
The Havoc Paradox in Generator-Based Fuzzing (Registered
Report)

Ao Li
Carnegie Mellon University

Pittsburgh, USA
aoli@cmu.edu

Madonna Huang
University of British Columbia

Vancouver, Canada
huicongh@cs.ubc.ca

Caroline Lemieux
University of British Columbia

Vancouver, Canada
clemieux@cs.ubc.ca

Rohan Padhye
Carnegie Mellon University

Pittsburgh, USA
rohanpadhye@cmu.edu

Abstract

Parametric generators are a simpleway to combine coverage-guided
and generator-based fuzzing. Parametric generators can be thought
of as decoders of an arbitrary byte sequence into a structured input.
This allows mutations on the byte sequence to map to mutations
on the structured input, without requiring the writing of special-
ized mutators. However, this technique is prone to the havoc effect,
where small mutations on the byte sequence cause large, destruc-
tive mutations to the structured input. This registered report first
provides a preliminary investigation of the paradoxical nature of
the havoc effect for generator-based fuzzing in Java. In particular,
we measure mutation characteristics and confirm the existence of
the havoc effect, as well as scenarios where it may be more detri-
mental. The proposed evaluation extends this investigation over
more benchmarks, with the tools Zest, JQF’s EI, BeDivFuzz, and
Zeugma.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.

Keywords

Generator-based Fuzzing, Mutation, Input Generator
ACM Reference Format:

Ao Li, Madonna Huang, Caroline Lemieux, and Rohan Padhye. 2024. The
Havoc Paradox in Generator-Based Fuzzing (Registered Report). In Pro-

ceedings of the 3rd ACM International Fuzzing Workshop (FUZZING ’24),

September 16, 2024, Vienna, Austria. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3678722.3685529

1 Introduction

Generator-based fuzzing [15, 27] is a technique for testing programs
with randomly generated input data produced via a domain-specific
generation function, which samples inputs conforming to some data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FUZZING ’24, September 16, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1112-1/24/09
https://doi.org/10.1145/3678722.3685529

type or input-format structure. Parametric generators [3, 11, 21, 23,
29–31, 36] enable mutations to be performed on inputs produced
by such generators. This unlocks the benefits of coverage-guided
grey-box fuzzing [1, 7, 16, 17], which incorporate a feedback loop
to guide input generation.

The key idea behind parametric generators is to treat generator
functions as decoders of an arbitrary sequence of bytes, producing
structurally valid inputs given any pseudo-random input sequence.
Figure 1 depicts examples of such generators in C++ (via libFuzzer’s
FuzzedDataProvider [8]) and in Java (via JQF [30]) for sampling bi-
nary trees; in the latter case, the Random parameter is a facade for an
object that extracts values from a regular InputStream. Fig. 2a de-
picts an example of the decoding process, with bytes color-mapped
to corresponding decisions in the generator functions from Fig. 1.

By providing the byte-sequence decoded by the generator to a
conventional mutation-based fuzzing algorithm, parametric gen-
erators get structured mutations “for free”. Fig. 2b shows how a
small bit-flip in the byte sequence leads to a small change in the
data contained in the corresponding binary tree.

This combination of (a) a method to produce structurally valid
inputs, and (b) a method to make small changes to structurally valid
inputs, together enables structure-aware grey-box fuzzing, resulting
in an ability to test deep program states beyond syntax parsing and
validation [31]. The high-level insight, popularized by Zest [31], is
that small changes in the byte-sequence will map to small changes

in the structured input produced by the generators (e.g., the binary
trees)... at least, in theory.

This insight, while compelling, does not always hold. A common
criticism of the parametric generator approach is that certain mu-
tations on the byte stream—especially on those bits whose values
influence conditional branches in the generator function—can lead
to drastic changes in the corresponding structured input being pro-
duced. Fig. 2d depicts such a case, where a single bit-flip in the first
byte leads to a completely different binary tree being produced;
there is almost no similarity to the original tree shown in Fig. 2a. We
call this phenomenon the havoc effect, inspired by the terminology
used by AFL [1] and prior work [38, 41].

Intuitively, the havoc effect appears to be a severe limitation of
the parametric generator-based approach to structure-aware grey-
box fuzzing because the fuzzing process relies on subtle changes to
explore program paths incrementally. This unpredictability essen-
tially degrades the effectiveness of grey-box fuzzing, transforming

https://orcid.org/0000-0003-3189-7079
https://orcid.org/0009-0000-2533-139X
https://orcid.org/0000-0002-9610-8520
https://orcid.org/0000-0003-4939-033X
https://doi.org/10.1145/3678722.3685529
https://doi.org/10.1145/3678722.3685529

FUZZING ’24, September 16, 2024, Vienna, Austria Ao Li, Madonna Huang, Caroline Lemieux, and Rohan Padhye

1 class Node {
2 Node left;
3 Node right;
4 byte data;
5 }

(a) Binary tree node

type.

1 Node generateNode(FuzzedDataProvider *provider) {
2 Node node = new Node();

3 if (provider->ConsumeBool()) {

4 node.left = generateNode(provider);
5 }

6 if (provider->ConsumeBool()) {

7 node.right = generateNode(provider);
8 }

9 node.data = provider->ConsumeIntegral<uint8>(10) ;

10 return node;
11 }

(b) OSS-fuzz-style C++ generator.

1 Node generateNode(Random random) {
2 Node node = new Node();

3 if (random.nextBoolean()) {

4 node.left = generateNode(random);
5 }

6 if (random.nextBoolean()) {

7 node.right = generateNode(random);
8 }

9 node.data = random.nextByte(10) ;

10 return node;
11 }

(c) Quickcheck-style Java generator.

Figure 1: A simplified generator for binary tree nodes in C++ (libFuzzer-style) and Java (JQF-style). While designed for random

sampling, grey-box fuzzers such as Zest [31], libFuzzer [7], and AFL [1] supply a deterministic sequence of choices backed by a

fixed byte stream that can be mutated.

01 01 00
00 04 00
03 01 00
00 02 01

(a) Seed input

01 01 00
00 01 00
03 01 00
00 02 01

(b) Mutation I.

01 01 00
00 04 00
03 00 00
00 02 01

(c) Mutation II.

00 01 00
00 04 00
03 01 00
00 02 01

(d) Mutation III.

Figure 2: Four inputs as well as their corresponding binary

tree object via the generateNode method (ref. Fig. 1). The

changed bytes are highlighted in red.

it into a black-box approach where the feedback mechanism is
unable to guide the exploration meaningfully due to the havoc ef-
fect. Researchers have developed techniques that increase structure-
preservation when performing mutations on parametric generators:
In JQF [30], the EI backend reduces the destructiveness of mutations
by tracking in which generation context the bytes are used; BeDiv-
Fuzz [29] separates structure-preserving mutations from structure-
changing ones; and Zeugma [21] traces generator execution to
enable structure-preserving cross-over across distinct inputs.

We note that structure-aware grey-box fuzzing can be performed
without relying on generator functions. The leading alternatives are
grammar-based [12, 38, 40] or custom-mutator-based [9, 11] fuzzing,
which do not exhibit the havoc phenomenon, but are subject to
other trade-offs limiting their expressibility. However, quite para-
doxically, at least one set of researchers [38] found that grammar-
based grey-box fuzzing actually improves when occasionally using
an “aggressive mutation” strategy akin to the havoc effect we de-
scribed for parametric generators.

