Smart Programming Playgrounds

Rohan Padhye, Pankaj Dhoolia, Senthil Mani and Vibha Singhal Sinha
IBM Research
{ropadhye, pdhoolia, sentmani, vibha.sinha}@in.ibm.com

Abstract—Modern IDEs contain sophisticated components for
inferring missing types, correcting bad syntax and completing
partial expressions in code, but they are limited to the context
that is explicitly defined in a project’s configuration. These tools
are ill-suited for quick prototyping of incomplete code snippets,
such as those found on the Web in Q&A forums or walk-through
tutorials, since such code snippets often assume the availability of
external dependencies and may even contain implicit references to
an execution environment that provides data or compute services.

We propose an architecture for smart programming play-
grounds that can facilitate rapid prototyping of incomplete
code snippets through a semi-automatic context resolution that
involves identifying static dependencies, provisioning external
resources on the cloud and injecting resource bindings to handles
in the original code fragment.

Such a system could be potentially useful in a range of
different scenarios, from sharing code snippets on the Web
to experimenting with new ideas during traditional software
development.

I. INTRODUCTION

Programmers often rely on code snippets found on the Web
to learn the use of an API or language feature. In fact, Q&A
sites such as StackOverflow can contain a vast coverage of
an API [1] and thus can be used to provide de-facto usage
examples in addition to the official API documentation [2].

However, the most reliable or popular posts often contain
concise code snippets with implicit references to external de-
pendencies and in-line placeholders for surrounding program
context [3]. If a user wishes to try out the code snippet for
themselves, they must first fill in these gaps before the code
becomes executable.

Modern integrated development environments (IDEs) con-
tain sophisticated components for inferring missing types,
correcting bad syntax and completing partial expressions in
code fragments, but they are limited to the context which has
been configured for a project. Hence, users need to manually
ensure that the required APIs are available before expecting
IDEs to perform auto-completion.

Further, if the code fragment involves interaction with an
external service, such as a file-system or running database
server, the details of acquiring handles to such resources are
also usually left for the users to supply. If the person reading
the snippet — the consumer — is trying out new functionality,
they may not have such services already running. On the
other hand, if the consumer is a person asking a question on
a Q&A forum to solve some immediate problem, then they
may already have their environment set-up; though in this case
the person answering the question with a code example — the
producer — may not have the same set-up as the consumer.

Q. [JDBC] How can I get all values of a column in an SQL table into a List?

A. Try using commons—dbutils from Apache:

QueryRunner runner = new QueryRunner (dataSource);
List<String> strings =
runner.query ("SELECT % FROM my_table",
new ColumnListHandler<String> (columnIndex)) ;

Fig. 1. An example post on a Q&A site containing a Java code snippet.

In many domains, cloud computing technologies have en-
abled the possibility of dynamically instantiating data and
compute services and composing them to drive usable appli-
cations. The combination of programming playgrounds and
cloud-based resource provisioning and binding can create a
powerful new paradigm for creating, sharing and consuming
code fragments along with their implied contexts and required
environments in a seamless manner.

In this paper, we propose a smart programming playground,
that takes as input an isolated code snippet and enables it to
be executed in a meaningful way through a three-step semi-
automated process:

1) Context resolution: Resolve static code dependencies
(by downloading the appropriate libraries and adding
them to a path from where they can be referenced)
and syntactic incompleteness (such as unqualified API
references or undefined variables) and place the code
fragment in an appropriate program entry-point (such as
a main method or an event handler).

2) Environment configuration: Determine the physical or
virtual resources referenced in the code fragment and
instantiate real or simulated services to provide such
resources (e.g. a database server, a search engine, a file-
system, a network interface) and if required placeholder
data (e.g. a textbook schema, a sample search index or
stock files and directories of a particular type).

3) Value binding: Enable the code fragment to access these
resources by injecting appropriate handles or references
(e.g. connections, file-paths, URLs).

Section II motivates the problem with the help of an
example. We describe the design and architecture of the smart
playground in Section III followed by a brief discussion about
its implications and limitations in Section IV. Section V
compares our approach to existing solutions and we conclude
in Section VL.

