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Abstract 

Automation and labor saving in agriculture have been required recently. However, mechanization and robots for 
growing fruits have not been advanced. This study proposes a method of detecting fruits and automated harvesting 
using a robot arm. A highly fast and accurate method with a Single Shot MultiBox Detector is used herein to detect 
the position of fruit, and a stereo camera is used to detect the three-dimensional position. After calculating the angles 
of the joints at the detected position by inverse kinematics, the robot arm is moved to the target fruit’s position. The 
robot then harvests the fruit by twisting the hand axis. The experimental results showed that more than 90% of the 
fruits were detected. Moreover, the robot could harvest a fruit in 16 s.
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Background
The agriculture industry has many problems, including 
the decreasing number of farm workers and increasing 
cost of fruit harvesting. Saving labor and scale up in agri-
culture is necessary in solving these problems. In recent 
years, the automation of agriculture has been advancing 
for labor saving and large-scale agriculture. However, 
much of the work in the field of fruit harvesting is manu-
ally done. The development of an automated fruit har-
vesting robot is a viable solution to these problems. The 
automatic harvesting of fruits by a robot involves two big 
tasks: (1) fruit detection and localization on trees using 
computer vision with a sensor and (2) robot arm motion 
to the position of the detected fruit and fruit harvesting 
by the end effector without damaging target fruit and its 
tree.

The fruit detection and localization on trees using com-
puter vision have been investigated in numerous studies, 
and most of these have been summarized in the review of 
Gongal et al. [1]. Color, spectral, or thermal cameras have 
been widely used in these methods. When using spec-
tral camera [2], detecting the fruit shadowed by another 

fruit as an object is difficult. When a thermal camera 
is used  [3], the fruit is detected based on the tempera-
ture difference between the fruit and the background. 
This method is affected by the fruit size and exposure to 
direct sunlight. Various different features are used in fruit 
detection using color camera. Bulanon et  al.  [4, 5] used 
luminance and red, green, and blue  (RGB) color differ-
ence to segment an apple. Rakun et  al.  [6] used texture 
analysis to detect an apple. Linker et  al.  [7] integrated 
multiple features to improve the accuracy of fruit detec-
tion methods. Various image classification methods for 
fruit detection can also be performed using a color cam-
era. Bulanon et al.  [8] used K-mean clustering for apple 
detection. Linker et  al.  [7] and Cohen et  al.  [9] used 
KNN clustering for apple classification. In addition, Kur-
tulmus et  al.  [10] used an Artificial Neural Network for 
apple classification. Qiang et al. [11] used a Support Vec-
tor Machine classification method for apple detection. 
However, these methods are difficult to use in variable 
light conditions because the color information cannot 
be sufficiently acquired. For better accuracy, fruit detec-
tion should be performed using multiple features such 
as color, shape, texture, and reflection to overcome chal-
lenges like clustering and variable light conditions.

The present study proposes “fruit detection and locali-
zation” and “fruit harvesting by a robot manipulator 
with a hand which is able to harvest without damaging 

Open Access

*Correspondence:  re0069hi@ed.ritsumei.ac.jp
1 Graduate School of Science and Engineering, Ritsumeikan University, 
1‑1‑1, Noji‑higashi, Kusatsu 525‑8577, Shiga, Japan
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-019-0141-2&domain=pdf


Page 2 of 8Onishi et al. Robomech J            (2019) 6:13 

the fruit and its tree” to perform automatic fruit har-
vesting by a robot. We used a color camera and a Single 
Shot MultiBox Detector  (SSD)  [12] to detect the two-
dimensional  (2D) position of the fruit. The SSD is one 
of the general object detection methods that use Con-
volution Neural Network  (CNN)  [13]. The SSD can 
comprehensively judge from color and shape. A three-
dimensional  (3D) position must be obtained to send a 
command to the robot arm. A stereo camera is used to 
measure the 3D position of the fruit detected by the SSD. 
We used inverse kinematics to calculate the route of the 
robot arm. We moved the robot arm to the fruit posi-
tion based on inverse kinematics. We used the harvesting 
robot hand as the end effector. The robot hand harvests a 
fruit by gripping and rotating it without damaging it and 
its tree.

Methods
We describe each step in our fruit detection and harvest 
method in this section.

