
Interprocedural Heap Analysis using
Access Graphs and Value Contexts

Dissertation

Submitted in partial fulfillment of the requirements
for the degree of

Master of Technology

by

Rohan Padhye

Roll No: 113050017

under the guidance of

Prof. Uday Khedker

a
Department of Computer Science and Engineering

Indian Institute of Technology Bombay

2013

Acknowledgement

I am extremely grateful to my advisor Prof. Uday Khedker for his invaluable guidance
and relentless support throughout the duration of my project. I would like to thank
Prof. Alan Mycroft from the University of Cambridge for providing interesting insights
into the abstractions and proofs presented in this dissertation. I would also like to
thank all the members of the GCC Resource Center at IIT Bombay for the regular
enlightening discussions that helped shape several portions of this work. Finally, I would
thank my parents for their continuous support and positive encouragement which strongly
motivated me to give my absolute best to this project.

Rohan Padhye
July 5, 2013

Approval Sheet

ii

Declaration

I declare that this written submission represents my ideas in my own words and where
others’ ideas or words have been included, I have adequately cited and referenced the orig-
inal sources. I also declare that I have adhered to all principles of academic honesty and
integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source
in my submission. I understand that any violation of the above will be cause for disci-
plinary action by the Institute and can also evoke penal action from the sources which
have thus not been properly cited or from whom proper permission has not been taken
when needed.

Rohan Padhye (Roll No: 113050017)
July 5, 2013

iii

Abstract

Emperical studies have shown that interprocedural heap liveness analysis can be used
to significantly improve garbage collection, thereby reducing memory consumption of
programs. The main difficulty in achieving this goal is the unbounded nature of the
heap, which makes it notoriously difficult to statically analyze using finite abstractions.
A recent technique known as heap reference analysis can discover sets of live access paths
using bounded access graphs, which can be used to nullify dead references or augment
the garbage collector for improved precision. However, this analysis requires information
about possibly aliased access paths for correctness.

Classical approaches to heap alias analysis provide sound but imprecise results, due
to extensive summarizations performed for keeping the representation finite. This impre-
cision introduces a large amount of redundant live access paths if used by the liveness
analysis directly, thereby diminishing the gains of liveness-based GC.

This project makes the following major contributions: (1) a liveness-driven heap ab-
straction is developed which is as expressible as required by the access graphs and thus
can be used to answer alias queries precisely, (2) a technique called “dynamic heap prun-
ing” is introduced, which uses the resulting access graphs to perform memory optimiza-
tions at run-time via a debugger API, (3) a generic interprocedural analysis framework
is implemented for Soot, which is a popular toolkit for Java program analysis and (4)
experimental results are provided for an instance of this framework that performs a flow
and context-sensitive points-to analysis to resolve virtual method invocations and con-
structs the call graph on-the-fly; the resulting call graphs have been found to be much
more precise than those that Soot provides by default.

iv

Contents

1 Introduction 1

2 Background and Motivation 4
2.1 Heap Liveness Analysis using Access Graphs 4
2.2 Need for Alias Analysis . 6
2.3 Issues in Interprocedural Analysis . 7

3 Abstract Heap Representations 8
3.1 Merging on Common Allocation Sites . 10
3.2 Distinguishing between Access Patterns 10

4 Liveness-Driven Heap Analysis 13
4.1 Accessor Relationship Graph . 13
4.2 Properties and Operations . 15
4.3 Data Flow Analysis . 18
4.4 Precision of Liveness Analysis . 20

5 Interprocedural Analysis using Value Contexts 22
5.1 Algorithm . 23
5.2 Example . 25

6 Implementation 28
6.1 Generic Access Graph Library . 28
6.2 Generic Interprocedural Analysis Framework 30
6.3 Dynamic Heap Pruning using the Java Debug Interface 31
6.4 Points-To Analysis for Call Graph Construction 33

7 Related Work 37

8 Conclusion & Future Work 39
8.1 Status of Implementation . 39
8.2 Shape Analysis using Access Graphs . 40

v

Chapter 1

Introduction

Heap-allocated storage is a common feature of almost every programming environment
used today. The characteristic feature of such dynamic memory is that allocation can be
done on-demand during program execution. This feature also results in a very important
problem for the run time system, that of memory mangement.

Some programming environments such as the C language leave memory management
entirely to the programmer, relying on explicit deallocation of heap-allocated objects
when no longer required. However, this can lead to memory leaks if a programmer does
not free memory that is no longer required and loses all pointers to such an object.
Many other environments such as the Java platform as well as most scripting languages
provide automatic garbage collection. Although the periodic collection cycles induce
a performance penalty, the programmer is relieved from worrying about the hassles of
memory management.

While there exist several strategies for garbage collection, almost all of them use the
concept of reachability to distinguish garbage from “live” objects [11]. In this definition,
an object is live if it is pointed-to by a local or global variable or a field of a live object.
That is, as long as a path of references exist from a named variable to a particular object,
it will not be garbage collected. However, this definition does not capture the true notion
of “liveness”, which is whether an object will be used in the future. Thus, unnecessary
memory is still held by the program if there are references to an object which is not
needed. The time between the last use of an object and the point at which it is freed is
known as GC drag time.

Static program analysis can potentially determine the set of live objects at a every
program point and use that information in the following ways:

1. Warn the author of a C-like program about possible memory leaks.

2. Insert null assignments to dead references in a Java-like program, potentially re-
ducing the GC drag time.

3. Augment a garbage collector to free all objects that will never be used in the future,
even if references exist to them.

1

Although it is undecidable in general to precisely predict the last use of an object, a
fixed-point data flow analysis can safely over-approximate the set of live objects, relying
on reachability-based garbage collection as a fall-back for those objects that are spuriously
marked live.

Emperical studies show that the precision of garbage collection will improve signif-
icantly from an interprocedural heap liveness analysis [9, 23], resulting in up to 39%
reduction in peak memory utilzation for some standard benchmarks. Unfortunately, ex-
isting liveness analysis algorithms work only for named variables (stack + globals), while
ignoring the heap or conservatively summarizing its liveness. The authors of [9] identify
the key problem to be able to determine perfect pointer aliases within the heap, which
this work tries to address. The difficulty with statically analyzing the heap arises due
to the unbounded nature of its size, resulting from recursive data structures. Any static
analysis that aims to discover properties of heap data must use a bounded approximation.

This project builds upon heap reference analysis [15], which is a backward data flow
analysis that computes the (potentially infinite) set of live access paths at each program
point by using bounded representations known as access graphs. References are nullified
where possible, thereby reducing drag time. This analysis requires may-alias information
for soundness, and must-alias information for improved precision. Although the original
paper describes how to use the alias information, it does not present an algorithm to
discover the aliases themselves.

In this project, we develop a technique for answering alias queries precisely by building
an abstract points-to graph of the heap in a forward data flow analysis. The proposed
approach is more precise than existing methods, in that the heap abstraction is designed
to be as expressive as required by the heap liveness analysis, while still maintaing a finite
bound. Thus, the two analyses are inter-dependent, similar to [14].

Another issue with performing precise heap liveness analysis is related to propagating
information across procedure calls. Emperical results have shown that for the liveness
analysis to be useful, it must incorporate inter-procedural program flow [9]. We have
developed a generic inter-procedural analysis framework for performing heap analyses in
Java using the concept of value contexts.

The main original contributions in this project are as follows:

1. A proposed liveness-driven heap abstraction for precise alias analysis, along with
data flow equations for the liveness-driven heap analysis.

2. A generic access graph library implemented in Java for use by any analysis based
on the bounded access graph representation.

3. A generic inter-procedural analysis framework using the concept of value contexts.

4. A technique for dynamically pruning heap references at run-time using the Java
Debug Interface.

5. An implementation of points-to analysis in Soot [25] using the inter-procedural
framework that builds context-sensitive call graphs on-the-fly (with experimental
results).

2

The rest of this dissertation is organized as follows: Chapter 2 gives a quick recap
of heap liveness analysis using access graphs and motivates the need for a precise alias
analysis as well as a context-sensitive inter-procedural analysis framework. Chapter 3 de-
tails the proposed liveness-driven abstract heap representation and develops the required
data flow analysis. Chapter 5 describes the concept of inter-procedural analysis using
value contexts with an algorithm and example. Chapter 6 enumerates the implemented
components of this project. Related work that is similar in approach or has similar goals
is outlined in Chapter 7. Chapter 8 concludes the dissertation along with remarks on the
current state of implementation and suggested future work.

3

Chapter 2

Background and Motivation

2.1 Heap Liveness Analysis using Access Graphs

The static analysis technique of [15] addresses the issue of heap liveness by looking not
at the liveness of individual objects, but of access paths. For example, if the access path
x → l → r is live at a program point, then the pointers x, x → l and x → l → r
are likely to be dereferenced in the future, and thus the objects pointed to by them are
live. However, as the number of live access paths at a program point can be potentially
infinite (due to the presence of loops or recursion), the analysis models liveness in the
form of access graphs. This bounded representation is equivalent to a pattern expressed
in a regular language, which encompasses a potentially infinite number of access paths.

Figure 2.1 (a) shows a program that traverses a binary tree. The while loop traverses
the left child nodes of the tree zero or more number of times starting at the root, after
which the right child node is dereferenced once and its data is printed. The live access
graph at the statement S2 is shown in Figure 2.1 (b). This graph expresses the fact that
the access pattern x (→ l)∗ → r will be dereferenced in the future1. If this information
can be communicated to a garbage collector, then it will mark only the objects accessible
by this access graph as live, while freeing the other nodes of the tree. This is shown in
Figure 2.1 (c). Notice that the amount of garbage collected at S2 is significantly more
than a traditional reachability-based strategy in which the whole tree will be retained in
memory as long as there exists a pointer to the root node.

Definition 1. An access graph is a connected directed graph which is either empty
(denoted by ε) or has a single root node (without in-edges) along with zero or more other
nodes having unique labels of the form ni where n is a field name and i is a program
point.

Definition 2. A live map L is a mapping of variables to their access graphs. Thus, the
access graph of variable x in L is given by L(x). In graphical representations, live maps
are shown by displaying only non-empty access graphs, whose root nodes are labelled by
the name of the variable to which the access graph belongs, as shown in Figure 2.1 (b).

1The suffixes in the labels of the access graph nodes are used to distinguish between accesses at
distinct program points, which helps in distinguishing loops from sequential accesses of the same field.

4

S1: x = root;

S2: while (x.val > M):

S3: x = x.l;

S4: x = x.r;

S5: print x.val;

S6: exit;

(a) A tree traversing program.

x l3 r4

(b) Access graph for x at S2.

rootx

1

2

4

8 9

5

10 11

3

6

12 13

7

14 15

(c) The binary tree in the heap at S2.
Filled nodes are live objects.

Figure 2.1: Example usage of heap liveness graphs. If garbage collection is performed at
statement S2, then all nodes not accessible by traversing the access graph can be deleted.

Definition 3. A node in an access graph is called an accessor. The notation x/ni is
used to uniquely identify the accessor node having label ni in the access graph of x. The
symbol x is overloaded to refer to the root node of the access graph of x.

Definition 4. The access pattern of an accessor node is the regular expression for the
language which starts with the name of its variable and is followed by a sequence of field
names that are accepted by a finite state automaton having the same nodes as its access
graph, with the root node as the start state, the accessor node as the final state and the
state transitions as the edges in the access graph labelled by the field name of their target
node. An access pattern is live if at least one object that is accessible along an access
path expressed by the pattern is live.

start
x l r

l

r

Figure 2.2: Finite state automaton for access pattern of x/r4 in access graph of Fig-
ure 2.1 (b). The pattern is the regular expression x (→ l)∗ → r.

If L is a live map at a program point, then the access patterns of each accessor in
L are considered live indicating that they will likely be dereferenced in the future. The
predicate liveL(α) is true if the access pattern α is live in L. Trivially, the predicate
liveL(x) is true if the graph of x is not empty. Note that the exact pattern α may not
correspond to any accessor node in L, but it may still be live if there exists a pattern
β of an accessor node which is live in L and α ∩ β 6= ∅ (i.e. there is an access path
common to both patterns). The notations predL(a) and succL(a) may be used to denote
the predecessors and successors of an accessor node a in the live map L respectively.

