < ω} for every α < ω1.

We write Sα =
⋃
{Iβ : β ≤ α}, and we write T = ω1 + 1. For every x ∈ ω1,

we put π(x) = α if x ∈ Iα.
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The required PCF structure will be a partial order obtained from sets

bx ⊆ T for x ∈ T . So, proceeding by transfinite induction on α, we construct

for every α < ω1 and every x ∈ Iα a subset bx of Sα such that the following

conditions hold:

(1) bx ∩ Iα = {x} and bx ∩ Iβ is infinite for every β < α.

(2) If x ∈ by then bx ⊆ by.
(3) If x, y ∈ Sα, there are finitely many elements z1, . . . , zn ∈ Sα such

that bx ∩ by = bz1 ∪ · · · ∪ bzn .

(4) If x, y ∈ Iβ for some β ≤ α with x 6= y, then bx∩ by is a finite subset

of ω.

(5) If z ∈ Iγ and γ ≤ β ≤ α, then {y ∈ Iβ : by ∩ bz 6= ∅} is finite.

(6) For every 0 < β ≤ α there is an element x ∈ Sα such that bx ∩ dβ is

infinite.

From conditions (1) and (5) we deduce that for every x1, . . . , xn ∈ Sα,

ω\(bx1 ∪· · ·∪bxn) is an infinite set. For this, note that if α = 0 we are done

by condition (1). So, assume that α > 0. First, we infer from condition

(5) that there is an element z ∈ Iα such that bz ∩ (bx1 ∪ · · · ∪ bxn) = ∅.
And now, by condition (1), we have that bz ∩ω = bz ∩ I0 is infinite, and so

ω \ (bx1 ∪ · · · ∪ bxn) is infinite.

We put bx = {x} for every x ∈ ω. Now, assume that 0 < α < ω1 and

bx has been defined for every x ∈
⋃
{Iβ : β < α}. Our aim is to define the

sets by for y ∈ Iα. We put Z =
⋃
{Iβ : β < α}. Without loss of generality,

we may assume that there is no element x ∈ Z such that bx ∩ dα is infinite.

Let {xm : m < ω} be an enumeration of Z. First, we assume that α is a

limit ordinal. Let {αn : n < ω} be a strictly increasing sequence of ordinals

converging to α. We construct an infinite subset U = {un : n < ω} of

Z and an infinite subset V = {vn : n < ω} of U such that the following

conditions hold:

(a)
⋃
{bun : n < ω} = Z,

(b) if un ∈ V then bun ∩
⋃
{bum : m < n} = ∅,

(c) if un ∈ V then π(un) > αn.

Assume that n ≥ 0 and we have picked the elements u0, . . . , un−1. If n = 2k

for some k ≥ 0, we define un as the first element u in the enumeration

{xm : m < ω} such that u 6∈
⋃
{bum : m < n}. Now, suppose that n = 2k+1
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for some k ≥ 0. By condition (5), there is an element un ∈ Z such that

π(un) > max{αn, π(u0), . . . , π(un−1)} and bun ∩
⋃
{bum : m < n} = ∅.

Then, we define U = {un : n < ω} and V = {vk : k < ω} where vk = u2k+1

for k < ω. Clearly, conditions (a)− (c) hold.

Put yn = ω · α + n for n < ω. First, assume that there are infinitely

many elements v in V such that bv ∩ dα 6= ∅. Let a be an infinite subset

of ω such that bvk ∩ dα 6= ∅ for every k ∈ a and ω \ a is infinite. Let

{ak : 0 < k < ω} be a partition of ω \ a into infinite subsets. Then,

we define by0 = {y0} ∪
⋃
{bvn : n ∈ a}, and for k > 0 we put byk =

{yk} ∪
⋃
{bvn : n ∈ ak}. And if {v ∈ V : bv ∩ dα 6= ∅} is finite, we

consider a partition {ak : k < ω} of ω into infinite subsets and then we

define by0 = {y0} ∪
⋃
{bvn : n ∈ a0} ∪ dα and for 0 < k < ω we define

byk = {yk} ∪
⋃
{bvn : n ∈ ak}. We can check that conditions (1)− (6) hold

in both cases. For this, note that conditions (1), (2) and (6) are obvious,

and conditions (3), (4) and (5) follow from conditions (a) and (b) and the

assumption that there is no element x ∈ Z such that bx ∩ dα is infinite.