II. A MOTIVATING EXAMPLE

Consider the example in Figure 1, which is typical of a post
on a Q&A site that contains a code snippet!. In this example,
the asker is looking for a way to read all values in a column
of an SQL table and retrieve them as a list of strings in a Java
program. Though the asker seems to be using a standard JDBC
interface, the accepted answer suggests the use of a third-party
library (dbutils from Apache Commons?) to achieve the
same goal.

The best way that a reader can understand and verify this
answer is by trying out the code themselves. However, merely
copying this snippet into their own workspace does not enable
such prototyping, since it poses many challenges.

Firstly, the snippet contains references to type names (such
as List, QueryRunner and ColumnListHandler)
which are unqualified and need to be properly imported. While
modern IDEs can automatically insert import statements for
types such as java.util.List that are in the standard li-
brary or elsewhere in a project’s class-path, they cannot resolve
types such as QueryRunner unless the required library APIs
have been added in the project’s build configuration. Hence,
the first step that a user needs to do before trying this snippet
is to download the dbutils library from Apache Commons
and add it to their workspace.

Secondly, the code fragment contains undefined variables
such as dataSource and columnIndex which need to
be initialized. A modern IDE would be able to recognize, by
looking at expected types of arguments to the constructors
of QueryRunner and ColumnHandler, that that these
variables could be of type java.sgl.DataSource and
int, respectively. However, it is up to the user to actually bind
values to these variables. While a user could simply enter a
numeric value for the columnIndex value, it is not as easy
to provide a value to the dataSource variable, since it must
reference an actual database connection source.

Hence, the third step that a user must take is to ensure that
there is indeed a database server running to which they can
connect, and create a java.sqgl.DataSource object by
setting up the appropriate connections in their code manually.
Only after all three of these actions — context resolution,
environment configuration and value binding — have been
performed, can a user actually test the code snippet and
examine its output.

To compare this with our proposed solution, a smart play-
ground would first detect the use of the commons—dbutils
API due to the presence of the QueryRunner, and upon
confirming this library and its version with the user in a brief
dialog also download and include the required JARs in the
build path as well as insert appropriate type imports. Similarly,
the smart playground would detect the requirement of a
DataSource object, and realize that it needs to instantiate a
resource of type sgl-database to resolve this requirement,

'Figure 1 is a slightly modified version of http://stackoverflow.com/
questions/15162976/how-do-i-query-for-a-liststring-using-dbutils#15163415
Zhttp://commons.apache.org/dbutils

Smart Programming Playground

& > ‘Q http://smartplayground.irlibm.com ‘

QueryRunner | DB |+
Database Context [MySQL [w]

ommens.dbutils QueryRunner; my_teble
he commons.dbutils handlers ColumnListHandler; —
col-14/col-2 & CLL
A 1

L Ployg Assist
import java.sql DataSource;
import java.util L
import org.apache
import org.oy

DataSource dataSource =
(DataSource) new javax naming InitialContext() B 2
lookup("resourcerjdbe-mysql/java.sql DataSource"); dataSource: @025 | c 3

@ss0c21
leotumninde: 1

QueryRunner runner = new QueryRunner
int columnindex = 1;
List<String> strings = runnerquery(

"SELECT col_1FROM my_table",

new ColumnListHandler<String>(columnindex));

1 e

a mysql-connector-java jar | 109

etrings: [, 8", "C")

Execute |

Fig. 2. A mock-up of our proposed smart playground user interface in the
scenario where a user is trying to execute the code snippet found in Figure 1.

and it will thus prompt the user to choose from a list of
available implementations (e.g. mysgl or postgresqgl).
These resources enable the dynamic provisioning of a database
instance in some virtual machine on the cloud, followed by
the injection of the appropriate handle to the dataSource
variable in the original code.

The resource meta-data could also specify ways of ma-
nipulating its state outside of the code fragment, such as by
exposing a graphical user interface (GUI). In our example, a
user could quickly inspect and modify the schema and data in
the provisioned database through a web-based UL

The execution of the code fragment would then lead to a
meaningful outcome of actually retrieving values from one
column of an SQL table into a list of strings. The user could
further play around with this code snippet to explore the usage
of the API with real side-effects. A mock-up of the front-end
of this system containing the resource Ul, the transformed
code and the output is shown in Figure 2.