The main aim of this registered report is to investigate the para-
doxical nature of the havoc effect in generator-based fuzzing by
studying the properties of byte-level mutations, their effect on the

generated structured inputs, and the performance of generator-
based greybox fuzzing under mutation strategies more and less
prone to the havoc effect.

In preliminary experiments and investigations, we make three
important observations: (i) when using the default strategy of per-
forming random mutations on the underlying bytestream backing
parametric generators (as in Zest [31]), the changes to the struc-
tured inputs produced by the generator are bimodal—the mutations
either change the input very little or by a lot; (ii) the havoc effect
can be reduced with context-aware mutations strategies such as
JQF’s EI; (iii) the havoc effect only destroys the decoding for a suffix
of generator execution; therefore, the havoc effect should be benign
for programs that process their inputs linearly left-to-right, but
may detrimental to programs that pass over the input non-linearly,
or multiple times.

As future work, we propose to run a full evaluation that compares
the behavior of default parametric generators in Zest [31] with
the behavior of JQF’s EI, BeDivFuzz [29], and Zeugma [21]. First,
we propose to evaluate the characteristics of their mutation, in
particular: (1) the observed edit distances over structured inputs,
as well as (2) the preservation (or lack thereof) of semantic validity.
Second, we propose to evaluate the fuzzing coverage of these four
techniques in 24-hour fuzzing runs; and whether their ability to
cover program behaviors that go beyond a simple left-to-right pass
over the input differs. To address performance discrepancies due
to different fuzz framework instrumentation, we also propose a
normalized comparative evaluation between these frameworks.
Finally, we will evaluate the runtime impact of these techniques, as
adding additional context tracking may lead to runtime overhead
compared to regular parametric fuzzing.

The main contributions of this registered report are:

• A discussion of the havoc effect in parametric generators,
and of its paradoxical impact on saved inputs.
• Preliminary case studies showing that the havoc effect is
potentially detrimental to covering program behaviors that
go beyond simple a left-to-right pass over the input.
• Preliminary results that show that the havoc effect can be
attenuated by smarter mutation strategies.
• An evaluation plan to investigate the prevalence of, and
overall impact of, the havoc effect in other generator-based
fuzzing strategies (Zest, JQF’s EI, BeDivFuzz, and Zeguma).

The Havoc Paradox in Generator-Based Fuzzing (Registered Report) FUZZING ’24, September 16, 2024, Vienna, Austria

Algorithm 1: Stream-based NextByte method.
1 Function NextByte(bytestream 𝐵):
2 if HasNext(B) = false then

3 𝑏 ← RandomByte()

4 𝐵 ← 𝐵 ◦ 𝑏
5 return ReadNext(B)

The rest of this paper is structured as follows. Section 2 gives
background on the havoc effect, as well as the four generator-based
fuzzing strategies we intend to study. Section 3 presents a case
study demonstrating that the havoc effect can be detrimental to
covering some program behaviors. Section 4 shows the results of
our preliminary investigations into quantifying the havoc effect
via measurements of mutation distance. Section 5 discusses our
evaluation plan, and Section 6 discusses additional related work.

2 Background

We first detail the core technical background for the four techniques
we plan to compare: parametric generators, JQF’s EI, BeDivFuzz[29]
and Zeugma [21].

2.1 Parametric Generators

Parametric generators were introduced by Zest [31] in order to
combine Quickcheck [15]-style random generation functions with
AFL [1]-style mutation-based grey-box fuzzing. The key idea is to
take an off-the-shelf generation function, which queries an API
providing pseudo-random values to produce a structurally valid
input, and then run that generator with an explicitly provided byte-
stream that backs the “random” API. The byte-stream can then be
mutated and the generator replayed to get a new structurally valid
input.

The data structure Node depicted in Figure 1 is a simple example
of a structured input. Node has three fields: left, right, and data.
Figure 1c shows a Quickcheck-style [15] random generator for
Node. The values returned by the calls to random.getBoolean()
direct the control-flow through the generator; the values returned
by random.nextByte() affect the data flow. QuickCheck produces
test inputs simply by calling this generator.

This generator can be made parametric by “backing” the random
instance with a given bytestream 𝐵. This idea is implemented as
follows. The random.XYZ methods rely on calls to an internal func-
tion NextByte that produces pseudo-random bytes. For example,
random.getBoolean() calls NextByte once and returns a boolean
value based on whether the result is odd or even. Similarly, ran-
dom.nextInt() calls NextByte four times, with the bytes subse-
quently cast into a four-byte integer. In a regular random generator,
NextByte uses a source of non-determinism from the operating sys-
tem to generate the next pseudo-random byte value. In a parametric
generator, the implementation of NextByte is overridden to pro-
vide specific values instead. As detailed in Algorithm 1, NextByte
takes a bytestream 𝐵 as input. When invoked, it reads the next byte
from 𝐵 and returns. If 𝐵 is fully read, the algorithm generates a new
random byte and appends it to 𝐵 (Line 2). This bytestream-backing
of NextByte, along with the use of NextByte in all random.XYZ

methods, creates the mapping between bytestream and structured

input in parametric generators.
Figure 2 shows sample bytestreams and their corresponding

Node object for our running example. Each box represents a byte
in hexadecimal notation. The color of the box corresponds to the
location where the byte is consumed in Figure 1c.
Havoc Effect. The core idea behind the use of parametric gen-
erators is that mutations at the bytestream level are automatically
turned into mutations at the structured input level.

Sometimes, these mutations are small. In, Figure 2a fifth byte
04 creates a data value of 4 for the far-left leaf node of the tree. If
this fifth byte’s value is mutated from 04 to 01 , as in Figure 2b,
the structured input is mutated only slightly, with the far-left leaf
node taking on the data value 1 instead.

However, mutations can also be much more destructive. In Fig-
ure 2a, the first byte (01) of the byte stream is consumed by the
call to random.nextBoolean at Line 3 in Fig. 1c, to decide whether
or not to generate a left child for the root node. If this byte’s value is
mutated from 01 to 00 , as in Figure 2d, we see the generated tree
is drastically different from the one in Figure 2a, with a different
shape and two fewer nodes. This is because the mutation to the first
byte in the bytestream causes all other bytes in the bytestream to
be consumed at different locations in the generator, as illustrated by
the different colors in the bytestream on the left-hand-side of Fig-
ure 2d. Further, the last 6 bytes of the bytestream are not consumed
by the generator at all, resulting in the smaller-sized generated tree.

So, while the bytestreams in Figure 2a and Figure 2d are more
than 99% similar at the bit-level, the inputs produced by the genera-
tor are widely different. We call this tendency for small bytestream
mutations to yield large structured input mutations the havoc effect.

2.2 Localized Mutations in EI

The JQF framework [30] provides multiple “guidances” or algo-
rithms for driving parametric generators, including Zest (which
performs random point mutations on the byte-stream as described
above) as well as the structure-preserving ExecutionIndexing-
Guidance, which we refer to as simply EI in this paper.1

The mutation III in Figure 2d is highly destructive because the
mutation of the first byte causes all subsequent bytes to be consumed

at different locations in the generator. This occurs because NextByte
processes the bytestream linearly. To make byte-level mutations
less destructive, EI uses a representation of the bytestream that
associates the context in which each byte is consumed.