Apple and tree
The fruit used in this research is the “Fuji” apple culti-
vated in the Miyagi Prefectural Agriculture and Horti-
culture Research Center. However, our method can also 
be applied to other apple varieties. A pear has a relatively 
similar shape to an apple; hence, this algorithm is also 
considered effective for pears. We used herein a joint 
V-shaped apple tree  [14]. The V-shaped tree shape was 
suitable for mechanization and efficiency, and its fruits 
can be easily harvested. Figure  1 shows the tree used 
herein.

Detection and harvest algorithm
The harvest robot was equipped with a stereo camera 
and a robot arm. Figure  2 presents the detection and 
harvest algorithm. The algorithm involves three steps: 

detecting the 2D position of the apple, detecting 3D 
position of the apple, and calculating the inverse kine-
matics. These steps were divided into the detection and 
harvest parts. We explain each method in the sections 
that follow.

Fruit position detection method
The first step of the detection part was detecting the 
2D position of the fruit. We received one image from 
the stereo camera and detected where apples were in 
the received image. We used the SSD [12] to detect the 
apple positions.

The SSD is a method based on the CNN [13], which 
detects objects in an image using a single deep neu-
ral network. The other detection methods are Faster 
R-CNN  [15], and You Only Look Once  [16], among 
others. The first step of the SSD is the usage of the VGG 
net to extract the feature maps. The core of the SSD 
predicts the category scores and the box offsets for a 
fixed set of default bounding boxes using small convo-
lutional filters applied to the feature maps. To achieve 
high detection accuracy, the SSD produces predictions 
of different scales from feature maps of different scales, 
and explicitly separates predictions by aspect ratio. 
These design features lead to simple end-to-end train-
ing and high accuracy even on low resolution input 
images, and improving the speed vs accuracy trade-off. 
We used the SSD herein because it is superior in speed 
and accuracy to others. The SSD was 59 FPS with mAP 
74.3% on the VOC2007 test on a Nvidia Titan X. Faster 
R-CNN was 7 FPS with mAP 73.2%. YOLO was 45 FPS 
with mAP 63.4%. We can detect bounding boxes at the 
2D apple positions in the image using the SSD.

For fruits detected by the SSD, we selected a fruit that 
was nearest the robot arm. We received a point cloud 
data from the stereo camera and the pixel at the selected 
2D apple position. We used the stereo camera to do a 
3D reconstruction. The 3D reconstruction by the stereo 
camera was performed by a triangulation from parallax 
between the right and left images to obtain the 3D posi-
tion of the pixel in the image. We can then measure the 
distance from the stereo camera to the apple.

Fig. 1  Apple tree

Fig. 2  Flow chart for harvest of apple
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Fruit harvesting method by the robot arm
Position p and posture R of the hand must be moved 
to as specified harvest the fruit using the robot hand 
attached to the robot arm. In the case of a vertically 
articulated robot arm, the position and posture of the 
hand ( p,R ) are determined by the angles q of each 
joint. Therefore, the relationship between the joint 
coordinate system representing the joint angle of the 
robot arm and the hand coordinate system representing 
the position and posture of the hand must be clarified.

The problem of determining the angles q of each joint 
from the hand position p and posture R is called an 
inverse kinematics problem [17]. The inverse kinemat-
ics problem aims to find a nonlinear function f −1 for 
the equation Eq.  (1) is determined by the robot arm 
mechanism and configuration.

Inverse kinematics model
We considered that the inverse kinematic problem 
of the robot arm had six links. We used UR3 made by 
UNIVERSAL ROBOTS as the robot arm. UR3 has six 
degrees of freedom; thus, arbitrary position and pos-
ture can be expressed as long as they are within the 
operating range. Table  1 shows the Denavit–Harten-
berg parameter of UR3. Table 2 presents the UR3 speci-
fication. Figure  3 displays the UR3 used herein. The 
Denavit–Hartenberg parameters in UR3 are described 
in Fig. 4.

We obtain the angles q = θi(i = 1, 2, . . . , 6) of each 
joint when we are given the position p(px, py, pz) and 

(1)q = f −1(p,R).

posture R(φ, θ ,ψ) of the hand for Eq.  (1). The rotation 
matrix R is expressed as

where we used the abbreviations of Sx = sin x , and 
Cx = cos x.

The Denavit–Hartenberg notation [17] is the relationship 
between links i and i + 1 . The homogeneous transforma-
tion matrix of the Denavit–Hartenberg notation is

where we used the abbreviation of Sx = sin x , and 
Cx = cos x.