III. DESIGN AND ARCHITECTURE

A smart programming playground consists of several com-
ponents as shown in Figure 3. A user may interact with
three of these, namely the context resolution engine, the
resource manager and the execution runtime. The meta-data
for resolving dependencies and provisioning services is orga-
nized as a catalog of resource descriptors. The user-supplied
code as well as dynamically instantiated services run in a
stateful environment, represented by a cloud. The figure shows
a sample work-flow for semi-automatic context resolution
and resource instantiation represented by the solid lines with
numbered labels indicating the order of user or component
interactions.

We next describe each of the components of the smart
playground briefly.

A. Resources (Descriptors and Catalog)

A resource is any external entity that is not directly specified
in the code fragment but is required for its meaningful execu-
tion. Examples of resources are the commons—dbutils API
resource and the mysqgl database resource. Each resource is
described in a standardized descriptor that primarily needs to
provide one or more of the following meta-data in a descriptor:

1. Code fragment O 10. Execute command

—
4. Interactive 12. Output
Context Resolution
Context
] 8. Final | .
Resolution 7.Resource | @ runnable Runtlme
: bindings s code
Engine < 8
e A
2. API 5. Selected 3
query Resources =
QO
%’ 11. Execution
3. Candidate s
resources §'
V 9. Libraries
Resou rce |[6 Instantiate
services
Resource Manager
Descriptors
(Catalog) A

€ 1

Direct Resource Manipulation

>

Fig. 3. Architecture of a smart programming playground, including a sample
semi-automated work-flow (solid lines and numbered labels) as well as means
for manual overriding (dashed lines and unnumbered labels).

1) Means to provision and de-provision the resource in the
execution environment. These could be scripts or Web-
service endpoints.

2) List of required application programming interfaces
(APIs).

3) List of exposed value bindings for accessing provisioned
resources.

4) List of resource contracts that this resource implements.
This is similar to class inheritance in object-oriented
programming.

5) List of other resource types that are required to be
already instantiated. Dependencies may be resolved by
a resource that extends the specified dependency.

6) A Web URL for inspecting and manipulating the state
of a provisioned resource instance.

Figure 4 shows a sample resource catalog for six resources
in the Java ecosystem, each of which declare one or more
of the above meta-data declarations. In this example, API
requirements are mentioned as Apache Maven [4] artifact iden-
tifiers. The Requires declaration indicates which other resource
type must be instantiated as a pre-requisite. The Provides
declaration indicates value bindings (e.g. Java objects) that
the resource will expose once its dependencies are resolved
and any provisioning scripts are complete.

The simplest resource, commons—dbutils, only requires
an API to be downloaded and added to the code fragment’s
class-path to be usable. On the other hand, the jdbc resource
requires a running database service at the back-end, which is
represented by a dependency on an abstract sql-database
resource, whose contract mentions that it must provide value
bindings for a set of connection parameters after provisioning.
Once the required sgl-database resource is provisioned
and its value bindings are available, the jdbc resource would

commons-dbutils

API: commons-dbutils/commons-dbutils

jdbc
Provides: conn <- java.sql.Connection

Provides: ds <- javax.sql.DataSource
Requires: sql-database

@sqgl-database

Provides: url <- java.lang.String
Provides: port <- java.lang.Integer
Provides: dbname <- java.lang.String
Provides: user <- java.lang.String
Provides: pwd <- java.lang.String

mysql

Extends: sql-database

API: mysql/mysql-connector-java
Provisioning/de-provisoning Script: (...)
Web GUI: (...)

postgresql

Extends: sql-database

API: org.postgresql/postgresql
Provisioning/de-provisoning Script: (...)
Web GUI: (...)

sample-bank-data
Requires: sql-database
Provisioning/de-provisoning Script: (...)