To represent context, EI uses execution indexing [22, 32, 42],
which links dynamic execution events across multiple traces [22,
32, 42] (e.g., in Figure 1c, uniquely identifying the “call to ran-
dom.nextByte() setting the data value for the right child of the
left child of the root node” across multiple execution paths through
the generator during the fuzzing campaign). In EI, each execution
index [(𝑙1, 𝑛1), ..., (𝑙𝑖 , 𝑛𝑖)] uniquely identifies a point in the execu-
tion trace as a list of tuples analogous to a call stack, where each
tuple (𝑙𝑖 , 𝑛𝑖) comprises the source location 𝑙𝑖 of a method call (i.e.,

1Although the EI implementation in the JQF repository first appears as far back as
2017, there is no published work explaining its logic; so, we provide an expanded
description in this paper and for subsequent evaluation use the latest version as of
release JQF-2.0 (May 2023).

FUZZING ’24, September 16, 2024, Vienna, Austria Ao Li, Madonna Huang, Caroline Lemieux, and Rohan Padhye

Table 1: EI-based byte sequence (left) and generated input

(right), using the same underlying bytestream as in Figure 2a.

The column “Execution Index” lists the context inwhich each

byte is consumed, the column “Data” lists the byte consumed

and the corresponding generator “choice”.

Execution Index Data
[(L3, 1)] 01 : T
[(L4, 1), (L3, 1)] 01 : T
[(L4, 2), (L3, 1)] 00 : F
[(L4, 2), (L6, 1)] 00 : F
[(L4, 2), (L9, 1)] 04 : 4
[(L4, 1), (L6, 1)] 00 : F

Execution Index Data
[(L4, 1), (L9, 1)] 03 : 3
[(L6, 1)] 01 : T
[(L7, 1), (L3, 1)] 00 : F
[(L7, 1), (L6, 1)] 00 : F
[(L7, 1), (L9, 1)] 02 : 2
[(L9, 1)] 01 : 1

the call site) and the count 𝑛𝑖 is an index of how many times 𝑙𝑖 has
been executed with the context [(𝑙1, 𝑛1), ..., (𝑙𝑖−1, 𝑛𝑖−1)].

EI, rather than storing the bytestream backing the pseudo-random
as a linear sequence (as in Alg. 1), instead stores the bytestream as
a map from execution indexes to the byte value consumed at that
execution index. Table 1 shows this map given the generator shown
in Figure 1c and seed input shown in Figure 2a. The first column
shows the execution indexes and the second column presents the
associated bytes and its interpreted value. Consider the first row in
this table—when the generator consumes the first byte to “choose
whether to generate a left child for the root node”, the corresponding
execution index is [(L3, 1)]. Here, L3 points to Line 3 in the gen-
erateNode method containing the call to random.nextBoolean(),
and 1 indicates this is the first encounter of this method invocation
with nothing else on the call stack. Similarly, the execution index
of the third byte (see the third row of Table 1) is [(L4, 2), (L3, 1)].
Here, (L4, 2) indicates that the call stack contains the second call to
generateNode at this stack level (i.e., the “left child of the left child
of the root node”), where as (L3, 1) indicates that in this context
we are considering the first call to nextBoolean() to determine
whether to generate another left child. Note that while these bytes
are consumed at the same static source code location (i.e., the call
to random.nextBoolean at Line 3), they have different dynamic ex-
ecution indexes, reflecting that their runtime consumption contexts

are distinct. In fact, execution indexes are unique within a single
program execution (i.e., for a single input generation in the fuzzing
loop), and so all 12 rows in Table 1 have distinct indexes.

EI then performs structured-input generation and mutation ac-
cording to the map-based representation 𝑀 . As shown in Algo-
rithm 2 (contrast withAlg. 1), NextByte does not read the bytestream
linearly. Instead, given the current execution index 𝑒𝑖 where a byte
is consumed, NextByte first checks if 𝑒𝑖 exists in the map𝑀 . If it
does, NextByte returns the bytes associated with this 𝑒𝑖; otherwise,
it returns a new random byte and updates𝑀 to record the byte con-
sumed. To mutate inputs, as in Mutate in Algorithm 2, EI chooses
a random 𝑒𝑖 in𝑀 and mutates the corresponding byte.

This representation enables localized mutations, as seen with
a 1-byte mutation in Table 1 that creates a new input in Table 2,
compared to the havoc mutation in Figure 2d. In Figure 2d, mutat-
ing the first byte of the bytestream—controlling whether the root
node should have a left child—caused the generated input to be
wildly different. In Table 2, mutating this first byte simply deleted

Algorithm 2: EI-based NextByte and Mutate methods.
1 Function NextByte(EI-based input𝑀):
2 𝑒𝑖 ← CurrentEI()

3 if 𝑒𝑖 ∈ 𝑀 then

4 𝑏 ← 𝑀⟦𝑒𝑖⟧
5 else

6 𝑏 ← RandomByte()

7 𝑀 [𝑒𝑖 ↦→ 𝑏]
8 end

9 return 𝑏

10 Procedure Mutate(EI-based input𝑀):
11 𝑒𝑖 ← RandomSelect(𝑀)
12 𝑀 [𝑒𝑖 ↦→ RandomByte()]
13 return𝑀

Table 2: EI-based byte sequence (left) and generated input

(right) after mutating the 1st byte of the input map depicted

in Table 1.

Execution Index Data
[(L3, 1)] 00 : F
[(L4, 1), (L3, 1)] 01
[(L4, 2), (L3, 1)] 00
[(L4, 2), (L6, 1)] 00
[(L4, 2), (L9, 1)] 04
[(L4, 1), (L6, 1)] 00

Execution Index Data
[(L4, 1), (L9, 1)] 03
[(L6, 1)] 01 : T
[(L7, 1), (L3, 1)] 00 : F
[(L7, 1), (L6, 1)] 00 : F
[(L7, 1), (L9, 1)] 02 : 2
[(L9, 1)] 01 : 1

the left child without changing the root node or the right child.
This is because EI’s NextByte, when, e.g., deciding to generate the
data of the root node, looks for the bytes consumed at the same

execution index in the original input, rather than consuming bytes
sequentially.

EI otherwise functions similarly to Zest (in terms of deciding
which inputs to save, etc.). We hypothesize that EI thus reduces the
occurrence of the havoc effect.

One potential limitation of EI is that constructing execution
indexes introduces additional overhead of instrumenting the gener-
ators, potentially slowing down the fuzzing process. Thus, while
EI offers more precise and localized mutations, one trade-off is the
increased computational cost.

2.3 Structure Preserving Mutations in

BeDivFuzz

Inspired by the parametric generators in Zest, BeDivFuzz is a
feedback-driven and generator-based fuzzer that encourages gen-
erating valid inputs with behavioral diversity [29]. In particular,
BeDivFuzz quantifies the behavioral diversity of input bymeasuring
the effective number of diversely covered branches after executing
this input [29]. Driven by this diversity feedback, BeDivFuzz adapts
its mutation strategies to generate new inputs.