5

x = yS1

x.p = zS2

u = y.pS3

v = u.qS4

v.f()S5

v

u q4

y p3 q4

y p3 q4x

(a) Alias analysis is
not performed.

x = yS1

x.p = zS2

u = y.pS3

v = u.qS4

v.f()S5

v

u q4

y p3 q4

y p3 q4

z q4

x

(b) Alias analysis finds
x and y may-alias at S2.

x = yS1

x.p = zS2

u = y.pS3

v = u.qS4

v.f()S5

v

u q4

y p3 q4

y z q4x

(c) Alias analysis finds
x and y must-alias at S2.

Figure 2.3: Example depicting how may-alias information is needed for sound liveness
analysis, and how must-alias information can help improve precision.

2.2 Need for Alias Analysis

Observe the program in Figure 2.3 (a), and the results of a naive liveness analysis. At the
exit of statement S2, which contains the instruction x.p = z, the access path y → p→ q
is live. But x and z refer to the same object due to statement S1 and hence the statement
S2 is equivalent to y.p = z. Hence, due to the indirect transfer of live access paths, z
should be marked live at the entry to S2 and its accessor should be suffixed with the suffix
of y/p3. However, if alias analysis is not performed then this indirect transfer is not done
and z is not marked as live because the algorithm only considers the access graph of x
(which is empty at the exit of S2). A liveness-based garbage collector using the resulting
access graphs may free the object referenced by z, resulting in an exception when it is
dereferenced at S4 via u.

Assuming an alias analysis was performed which conservatively provided the infor-
mation that x and y may-alias (denoted x

may
= y), then the effect of implicit liveness can

be taken into account as seen in Figure 2.3 (b), where z → q is correctly marked live,
resulting in no exception at either statement S4 or S5. However, the analysis fails to mark
y → p as dead even though it is going to be implicitly reassigned at S2 without any prior
use. This spurious liveness is not unsafe, but reduces the gains of liveness-based GC.

Ideally, the alias analysis would determine that x must-alias y (denoted x
must
= y), and

that y → p → q need not remain live, as the KILL to x → p (→ ∗) in statement S2

implicitly also kills y → p (→ ∗). This is called a strong update. Figure 2.3 (c) shows the
more precise liveness access graphs, which would result in improved garbage collection.

6

2.3 Issues in Interprocedural Analysis

For any heap analysis to be effective, it must be performed in an inter-procedural manner.
This is because real-world programs often pass around pointers to heap-allocated objects
as arguments when calling a procedure, which can modify the objects in any way.

Several approaches to inter-procedural analysis can be found in the literature. These
are usually classified into context-sensitive and context-insensitive techniques. A context-
insensitive analysis does not distinguish between distinct calls to a procedure. This causes
the propagation of data flow values across interprocedurally invalid paths (i.e. paths in
which calls and returns may not match) resulting in a loss of precision. A context-sensitive
analysis restricts the propagation to valid paths and hence is more precise.

Two most general methods of precise flow and context-sensitive analysis are the Func-
tional approach and the Call Strings approach [24]. The functional approach constructs
summary flow functions for procedures by reducing compositions and meets of flow func-
tions of individual statements to a single flow function, which is used directly in call
statements. However, constructing summary flow functions may not be possible in gen-
eral. The tabulation method of the functional approach overcomes this restriction by
enumerating the functions as pairs of input-output data flow values for each procedure,
but requires a finite lattice. The call strings method remembers calling contexts in terms
of unfinished calls as call strings. However, it requires an exponentially large number
of call strings. The technique of value based termination of call string construction [13]
uses data flow values to restrict the combinatorial explosion of contexts and improves the
efficiency significantly without any loss of precision.

A popular approach to interprocedural analysis uses the concept of graph reachabil-
ity [19, 20], and is a special case of the functional approach. Formally, it requires flow
functions 2A 7→ 2A to distribute over the meet operation so that they can be decomposed
into meets of flow functions A 7→ A. Here A can be either a finite set D (for IFDS prob-
lems [19]) or a mapping D 7→ L (for IDE problems [20]) from a finite set D to a lattice
of values L. Intuitively, A represents a node in the graph and a function A 7→ A decides
the nature of the edge from the node representing the argument to the node representing
the result. Flow function composition then reduces to a transitive closure of the edges
resulting in paths in the graph. The advantage of this approach is the worst-case poly-
nomial bound on the termination of the algorithm. For example, in the case of IFDS
problems the worst-case complexity is O(ED3), where E is the number of edges in the
program super-graph and D is the size of the data flow domain.

However, many types of heap analyses such as points-to analysis and heap liveness
analysis have non-distributive flow functions. Hence, these problems cannot be encoded
as instances of the IFDS/IDE framework and solved via graph reachability. For example,
consider the statement x = y.n to be processed for points-to analysis. If we have points-
to edges y → o1 and o1.n→ o2 before the statement (where o1 and o2 are heap objects),
then it is not possible to correctly deduce that the edge x→ o2 should be generated after
the statement if we consider each input edge independently. The flow function for this
statement is a function of the points-to graph as a whole and cannot be decomposed into
independent functions of each edge and then merged to get a correct result.

7

Chapter 3

Abstract Heap Representations

The example given in the previous chapter required answering alias queries between two
variables. In general the alias analysis needed would not be so trivial. While performing
liveness analysis for a statement such as x.n = z, it is required to determine whether x is
aliased to objects accessible by the patterns of all accessor nodes having a node labelled
ni as their succecssor (where i can have any value). For every such alias that holds, the
suffix of the access graph after such a ni node is appended to the access graph of z as per
the algorithm in [15]. Thus, the requirement is an alias analysis which can answer alias
queries between access patterns of live accessor nodes.

One approach is to perform alias analysis by maintaining pairs (or equivalence classes)
of access graphs. However, this can generate large amounts of unnecessary alias informa-
tion which is not needed.

Another approach is to maintain a points-to graph of the heap at every program point.
A points-to graph can be queried for aliases between access patterns by determining if
there are any nodes reachable by both patterns.

Consider the program shown in Fig. 3.1 (a), which builds a linked list in a loop and
then uses its second element just before exiting. The snapshot of the heap at the exit of
statement S6 of the program is shown in Fig. 3.1 (b). The following observations can be
made about an ideal backwards liveness analysis:

1. Due to the use of the second element of the linked list at statement S9, the live
access graph at its entry is shown in Fig. 3.1 (c). This access graph also propogates
to the exit of S7 and S8.

2. At statement S7, a must-alias x due to the assignment made earlier at S5. Also,
x→ n is live after S7. Thus, a→ n is also implicitly live. Therefore, the variable y
should be marked live at the entry to S7, while x → n should be killed due to the
strong update. The expected access graphs are shown in Fig. 3.1 (d).

3. At statement S8, b is aliased to x → n, but since x → n → n is not live, the
variable z need not be marked live either. The expected access graphs are shown
in Fig. 3.1 (e). Note that z is not used anywhere else in the program either and
hence is a completely redundant object.

8

y = newS0

z = newS1

t = newS2

t.n = xS3

x = tS4

a = xS5

b = a.nS6

a.n = yS7 b.n = zS8

use x.nS9

exitS10

(a) Control-flow-graph of an example
program.

x · · ·n n n n

a b

y z

(b) Actual heap memory at the end of
statement S6.

x n9

(c) Liveness access graph at the entry
of S9 and exit of S7 & S8.

LV OUT7 = LV OUT8 = LV IN9.

x y,

(d) Expected value of LV IN7.

x n9

(e) Expected value of LV IN8.

Figure 3.1: Snapshot of a program that constructs an arbitrary sized linked list and then
uses its second element.

For the above steps to work correctly, an alias analysis would need to maintain a
points-to graph of the heap at every program point. However, the size of the heap is
unbounded due to recursive data structures such as the linked list in the example above.
Thus, the alias analysis needs to use a bounded representation called an abstract heap
which approximates the effect of all possible heaps at each program point. This is typically
done by aggregating the information about multiple objects into a “summary node”.

If, for any execution of the program, some two access paths can possibly point to
the same object, then the points-to graph must have at least one node that is accessible
by both these access paths to indicate a may-alias relationship. However, spurious may-
alias relationships between access paths that will never point to the same object for all
executions of the program result in a loss of precision. Similary, summarization of multiple
objects into one abstract heap node loses the ability to answer must-alias queries, which
is also a loss of precision.

The choice of how to map abstract heap nodes into concrete objects (i.e. which nodes
to merge and summarize) is a significant factor in the precision of the abstract heap
representation.

9

x S2 n

a b

y S0 z S1

(a) Traditional points-to analysis.
PTOUT6 = PTIN7 = PTIN8.

a x n9 y, ,

(b) Safe, but imprecise LV IN7 as (a, x)
considered may aliases.

b x n9 z, ,

(c) Safe, but imprecise LV IN8 as (b, x)
considered may aliases.

Figure 3.2: A points-to analysis that merges nodes based only on allocation sites is safe,
but suffers from imprecision.

3.1 Merging on Common Allocation Sites

A classical solution has been to merge objects allocated at the same site to a summary
node, by aggregating the in-edges and out-edges of its constituents [6]. The intuition is
that objects allocated at the same site undergo similar transformations and hence their
properties can be summarized.

Figure 3.2 shows how this technique is safe, in that aliases are preserved during merges,
but imprecise, as new aliases which are not present in the original program are formed
while summarizing nodes.

Look at the representation shown in Fig. 3.2 (a), which is the points-to graph at the
exit of S6 and thus also at the entry of S7 and S8. As all objects in the linked list were
allocated at site S2, they are summarized into one node in the points-to graph, shown
with a double border. The objects pointed to by y and z are not summarized, and are
represented with a single border and labelled with allocation sites.

This representation preserves the alias pair a
may
= x, but spuriously creates the alias

pair b
may
= x. Note that both these aliases are may-aliases because they stem from

summary nodes, which makes it difficult to guarantee if the alias holds for all objects
summarized by this node. The spurious alias pair b

may
= x causes an unnecessary live

variable z at the start of S8, as shown in Fig. 3.2 (c). Further, because the summarization
destroys the guarantee that x must-alias a, statement S7 is a weak update and x→ n is
not killed, as shown in Fig. 3.2 (b).

The creation of unnecessary may-aliases out of no-aliases and must-aliases reduces the
precision of liveness analysis, which in turn diminishes the gains of liveness-based GC.

3.2 Distinguishing between Access Patterns

The key idea in our proposed approach is to improve the precision of points-to graphs
summarized on allocation sites by distinguishing between objects that can be reached by
distinct sets of live access patterns. Consider, for example, that the previous naive alias
analysis was used to generate the live acccess graphs, which at the exit of S6 are equal
to the union of Figures 3.2 (b) and (c). The following observations can be made about

10

x S2 S2 S2

x, a x/n9, b −

n n
n

a b

y S0

y

z S1

z

(a) Improved points-to analysis.
PTOUT6 = PTIN7 = PTIN8.

x y,

(b) Precise LV IN7 as (a, x) must alias.

x n9

(c) Precise LV IN8 as (b, x) do not alias.

Figure 3.3: The improved points-to analysis distinguishes between live access patterns,
thus answering alias queries precisely.

the heap at that point, which is shown in Fig. 3.1 (b):

1. The first element of the list is accessible by the live access expressions x and a.

2. The second element of the list is accessible by the live access expressions b and
x→ n.

3. The remaining objects of the list are not accessible by any live access expression.

4. The objects pointed to by y and z are accessible by the expressions y and z, re-
spectively.

In our abstraction, nodes allocated at a particular site are merged only if they are
accessible by the same set of access patterns. Thus, the third and subsequent elements
of the linked list are merged into a summary node, while the other objects remain dis-
tinguished because they have unique access expressions. The resulting points-to graph
can be seen in Figure 3.3 (a). Every node is additionally annoted below by the accessors
whose access patterns reach it1.