We can obtain Eq. (4) from the relationship between the 
robot arm Denavit–Hartenberg notation 0T 6 and the hand 
position p and posture R

(2)

R(φ, θ ,ψ)

=





CφCθ CφSθSψ − SθCψ CφSθCψ + SθSψ

SφCθ SφSθSψ + CθCψ SφSθCψ − CθSψ

−Sθ CθSψ CθCψ



,

(3)

n−1Tn =




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Cθn −SθnCαn SθnSαn rnCθn

Sθn CθnCαn −CθnSαn rnSθn
0 Sαn Cαn dn
0 0 0 1






,

Table 1  Denavit–Hartenberg parameters for UR3

Link ai (m) αi (rad) di (m) θi

1 0 π
2

0.1519 θ1

2 −0.24365 0 0 θ2

3 −0.21325 0 0 θ3

4 0 π
2

0.11235 θ4

5 0 − π
2

0.08535 θ5

6 0 0 0.08190 θ6

Table 2  UR3 specifications

Weight capacity 3 (kg)

Reach 500 (mm)

Degree of freedom 6

Weight 11 (kg)

Repeatability ± 0.1 (mm)

Fig. 3  UR3 Image [18]

Fig. 4  UR3 Denavit Hartenberg parameters diagrams
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With Eq.  (4), the angle θi of each joint of the robot arm 
can be obtained as follows, but first, θ1 is presented as

θ5 is denoted as follows

where sin θ5  = 0 , θ6 is

If θ234 = θ2 + θ3 + θ4 , θ234 is denoted as

θ3 is

θ2 is

(4)

0T 6(q) =

�

R p
0 0 0 1

�

=







R11 R12 R13 px
R21 R22 R23 py
R31 R32 R33 pz
0 0 0 1






.

(5)

A1 = arctan

�

py − d6R23

px − d6R13

�

,

B1 = arccos





d4
�

(px − d6R13)
2 + (py − d6R23)

2



,

θ1 = A1 ± B1 +
π

2
.

(6)
A5 = px sin θ1 − py cos θ1 − d4,

θ5 = ± arccos

(

A5

d6

)

.

(7)

A6 = (R12 − R11) sin θ1 + (R22 − R21) cos θ1,

θ6 =
π

4
− arctan





±

�

2 sin2 θ5 − A2
6

A6



.

(8)

A234 = cos θ5 cos θ6,

B234 = sin θ6,

C234 = R11 cos θ1 + R21 sin θ1,

D234 = R31,

θ234 = arctan

(

A234D234 − B234C234

A234C234 + B234D234

)

.

(9)

A3 = px cos θ1 + py sin θ1 + d6 cos θ234 sin θ5 − d5 sin θ234,

B3 = pz − d1 + d6 sin θ234 sin θ5 + d5 cos θ234,

θ3 = arccos

(

A3
2 + B3

2 − a2
2 − a3

2

2a2a3

)

.

θ4 is

We can calculate the angles q of each joint from the hand 
position p and posture R by inverse kinematics.

Results and discussion
Fruit position detection
This describes the result of the fruit position detection.

The images taken at Miyagi Prefectural Agriculture and 
Horticulture Research Center were used for learning and 
testing. Shooting was performed to look at the fruit from 
below considering the minimized occlusion by the leaves, 
branches and other fruits. Figure  5 depicts the image 
taken by this method. We used the learning parameters 
shown in Table 3.

(10)

A2 = a3 cos θ3 + a2,

B2 = a3 sin θ3,

C2 = pz − d1 + d6 sin θ234 sin θ5 + d5 cos θ234,

θ2 = arctan

�

A2

B2

�

− arctan



±

�

A2
2
+ B2

2
− C2

2

C2



.

(11)θ4 = θ234 − θ2 − θ3.

Fig. 5  Example of apple image

Table 3  SSD learning parameters

Architecture Caffe

Net VGG-16

Image (trainval) 200 images (1081 apples)

Image (test) 50 images (259 apples)

Base learning rate 0.0001

Batch size 4

Learning times 10,000 steps
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We tested whether fruits can be detected using 
unlearned images taken in the orchard using the learned 
model. We surrounded the area where the possibility of 
fruit was 60% or more with a red frame. We detected 
the presence of an apple to be tested from 30 images 
with 169 apples in total. Figures 6 and 7 depict the tested 

images. Figures 8 and 9 show the test image result. The 
model can detect even if the fruits are partially occluded 
by other fruits and leaves. However, the fruits at the edge 
of the image and those far from the camera could not be 
detected. The edge of the image could not be detected 
because the fruits were cut off in the image. The fruits 
far from the camera could not be detected because they 
had become smaller in the image. However, this was not 
a problem herein because these fruits were out of reach 
of the robot arm. Table 4 presents this test result.    