There are two types of input mutations in BeDivFuzz in addition
to the default randommutations as in Zest. The structure-preserving
mutation allows the testing of a specific behavior of a program with

The Havoc Paradox in Generator-Based Fuzzing (Registered Report) FUZZING ’24, September 16, 2024, Vienna, Austria

generateNode

01

01

01gen:4

gen:4

01 gen:7

00 00 00 02

00 00 04

03

generateNode

00 01 00

generateNode

01

01

01gen:4 01 gen:7

00 00 00 0204

3

1

2

4

4

1

2

In
pu

t 1
 (F

ig
. 2

a)
In

pu
t 2

 (F
ig

. 2
d)

Ch
ild

gen:7

00 00 04

0

4

Figure 3: The parametric call tree for the input 1 (Fig. 2a)

and input 2 (Fig. 2d). Note that gen:X represents the method

call to generateNode at Line X (Fig. 1c). To perform linked-

crossover Zeugma slices based on method call boundaries

(e.g. the gen method) and creates a new input by replacing

the left child node from input 1 with the right child node

from input 2.

different variants of the same input structure [29]. The structure-
changing mutation focuses on exploring various program behaviors
that are only triggered if the input has a particular structure [29].

To achieve these two kinds of mutations, BeDivFuzz splits the
random choices in its parametric generator into structural and value
choices. Consider the input in Figure 2d as an example. The bytes 1–
4 are used to generate boolean values that decide the structure of the
binary tree. The bytes 5–6 are used to generate the integer values
in the nodes of the binary tree. In this case, bytes 1–4 are structural
choices and bytes 5-6 are value choices. BeDivFuzz requires these
choices to be explicitly separated by the generator developer. That
is, the blue and teal decision points in Figure 1 (Lines 3, 6) need to
labelled as structural choices, and the beige decision point (Line 9)
needs to be labelled as a value choice.

By separating the two types of decision points, and thus, of byte
parameters, BeDivFuzz allows for localized mutations to change
only the values that do not affect branch conditions while preserv-
ing the overall input structures. For the binary tree in Figure 2d,
such structure-preserving mutations will only mutate the bytes in
the beige cells while keeping the bytes in the blue and teal cells the
same. The resulting binary tree will still be a root node with a right
child, except that the values in these nodes might change.

2.4 Smart Crossover in Zeugma

Crossover is an effective technique to generate new input by com-
bining parts of multiple inputs together [1, 7, 12, 16, 20, 35]. Tra-
ditional crossover techniques, like slicing two inputs at random
locations, are ineffective for generated-based fuzzing as they fail
to preserve semantic information (e.g., slicing the bytes that gen-
erate the left child of the root node). Zeugma addresses this by

1 void checkLTR(Node n) {
2 if (n.left == null
3 && n.right == null) {
4 // Error path
5 }
6 }

1 void checkRTL(Node n) {
2 if (n.right == null
3 && n.left == null) {
4 // Error path
5 }
6 }

Figure 4: Code snippets that process input in left-ro-right

and in right-to-left-order, relative to the generation order in

Fig. 1.

proposing tree-structured slicing, which slices bytestreams based
on method call boundaries (e.g., generateNode in Figure 1) and
performs crossover using bytes consumed by the same method.

For each saved input, Zeugma generates a parametric call tree, de-
composing the bytestream into nodes based on method call bound-
aries. Figure 3 shows the parametric call trees for the inputs in Fig-
ure 2a and Figure 2d. In input 1, calling generateNode consumes
three bytes and makes two method calls: the call to generateNode
at Line 4 (abbreviated as gen:4) to generate the root node’s left
child, and the call gen:7 for the right child. For linked crossover,
Zeugma selects a node in the parent input’s call tree that consumes
multiple bytes, records the sequence, then finds a node in the sup-
plier input calling the same method and replaces the byte sequence
in the parent input with that from the supplier. For instance, gen:4
in input 1 consumes bytes 2-7 to produce the left child, while gen:7
in input 2 consumes bytes 3-5 for the right child. Zeugma can select
input 1 as the parent, replacing bytes 2-7 with bytes 3-5 from input
2, resulting in a new binary tree that swaps the left child in input 1
with the right child from input 2 (as shown in Figure 3).

While linked crossover effectively mutates bytestreams while
preserving high-level structure, relying solely on it in generator-
based fuzzing may limit the generation of interesting inputs. For
instance, removing the right child of the root node in the seed input
requires changing the 8th byte from 01 to 00, which linked crossover
cannot achieve as it only replaces slices. Therefore, Zeugma com-
bines structured linked crossover with existing random byte muta-
tion, as described in Section 2.1.

3 Consequences of the Havoc Effect

It is hard, based on intuition alone, to determine whether the havoc
effect is inherently good or bad for fuzzing performance. As afore-
mentioned, Gramatron [38] explicitly added aggressive mutation
strategies to improve the performance of grammar-based grey-
box fuzzing. Similarly, the standard best practice when running
AFL variants is to disable the deterministic mutation stage by de-
fault [24, 26]. So, in this section, we look at some instances where
the havoc effect could have a negative impact on the coverage
achieved.

First, consider the small checkLTR and checkRTL functions in
Figure 4, which accept as input a single Node, as generated by
Figure 1. While the functions are semantically identical, we expect
parametric generator-based fuzzing to havemore difficulty reaching
the error path in checkRTL than checkLTR. This is because the
generator in Figure 1 generates the input in a left-to-right order.

The input in Figure 2d, for instance, reaches Line 2 in checkLTR,
as it has no left child. To reach the error statement in checkLTR, we
need only a single mutation—e.g., to choose whether to generate

FUZZING ’24, September 16, 2024, Vienna, Austria Ao Li, Madonna Huang, Caroline Lemieux, and Rohan Padhye

the right child. This is because the left child is generated first, and
so a mutation after the left child is chosen to be not generated will
not affect the left child.

On the other hand, suppose the fuzzer first performs mutation II
shown in Figure 2c, which generates a tree whose root node has
no right child. This input reaches Line 2 in checkRTL. However,
any single mutation to the bytestream that affects the choice to
generate the left child would change how all the subsequent bytes
are interpreted, similarly to mutation III in Figure 2d. Thus, no
single-byte mutation allows the fuzzer to remove the left child,
which preserves the absence of the right child. We use EI and Zest to
analyze checkLTR and checkRTL, allowing each fuzzer one million
trials, repeated 1000 times. Both EI and Zest achieve a 100% error
path discovery rate for checkLTR, meaning they consistently trigger
the error path in all 1000 repetitions. For checkRTL, EI maintains
a 100% error path discovery rate, while Zest achieves this in only
79% of the repetitions.

The natural question is whether such input reading (e.g., reading
the input in non-generated order or reading the input multiple
times) behavior occurs in the wild. To investigate this, we ran some
preliminary experiments on the closure benchmark. Closure is a
Javascript compiler written in Java, used in the original benchmark
suite for Zest [31]. In particular, we ran both Zest [31] and JQF’s EI
on this benchmark. Examining several 24-hour runs, we saw JQF’s
EI had the ability to cover one particular code fragment, which Zest
did not.