Such a representation allows precise answering of alias queries - we can now say
that a must alias x and b definitely does not alias x. If we use this information to
compute liveness access graphs again, then their precision can be improved. Figure 3.3 (b)
shows the precise liveness graphs at S7, in which x → n was killed due to a must-alias
strong update, while Figure 3.3 (c) shows the precise access graphs at S8, where z is not
unnecessarily marked live because the variables x and b are known not to alias. These
graphs are identical to the expectations shown previously in Figures 3.1 (d) and (e).

The advantage of this method is that the object z, which is found not to be live
anywhere in the program, can be garbage collected very early even though there is a
pointer to it. Similarly, if the left branch is taken (i.e. S7), then the second and subsequent
elements of the linked list can be freed, or if the right branch is taken (i.e. S9), then the
third element onwards can be freed along with the object pointed to by y.

1We use “accessors” and “access patterns” interchangibly when distinguishing nodes in this represen-
tation. This is allowed because if two nodes have equal sets of accessors, they must also have equal sets
of access patterns.

11

Thus, our proposed approach is superior in terms of precision for alias analysis, be-
cause our abstract heap graphs are as expressible as required by the live access patterns,
but finite at the same time. The points-to analysis depends on liveness access graphs,
while accurate liveness analysis depends on alias information derived from the points-to
graph. Thus, these analyses are inter-dependent.

Our approach is to perform alternate rounds of points-to analysis and liveness analysis
similar to [14]. However, while the liveness-based pointer-analysis of [14] starts with an
empty set of points-to relationships and progressively increases it as live variables are dis-
covered, our approach works in the other direction; we start with a conservative classical
alias analysis and progressively refine it using liveness graphs to improve precision. The
following steps are to be performed:

1. Initialize the liveness information to the empty map at every program point.

2. Perform a forward points-to analysis on the heap, constraining the growth of recur-
sive data structures by using the proposed abstract heap representation that merges
nodes allocated at the same site only if they have the same set of accessors2.

3. Perform a backward liveness analysis on the heap using access graphs. The abstract
heap constructed in the previous step can be used to answer alias-related queries
for statements such as x.p = z.

4. Repeat from step 2 until some stopping criteria is satisfied.

Note that with the current formulation it is necessary to perform the forward points-to
and backward liveness analyses in distinct consecutive phases (each pair of phases is called
a round). Interleaving the two does not generate useful results because a change in the
liveness access graph needs to be propogated all the way up to the point of construction
of a data structure so that it starts out as a precise representation; merely updating the
points-to graphs of the local region cannot “open up” already summarized nodes.

An important point of discussion is when to terminate the alternate forward and back-
ward phases. As mentioned earlier, unlike the rounds of liveness-based pointer analysis
[14] which needs to reach a fixed point to get a correct result, our method ensures sound
results for the points-to heap graph at every round – the refinement is purely for im-
proving precision. Intuitively, the most precise results possible with this method seem to
result when a fixed point is reached (that is, neither the liveness nor points-to information
changes). However, we shall show in Section 4.4 that when considering only may-aliases,
two rounds are sufficient to get the most precise result possible with this method.

We next formalize our proposed abstract heap representation which is called an ac-
cessor relationship graph because it indicates the connections between objects reachable
by some set of accessors.

2The classical allocation-site based summarization [6] is a special case of our approach when no
liveness information is available.

12

Chapter 4

Liveness-Driven Heap Analysis

4.1 Accessor Relationship Graph

Let:

• V be the set of root variables (stack + globals).

• F be the set of possible field names.

• S be the set of statements in the program being analyzed.

• M ⊆ S be the set of statements at which memory allocations occur.

• R ⊆ S be the set of statements at which a reference field of an object is accessed.

• A ⊆ V ∪ (V × F ×R) be the set of possible nodes in the access graphs. Each node
is of the form x or x/ni where x ∈ V, n ∈ F, i ∈ R. Thus, |A| = |V |+ |V | × |R|. 1

• H ⊆ M × 2A be the set of possible nodes in the proposed abstract heap graph.
Each node has an allocation site and a set of accessors which can be accessed by
the functions alloc : H →M and accessors : H → 2A respectively.

Definition 5. An accessor relationship graph (ARG) is a triple 〈Ev, Ef , summary〉,
where:

• Ev ⊆ V ×H is a set of edges representing root variable references.

• Ef ⊆ H × F ×H is a set of edges representing object field references.

• summary : H → {true, false} specifies whether a node represents a summary of
multiple objects instead of a single unique location.

1As we consider a maximum of only one field access of the form y = x.n in a given statement, the
maximum number of nodes of the form ni in an access graph of x is only |R| and not |F | × |R|.

13

Program Concrete Heap

0: do {

1: t = new Node();

2: t.n = x;

3: x = t;

4: } while (...);

x S1 S1 S1 S1 S1 · · ·n n n n n

(a) A linked-list constructing program and the concrete heap at the end of the loop.
No. Program Access Graph Abstract Heap Graph

1. 5: EXIT - x S1 n
-

2.
5: use x;

6: EXIT
x x S1 S1

n
n

x -

3.

5: x = x.n;

6: x = x.n;

7: use x;

8: EXIT

x n5 n6 x S1 S1 S1 S1
n n n

n
x x/n5 x/n6 -

4.

5: while(...) {

6: x = x.n;

7: x = x.n;

8: }

9: use x;

10: EXIT

x n6 n7 x S1 S1 S1
n

n

nx x/n6 x/n7

5.

5: if(...)

6: x = x.n;

7: else do {

8: x = x.n;

9: } while(...);

10: use x;

11: EXIT

x n6

n8

x S1 S1 S1
n n

n
x x/n6

x/n8

x/n8

6.

5: do {

6: x = x.n;

7: } while(...);

8: x = x.n;

9: use x;

10: EXIT

x n6 n8

x S1 S1 S1
n n

n
x x/n6 x/n6

x/n8

(b) Accessor relationship graphs for various endings to the program.

Figure 4.1: Examples showing how different access graphs for a linked list result in
different abstract heap graphs.

14

x = x.nS5

n8n6n5x x S1 S1 S1 S1
n n n

n
x x/n5 x/n6 x/n8

n8n6x x S1 S1 S1 S1
n n n

n
x x/n5

x
x/n6 x/n8

Figure 4.2: An example demonstrating normalization of an ARG.

Figure 4.1 (a) shows a program that constructs a linked list, whose elements are
allocated at statement S1. The real heap is shown in the second column.

Figure 4.1 (b) demonstrates various accessor relationship graphs for six different end-
ings to the program. In each example, the second column is the program from statement
S5 onwards, the third column is the live access graph at S5, and the fourth column shows
the ARG computed from a pass after liveness analysis, at program point S5. Node labels
indicate allocation sites. Accessors are listed below the node. Summary nodes are marked
with a double border.

In the first three examples, the liveness access graphs correspond to only one object
per accessor, and thus these are distinguished while the rest of the list (no accessors) are
merged to a summary node.

In the fourth example, the acesssor x/n6 has a pattern x→ n (→ n→ n)∗ while the
accessor x/n7 has the pattern x → n → n (→ n → n)∗. Thus, they represent accesses
of every alternate node. The ARG shows exactly such a structure, where both the even
offset and odd offset objects are summarized.

In the fifth example, the second node of the linked list is accessible by both the pattern
of x/n6 and x/n8. The rest of the list is accessible only by x/n8. The ARG provides
exactly this information: all nodes from the second onwards are accessible by the pattern
of x/n8, while only the second by the pattern of x/n6.

The last example is somewhat non-intuitive, as the structure of the access graph does
not visually resemble that of the accessor relationship graph like it did in the previous
examples. However, the information it represents is correct, in that the pattern of x/n6

(which is x→ n (→ n)∗) reaches the second and subsequent nodes of the linked list, while
the pattern of x/n8: (which is x → n → n (→ n)∗) reaches the third and subsequent
nodes of the list.

We now define some properties of the accessor relationship graph and its nodes which
will be useful in data flow analysis.

4.2 Properties and Operations

During data flow analysis, the statements in a basic block may cause modifications in
the edges of the abstract heap graph. Objects that were previously accessible by some
set of access patterns will now be accessible by some other set of patterns. Hence, the

15

accessor relationship graphs will become inconsistent. Thus, nodes in the graph must be
substituted with the nodes having the correct set of accessors to maintain consistency.
Also, the deletion of some edges may result in some nodes being unreachable from any
root variables. The redundant edges between unreachable nodes should be removed in
order to maintain a compact representation.

For example, in Figure 4.2, the effect of statement S5 removes the edge from x to the
head of the list, and adds an edge from x to the second element of the list. Now, the
annotations are inconsistent because the first node is not accessible by the expression x,
and the second node is not accessible by x/n5, but instead by the expression x. Further,
because there is no path of edges from a root variable to the head of the list, it is an
unreachable node, and hence can be removed (shown in the figure using dotted lines).

Another case where inconsistencies may arise is on a branch-node in the CFG, where
points-to information is directly propogated from the branched node to its successors,
but the liveness access graphs at the successor may be different. Hence, we subject both
node and edge flow functions to a normalization function that ensures consistency and
reachability. The properties and operations are formally defined below.

Reachability

Definition 6. A node k is said to be reachable within an accessor relationship graph
X = 〈Ev, Ef , summary〉 if it is referenced by a root variable, or a field reference of a
reachable node. Thus the reachability predicate ρX(k) is defined as:

ρX(k)⇔ (∃x∈V : 〈x, k〉 ∈ Ev) ∨ (∃h∈H : 〈h, ∗, k〉 ∈ Ef ∧ ρX(h))

Consistency

Definition 7. An accessor relationship graph X = 〈Ev, Ef , summary〉 is consistent
with respect to a live map L if every node is accessible by each of its accessors’ access
patterns. Thus, the following must hold true:

• ∀k∈H ∀x∈V (x ∈ accessors(k))⇔ 〈x, k〉 ∈ Ev ∧ liveL(x)

• ∀k∈H ∀x∈V ∀n∈F (x/ni ∈ accessors(k))⇔
∃a∈A ∃h∈H (a ∈ predL(x/ni) ∧ 〈h, n, k〉 ∈ Ef ∧ a ∈ accessors(h))

Normalization

Definition 8. An accessor relationship graph is normalized with respect to a live map
L if it is consistent with respect to L and all its edges are between reachable nodes only.

Definition 9. The pattern mapping function πX,L : H → 2A for a heap graph X =
〈Ev, Ef , summary〉 and live map L gives the new set of accessors for each node of X to
maintain consistency with L:

πX,L(k) ={x | liveL(x) ∧ 〈x, k〉 ∈ Ev)} ∪
{x/ni | a ∈ predL(x/ni) ∧ 〈h, n, k〉 ∈ Ef ∧ a ∈ πX,L(h)}

16

Definition 10. The node substitution function σX,L : H → H is a mapping of heap
graph nodes of X to nodes with same allocation site and consistent access patterns with
respect to L:

σX,L(k) = k′ ⇔ (alloc(k) = alloc(k′) ∧ πX,L(k) = accessors(k′))

Definition 11. Given an accessor relationship graph X = 〈Ev, Ef , summary〉 and a
live map L, the normalization function is defined as Θ(X,L) = Y , where Y =
〈E ′v, E ′f , summary′〉 such that:

• E ′v = {〈x, k′〉 | 〈x, k〉 ∈ Ev ∧ ρX(k) ∧ k′ = σX,L(k)}

• E ′f = {〈h′, n, k′〉 | 〈h, n, k〉 ∈ Ev ∧ ρX(h) ∧ ρX(k) ∧ h′ = σX,L(h) ∧ k′ = σX,L(k)}

• summary′(m) =

{
true ∃h, k : h 6= k ∧ σX,L(h) = σX,L(k) = m

summary(m) otherwise

Theorem 1. If X = 〈Ev, Ef , summary〉 is an accessor relationship graph and L is a live
map, then Θ(X,L) = Y is an accessor relationship graph that is normalized with respect
to L.