Fig. 6  Example of test image1

Fig. 7  Example of test image2

Fig. 8  Result of detection1

Fig. 9  Result of detection2

Table 4  Result of the apple position detection

Total 169

Detected apples 156

Undetected apples 13

Falsely detected apples 0

Precision 100%

Recall 92.31%

Fig. 10  Harvest robot
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Harvesting robot
Figure 10 displays the harvesting robot used herein. We 
conducted fruit harvesting using this robot with a stereo 
camera installed at approximately 0.5 (m) below the base 
of the robot arm such that the fruit tree is looked up from 
directly below. If the distance to the target fruit is too 
long and the robot arm cannot reach the target, the table 
lift on which all equipment rides goes up and down, mov-
ing to the distance where the arm can reach.

We use UR3 (UNIVERSAL ROBOTS) as the robot arm. 
Table 2 shows the robot repeatability is ± 0.1 (mm). The 
robot palm diameter was 5  cm; hence, even if an error 
occurs, it can be suppressed by the robot hand. We used 
ZED (STEREO LABS) as the stereo camera, with specifi-
cations shown in Table 5.

Fruit automated harvest
We describe the automated apple harvesting in this sec-
tion. Figure  11 illustrates the experimented tree and a 
model of the apple tree at the Miyagi Prefectural Agricul-
ture and Horticultural Research Center. These trees were 
joint V-shaped trees  [14] like those in the Miyagi Pre-
fectural Agricultural and Horticultural Research Center. 
Conducting the experiment during apple harvest time 
was difficult; hence, we experimented with a tree model.

The results of the automated fruit harvesting experi-
ments are presented herein along with the detection unit 
of the harvesting robot. First, we detected the 2D fruit 
position. Figure 12 shows the fruit detection result by the 

SSD. We used a learning model that can detect more than 
90% of the fruits used (fruit position detection section). 
We surrounded the area where the possibility of fruit 
was 60% or more, with a red frame. The robot was able 
to detect the apples the same as the real ones; hence, it 
seemed enough for the experiment.

Table 5  ZED specification

Output resolution 3840× 1080

Frames per second 30

Depth range 0.5–20 (m)

Base line 120 (mm)

Fig. 11  Apple tree model

Fig. 12  Detection of two-dimensional position

Fig. 13  Detection of three-dimensional position

Fig. 14  Approching target apple
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Second, we measured the 3D fruit position. Figure  13 
depicts the 3D position of the center point of the frame 
detected by the SSD. The 3D reconstruction of the parts 
other than the apples themselves was inadequate, but 
in this experiment it is unnecessary except for the bot-
tom surface of the apple. Sufficient results were obtained 
because we were able to capture the bottom of the apple.

Next, we will describe the harvesting part of the har-
vesting robot. To insert the robot hand from the under-
side for fruit harvesting, the robot was first moved 
10 (cm) below the target fruit (Fig. 14). The arm then rose 
below the fruit (Fig. 15). The robot hand then grasped the 
fruit and harvesting it by twisting from the peduncle by 
rotating for four times (Fig. 16).

The harvest time for each fruit was approximately 16 s. 
Detecting the fruit position and calculating the joint 
angle at that position took approximately 2 s. Fruit har-
vesting took approximately 14  s. Harvesting consumed 
much time because the hand rotated for several times. By 
reconsidering these points, speedup is possible.

Conclusions
In this study, we performed automatic fruit harvesting 
through the method of fruit position detection and har-
vesting using a robot manipulator with a harvesting hand 
that does not damage the fruit and its tree. Using the 
SSD, we showed that the fruit position of 90% or more 
can be detected in 2  s. The proposed fruit harvesting 
algorithm also showed that one fruit can be harvested in 
approximately 16 s.

The fruit harvesting algorithm proposed herein is 
expected to be applicable even if it is a near species of 
apple. Moreover, if one learns again with the target fruit, 
harvesting fruits, such as pears is highly possible.
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