Now, assume that α = γ + 1 is a successor ordinal. We construct an

infinite subset U = {un : n < ω} of Z and an infinite subset V = {vn : n <

ω} of U ∩ Iγ such that the following holds:

(a)
⋃
{bun : n < ω} = Z,

(b) if un ∈ V then bun ∩
⋃
{bum : m < n} = ∅.

If n = 2k for some k ≥ 0, we pick un as above. And if n = 2k + 1

for some k ≥ 0, we apply condition (5) to find an element un ∈ Iγ such

that bun ∩
⋃
{bum : m < n} = ∅. Then, we put U = {un : n < ω} and

V = {u2n+1 : n < ω}. And now we define by for y ∈ Iα proceeding as in

the preceding paragraph. So, conditions (1)− (6) hold.

Finally, we put bω1 = ω1 + 1. Let � be the partial order obtained from

the sets bx for x ∈ ω1 + 1. We have that T = (T,�) is a PCF structure.

Conditions (PCF1), (PCF2) and (PCF4) clearly hold, condition (PCF5) is

also obvious because T = ω1 + 1, and condition (PCF3) follows from the

fact that for every infinite interval I contained in ω1 + 1 there is an ordinal

α < ω1 such that Iα \ I is finite. Also, it is easy to see that Iα(T ) = Iα
for every α < ω1 and Iω1(T ) = {ω1}. And, by condition (6), we have that

ω1 6∈ lim(ω). So, (T,�) is the required PCF structure. �
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Now, we extend Pereira’s theorem to PCF spaces of height < ω2. So,

our aim is to prove the following result.

Theorem 2.2. If CH holds, then for every ordinal δ < ω2 with cf(δ) =

ω1 there is a PCF space of height δ + 1 which is not Fréchet-Urysohn.

Proof. We assume that ω1 < δ < ω2. We will construct a PCF

structure T = (δ + 1,�) of height δ + 1 such that in X(T ) no sequence

contained in ω converges to δ. Therefore, we will have that δ ∈ ω but

δ 6∈ lim(ω), and thus X(T ) is not Fréchet-Urysohn. We put J0 = ω and

Jα = {α+ n : n < ω} for any limit ordinal α < δ. For every x ∈ δ, we put

π(x) = α if x ∈ Jα.

Let {δξ : ξ < ω1} be a strictly increasing sequence of ordinals cofinal in

δ such that δ0 = 0 and δξ is a limit for 0 < ξ < ω1. By the construction

carried out in the proof of Theorem 2.1, there is an LCS poset T ′ = (T ′,�′)
satisfying the following conditions:

(i) T ′ =
⋃
{Jδξ : ξ < ω1},

(ii) ht(T ′) = ω1, Iζ(T ′) = Jδζ for every ζ < ω1 and Iω1(T ′) = ∅,
(iii) �′ is the partial order obtained from sets bx ⊆ T ′ for x ∈ T ′, which

satisfy conditions (1) − (6) in the proof of Theorem 2.1 replacing Iα with

Jδα for α < ω1.

Let {αζ : ζ < ω1} be an enumeration without repetitions of the limit

ordinals of δ \ {δξ : ξ < ω1}. In order to find the desired PCF structure of

height δ+ 1, we construct by transfinite induction on ξ < ω1 an LCS poset

Tξ = (Tξ,�ξ) such that the following conditions hold:

(1) Tξ = T ′ ∪
⋃
{Jαµ : µ < ξ}.

(2) If 〈βζ : ζ < ω1〉 is the strictly increasing enumeration of {δν : ν <

ω1} ∪ {αν : ν < ξ}, then Iζ(Tξ) = Jβζ for every ζ < ω1 and Iω1(Tξ) = ∅.