Proof. As each node in the heap graph Y is the result of the substitution function σ,
its accessors are given by the pattern mapping function π, which, by definition, ensures
satisfaction of the consistency condition. Also, the normalization function only accepts
the subset of edges whose nodes are reachable, satisfying the reachability condition. Thus,
Y is normalized with respect to L by Definition 8.

Querying for Aliases

The accessor relationship graph representation makes it very easy to determine aliases
between live access patterns (i.e accessor nodes). Simply put, the patterns of two accessors
α and β are may-aliased if there exists a reachable node which is accessible by both α
and β. The condition for must-alias is much stricter, in that every node that is accessible
by α must be accessible by β and vice versa, and none of these nodes must be a summary
node.

• may aliasX(α, β)⇔ ∃k ∈ reachable(X) : {α, β} ⊆ accessors(k)

• must aliasX(α, β)⇔ ∀k ∈ reachable(X) :
(α ∈ accessors(k)⇒ (β ∈ accessors(k) ∧ ¬summary(k)))∧
(β ∈ accessors(k)⇒ (α ∈ accessors(k) ∧ ¬summary(k)))

17

x S1 S1
n

x x/n6

y S2

y

(a) X1

x S1 S1
n

n
x x/n6

y
S2

y

S3

y

(b) X2

x S1 S1
n

n
x x/n6

y S3

y

(c) X3

Figure 4.3: Three heap graphs such that X2 @ X1, X2 @ X3 and also X2 = X1 uX3.

4.3 Data Flow Analysis

Lattice Representation

We now define a partial order on the set of accessor relationship graphs and a meet
operation for determining the greatest lower bound. Intuitively, if one heap graph is a
subset of another, then the second graph includes all may-aliases of the first plus some
more, while some must-aliases in the first graph might be may-aliases in the second graph,
and hence the second is weaker (less precise).

Definition 12. Given two accessor relationship graphs X = 〈Ev, Ef , summary〉 and
Y = 〈E ′v, E ′f , summary′〉, they are partially ordered X w Y , if and only if:

• Ev ⊆ E ′v

• Ef ⊆ E ′f

• ∀k ∈ H : summary(k)⇒ summary′(k)

Thus, X is more precise than Y . Conversely, Y is said to be more general than (an
approximation of) X, denoted Y v X.

For example see Figure 4.3 in which X2 is strictly weaker than X1 because it has
extra edges (from x/n6 to itself, and from y to the object allocated at S3), and because
a non-summary node in X1 is summarized in X2.

We now define a meet operation which determines the greatest lower bound of two
accessor relationship graphs (i.e. given X and Y , the meet is the strongest Z such that
X v Z and Y v Z).

Definition 13. Given two accessor relationship graphs X = 〈Ev, Ef , summary〉 and Y =
〈E ′v, E ′f , summary′〉, the meet operation isX u Y = Z, where Z = 〈E ′′v , E ′′f , summary′′〉
such that:

• E ′′v = Ev ∪ E ′v

• E ′′f = Ef ∪ E ′f

• ∀k ∈ H : summary′′(k) = summary(k) ∨ summary′(k)

18

Stmt ModSet GENn KILLn

x = null Ev ∅ {〈x, k〉 | 〈x, k〉 ∈ Ev}
x = new Ev {〈x, k〉 | k = 〈n, {x}〉} {〈x, k〉 | 〈x, k〉 ∈ Ev}
x = y Ev {〈x, k〉 | 〈y, k〉 ∈ Ev} {〈x, k〉 | 〈x, k〉 ∈ Ev}
x = y.q Ev {〈x, k〉 | 〈y, h〉 ∈ Ev, 〈h, q, k〉 ∈ Ef} {〈x, k〉 | 〈x, k〉 ∈ Ev}

x.q = y Ef {〈h, q, k〉 | 〈x, h〉 ∈ Ev, 〈y, k〉 ∈ Ev}
{〈h, q, k〉 | ∀g 6= h : 〈x, g〉 6∈ Ev,
〈x, h〉 ∈ Ev, summary(h) = false}

Table 4.1: Flow functions for the liveness-driven heap analysis

For example see Figure 4.3 in which X2 is the meet of X1 and X3 because it is an
aggregation of the constituent edges, and a node (S1, x/n6) is summarized because it was
a summary in one of the operands, i.e. X3. Also, the variable y which pointed to a unique
object in the operands, now points to either of the two objects in the meet.

It is easy to see that the partial order is reflexive, antisymmetric and transitive, while
the meet operation is idempotent, commutative and associative. Also, the lattice is
bounded in that:

• > = 〈∅, ∅, λk.false〉

• ⊥ = 〈V ×H, H × F ×H, λk.true〉

Also, as the sets V , H and F are finite, the lattice satisfies the descending chain
condition.

Data Flow Equations

For each control-flow graph node n, the data flow equations for the forward points-to
analysis pass are:

PTINn = u
p∈pred(b)

Θ(PTOUTp, LV INb)

PTOUTn = Θ(fn(PTINn), LV OUTb)

Notice that the function Θ(X,L) is applied on the accessor relationship graph of
every predecessor before performing the meet operation (in case the liveness information
is different along the CFG edges) at PTINn, and also at PTOUTn after the statement-
specific flow function fn (in case the statment caused modifications to the edges of the
accessor relationship graph).

For a given accessor relationship graph X = 〈Ev, Ef , summary〉 the flow functions
are defined as:

fn(X) =

{
〈(Ev −KILLn) ∪GENn, Ef , summary〉 if ModSet = Ev,

〈Ev, (Ef −KILLn) ∪GENn, summary〉 if ModSet = Ef

19

Where the GEN and KILL sets for different types of statements are described in
Table 4.1. ModSet determines whether the set of root-variable edges or object-field
edges are modified. The convergence of data flow analysis follows from the compositional
monotonicity of statement flow functions with the normalization function.

Thus we have now defined an abstract heap representation that is capable of distin-
guishing between objects accessible by different access patterns, and developed a lattice-
based data flow analysis which captures the points-to information of heap objects using
this representation. The next section addresses the issue of how many rounds of alter-
nate liveness and points-to analysis to perform in order to get the most precise liveness
solution.

4.4 Precision of Liveness Analysis

In the following discussion we use S to refer to the set of all statements in the program
(also known as program points) and AP to refer to the (infinite) set of all access paths
that can be constructed by the variables and fields used in the program being analyzed.

Definition 14. Let L̂ be the result of liveness analysis, which can be defined as a function
of the form S × AP → {true, false}. That is, L̂ determines if an arbitrary access path
is live at a given program point. The actual function L̂ can be derived from the access
graphs resulting from heap reference analysis.

Definition 15. Let P̂ be the result of points-to analysis, which can be defined as a
function of the form S × AP × AP → {true, false}. That is, P̂ determines if a pair of
access paths may be aliased at a given program point. The actual function P̂ can be
derived from the accessor relationship graphs resulting from heap points-to analysis.

Definition 16. Heap liveness analysis (HLA) can formally be defined as a function which
takes the results of a points-to analysis (for answering alias queries) and returns the results
of liveness analysis. Hence, we get HLA : P̂ → L̂.

Definition 17. Liveness-driven heap points-to analysis (PTA) can be formally defined
as a function which takes the results of liveness analysis (for normalizing the accessor
relationship graphs) and returns the results of the points-to analysis. Hence, we get
PTA : L̂→ P̂ .

Now, we are in a position to formally specify the system of alternate liveness and
points-to analysis. The analysis is specified by the following equations:

L̂0 = λsλa.false (4.1)

∀i ≥ 0 : P̂i = PTA(L̂i) (4.2)

∀i ≥ 0 : L̂i+1 = HLA(P̂i) (4.3)

The above equations indicate that the first round of analysis is a points-to analysis
which uses no liveness information (L̂0). After this, each round of liveness analysis and

20

points-to analysis uses the results of the previous round of points-to analysis and liveness
analysis respectively.

Hence, we get a sequence of results L̂0P̂0L̂1P̂1L̂2P̂2L̂3 · · · . Of these, L̂0 is not sound as
it is the initial assumption but all other results are sound as they are the results of sound
data flow analysis. The question we would like to answer in this section is : How many
rounds need to be performed to get a precise liveness result? In order to define precision
we first need to define an ordering between results of analysis.

Definition 18. L̂i ⊆ L̂j iff ∀s ∈ S,∀a ∈ AP : L̂i(s, a) ⇒ L̂j(s, a). That is, if an access

path is live at a given point in L̂i, then it must be live at the same point in L̂j. Thus, L̂i

is as or more precise than L̂j as it contains equal or fewer live access paths respectively.

Definition 19. P̂i ⊆ P̂j iff ∀s ∈ S,∀a ∈ AP, ∀b ∈ AP : P̂i(s, a, b)⇒ P̂j(s, a, b). That is,

if a pair of access paths may alias at a given point in P̂i, then they are also may-aliased
at the same point in P̂j. Thus, P̂i is as or more precise than P̂j as it contains equal or
fewer aliased access paths respectively.

In order to reason about the relative precision of different rounds we need to state
two lemmas. These lemmas are stated without proof but they are intuitive and should
be easy to accept.

Lemma 1. ∀i, j ≥ 0 : L̂i ⊆ L̂j ⇒ P̂i ⊇ P̂j

Lemma 2. ∀i, j ≥ 0 : P̂i ⊆ P̂j ⇒ L̂i+1 ⊆ L̂j+1

Lemma 1 suggests that the availability of less liveness information results in imprecise
results of alias analysis. This is easy to see because the liveness-driven heap abstraction
(also known as accessor relationship graph) distinguishes abstract heap nodes with dis-
tinct sets of accessors. Hence, more the number of live access patterns, lesser is the
summarization in the abstract heap and thus fewer spurious aliases will be created.

Lemma 2 suggests that a more precise alias analyis results in more precise liveness
analysis. This is very easy to see as the number of access graph nodes indirectly generated
by a strong update statement of the form x.n = z is directly proportional to the number
of accessor nodes aliased with x.

Theorem 2. The results of the second round of heap liveness analysis is the most precise
result which is also sound. That is, ∀k > 0 : L̂2 ⊆ L̂k.

Proof.

Equation 4.1 and Definition 18 ⇒ ∀k ≥ 0 : L̂0 ⊆ L̂k (4.4)

Equation 4.4 and Lemma 1 ⇒ ∀k ≥ 0 : P̂0 ⊇ P̂k (4.5)

Equation 4.5 and Lemma 2 ⇒ ∀k ≥ 0 : L̂1 ⊇ L̂k+1 (4.6)

Equation 4.6 and Lemma 1 ⇒ ∀k ≥ 0 : P̂1 ⊆ P̂k+1 (4.7)

Equation 4.7 and Lemma 2 ⇒ ∀k ≥ 0 : L̂2 ⊆ L̂k+2 (4.8)

Equation 4.6 and 4.8 ⇒ ∀k > 0 : L̂2 ⊆ L̂k (4.9)

21

Chapter 5

Interprocedural Analysis using Value
Contexts

For performing the proposed heap analysis in an interprocedural manner, we adapt the
functional approach by combining the classical tabulation method [24] and the technique
of value-based termination of call strings [13]. Both approaches revolve around the same
key idea: if two or more calls to a procedure p have the same the data flow value (say x)
at the entry of p, then all of them will have an identical data flow value (say y) at the exit
of p. The tabulation method uses this idea to enumerate flow functions in terms of pairs
of input-output values (x, y) whereas the modified call strings method uses it to partition
call strings based on input values, reducing the number of call strings significantly. In
each case a procedure needs to be analyzed only once1 for an input value x.

The two methods lead to an important conclusion: Using data flow values as contexts
of analysis can avoid re-analysis of procedure bodies. We make this idea explicit by
defining a value context X = 〈method, entryValue〉, where entryValue is the data flow value
at the entry to a procedure method. Additionally, we define a mapping exitValue(X) which
gives the data flow value at the exit of method. As data flow analysis is an iterative
process, this mapping may change over time (although it will follow a descending chain
in the lattice). The new value is propagated to all callers of method if and when this
mapping changes. With this arrangement, intraprocedural analysis can be performed
for each value context independently, handling flow functions in the usual way; only
procedure calls need special treatment.