This code fragment is illustrated in Figure 5. In particular, Fig-
ure 5 shows the process by which EI identifies an input covering
a branch in the closure compiler’s cost estimator for all our initial
experiments. This branch is not covered by Zest. A seed input (top
left) covers four statements within the costEstimator method. In
the seed input, the statement call(foo) is a method call with a
function pointer as an argument. This call triggers the cost esti-
mation path for the foo method. To estimate the execution cost
for foo, the estimator proceeds by iterating and analyzing the cost
of each statement enclosed in foo. Since the definition of foo in
the seed input includes a for statement, the seed input covers the
analyzeFor statement found within the costEstimator method.

We note that the generator used in these experiments generates
the JavaScript program in sequential order. Initially, it constructs
the foo method. Following this, it generates the call(foo) state-
ment. However, the costEstimator method processes the input in
reversed order. It interprets the statements contained within the
foo method if and only if the call(foo) expression exists.

To cover the analyzeIf statement from here, a mutated input
needs to add an if statement into the foomethod while keeping the
call(foo) statement. Let’s consider a scenario where both Zest
and EI successfully generate a mutation that introduces an if state-
ment after the for statement. Thanks to the structure-preserving
mutations provided by execution indexing, EI is able to insert this if
statement without disturbing the subsequent statements (top mid-
dle of Figure 5). Conversely, due to the havoc effect, this mutation in
Zest removes the call(foo) statement (bottom middle of Figure 5).
When the closure compiler is executed with these mutated inputs,
the one generated by EI successfully extends the coverage to include
the analyzeIf statement. In contrast, the Zest-generated input fails
to augment the coverage: the call(foo) statement has been turned

Table 3: Characteristics of our benchmark applications.

Benchmark Generator LOC Gen-LOC
Chocopy [33] Python 6K 397
Gson [5] Json 26K 89
Jackson [6] Json 49K 89
Closure Compiler [4] JavaScript 250K 250
Rhino Compiler [10] JavaScript 110K 250
Maven [28] XML 93K 136
Ant [2] XML 140k 136

into a return statement, so the code guarded by methodCallWith-
Function(input) is not executed.

This example motivates the value of reducing the havoc effect
in order to cover certain program behaviors. Thus, we propose
to examine whether different generator-based coverage-guided
fuzzing systems (Zest, EI, BeDivFuzz, Zeugma) demonstrate the
havoc effect, as well as whether this results in an overall positive
or negative effect on fuzzing performance on a broader benchmark
set.

4 Preliminary Results

The first goal of our preliminary evaluation is to investigate if
the havoc effect is present and measurable in Zest. We then also
investigate whether the structure-preservingmutations in EI indeed
reduce the havoc effect in parametric generators. Finally, we look at
some preliminary coverage measurements on our selected fuzzers.

Benchmarks. We selected 7 different benchmark programs with 4
different program generators used by prior research [31, 39]. Table 3
shows the detailed characteristics, including the benchmark name,
the generator used to generate input data, the lines of code of the
benchmark program, and the lines of code of the input generator.

4.1 Measuring the Havoc Effect in Zest

To understand how destructive the mutations are in Zest, we mea-
sure how different mutated inputs are from their parents. To evalu-
ate this, we choose to compute the normalized Levenshtein distance
between a mutated input and its parent. We call this mutation dis-

tance. When the mutant and its parent are the same, the normalized
mutation distance is 0. The greater the distance is, the more differ-
ent the mutant is from its parent. In our measurements, we noticed
a number of inputs with 0 mutation distance. We exclude these
mutants from our analysis as they are not mutants and could triv-
ially be filtered out by the fuzzer; we discuss this issue further in
Section 4.2.

Figure 6 compares the distribution of normalized mutation dis-
tances for all inputs generated by Zest (left, orange) and the inputs
saved to the fuzzing corpus (right, lavender). This allows us to
compare the distribution of all generator-produced inputs to those
inputs that are useful for the fuzzing process (i.e., the saved inputs).

We observe significant variations in the magnitude of mutation
distances across different benchmarks. However, benchmarks with
the same generator have similar distributions, underscoring the
impact of the generator’s implementation on the havoc effect.

For simple targets like gson and jackson, which parse JSON
strings into Java objects, the havoc effect appears to be beneficial,

The Havoc Paradox in Generator-Based Fuzzing (Registered Report) FUZZING ’24, September 16, 2024, Vienna, Austria

W/ Execution
Indexing Covers

Covers

Mutated Input Application CodeSeed Input

W/O Execution
Indexing

Covers

Havoc Effect

Figure 5: Case study of fuzzing the Closure Javascript compiler (written in Java). EI can find an input that covers the analyzeIf
statement, which requires introducing an if statement before the statement calling foo; this is hard for Zest to cover due to the

havoc effect which disrupts the suffix of the input containing the foo call whenever Zest manages to generate an if statement.

ant maven rhino closure chocopy gson jackson
Benchmark

0.00

0.25

0.50

0.75

1.00

M
ut

at
io

n
Di

st
an

ce
 (%

)

Zest-all Zest-saved

Figure 6: Mutation distance distributions for all inputs (left,

orange half) and saved inputs (right, lavender half) gener-

ated by Zest. A wider area means a higher frequency of that

mutation distance. The yellow line highlights the median

mutation distance, and the dotted lines are the quartiles.

as a higher frequency of saved inputs has large mutation distances.
Therefore, we do not expect structure-preserving mutations to im-
prove the fuzzing performance for these benchmarks significantly.

The mutation distance distribution of all inputs for ant and
maven, closely mirrors that of the saved inputs, suggesting that
parametric generators do a good job of generating mutants for these
benchmarks. Unlike the other benchmarks, we see no peak in the
Kernel Density Estimate (KDE) curves at high mutation distances,
suggesting the havoc effect is not as present for the XML generator
these benchmarks share. In addition, the mutation distance for all
inputs exhibits a denser cluster in the lower range, further sug-
gesting that structure-preserving mutations may not affect these
benchmarks.

For more complex targets such as rhino and closure, the fre-
quency curves for all inputs exhibit two distinct peaks—one at
extremely small mutation distances and another at large mutation
distances. This dual-peaked pattern shows that rhino and closure

ant
maven

rhino
closure

chocopy
gson

jackson

Benchmark

0.0
0.2
0.4
0.6
0.8
1.0

M
ut

at
io

n
Di

st
an

ce
 (%

)
Zest-all EI-all

Figure 7: Distribution of mutation distances for all inputs

generated by Zest and EI. EI generates inputs with small

mutation distances at higher frequencies for all benchmarks.

are affected by the havoc effect as the small byte-level mutations in
Zest result in many inputs with large mutation distances. For clo-
sure, the median mutation distance for saved inputs is significantly
lower than that for all inputs. The KDE curve for saved inputs in
closure exhibits a higher peak at smaller mutation distances, show-
ing a greater density of produced inputs with smaller mutations.
Thus, closure may benefit more the structure-preserving mutations.

4.2 Can We Reduce the Havoc Effect?

Is the havoc effect inherent to all generator-based greybox fuzzers,
or does it differ? We conduct a preliminary evaluation of this by
comparing the mutation distances of a Zest to EI, which should
suffer less from the havoc effect. In Figure 7, we plot the muta-
tion distance distribution for all inputs generated by Zest and EI.
Figure 7 shows that the median mutation distances for all inputs
generated by EI are much lower than Zest. This is in line with
our expectations, where EI can more effectively localize mutations.