Also, �ξ will be the partial order obtained from sets b
(ξ)
x ⊆ Tξ for x ∈ Tξ,

which will be constructed satisfying the following conditions:

(3) If x ∈ Jβγ , then b
(ξ)
x ∩

⋃
{Jβζ : γ ≤ ζ < ω1} = {x} and for each

ζ < γ the set b
(ξ)
x ∩ Jβζ is infinite.

(4) If x ∈ b(ξ)y then b
(ξ)
x ⊆ b(ξ)y .

(5) If µ < ξ and x ∈ Tµ, then b
(µ)
x ⊆ b

(ξ)
x and b

(µ)
x ∩ Jβν = b

(ξ)
x ∩ Jβν for

each ν < ω1 such that Jβν ⊆ Tµ.
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(6) If x, y ∈ Tξ, there are finitely many elements z1, . . . , zn ∈ Tξ such

that b
(ξ)
x ∩ b(ξ)y = b

(ξ)
z1 ∪ · · · ∪ b

(ξ)
zn .

(7) If x, y ∈ Tξ with x 6= y and π(x) = π(y), then b
(ξ)
x ∩ b(ξ)y is a finite

subset of ω.

(8) If µ < ξ, x, y ∈ Tµ and b
(µ)
x ∩ b(µ)

y = b
(µ)
z1 ∪ · · · ∪ b

(µ)
zn , then b

(ξ)
x ∩ b(ξ)y =

b
(ξ)
z1 ∪ · · · ∪ b

(ξ)
zn .

(9) If x ∈ Jβγ and γ ≤ ζ < ω1, then {y ∈ Jβζ : b
(ξ)
y ∩ b(ξ)x 6= ∅} is finite.

We define T0 = T ′ and b
(0)
x = bx for every x ∈ T ′. Now, assume that

ξ = µ+ 1 is a successor ordinal. We define Tξ = Tµ∪Jαµ . Let 〈βζ : ζ < ω1〉
be the strictly increasing enumeration of {δν : ν < ω1} ∪ {αν : ν < µ}.
Let γ be the first ordinal ζ such that αµ < βζ . We put xk = βγ + k for

k < ω. And we consider a partition {Yk : k < ω} of Jαµ into infinite

subsets. First, we assume that γ is a successor ordinal η+ 1. Our aim is to

define the sets b
(ξ)
x for x ∈ Tξ. Fix k < ω. We construct an infinite subset

Uk = {un : n < ω} of b
(µ)
xk \ {xk} and an infinite subset Vk = {vn : n < ω}

of Uk ∩ Jβη such that the following conditions hold:

(a)
⋃
{b(µ)
un : n < ω} = b

(µ)
xk \ {xk},

(b) if un ∈ Vk then b
(µ)
un ∩

⋃
{b(µ)
um : m < n} = ∅.