Although the number of value contexts created per procedure is theoretically pro-
portional to the size of the lattice in the worst-case, we have found that in practice the
number of distinct data flow values reaching each procedure is often very small. This is
especially true for heap-based analyses that use bounded abstractions, due to the locality
of references in recursive paths.

1In some cases in which the mapping changes, the modified call strings method can avoid re-analysis
of the entire procedure.

22

5.1 Algorithm

Figure 5.1 provides the overall algorithm for performing interprocedural analysis using
value contexts. Line 1 declares three globals: a set of contexts that have been created,
a transition table mapping a context and call site of a caller method to a target context
at the called method and a work-list of context-parametrized control-flow graph nodes
whose flow function has to be processed.

The procedure initContext (lines 2-11) initializes a new context with a given
method and entry value. The exit value is initialized to the > element. IN/OUT values at
all nodes in the method body are also initialized to >, with the exception of the method’s
entry node, whose IN value is initialized to the context’s entry value. All nodes of this
context are added to the work-list.

The doAnalysis procedure (lines 12-51) first creates a value context for the main

method with some boundary information (BI). Then, data flow analysis is performed
using the traditional work-list method, but distinguishing between nodes of different
contexts.

A node is removed from the work-list and its IN value is set to the meet of the OUT
values of its predecessors (lines 16-21). For nodes without a method call, the OUT value
is computed using the normal flow function (line 37). For call nodes, parameter passing is
handled by a call-entry flow function that takes as input the IN value at the node, and the
result of which is used as the entry value at the callee context (lines 24-26). The transition
from caller context and call-site to callee context is also recorded (line 27). If a context
with the target method and computed entry value has not been previously created, then
it is initialized now (line 34). Otherwise, the exit value of the target context is used as
the input to a call-exit flow function, to handle returned values. A separate call-local
flow function takes as input the IN value at the call node, and propagates information
about local variables. The results of these two functions are merged into the OUT value
of the call node (lines 29-32).

Once a node is processed, its successors are added to the work-list if its OUT value
has changed in this iteration (lines 39-43). If the node is the exit of its procedure (lines
44-49), then the exit value of its context is set and all its callers are re-added to the
work-list.

The termination of the algorithm follows from the monotonicity of flow functions and
the finiteness of the lattice (which bounds the descending chain as well as the number of
value contexts).

This algorithm assumed single entry/exit nodes per procedure as well as single targets
at method calls. However, it can easily be extended to handle multiple entry/exit points
per procedure as well as virtual method calls by merging data flow values across these
multiple paths. It can also be easily adapted for backward data flow analyses.

23

1: global contexts, transitions, worklist
2: procedure initContext(X)
3: add(contexts,X)
4: Set exitValue(X)← >
5: Let m← method(X)
6: for all nodes n in the body of m do
7: add(worklist, 〈X,n〉)
8: Set in(X,n)← > and out(X,n)← >
9: end for

10: Set in(X,entryNode(m))← entryValue(X)
11: end procedure
12: procedure doAnalysis
13: initContext(〈main, BI〉)
14: while worklist is not empty do
15: Let 〈X,n〉 ← removeNext(worklist)
16: if n is not the entry node then
17: Set in(X,n)← >
18: for all predecessors p of n do
19: Set in(X,n)← in(X,n) u out(X, p)
20: end for
21: end if
22: Let a← in(X,n)
23: if n contains a method call then
24: Let m← targetMethod(n)
25: Let x← callEntryFlowFunction(X,m, n, a)
26: Let X ′ ← 〈m,x〉 . x is the entry value at m
27: Add an edge 〈X,n〉 → X ′ to transitions
28: if X ′ ∈ contexts then
29: Let y ← exitValue(X ′)
30: Let b1 ← callExitFlowFunction(X,m, n, y)
31: Let b2 ← callLocalFlowFunction(X,n, a)
32: Set out(X,n)← b1 u b2
33: else
34: initContext(X ′)
35: end if
36: else
37: Set out(X,n) ← normalFlowFunction(X,n, a)
38: end if
39: if out(X,n) has changed then
40: for all successors s of n do
41: add(worklist, 〈X, s〉)
42: end for
43: end if
44: if n is the exit node then
45: Set exitValue(X)← out(X,n)
46: for all edges 〈X ′, c〉 → X in transitions do
47: add(worklist, 〈X ′, c〉)
48: end for
49: end if
50: end while
51: end procedure

Figure 5.1: Algorithm for performing inter-procedural analysis using value contexts.

24

main()

p = 5n1

q = f(p, -3)c1

r = g(-q)c4

exitn6

f(a, b)

if (...)n2

c = a * bn3 c = g(10)c2

n4

return cn5

g(u)

v = f(-u, u)c3

return vn6

〈X0,>〉

〈X0, p+〉

〈X0, p+q−〉

〈X0, p+q−r−〉

〈X1, a+b−〉
〈X3, a−b+〉

〈X1, a+b−〉
〈X3, a−b+〉

〈X1, a+b−〉
〈X3, a−b+〉

〈X1, a+b−c−〉
〈X3, a−b+c−〉

〈X1, a+b−c−〉
〈X3, a−b+c−〉

〈X1, a+b−c−〉
〈X3, a−b+c−〉

〈X2, u+〉

〈X2, u+v−〉

Figure 5.2: An example of interprocedural sign analysis using value contexts on a program
with mutually recursive procedures. The control-flow graphs are annotated with context-
sensitive data flow values.

5.2 Example

Consider the program in Figure 5.2, for which we wish to perform a simplified sign
analysis, to determine whether a scalar local variable is negative, positive or zero. The
call from main to f at c1 will only return when the mutual recursion of f and g terminates,
which happens along the program path n2n3n4n5. Notice that the arguments to f at call-
site c3 are always of opposite signs, causing the value of variable c to be negative after
every execution of n3 in this context. Thus, f and hence g always returns a negative
value.

>

− 0 +

⊥

Figure 5.3: Lattice of data flow values for sign analysis.

To compute this result using the algorithm described above, we use data flow values
that are elements of the lattice in Figure 5.3, where > indicates an uninitialized variable
and ⊥ is the conservative assumption. We use superscripts to map variables to a sign or
⊥, and omit uninitialized variables.

At the start of the program no variables are initialized and hence the analysis starts
with the initial value context X0 = 〈main,>〉. For work-list removal, we will use lexico-
graphical ordering of contexts (newer first) before nodes (reverse post-order).

The flow function of 〈X0, n1〉 is processed first, which makes p positive (written as p+).
The next node picked from the work-list is c1, whose call-entry flow function passes one
positive and one negative argument to parameters a and b of procedure f respectively.

25

Context Proc. Entry Exit

X0 main > p+q−r−

X1 f a+b− a+b−c−

X2 g u+ u+v−

X3 f a−b+ a−b+c−

(a) Value contexts with entry/exit values

X0 X1 X2 X3

c1 c2 c3

c2c4

(b) Context-transition diagram

Figure 5.4: Resulting value contexts and their transitions for the sign analysis example.

Thus, a new value context X1 = 〈f, a+b−〉 is created and the transition 〈X0, c1〉 → X1 is
recorded.

Analysis proceeds by processing 〈X1, n2〉 and then 〈X1, c2〉, which creates a new value
context X2 = 〈g, u+〉 due to the positive argument. The transition (X1, c2) → X2 is
recorded. When 〈X2, c3〉 is processed, the arguments to f are found to be negative
and positive respectively, creating a new value context X3 = 〈f, a−b+〉 and a transition
(X2, c3)→ X3.

The work-list now picks nodes of context X3, and when 〈X3, c2〉 is processed, the
entry value at g is u+, for which a value context already exists – namely X2. The
transition 〈X3, c2〉 → X2 is recorded. The exit value of X2 is at the moment > because
its exit node has not been processed. Hence, the call-exit flow function determines the
returned value to be uninitialzed and the OUT of 〈X3, c2〉 gets the value a−b+. The
next node to be processed is 〈X3, n3〉, whose flow function computes the sign of c to be
negative as it is the product of a negative and positive value. The IN value at 〈X3, n4〉
is (a−b+c− u a−b+) = a−b+c−. Thus, the sign of the returned variable c is found to be
negative. As n4 is the exit node of procedure f, the callers of X3 are looked up in the
transition table and added to the work-list.

The only caller 〈X2, c3〉 is now re-processed, this time resulting in a hit for an existing
target context X3. The exit value of X3 being a−b+c−, the returned variable v gets a
negative sign, which propagates to the exit node n6. The callers of X2, namely 〈X1, c2〉
and 〈X3, c2〉, are re-added to the work-list.
〈X3, c2〉 is processed next, and this time the correct exit value of target context X2,

which is u+v−, is used and the OUT of 〈X3, c2〉 is set to a−b+c−. When its successor
〈X3, n4〉 is subsequently processed, the OUT value does not change and hence no more
nodes of X3 are added to the work-list. Analysis continues with nodes of X1 on the work-
list, such as 〈X1, c2〉 and 〈X1, n3〉. The sign of c is determined to be negative and this
propagates to the end of the procedure. When exit node 〈X1, n5〉 is processed, the caller
of X1, namely 〈X0, c1〉, is re-added to the work-list. Now, when this node is processed, q
is found to be negative.

Value-based contexts are not only useful in terminating the analysis of recursive pro-
cedures, as shown above, but also as a simple cache table for distinct call sites. For
example, when 〈X0, c4〉 is processed, the positive argument results in a hit for X2, and
thus its exit value is simply re-used to determine that r is negative.

Figure 5.4 shows the resulting value contexts for the program and the transitions

26

between contexts at call-sites.
A context-insensitive analysis would have merged signs of a and b across all calls to f

and would have resulted in a ⊥ value for the signs of c, v, q and r. Our context-sensitive
method ensures a precise data flow solution even in the presence of recursion.

Notice that the flow function for n3 is non-distributive since fn3(a
+b−)u fn3(a

−b+) =
a+b−c− u a−b+c− = a⊥b⊥c− but fn3(a

+b− u a−b+) = fn3(a
⊥b⊥) = a⊥b⊥c⊥. Hence this

problem does not fit in the IFDS/IDE framework, but such flow functions do not pose a
problem to our algorithm.

Another advantage of using value contexts as opposed to the classical tabulation
method [24] or the modified call-strings method using value-based termination [13] is
that it is very easy to implement the alternate system of liveness and points-to analysis
that is proposed in this project for heap data and which is described in [14] for C-like
pointers. The trick is to use a pre-generated call graph (with functions as nodes and call-
sites as edges) as input for the first round of analysis, and to use the context-transition
graph of the preceeding round (with value contexts as nodes and call-sites as edges) as
input to the subsequent rounds. That is, the latter rounds will perform analysis on value-
context bodies instead of method bodies. Effectively, the latter rounds will be analyzing
a program where each method of the original program is cloned for every distinct data
flow value of the previous round that reaches it. This is equivalent to using the tabulation
or modified call-strings method by augmenting the data flow values to include a unique
reference to a context of the preceeding round.

27

Chapter 6

Implementation

With the goal of implementing a complete liveness-based GC solution, several components
have been implemented in this project, namely:

1. A generic access graph library in Java for use by any access graph-based analysis
such as heap reference analysis [15] or the liveness-driven heap points-to analysis
proposed earlier.

2. A generic inter-procedural analysis framework using the concept of value contexts
which can be used for any data flow analysis in Java.

3. A novel approach to using access graphs generated by an analysis called dynamic
heap pruning which uses the Java Debug Interface.

4. A Soot-based points-to analysis using the inter-procedural framework that builds
precise context-sensitive call graphs on-the-fly.