FUZZING ’24, September 16, 2024, Vienna, Austria Ao Li, Madonna Huang, Caroline Lemieux, and Rohan Padhye

ant chocopy closure gson jackson maven rhino
Benchmark

0

10

20

30

Ze
ro

 M
ut

at
io

n
(%

) EI-all
Zest-all

Figure 8: Percentage of zeromutations (i.e., mutants identical

to parent) out of all generated inputs for EI and Zest.

Table 4: The average branch coverage and execution count

for each fuzzer (rounded to the nearest thousand) in applica-

tion classes for Closure across 20 fuzzing campaigns after 24

hours.

Zest EI Zeugma BDF(S) BDF(D)
Branch Coverage 24,203 24,252 24,990 23,809 23,574
Executions (×103) 5,542 5,555 10,413 4,687 5,009

Notably, for chocopy, gson, and jackson, the EI part of the violins
peak at the bottom, demonstrating a denser cluster of inputs with
small mutation distances. The inputs generated by EI for ant and
maven have a similarly high frequency of small mutation distances.
Though EI’s mutation distance distributions for rhino and closure
are bimodal, the KDE curves have a higher peak at the smaller
mutation distances. In contrast, the KDE curves for Zest do not
always reach the highest peak at the bottom and have multiple
modes across a wide range of mutation distances. Our findings
confirm that the EI-based approach indeed alleviates the destruc-
tiveness of mutations witnessed in stream-based approaches such
as Zest. More importantly, this finding is consistent across different
benchmarks and generators.
Zero Mutations. As aforementioned, an unexpected observation
gleaned during our preliminary evaluation was the frequent oc-
currence of inputs with 0 mutation distance. We refer to these
mutations where the mutated input is identical to the parent input
as the zero mutations. As discussed in Section 4.1, we removed zero
mutations from our earlier analysis: a duplicate input will never be
saved and should ideally be filtered out by the fuzzing algorithm.

Zero mutations occur when the fuzzer’s mutation to the input
bytestream does not change the generator-produced input, effec-
tively creating a duplicate input. For example, in Figure 2a, where
altering the first byte to either 00 or 02 results in identical binary
trees, because both mappings yield false in the generator (Line 3).
Figure 8 shows the frequency of zero mutations in inputs generated
by Zest and EI. We see that EI generates a much smaller proportion
of zero mutations than Zest. This should lead to better fuzzer effi-
ciency. In future work, we will also study the occurrence of zero
mutations in BeDivFuzz and Zeugma.

4.3 Preliminary Coverage Comparison

To assess the impact of destructive mutations on code coverage, we
selected four fuzzing techniques: Zest [31], EI, BeDivFuzz [29], and

Zeugma [21]. For BeDivFuzz, we consider two configurations used
by the prior research [21, 29]: BDF(S), which only includes structural
mutation, and BDF(D), which includes both structural mutation
and feedback of input structure novelty. Each technique was used
to fuzz Closure for 24 hours, repeated 20 times. Since Zeugma is
implemented in a different fuzzing framework, we also recorded
the number of total executions to understand potential alternative
causes for variations in branch coverage, such as differences in
fuzzing speed.

Table 4 shows the average branch coverage for each technique.
Although EI achieves higher average coverage than Zest, the Mann-
Whitney U test result shows no significant difference. BeDivFuzz
shows lower executions compared to Zest and EI, with significantly
lower branch coverage. Zeugma significantly outperforms Zest and
EI in branch coverage, but the number of executions achieved by
Zeugma is also significantly higher (almost 2×)—we posit that at
least some of the speed is due to engineering improvements, since
Zeugma is the only tool from the ones we studied that is not built
on top of JQF but instead implemented afresh from the ground up.
Thus, we are not certain whether Zeugma’s higher branch coverage
in a fixed time budget is attainable solely to the linked-crossover
technique or the difference in execution speed. We plan to conduct
further experiments to isolate and control for this difference.

5 Proposed Evaluation

Our proposed evaluation aims to answer the following questions:
RQ1: How destructive, in terms of edit distance, are the mutations
performed by our studied techniques?
RQ2: How much do the mutations performed by our studied tech-
niques preserve semantic validity?
RQ3: How does the achieved coverage of our studied techniques
compare, especially with longer timeouts?
RQ4: Do the more complex mutations of our studied techniques
incur runtime overhead?

In order to answer these questions, we will follow the following
experimental procedures.
Expanded evaluation with more targets and benchmarks.We
plan to broaden our evaluation to assess the impact of the havoc
effect in generator-based fuzzers on their performance. First, we
will measure the mutation distance for Zeugma and BeDivFuzz on
all targets listed in Table 3. Our initial evaluation indicates that EI
consistently mitigates the havoc effect across all benchmark appli-
cations. We aim to extend this analysis to Zeugma and BeDivFuzz
to determine if their structure-preserving mutations similarly re-
duce the havoc effect. We would also like to understand how zero
mutations manifest in Zeugma and BeDivFuzz.

Second, we would like to understand the impact of structure-
preserving mutations on semantic validity. A key advantage of
parametric generator-based fuzzing is its capability to generate
inputs towards semantic validity. In the proposed evaluation, we
would like to understand if the structure-preserving mutations
enhance the generation of semantically valid inputs. Following
prior work [31], we will use the semantic validity signals (e.g., type-
checking result in Chocopy) from each of the targets (Table 3) to
determine if a given input is deemed valid or not.

The Havoc Paradox in Generator-Based Fuzzing (Registered Report) FUZZING ’24, September 16, 2024, Vienna, Austria

Finally, we will extend our coverage measurement (ref. Sec-
tion 4.3) to all benchmarks. Our goal is to study the relationship
between the magnitude of the havoc effect and the branch coverage
across all benchmarks using all of the studied fuzzing tools.
Normalized comparative evaluation between frameworks.

One issue in our preliminary results is that different tools are built
on top of different fuzzing frameworks. For example, Zeugma uses
lighter instrumentation strategy, achieving higher fuzzing speed
compared to Zest, EI, and BeDivFuzz (which are implemented on
top of JQF, thus paying a performance penalty for the extensibil-
ity of the underlying framework). To ensure a fair comparison
of branch coverage without reimplementing all techniques in a
single framework, we propose a normalized comparative evalua-
tion. Specifically, we will compare the execution speeds of Zest
and Zeugma-without-linked-crossover (Zeugma-X in the original
paper [21]) to isolate the performance improvements introduced
by the Zeugma framework without introducing a new mutation
technique. The difference between these two configurations will
give us an adjustment factor to compensate for the difference in the
underlying instrumentation framework, which we will then apply
to artificially slow down Zeugma (by reducing its total running
time) when comparing with the JQF-based techniques for coverage
measurement. Note that while this slowing down Zeugma appears
“unfair”, recall that our goal is not to identify the best fuzzing tool
for a practitioner to use, but instead to study the nuances of the
havoc effect on coverage—the handicap should enable this study
without bias.