For this, let {zm : m < ω} be an enumeration of b
(µ)
xk \ {xk}. Assume

that n ≥ 0 and we have picked the elements u0, . . . , un−1. Suppose that

n = 2i for some i ≥ 0. Note that the set b
(µ)
xk \

⋃
{b(µ)
um : m < n} is infinite

by condition (3) for µ. Then, we define un as the first element u in the

enumeration {zm : m < ω} such that u 6∈
⋃
{b(µ)
um : m < n}. Now, suppose

that n = 2i+ 1 for some i ≥ 0. By condition (3) for µ, the set b
(µ)
xk ∩ Jβη is

infinite. So, by condition (9) for µ, there is an element un ∈ b(µ)
xk ∩Jβη such

that b
(µ)
un ∩

⋃
{b(µ)
um : m < n} = ∅. Then, we define Uk = {un : n < ω} and

Vk = {vn : n < ω} where vn = u2n+1 for n < ω. Clearly, conditions (a) and

(b) hold. Now, let {yn : n < ω} be an enumeration without repetitions of

Yk. And let {an : n < ω} be a partition of ω into infinite subsets. Then, we

define b
(ξ)
yn = {yn}∪

⋃
{b(µ)
vm : m ∈ an} for n < ω. Also, if x ∈

⋃
{Jβζ : ζ ≥ γ}

we define b
(ξ)
x = b

(µ)
x ∪

⋃
{Yk : xk ∈ b

(µ)
x , k < ω}. So, in particular we have

b
(ξ)
xk = b

(µ)
xk ∪ Yk for every k < ω. Finally, we put b

(ξ)
x = b

(µ)
x for every

x ∈
⋃
{Jβζ : ζ < γ}.
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We can check that conditions (1)− (9) hold for ξ. We prove conditions

(8) and (9). The rest of the conditions are easier to verify. In order to

check condition (8), suppose that µ < ξ, s, t ∈ Tµ and b
(µ)
s ∩ b(µ)

t = b
(µ)
z1 ∪

· · · ∪ b(µ)
zn . We assume that s, t ∈

⋃
{Jβζ : ζ ≥ γ}. Otherwise, the argument

is simpler. First, we show that b
(ξ)
zi ⊆ b

(ξ)
s ∩ b

(ξ)
t for i ∈ {1, . . . , n}. If

zi ∈
⋃
{Jβζ : ζ < γ}, we have b

(ξ)
zi = b

(µ)
zi , and so we are done. Suppose that

zi ∈
⋃
{Jβζ : ζ ≥ γ}. Let y ∈ b(ξ)zi . As b

(ξ)
zi \ b

(µ)
zi ⊆ Jαµ , we may assume that

y ∈ Jαµ . Hence, there is a k ∈ ω such that y ∈ Yk. Since y ∈ b(ξ)zi ∩ Yk, we

infer that xk ∈ b
(µ)
zi , thus xk ∈ b

(µ)
s ∩ b(µ)

t , and so y ∈ b(ξ)s ∩ b(ξ)t . Now, we

prove that b
(ξ)
s ∩ b(ξ)t ⊆ b

(ξ)
z1 ∪ · · · ∪ b

(ξ)
zn . So, assume that y ∈ b(ξ)s ∩ b(ξ)t ∩Jαµ .

Let k ∈ ω be such that y ∈ Yk. It follows that xk ∈ b
(µ)
s ∩ b(µ)

t . Hence, there

is an i ∈ {1, . . . , n} such that xk ∈ b
(µ)
zi , and thus y ∈ b(ξ)zi .

Now, in order to verify condition (9), we prove that if βν < αµ and

s ∈ Jβν , then {y ∈ Jαµ : b
(ξ)
y ∩ b(ξ)s 6= ∅} is finite. The rest of the cases are

easier to verify. Note that since βν < αµ, we have b
(ξ)
s = b

(µ)
s . By condition

(9) for µ, we deduce that Z = {x ∈ Jβγ : b
(µ)
x ∩ b(ξ)s 6= ∅} is finite. Also, by

condition (6) for µ, we have that for each xk ∈ Z there are finitely many

elements y1, . . . , yn ∈ Tµ such that b
(µ)
xk ∩ b

(ξ)
s = b

(µ)
y1 ∪ · · · ∪ b

(µ)
yn . Then, by

using conditions (a) and (b), we infer that for each xk ∈ Z the set {v ∈ Vk :

b
(µ)
v ∩ b

(ξ)
s 6= ∅} is finite. So, it follows that {y ∈ Jαµ : b

(ξ)
y ∩ b

(ξ)
s 6= ∅} is

finite too.

Also, if γ is a limit ordinal, we consider a strictly increasing sequence of

ordinals {γn : n < ω} converging to γ and then, by means of an argument

similar to the one given above, for every k < ω we can construct an infinite

subset Uk = {un : n < ω} of b
(µ)
xk \ {xk} and an infinite subset Vk = {vn :

n < ω} of Uk such that the following conditions hold:

(a)
⋃
{b(µ)
un : n < ω} = b

(µ)
xk \ {xk},

(b) if un ∈ Vk then b
(µ)
un ∩

⋃
{b(µ)
um : m < n} = ∅,

(c) if un ∈ Vk then π(un) > max{βγn , π(u0), . . . , π(un−1)}.
Since γ is the first ordinal ζ such that αµ < βζ , we have that sup{βγn : n <

ω} ≤ αµ. Thus, we can define the sets b
(ξ)
x for x ∈ Tξ proceeding as above.