6.1 Generic Access Graph Library

Access graphs were originally introduced in [15] and briefly described in Chapter 2. Access
graphs are principally used as data flow values in the backward liveness analysis. Access
graphs are also used by our proposed liveness-driven heap points-to analysis, and they
may even be useful in the context of shape analysis as will be discussed in Chapter 8.
Hence, the first step toward implementation is a generic access graph library that can be
used by any client analysis.

The access graph library has been implemented in Java and uses generic types so
that it can be used with any analysis toolkit or intermediate representation. The core
classes are shown in Figure 6.1. The generic types are V for variable, F for field and S

for statement. To put this in perspective, a Soot-based implementation would use the
concrete types soot.Local, soot.SootField and soot.Unit respectively.

As the figure shows, the central class is AccessGraph which contains nothing more
than a collection of edges stored as a map from an access graph node to a set of target

28

AccessGraph<V,F,S>

edges : Map<AccessNode<F,S>,Set<AccessNode<F,S>>>

+ addEdge(AccessNode<F,S> from, AccessNode<F,S> to) : AccessGraph<V,F,S>
+ removeEdge(AccessNode<F,S> from, AccessNode<F,S> to) : AccessGraph<V,F,S>
+ removeEdges(AccessNode<F,S> from, F field) : AccessGraph<V,F,S>
+ appendTo(AccessNode<F,S> appendNode, AccessGraph<V,F,S> suffix) : AccessGraph<V,F,S>
+ suffixOf(AccessNode<F,S> start) : AccessGraph<V,F,S>
+ suffixOf(AccessNode<F,S> start, F field) : AccessGraph<V,F,S>
+ union(AccessGraph<V,F,S> other) : AccessGraph<V,F,S>
+ getNodesWithField(F field) : List<AccessNode<F,S>>
+ getSuccs(AccessNode<F,S> n) : Set<AccessNode<F,S>>

AccessNode<F,S>

field :F
stmt : S
+ ROOT : AccessNode

+ getField() : F
+ getStmt() : S

AccessGraphMap<V,F,S>

map : Map<V,AccessGraph<V,F,S>>

+ gen(V v) : void
+ gen(V v, AccessNode<F,S> a) : void
+ kill(V v) : void
+ kill(V v, F f) : void
+ assign(V lhs, V rhs) : void
+ getField(V lhs, V rhs, F field, S stmt) : void
+ setField(V lhs, F field, V rhs, Set<AccessPattern<V,F,S>> aliases) : void
+ union(AccessGraphMap<V,F,S> other)

AccessPattern<V,F,S>

variable : V
accessNode : AccessNode<F,S>
accessGraphMap : AccessGraphMap<V,F,S>

+ getVariable() : V
+ getAccessNode() : AccessNode<F,S>
+ getAccessGraphMap() : AccessGraphMap<V,F,S>

Figure 6.1: Class diagram of the generic access graph library.

nodes. Each access graph node is a pair containing a field and a statement suffix which
is encapuslated by the class AccessNode. The AccessGraphMap class stores a map from
variables to access graphs, and represents a live map used in data flow analysis. The
AccessPattern class is used to uniquely refer to an access graph node of a variable in
a given live map which, theoretically, can be used to deduce the finite automata and
regular expression called the access pattern. In the implementation however, we simply
use this triple of variable, access graph node and access graph map instead of actually
building the automaton.

Objects of class AccessGraph are immutable. Hence, every operation on it (such as
adding or removing edges or appending a suffix to a particular node) results in a new
access graph. This design decision was taken so that multiple live maps can refer to the
same object if the access graph of a variable is the same in both the maps. Since this
is a very common case (as flow functions change access graphs of only one variable at a
time), the immutable design helps improve performance.

On the other hand, objects of class AccessGraphMap are mutable in that operations
such as gen and kill modify the map itself. This design decision was taken because data
flow frameworks such as Soot and VASCO (described in the next section) typically assume
mutable objects as data flow values. Flow functions often perform multiple operations
on data flow values (such as removing a suffix of one access graph and appending it to
another) and hence using immutable structures here would waste a lot of time in object
allocation and garbage collection. Thus, users of the access graph library should take
care to understand these concepts before using the classes.

29

Context<M,N,A>

+ getMethod(): M
+ getEntryValue() : A
+ getExitValue() : A
+ getValueBefore(N) : A
+ getValueAfter(N) : A

InterProceduralAnalysis<M,N,A>

+ topValue() : A
+ boundaryValue(M) : A
+ copy(A) : A
+ meet(A,A) : A
+ normalFlowFunction(Context<M,N,A>, N, A) : A
+ callEntryFlowFunction(Context<M,N,A>, M, N, A) : A
+ callExitFlowFunction(Context<M,N,A>, M, N, A) : A
+ callLocalFlowFunction(Context<M,N,A>, N, A) : A
+ programRepresentation() : ProgramRepresentation<M,N>
+ doAnalysis() : void
+ getContexts() : Map<M,List<Context<M,N,A>>>
+ getMeetOverPathsSolution() : DataFlowSolution<M,N,A>

ForwardInterProceduralAnalysis<M,N,A>

+ doAnalysis() : void

BackwardInterProceduralAnalysis<M,N,A>

+ doAnalysis() : void

ProgramRepresentation<M,N>

+ getEntryPoints() : List<M>
+ getControlFlowGraph(M) : DirectedGraph<N>
+ isCall(N) : boolean
+ resolveTargets(M, N) : List<M>

Figure 6.2: Class diagram of VASCO - the generic interprocedural analysis framework.

6.2 Generic Interprocedural Analysis Framework

Our platform of choice for implementing this project was Soot [25], which is a popular
framework for analyzing Java programs. Although Soot traditionally lacked an inter-
procedural analysis framework, a recent effort by Bodden [5] has allowed integration with
a graph-reachability solver called HEROS. Unforunately, as described in Section 2.3, heap
analyses do not fit into the IFDS/IDE framework due to the presence of non-distributive
flow functions.

Hence, we decided to build our own framework using the concept of value contexts
as described in Chapter 5. This approach allows (1) full context-sensitivty even in the
presence of recursion and non-distributive flow functions and (2) a context-sensitive data
flow solution which is not possible in HEROS and is central to the concept of dynamic
heap pruning which is explained in the next section.

The inter-procedural framework is named VASCO, which is an acronym for VAlue-
Sensitive Contexts. It consists of a handful of core classes as shown in Figure 6.2. The
use of generic types makes the framework agnostic to any particular toolkit or IR. The
classes are parameterized by three types: M represents the type of a method, N represents
a node in the control flow graph and A is the type of data flow value used by the client
analysis. The framework can be naturally instantiated for Soot using the type parameters
soot.SootMethod and soot.Unit for M and N respectively.

Clients using this framework would extend either ForwardInterProceduralAnalysis
or BackwardInterProceduralAnalysis, both of which are subclasses of an abstract class
InterProceduralAnalysis. The abstract methods topValue, boundaryValue, copy

and meet provide a hook for client analyses to express initial lattice values and basic
operations on them. The major functionality of the client analysis would be present
in the *FlowFunction methods, whose roles were explained in Chapter 5. Additionally,
clients are expected to provide a ProgramRepresentation object, which specifies program
entry points (for which boundary values are to be defined) and resolves virtual calls.

30

Our framework ships with default program representations for Soot’s Jimple IR. The
launch point of the analysis is the doAnalysis method, which is implemented as per the
algorithm from Figure 5.1 in the directional sub-classes.

The Context class encapsulates information about a value context. Every con-
text is associated with a method, an entry value and an exit value, each of which
can be retrieved using the corresponding getter methods. The getValueBefore and
getValueAfter methods return data flow values for a context just before and after a node
respectively. This is the recommended way for accessing the results of the analysis in a
context-sensitive manner. A mapping of methods to a list of all its contexts is available
through the getContexts method of the InterProceduralAnalysis class. Alternatively,
getMeetOverValidPathsSolution can be used to obtain a solution that is computed by
merging data flow results across all contexts of each method. The DataFlowSolution

class (not shown in the figure) simply provides getValueBefore and getValueAfter

methods to access the resulting solution.

6.3 Dynamic Heap Pruning using the Java Debug

Interface

We have so far focused on data flow analysis techniques with the end goal of determining
precise liveness information for heap allocated memory using access graphs. This section
discusses the problem of using the resulting access graphs effectively in order to improve
memory usage of running programs.

The original use of access graphs as given in [15] was to nullify dead references by
inserting assignments such as x = null or z.p.q = null at appropriate places in the
program, where the access paths are no longer live. This strategy has several issues
associated with it. Firstly, care must be taken to ensure that these new statements do
not raise exceptions due to dereferencing fields of null pointers. Hence, an availability and
and anticipability analysis of access paths has to be performed prior to inserting these
assignments. This reduces the number of access paths that can be effectively nullified.
Further, the availability and anticipability analyses themselves require alias information,
which if imprecise, results in further loss of nullification opportunities. Secondly, every
such assignment that is added into the program code adds to the cost of execution. In
some cases, the same field reference may be nullified more than once due to aliased links,
further increasing the code size and execution cost.

An alternative solution would be to communicate the access graphs to an augmented
garbage collector. Instead of starting at root variables and transitively marking all reach-
able objects as live, the garbage collector can only traverse the heap using the access
graphs as a kind of state machine, and collect all objects that are not accessible by any
live access patterns. This approach avoids the problems from the static nullification
method because any references found to be null during the heap traversal can be safely
ignored without worrying about raising exceptions. Also, aliasing information is perfect
at run-time. However, the main problem with this solution is maintaining consistency

31

between the domain of access graphs and the run-time objects in the heap. It may be
difficult to associate the named local variables and fields that are used by the access
graphs with memory addresses and field offsets in the run-time system. Additionally, any
program optimizations that are performed after the completion of liveness analysis (such
as just-in-time optimizations which are common in many virtual machines) may change
the program structure and render the liveness information unsound.

We present a novel solution called dynamic heap pruning that lies in-between the
above two techniques. Firstly, to avoid the problem of raising exceptions when nullify-
ing references, we shall perform the nullification at run-time only and without inserting
any new statements in the original program. Secondly, in order to cleanly associate the
domain of named locals and fields with run-time objects we shall use the Java Debug
Interface (JDI), which allows debuggers to communicate with a running virtual machine
for examining and possibly modifying objects in the heap. The problem of JIT optimiza-
tions is elegantly solved by the Java Virtual Machine (JVM) which can perform dynamic
deoptimization [10] without a significant performance penalty when a debugger-like agent
wishes to examine a running program. The procedure for dynamic heap pruning is as
follows:

1. The Pruning Agent (PA), which is the entity that performs dynamic heap prun-
ing, pauses a running program in a JVM using the debugger API. The program
should be paused at such a point for which live access graph maps are avail-
able. In our current implementation, we trap all calls to a special static method
hra.dhp.DynamicHeapPruning#pruneNow(). However, this can be engineered in
different ways (e.g. periodic pruning, or pruning when memory usage exceeds a
particular threshold).

2. The PA examines the call stack of each paused thread, and loads the correct access
graphs for each stack frame. For the activation record at the top of the stack,
the current Program Counter (PC) is the paused program point. For all other
stack frames, the return address in the activation record of the next frame gives
the program point at which the caller method is paused. Also, for each frame, the
sequence of return addresses from the bottom of the stack to the frame in question
gives a call string which can be used to find the exact value context from the context
transition table in the results of the inter-procedural liveness analysis. Once the
value context is determined for a stack frame, and the paused program point is
known, the access graphs for that frame can be correctly loaded.

3. For each local in each stack frame, the corresponding access graph that has been
loaded is used to traverse the heap, starting from the object referenced by the local
variable. The PA labels each object by the set of accessors whose access patterns
can be used to access them. The traversal of the heap starting from a root local
and following field references is possible using the Java Debug Interface. Once all
stack frames are processed in this manner, all live objects should be labelled with
the complete set of accessors that can be used to reach them.

32

4. For each live object, the PA examines all its field references. If any accessor that
reaches this object has an outgoing edge to this field in its own access graph, then
this field reference is live. If none of the accessors of this object have an outgoing
edge in their access graph to the field in question, then it is dead and hence the
field reference is set to null. The manipulation of field references at run-time is
also possible using the Java Debug Interface. This act of run-time nullification of
dead links gives the technique of dynamic heap pruning its name.