6 Additional Related Work

Grammar-based Input Generation. There is a rich body of work
focusing on grammar-based input generation for greybox fuzzing [9,
12, 13, 19, 37, 38, 43]. Gramartron translates context-free grammar
into a grammar automaton, simultaneously introducing havoc mu-
tations as a strategy to overcome the limitations of small-scale
mutations, which it argues can inefficiently consume a fuzzer’s
time by focusing on localized, minor changes [38]. However, the
effectiveness of such a mutation strategy has been questioned in
subsequent research [17], which suggests that havoc mutations may
not consistently yield improvements in generator-based coverage-
guided fuzzing. Our work builds on this discourse by being the first
to conduct a comprehensive analysis of the havoc effect within the
realm of generator-based fuzzing, aiming to understand how havoc
effect affects the performance of coverage-guided fuzzing.

Improve mutation precision. The pursuit of enhanced mutation
precision has led researchers to develop various techniques, pre-
dominantly in two areas: (1) leveraging input grammar to refine mu-
tation algorithms, exemplified by tools like DIE [34] and Tzer [25];
and (2) employing dynamic analysis to pinpoint bytes of interest for
mutation, as seen in approaches such as Confetti [23], GreyOne [18],
and Angora [14]. Specifically, DIE [34] enhances mutation effec-
tiveness by preserving “interesting” types and structures, which
focuses the search process. In a similar vein, Tzer [25] integrates
tensor-compiler-specific mutations—tailored for deep learning sys-
tems—with general-purpose mutation strategies to achieve a bal-
anced mix of exploration and exploitation. In contrast to these
domain-focused methods, the EI-based generator distinguishes

itself with its versatility. It is uniquely adaptable across various
generator-based fuzzers without relying on domain-specific knowl-
edge, thereby broadening its applicability.

7 Revision Requirements

In the next revision, we will address the issues raised by the re-
viewers. First, we will clearly state our expectations for the final
evaluation. Second, wewill add a comparison of the fuzzers based on
the number of executions in addition to time to our proposed eval-
uation and clarify the reason for running longer fuzzing campaigns.
Lastly, we will simplify Sections 2 and 3 to improve readability.

Acknowledgement

This material is based upon work supported by the National Sci-
ence Foundation (NSF) CCF-2120955, Defense Advanced Research
Projects Agency (DARPA), and Naval Information Warfare Center
Pacific (NIWC Pacific) under Contract NN66001-22-C-4027. Any
opinions, findings, conclusions, or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of NSF, DARPA, or NIWC Pacific.

References

[1] [n. d.]. American Fuzzy Lop. https://github.com/google/AFL. Accessed: 2021-08-
31.

[2] [n. d.]. Apache Ant is a Java-based build tool. https://github.com/apache/ant.
[3] [n. d.]. cargo-fuzz. https://github.com/rust-fuzz/cargo-fuzz. Accessed: 2023-05-

01.
[4] [n. d.]. Closure Compiler. https://developers.google.com/closure/compiler. Ac-

cessed: 2021-08-31.
[5] [n. d.]. GSON: A Java serialization/deserialization library to convert Java Objects

into JSON and back. https://github.com/google/gson.
[6] [n. d.]. Jackson Project Home @github. https://github.com/FasterXML/jackson.
[7] [n. d.]. libFuzzer – a library for coverage-guided fuzz testing. https://llvm.org/

docs/LibFuzzer.html. Accessed: 2021-08-31.
[8] [n. d.]. libFuzzer – How To Split A Fuzzer-Generated Input Into Several Parts.

https://github.com/google/fuzzing/blob/41d7725/docs/split-inputs.md. Accessed:
2021-08-31.

[9] [n. d.]. libprotobuf-mutator. https://github.com/google/libprotobuf-mutator.
Accessed: 2021-08-31.

[10] [n. d.]. Rhino: JavaScript in Java. https://github.com/mozilla/rhino.
[11] [n. d.]. Structure-Aware Fuzzing with libFuzzer. https://github.com/google/

fuzzing/blob/master/docs/structure-aware-fuzzing.md. Accessed: 2022-06-02.
[12] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars.. In NDSS.

[13] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. 2007. Polyglot: Auto-
matic Extraction of Protocol Message Format Using Dynamic Binary Analysis. In
Proceedings of the 14th ACM Conference on Computer and Communications Secu-

rity (Alexandria, Virginia, USA) (CCS ’07). Association for Computing Machinery,
New York, NY, USA, 317–329. https://doi.org/10.1145/1315245.1315286

[14] Peng Chen and Hao Chen. 2018. Angora: Efficient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711–725.

[15] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight Tool for
Random Testing of Haskell Programs. In Proceedings of the Fifth ACM SIGPLAN

International Conference on Functional Programming. Association for Computing
Machinery, New York, NY, USA, 268–279. https://doi.org/10.1145/351240.351266

[16] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++:
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on

Offensive Technologies (WOOT 20). USENIX Association.
[17] Andrea Fioraldi, Dominik Christian Maier, Dongjia Zhang, and Davide Balzarotti.

2022. LibAFL: A Framework to Build Modular and Reusable Fuzzers. In Pro-

ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications

Security (Los Angeles, CA, USA) (CCS ’22). Association for Computing Machinery,
New York, NY, USA, 1051–1065. https://doi.org/10.1145/3548606.3560602

[18] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, DongWu, and
Zuoning Chen. 2020. GREYONE: Data Flow Sensitive Fuzzing. In 29th {USENIX}
Security Symposium ({USENIX} Security 20). 2577–2594.

https://github.com/google/AFL
https://github.com/apache/ant
https://github.com/rust-fuzz/cargo-fuzz
https://developers.google.com/closure/compiler
https://github.com/google/gson
https://github.com/FasterXML/jackson
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://github.com/google/fuzzing/blob/41d7725/docs/split-inputs.md
https://github.com/google/libprotobuf-mutator
https://github.com/mozilla/rhino
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://doi.org/10.1145/1315245.1315286
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/3548606.3560602

FUZZING ’24, September 16, 2024, Vienna, Austria Ao Li, Madonna Huang, Caroline Lemieux, and Rohan Padhye

[19] Harrison Green and Thanassis Avgerinos. 2022. GraphFuzz: Library API
Fuzzing with Lifetime-Aware Dataflow Graphs. In Proceedings of the 44th In-

ternational Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 1070–1081.
https://doi.org/10.1145/3510003.3510228

[20] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code
Fragments. In 21st USENIX Security Symposium (USENIX Security 12). USENIX
Association, Bellevue, WA, 445–458. https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/holler

[21] Katherine Hough and Jonathan Bell. 2024. Crossover in Parametric Fuzzing. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering.
1–12.

[22] Pallavi Joshi, Chang-Seo Park, Koushik Sen, andMayur Naik. 2009. A Randomized
Dynamic Program Analysis Technique for Detecting Real Deadlocks. In Proceed-

ings of the 30th ACM SIGPLAN Conference on Programming Language Design and

Implementation (Dublin, Ireland) (PLDI ’09). Association for Computing Machin-
ery, New York, NY, USA, 110–120. https://doi.org/10.1145/1542476.1542489

[23] James Kukucka, Luís Pina, Paul Ammann, and Jonathan Bell. 2022. Confetti:
Amplifying concolic guidance for fuzzers. In Proceedings of the 44th International

Conference on Software Engineering. 438–450.
[24] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strategy

for increasing greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering. 475–485.
[25] Jiawei Liu, Yuxiang Wei, Sen Yang, Yinlin Deng, and Lingming Zhang. 2022.

Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation. Proc.
ACM Program. Lang. 6, OOPSLA1, Article 73 (apr 2022), 26 pages. https://doi.
org/10.1145/3527317

[26] JonathanMetzman, László Szekeres, Laurent Simon, Read Sprabery, and Abhishek
Arya. 2021. FuzzBench: An Open Fuzzer Benchmarking Platform and Service.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). Association for Computing Machinery, New York, NY,
USA, 1393–1403. https://doi.org/10.1145/3468264.3473932

[27] Charlie Miller, Zachary NJ Peterson, et al. 2007. Analysis of mutation and
generation-based fuzzing. Independent Security Evaluators, Tech. Rep 4 (2007).

[28] Frederic P Miller, Agnes F Vandome, and John McBrewster. 2010. Apache Maven.
Alpha Press.

[29] Hoang LamNguyen and Lars Grunske. 2022. BEDIVFUZZ: Integrating Behavioral
Diversity into Generator-based Fuzzing. In 2022 IEEE/ACM 44th International

Conference on Software Engineering (ICSE). 249–261. https://doi.org/10.1145/
3510003.3510182

[30] Rohan Padhye, Caroline Lemieux, and Koushik Sen. 2019. JQF: Coverage-Guided
Property-Based Testing in Java. In Proceedings of the 28th ACM SIGSOFT Inter-

national Symposium on Software Testing and Analysis (Beijing, China) (ISSTA
2019). Association for Computing Machinery, New York, NY, USA, 398–401.
https://doi.org/10.1145/3293882.3339002

[31] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. 2019. Semantic fuzzing with Zest. In Proceedings of the 28th ACM

SIGSOFT International Symposium on Software Testing and Analysis. 329–340.
[32] R. Padhye and K. Sen. 2017. Travioli: A Dynamic Analysis for Detecting Data-

Structure Traversals. In 2017 IEEE/ACM 39th International Conference on Software

Engineering (ICSE). 473–483. https://doi.org/10.1109/ICSE.2017.50

[33] Rohan Padhye, Koushik Sen, and Paul N. Hilfinger. 2019. ChocoPy: A Program-
ming Language for Compilers Courses. In Proceedings of the 2019 ACM SIGPLAN

Symposium on SPLASH-E (Athens, Greece) (SPLASH-E 2019). Association for
Computing Machinery, New York, NY, USA, 41–45. https://doi.org/10.1145/
3358711.3361627

[34] Soyeon Park, Wen Xu, Insu Yun, Daehee Jang, and Taesoo Kim. 2020. Fuzzing
JavaScript Engines with Aspect-preserving Mutation. In 2020 IEEE Symposium on

Security and Privacy (SP). 1629–1642. https://doi.org/10.1109/SP40000.2020.00067
[35] Van-Thuan Pham, Marcel Böhme, Andrew Edward Santosa, Alexandru Razvan

Caciulescu, and Abhik Roychoudhury. 2019. Smart greybox fuzzing. IEEE Trans-

actions on Software Engineering (2019).
[36] Sameer Reddy, Caroline Lemieux, Rohan Padhye, and Koushik Sen. 2020. Quickly

generating diverse valid test inputs with reinforcement learning. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering. 1410–1421.

[37] Sergej Schumilo, Cornelius Aschermann, Ali Abbasi, Simon Wör-ner, and
Thorsten Holz. 2021. Nyx: Greybox Hypervisor Fuzzing using Fast Snapshots and
Affine Types. In 30th USENIX Security Symposium (USENIX Security 21). USENIX
Association, 2597–2614. https://www.usenix.org/conference/usenixsecurity21/
presentation/schumilo

[38] Prashast Srivastava and Mathias Payer. 2021. Gramatron: Effective Grammar-
Aware Fuzzing. In Proceedings of the 30th ACM SIGSOFT International Symposium

on Software Testing and Analysis (Virtual, Denmark) (ISSTA 2021). Association for
Computing Machinery, New York, NY, USA, 244–256. https://doi.org/10.1145/
3460319.3464814

[39] Vasudev Vikram, Isabella Laybourn, Ao Li, Nicole Nair, Kelton OBrien, Rafaello
Sanna, and Rohan Padhye. 2023. Guiding Greybox Fuzzing with Mutation Testing.
In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Test-

ing and Analysis (, Seattle,WA, USA,) (ISSTA 2023). Association for ComputingMa-
chinery, New York, NY, USA, 929–941. https://doi.org/10.1145/3597926.3598107

[40] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: Grammar-
aware greybox fuzzing. In 2019 IEEE/ACM 41st International Conference on Soft-

ware Engineering (ICSE). IEEE, 724–735.
[41] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei Huang, Heming Cui, Lingming

Zhang, and Yuqun Zhang. 2022. One Fuzzing Strategy to Rule Them All. In Pro-

ceedings of the 44th International Conference on Software Engineering (Pittsburgh,
Pennsylvania) (ICSE ’22). Association for Computing Machinery, New York, NY,
USA, 1634–1645. https://doi.org/10.1145/3510003.3510174

[42] Bin Xin, William N. Sumner, and Xiangyu Zhang. 2008. Efficient Program
Execution Indexing. In Proceedings of the 29th ACM SIGPLAN Conference on

Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI
’08). Association for Computing Machinery, New York, NY, USA, 238–248.
https://doi.org/10.1145/1375581.1375611

[43] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Ding-
hao Wu. 2020. SQUIRREL: Testing Database Management Systems with Lan-
guage Validity and Coverage Feedback. In Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security (Virtual Event, USA)
(CCS ’20). Association for Computing Machinery, New York, NY, USA, 955–970.
https://doi.org/10.1145/3372297.3417260

Received 2024-06-21; accepted 2024-07-22

https://doi.org/10.1145/3510003.3510228
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/holler
https://doi.org/10.1145/1542476.1542489
https://doi.org/10.1145/3527317
https://doi.org/10.1145/3527317
https://doi.org/10.1145/3468264.3473932
https://doi.org/10.1145/3510003.3510182
https://doi.org/10.1145/3510003.3510182
https://doi.org/10.1145/3293882.3339002
https://doi.org/10.1109/ICSE.2017.50
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1145/3358711.3361627
https://doi.org/10.1109/SP40000.2020.00067
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://doi.org/10.1145/3460319.3464814
https://doi.org/10.1145/3460319.3464814
https://doi.org/10.1145/3597926.3598107
https://doi.org/10.1145/3510003.3510174
https://doi.org/10.1145/1375581.1375611
https://doi.org/10.1145/3372297.3417260

	Abstract
	1 Introduction
	2 Background
	2.1 Parametric Generators
	2.2 Localized Mutations in EI
	2.3 Structure Preserving Mutations in BeDivFuzz
	2.4 Smart Crossover in Zeugma

	3 Consequences of the Havoc Effect
	4 Preliminary Results
	4.1 Measuring the Havoc Effect in Zest
	4.2 Can We Reduce the Havoc Effect?
	4.3 Preliminary Coverage Comparison

	5 Proposed Evaluation
	6 Additional Related Work
	7 Revision Requirements
	References