Next, assume that ξ is a limit ordinal. We define Tξ =
⋃
{Tµ : µ < ξ}.

Assume that x ∈ Tξ. Let ζ be the least ordinal µ < ξ such that x ∈ Tµ.

Then, we define b
(ξ)
x =

⋃
{b(η)
x : ζ ≤ η < ξ}. We can verify that conditions

(1)− (9) hold for ξ.
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Note that δ =
⋃
{Tξ : ξ < ω1}. Then, in order to define the desired

PCF structure (T,�), first we define the LCS poset (T ∗,�∗) as follows. We

put T ∗ = δ+ 1. Assume that x ∈ δ. Let γ be the least ordinal ξ < ω1 such

that x ∈ Tξ. We define b∗x =
⋃
{b(ξ)x : γ ≤ ξ < ω1}. And we put b∗δ = δ + 1.

From conditions (4) and (5), we infer that x ∈ b∗y implies b∗x ⊆ b∗y for every

x, y ∈ T ∗. And from conditions (5) and (8), we deduce that if ξ < ω1,

x, y ∈ Tξ and b
(ξ)
x ∩ b(ξ)y = b

(ξ)
z1 ∪· · ·∪ b

(ξ)
zn , then b∗x∩ b∗y = b∗z1 ∪· · ·∪ b

∗
zn . Now,

if x, y ∈ δ+1, we put x �∗ y iff x ∈ b∗y. Then, T ∗ = (T ∗,�∗) is an LCS poset

on δ + 1 with ht(T ∗) = δ + 1, Iα(T ∗) = Jω·α for α < δ and Iδ(T ∗) = {δ}.
And since δ 6∈ lim(ω), we have that X(T ∗) is not Fréchet-Urysohn. Also, it

is easy to see that T ∗ satisfies conditions PCF(1)−PCF(4). Then, in order

to obtain the desired PCF structure (T,�) on δ+1, we use an idea given by

Ruyle in [10, Page 45] (see also [6, Lemma 2.9]). We put T = δ + 1. Since

δ < ω2, we can easily construct a sequence 〈Cξ : ξ < δ with cf(ξ) = ω1〉
such that the following holds:

1. Each Cξ is a club subset of ξ such that every element of Cξ has

cofinality ω.

2. Cξ ∩ Cη = ∅ for ξ < η < δ with cf(ξ) = cf(η) = ω1.

Then, we define a bijection h from δ + 1 to itself. For each ξ < δ with

cf(ξ) = ω1 and for each µ ∈ Cξ, we pick an element ν ∈ Jµ with ν ≺∗ ξ,
and then we put h(µ) = ν and h(ν) = µ. For any other points, let h be

the identity. Now, we define the partial order � on δ + 1 by letting x � y

iff h(x) �∗ h(y). It is straightforward to check that (T,�) is the required

PCF structure. �

Now, by using Theorem 2.2, we can extend the observation given at the

beginning of [9, Section 3], and so we have that for every ordinal δ < ω2

with cf(δ) = ω1, the PCF axioms listed above are not sufficient to prove

that if ℵωω > ℵδ · 2ω then there is a countable sequence 〈ℵnk : k < ω〉 where

each nk is a natural number such that

tcf(
∏
k

ℵnk , <Fin) = ℵδ+1.
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However, by the results shown in [9, Section 2], we know that for every

limit ordinal δ < ω4, if ℵωω > ℵδ · 2ω then for every ordinal β < δ there is

a countable sequence 〈ℵαk+1 : k < ω〉 in [ℵβ+1,ℵδ)REG such that

tcf(
∏
k

ℵαk+1, <Fin) = ℵδ+1.
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