5. When all objects are processed, the program is resumed again, and the next round of
garbage collection will collect all unreachable objects as usual. Due to the pruning
of dead links, some objects may become unreachable and hence will be collected
automatically. Thus, liveness-based garbage collection is performed indirectly.

6.4 Points-To Analysis for Call Graph Construction

As mentioned earlier, the target platform for implementing this project was Soot [25]. Our
first attempt at running a whole-program analysis using out inter-procedural framework
turned out to be infeasible due to a large number of interprocedural paths that were the
result of an imprecise underlying call graph.

The spark engine [16] in Soot uses a flow and context insensitive pointer analysis
on the whole program to build the call graph, thus making conservative assumptions for
the targets of virtual calls in methods that are commonly used such as those in the Java
library. For example, it is not uncommon to find call sites in library methods with 5 or
more targets, most of which will not be traversed in a given context. Some call sites can
even be found with more than 250 targets! This is common with calls to virtual methods
defined in java.lang.Object, such as hashCode() or equals().

When performing whole-program data flow analysis, the use of an imprecise call graph
hampers both efficiency, due to an exponential blow-up of spurious paths, and precision,
due to the meet over paths that are actually interprocedurally invalid, thereby diminishing
the gains from context-sensitivity.

Soot provides a context-sensitive call graph builder called paddle [17], but this frame-
work can only perform k-limited call-site or object-sensitive analysis, and that too in a
flow-insensitive manner. We were unable to use paddle with our framework directly
because at the moment it not clear to us how the k-suffix contexts of paddle would map
to our value-contexts.

We have implemented a flow and context-sensitive points-to analysis using our inter-
procedural framework to build a call graph on-the-fly. This analysis is both a demon-
stration of the use of our framework as well as a proposed solution for better call graphs
intended for use by other interprocedural analyses.

The data flow value used in our analysis is a points-to graph in which nodes are
allocation sites of objects. We maintain two types of edges: x → m indicates that the
root variable x may point to objects allocated at site m, and m.f → n indicates that
objects allocated at site m may reference objects allocated at site n along the field f .

33

Benchmark Time
Methods (M) Contexts (X) X/M Clean
Total App. Total App. Total App. Total App.

compress 1.15s 367 54 1,550 70 4.22 1.30 50 47
jess 140.8s 690 328 17,280 9,397 25.04 28.65 34 30
db 2.19s 420 56 2,456 159 5.85 2.84 62 46
mpegaudio 4.51s 565 245 2,397 705 4.24 2.88 50 47
jack 89.33s 721 288 7,534 2,548 10.45 8.85 273 270
antlr 697.4s 1,406 798 30,043 21,599 21.37 27.07 769 727
chart 242.3s 1,799 598 16,880 4,326 9.38 7.23 458 423

Table 6.1: Results of points-to analysis using our framework. “App.” refers to data for
application classes only.

Flow functions add or remove edges when processing assignment statements involving
reference variables. Nodes that become unreachable from root variables are removed.
Type consistency is maintained by propagating only valid casts.

The points-to graphs at each statement only maintain objects reachable from variables
that are local to the method containing the statement. At call statements, we simulate
assignment of arguments to locals of the called method, as well as the assignment of
returned values to a local of the caller method. For static fields (and objects reachable
from them) we maintain a global flow-insensitive points-to graph. For statements in-
volving static loads/stores we operate on a temporary union of local and global graphs.
The call graph is constructed on-the-fly by resolving virtual method targets using type
information of receiver objects.

Points-to information cannot be precise for objects returned by native methods, and
for objects shared between multiple threads (as our analysis is flow-sensitive). Thus,
we introduce the concept of a summary node, which represents statically unpredictable
points-to information and is denoted by the symbol ⊥. For soundness, we must conserva-
tively propagate this effect to variables and fields that involve assignments to summary
nodes. The rules for summarization along different types of assignment statements are
as follows:

Statement Rule used in the flow function
x = y If y → ⊥, then set x→ ⊥
x.f = y If y → ⊥, then ∀o : x→ o, set o.f → ⊥
x = y.f If y → ⊥ or ∃o : y → o and o.f → ⊥,

then set x→ ⊥
x = p(a1, a2, ...) If p is unknown, then set x→ ⊥, and

∀o : ai → o, ∀f ∈ fields(o) set o.f → ⊥

The last rule is drastically conservative; for soundness we must assume that a call to
an unknown procedure may modify the fields of arguments in any manner, and return any
object. An important discussion would be on what constitutes an unknown procedure.
Native methods primarily fall into this category. In addition, if p is a virtual method

34

invoked on a reference variable y and if y → ⊥, then we cannot determine precisely what
the target for p will be. Hence, we consider this call site as a default site, and do not enter
the procedure, assuming worst-case behaviour for its arguments and returned values. A
client analysis using the resulting call graph with our framework can choose to do one of
two things when encountering a default call site: (1) assume worst case behaviour for its
arguments (eg. in liveness analysis, assume that all arguments and objects reachable from
them are live) and carry on to the next statement, or (2) fall-back onto Soot’s default
call graph and follow the targets it gives.

A related approach partitions a call graph into calls from application classes and
library classes [2]. Our call graph is partitioned into call sites that we can precisely
resolve to one or more valid targets, and those that cannot due to statically unpredictable
factors.

Table 6.1 lists the results of points-to analysis performed on seven benchmarks. The
experiments were carried out on an Intel Core i7-960 with 19.6 GB of RAM running
Ubuntu 12.04 (64-bit) and JDK version 1.6.0 27. Our single-threaded analysis used only
one core.

The first two columns contain the names of the benchmarks; five of which are the
single-threaded programs from the SPEC JVM98 suite [1], while the last two are from
the DaCapo suite [4] version 2006-10-MR2. The third column contains the time required
to perform our analysis, which ranged from a few seconds to a few minutes. The fourth
and fifth columns contain the number of methods analyzed (total and application methods
respectively). The next two columns contain the number of value-contexts created, with
the average number of contexts per method in the subsequent two columns. It can be
seen that the number of distinct data flow values reaching a method is not very large
in practice. As our analysis ignores paths with method invocations on null pointers, it
was inappropriate for other benchmarks in the DaCapo suite when using stub classes to
simulate the suite’s reflective boot process.

The use of default sites in our call graph has two consequences: (1) the total num-
ber of analyzed methods may be less than the total number of reachable methods and
(2) methods reachable from default call sites (computed using spark’s call graph) cannot
be soundly optimized by a client analysis that jumps over these sites. The last column
lists the number of clean methods which are not reachable from default sites and hence
can be soundly optimized. In all but two cases, the majority of application methods are
clean.

In order to highlight the benefits of using the resulting call graph, just listing the
number of edges or call-sites alone is not appropriate, as our call graph is context-sensitive.
We have thus computed the number distinct paths in the call graph, starting from the
entry point, which are listed in Table 6.2. As the total number of call graph paths
is possibly infinite (due to recursion), we have counted paths of a fixed length length
k, for 1 ≤ k ≤ 10. For each benchmark, we have counted these paths using call graphs
constructed by our Flow and Context-sensitive Pointer Analysis (fcpa) as well as spark,
and noted the difference as percentage savings (∆%) from using our context-sensitive call
graph. The option implicit-entry was set to false for spark.

35

Depth k = 1 2 3 4 5 6 7 8 9 10

compress

fcpa 2 5 7 20 55 263 614 2,225 21,138 202,071
spark 2 5 9 22 57 273 1,237 23,426 545,836 12,052,089

∆% 0 0 22.2 9.09 3.51 3.66 50.36 90.50 96.13 98.32

jess

fcpa 2 5 7 30 127 470 4,932 75,112 970,044 15,052,927
spark 2 5 9 32 149 924 24,224 367,690 8,591,000 196,801,775

∆% 0 0 22.2 6.25 14.77 49.13 79.64 79.57 88.71 92.35

db

fcpa 2 5 11 46 258 1,791 21,426 215,465 2,687,625 42,842,761
spark 2 5 13 48 443 4,726 71,907 860,851 13,231,026 245,964,733

∆% 0 0 15.4 4.17 41.76 62.10 70.20 74.97 79.69 82.58

mpegaudio

fcpa 2 14 42 113 804 11,286 129,807 1,772,945 27,959,747 496,420,128
spark 2 16 46 118 834 15,844 250,096 4,453,608 87,096,135 1,811,902,298

∆% 0 12 8.7 4.24 3.60 28.77 48.10 60.19 67.90 72.60

jack

fcpa 2 18 106 1,560 22,652 235,948 2,897,687 45,480,593 835,791,756 17,285,586,592
spark 2 18 106 1,577 27,201 356,867 5,583,858 104,211,833 2,136,873,586 46,356,206,503

∆% 0 0 0 1.08 16.72 33.88 48.11 56.36 60.89 62.71

antlr

fcpa 6 24 202 560 1,651 4,669 18,953 110,228 975,090 11,935,918
spark 6 24 206 569 1,669 9,337 107,012 1,669,247 27,670,645 468,973,725

∆% 0 0 1.9 1.58 1.08 49.99 82.29 93.40 96.48 97.45

chart

fcpa 6 24 217 696 2,109 9,778 45,010 517,682 7,796,424 164,476,462
spark 6 24 219 714 2,199 20,171 306,396 7,676,266 192,839,216 4,996,310,985

∆% 0 0 0.9 2.52 4.09 51.52 85.31 93.26 95.96 96.71

Table 6.2: Number of k-length call graph paths for various benchmarks using spark and
fcpa (Flow and Context-sensitive Pointer Analysis).

The savings can be clearly observed for k > 5. For k = 10, spark’s call graph
contains more than 96% spurious paths for three of the benchmarks, and 62-92% for the
remaining. The gap only widens for larger values of k (for which the number of paths
was too large to compute in some cases).

Client analyses using our interprocedural framework can be configured to use our
context-sensitive call graphs which avoid these spurious paths, hence enabling efficient
and precise solutions.

36

Chapter 7

Related Work

The potential benefits of heap liveness have been studied before using emperical methods
[9, 23]. Heap reference analysis [15] is one of the approaches to achieving this goal, and
this project builds upon its access graph representation. The need for a heap alias analysis
was identified, but most work on pointer analysis has focused only on stack variables [8],
with heap modelling falling into a class of work known as “shape analysis”.

The classical approach to modelling the heap by partitioning on allocation sites was
first introduced in [6]. This approach suffered from problems such as irreversible summa-
rization or sharing of nodes. The concept of “materialization” was introduced in [21], in
which shape graph nodes were distinguished by the set of variables that pointed-to them.
The improved approach was much better at preserving shape invariants for destructive
programs, such as whether an acyclic list remained an acyclic list after a reversal al-
gorithm. However, their objective was mainly to detect topological properties of heap
structures, and did not directly address alias analysis.

The concept of performing points-to analysis only on live variables was introduced
in [14], in which alternate rounds of liveness and pointer analysis are performed until a
fixed point is reached. Thus, the amount of information discovered is kept to a minimum.
In this method, the points-to and liveness sets start with an optimistic assumption and
increase in size on each round. Our approach progresses in the reverse direction. We start
with a simple pessimistic heap model and use liveness information to improve the preci-
sion of the shape analysis, which in turn refines liveness. Bootstrapping [12] is another
approach to performing multiple rounds of pointer analysis which improves precision in
each round. In this method, the initial rounds are fast flow-insensitive analyses, and the
subsequent flow and context-sensitive analyses are performed only on the set discovered
by the previous rounds. In our approach, we stick to flow-sensitive analysis only.

The work that probably comes closest to ours is [3], in which a phased bi-directional
shape analysis is performed using three-valued logic [22]. In this approach, the abstract
heap is built in the forward pass, while the backward pass marks live objects or references
on the heap graph itself. However, their analysis does not seem to be field sensitive (to
capture complex access patterns such as Figure 2.1) and works well only for structures
such as lists and trees in which summarized objects can be unambigiously separated when
needed (unlike objects that are pointed-to by more than one field reference).

37

Most of these papers on heap analysis avoid discussing the problem of interprocedural
program flow. Traditionally, interprocedural analysis has been divided into context-
sensitive and context-insensitive techniques. Emperical studies have shown that for
object-oriented programs, context-sensitive approaches are significantly more precise in
the case of points-to analysis [18]. However, this study only compared different types of
context-sensitivity for a flow-insensitive pointer analysis. Also, all the types of context-
sensitive approaches that were studied (e.g. call-site sensitive, object sensitive, etc) sac-
rificed precision with the hopes of efficiency by limited the context information to some
limit k, which was either 1 or 2. Possibly the best-known work on precise flow and
context-sensitive points-to analysis is [7], which used a functional approach. However,
their work was restricted to named stack locations and did not model the heap, which is
the problem that we have addressed head-on.

The implementation platform we chose was Soot [25], which has been used for hun-
dreds of client analyses and is very popular. However, Soot traditionally lacked an inter-
procedural data flow analysis framework. Recently, it has become possible to use Soot
with a graph reachability-based solver called HEROS [5] which performs interprocedu-
ral analysis for IFDS/IDE problems. However, as points-to analysis and heap reference
analysis both use non-distributive flow functions, they cannot be encoded as IFDS/IDE
problems. VASCO, our interprocedural framework that uses value contexts, overcomes
this restriction and can hence be used as a general framework for performing context-
sensitive data flow analysis using Soot.

38

Chapter 8

Conclusion & Future Work

We have addressed the problem of heap alias analysis with the end goal of developing a
totally liveness-based garabage collection mechanism. The Accessor Relationship Graph,
which is our proposed heap abstraction, allows for distinguishing between abstract heap
nodes which would have traditionally been summarized, while still maintaing a finite size.
The precision of the heap abstraction is dependent on the access graphs between which
aliasing queries need to be answered. Hence, our solution is an inter-dependent liveness
and points-to analysis.

We have also implemented several critical components of the liveness-based GC sys-
tem, including an access graph library, an interprocedural data flow analysis framework
and a pruning agent based on our novel Dynamic Heap Pruning technique. The only
piece missing in the whole system is the interprocedural heap liveness analysis which can
use the access graph library and interprocedural framework to produce live access graphs
for the pruning agent, resulting in a complete liveness-based GC solution.

8.1 Status of Implementation

The access graph library that has been implemented is complete and its API has been
documented. It has even been used in a test pilot heap reference analysis, and hence has
been validated.

The Dynamic Heap Pruning implementation using the Java Debug Interface is also
complete and tested. However, the testing was done on micro-benchmarks for which
heap liveness analysis was performed without alias information. Until a complete live-
ness analysis implementation is available, the pruning agent cannot be tested on large
benchmarks.

The interprocedural data flow analysis framework (VASCO) is also complete and has
been released as an open source project (https://github.com/rohanpadhye/vasco).
The framework ships with default program representations for Soot (such as using a
context-insensitive or context-sensitive call graph) and example analyses (such as copy
constant propagation). The framework API has been thoroughly documented and pub-
lished.

39

https://github.com/rohanpadhye/vasco

x n1 n2

(a) Artifical access graph for determining cycles in a linked list.

x S1 S1 S1 S1 S1 · · ·n n n n n

x x/n1 x/n1

x/n2

x/n1

x/n2

x/n1

x/n2

(b) A concrete linked list annotated
with accessors that reach it.

x S1 S1 S1
n n

n
x x/n1 x/n1

x/n2

(c) The corresponding abstract list in
the accessor relationship graph.

Figure 8.1: Issues with performing shape analysis using artifical access graphs.

The points-to analysis that has been developed using this framework has been evalu-
ated for its performance in constructing call graphs on-the-fly as reported in Section 6.4.
Although the resulting call graphs for many micro-benchmarks have been manually veri-
fied, an automated validation system is required to prove correctness for large programs.
A suggested approach for this can be to use the Java Debug Interface to trap every
method call and return during program execution, and ensure that the dynamic call
strings (deducable from the state of the activation stack) conform to the analyzed call
graph. A prototype has been implemented to this extent but it is not fully usable due to
some problems inherent in the JVM specification. In particular, the main thread often
executes class loading and package resolution routines which pollutes the activation stack
for the purpose of validation.

8.2 Shape Analysis using Access Graphs

It has not escaped our notice that the abstract heap representation that we have proposed
immediately suggests a possible demand-driven mechanism for examining relationships
between specific sets of access patterns, regardless of true liveness. For example, instead
of performing a whole-program backward liveness analysis starting from the program
exit, one could artifically introduce access graphs at some program point and propagate
them up to the constructor of a data structure whose properties one wants to observe.
The subsequent round of forward points-to analysis will distinguish between exactly those
objects whose access patterns were of interest. This could be very useful in the context
of performing shape analysis.

However, some fundamental issues still persist due to the regular nature of access
patterns. Consider, for example, a situation in which we want to determine whether
a data structure that is supposedly a linked list with head x, is actually an acyclic
data structure. To verify that this list does not have cycles, we can query for an alias
relationship between the accessors x/n1 and x/n2 of the access graph in Figure 8.1 (a).
Intutively, the accessor x/n1 represents any node in the linked list while the accessor x/n2

represents any node that is strictly after the one referred to by x/n1. Hence, if these two

40

accessors are aliased, then the linked list may contain cycles.
However, this intuition fails to materialize because the access pattern of x/n1 (which is

x.n(.n)∗) is a superset of the access pattern of x/n2 (which is x.n.n(.n)∗). Figure 8.1 (b)
shows the concrete linked list which is annotated with the accessors that reach it, resulting
in the abstract heap representation (i.e. accessor relationship graph) of Figure 8.1 (c).
As the figures show, the third and subsequent nodes in the linked list are accessible by
both x/n1 and x/n2 and hence the may-alias relationship between these accessors seems
to hold true, even when the linked list is indeed acyclic.

The problem seems to occur because our representation cannot remember state, such
as the rule that if x/n1 points to some object a, then x/n2 must point only to objects
after a. This could be rooted in the fact that access graphs describe a regular language.
Perhaps a more stateful grammar would be appropriate for solving this problem. This
appears to be an important and very interesting direction for extending the contributions
of this project in the future.

41

References

[1] http://www.spec.org/jvm98. Accessed: April 3, 2013.

[2] Karim Ali and Ondřej Lhoták. Application-only call graph construction. In Proceed-
ings of the 26th European conference on Object-Oriented Programming, ECOOP’12,
2012.

[3] Gilad Arnold, Roman Manevich, Mooly Sagiv, and Ran Shaham. Combining shape
analyses by intersecting abstractions. In Verification, Model Checking, and Abstract
Interpretation, 7th International Conference, VMCAI 2006, volume 3855, pages 33–
48, 2006. http://www.odysci.com/article/1010112988884260.

[4] S.M. Blackburn et al. The DaCapo benchmarks: Java benchmarking development
and analysis. In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and Applications,
October 2006.

[5] Eric Bodden. Inter-procedural data-flow analysis with IFDS/IDE and Soot. In
Proceedings of the ACM SIGPLAN International Workshop on State of the Art in
Java Program analysis, SOAP ’12, 2012.

[6] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of pointers and
structures. In Proceedings of the ACM SIGPLAN 1990 conference on Programming
language design and implementation, PLDI ’90, pages 296–310, New York, NY, USA,
1990. ACM.

[7] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-sensitive interpro-
cedural points-to analysis in the presence of function pointers. In Proceedings of the
ACM SIGPLAN 1994 conference on Programming language design and implemen-
tation, PLDI ’94, pages 242–256, New York, NY, USA, 1994. ACM.

[8] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In Proceedings
of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, PASTE ’01, pages 54–61, New York, NY, USA, 2001. ACM.

[9] Martin Hirzel, Amer Diwan, and Johannes Henkel. On the usefulness of type and
liveness accuracy for garbage collection and leak detection. ACM Trans. Program.
Lang. Syst., 24(6):593–624, November 2002.

42

http://www.spec.org/jvm98

[10] Urs Hölzle, Craig Chambers, and David Ungar. Debugging optimized code with
dynamic deoptimization. In Proceedings of the ACM SIGPLAN 1992 conference
on Programming language design and implementation, PLDI ’92, pages 32–43, New
York, NY, USA, 1992. ACM.

[11] Richard Jones and Rafael Lins. Garbage collection: algorithms for automatic dy-
namic memory management. John Wiley & Sons, Inc., New York, NY, USA, 1996.

[12] Vineet Kahlon. Bootstrapping: a technique for scalable flow and context-sensitive
pointer alias analysis. In Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’08, pages 249–259, New
York, NY, USA, 2008. ACM.

[13] Uday P. Khedker and Bageshri Karkare. Efficiency, precision, simplicity, and gen-
erality in interprocedural data flow analysis: resurrecting the classical call strings
method. In Proceedings of the Joint European Conferences on Theory and Practice of
Software 17th international conference on Compiler construction, CC’08/ETAPS’08,
2008.

[14] Uday P. Khedker, Alan Mycroft, and Prashant Singh Rawat. Liveness-based pointer
analysis. In Proceedings of the 16th International Static Analysis Symposium,
SAS 2012, pages 265–282, 2012.

[15] Uday P. Khedker, Amitabha Sanyal, and Amey Karkare. Heap reference analysis
using access graphs. ACM Trans. Program. Lang. Syst., 30(1), November 2007.

[16] Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using SPARK.
In Proceedings of the 12th international conference on Compiler construction, CC’03,
2003.

[17] Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a BDD-based implementation. ACM Trans. Softw. Eng.
Methodol., 18(1), October 2008.

[18] Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive
points-to analysis using a bdd-based implementation. ACM Trans. Softw. Eng.
Methodol., 18(1):3:1–3:53, October 2008.

[19] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’95, 1995.

[20] Mooly Sagiv, Thomas Reps, and Susan Horwitz. Precise interprocedural dataflow
analysis with applications to constant propagation. Theor. Comput. Sci., 167(1-2),
October 1996.

43

[21] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solving shape-analysis problems
in languages with destructive updating. In Proceedings of the 23rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’96, pages 16–
31, New York, NY, USA, 1996. ACM.

[22] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via
3-valued logic. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, POPL ’99, pages 105–118, New York, NY,
USA, 1999. ACM.

[23] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. Estimating the impact of heap
liveness information on space consumption in java. In Proceedings of the 3rd inter-
national symposium on Memory management, ISMM ’02, pages 64–75, New York,
NY, USA, 2002. ACM.

[24] M. Sharir and A Pnueli. Two approaches to interprocedural dataflow analysis. In
S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory and Ap-
plications. Prentice-Hall, Inc., 1981.

[25] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. Soot - a Java bytecode optimization framework. In Proceedings
of the 1999 conference of the Centre for Advanced Studies on Collaborative research,
CASCON ’99, 1999.

44

Publications

[1] Rohan Padhye and Uday P. Khedker. Interprocedural data flow analysis in Soot
using value contexts. In Proceedings of the ACM SIGPLAN International Workshop
on State of the Art in Java Program analysis, SOAP ’13, pages 31–36, New York,
NY, USA, 2013. ACM.

45

	Introduction
	Background and Motivation
	Heap Liveness Analysis using Access Graphs
	Need for Alias Analysis
	Issues in Interprocedural Analysis

	Abstract Heap Representations
	Merging on Common Allocation Sites
	Distinguishing between Access Patterns

	Liveness-Driven Heap Analysis
	Accessor Relationship Graph
	Properties and Operations
	Data Flow Analysis
	Precision of Liveness Analysis

	Interprocedural Analysis using Value Contexts
	Algorithm
	Example

	Implementation
	Generic Access Graph Library
	Generic Interprocedural Analysis Framework
	Dynamic Heap Pruning using the Java Debug Interface
	Points-To Analysis for Call Graph Construction

	Related Work
	Conclusion & Future Work
	Status of Implementation
	Shape Analysis using Access Graphs