Fig. 4. A subset of a resource catalog containing a handful of inter-dependent
resources. A prefix of @ denotes an abstract resource.

use the exposed connection parameters to instantiate and
expose Connection and DataSource objects as declared
in its Provides declaration. The sgl-database resource
contract is implemented by two concrete resources in this
example: mysgl and postgresqgl, each requiring a dif-
ferent library to be downloaded as well as having scripts for
provisioning ephemeral database instances. These resources
also generate Web URLs to allow a user to inspect and ma-
nipulate their state via a graphical user interface (GUI); in this
example since the resources are database instances the GUI
would allow viewing or modifying the database schema and
data. In addition to manually seeding data in the database, a
user may also choose to instantiate the sample—-bank-data
resource, which only requires a running database server and
contains scripts to populate the database with a sample schema
for bank accounts. Such placeholder data may be useful for
sharing code snippets that demonstrate the use of the API and
are indifferent to any underlying data layout.

B. Context Resolution Engine

The context resolution engine analyzes the original source
code fragment and identifies implicit references to APIs as
well as notes all undefined variables and their types. It queries
the catalog to find a candidate set of resources that match the
APIs and value bindings required. Several approaches exist for
determining the APIs referenced in a piece of un-compilable
code [2], [5]. In case of multiple results from the catalog query,
this engine can engage in a dialog with the user for choosing
a particular resource type and version.

C. Resource Manager

The resource manager processes the meta-data in resource
descriptors to (1) download required libraries for the run-
time, (2) execute required scripts to instantiate services, (3)
create value bindings for the code snippet that reference the
instantiated service instances, and (4) allow monitoring and
manipulation of the state of the service instances.

Users may choose to bypass the context-resolution engine
completely and pick resources manually, as shown by the
dashed lines in Figure 3 representing an alternative work-flow.

D. Runtime

The runtime is the engine that executes the final code, with
all static dependencies resolved and dynamic resource handles
bound to appropriate values. Several runtimes may exist to
support different programming languages or application frame-
works with different entry points.

This architecture of runtimes and resources can be naturally
implemented on top of Platform-as-a-Service (PaaS) archi-
tectures comprising of containers and services, such as IBM
Bluemix [6], which itself is based on Cloud Foundry [7].

IV. DISCUSSION

It is important to note that our proposed system is not
attempting to guarantee the automatic execution of any code
snippet found the Web. For one thing many code snippets are
syntactically broken or incomplete. While some instances of
syntactic incompleteness can be automatically repaired, such
as the use of ellipses “...” or comments as placeholder values,
this is not always possible in general. Second, not all implicitly
referenced APIs in a code snippet can be identified. The partial
program analysis approach [5] works well only in the presence
of explicit imports, while the oracle-based approach [2] is
limited by the APIs indexed by its oracle. Third, even if
the referenced code dependencies are identified, the resource
catalog needs to be very large in order to identify all types
of required external services and provide implementations for
their provisioning. We do not expect a hand-made monolithic
resource catalog to be available from the start, but envision
an incremental approach where users can easily manually
specify the required resources if they cannot find them in the
catalog; this action would add the resource to the catalog for
future users. Existing projects such as Apache Maven [4] and
Cloud Foundry [7] have demonstrated the feasibility of this
approach by crowd-sourcing large repositories of API artifacts
and runtime environments respectively.

V. RELATED WORK

To aid a developer working with an unfamiliar API, Code-
Hint [8] allows a user to execute a partial program up to some
break-point where they are stuck, and proposes synthesized
code expressions that satisfy some dynamic post-condition.
This tool helps a developer who already has a context, but is
looking for code to perform some function using that context.
Smart playgrounds address the converse case, where a user
has found some code that is using an API or service, but is
missing the preceeding context.

Several tools have also been developed to enable users
to try out code snippets found on the Web. However, these
tools support a very limited notion of context. For example,
Runnable.com [9] hosts many user-contributed snippets for
performing common tasks in various languages, such as pro-
cessing file-uploads in PHP. While such examples can actually
be executed and tried out on the Web, other PHP snippets such
as a user-login script using MySQL cannot be executed unless
a database is separately provisioned.

Programming playgrounds for scripting languages have also
become popular for their ability to provide instantaneous
feedback of the results of a computation or for visualizing
its side-effects. Two great examples of this paradigm are
JSFiddle [10], a popular platform for sharing JavaScript +
HTML snippets that shows the resulting dynamic Web page
alongside the code editor, and Apple’s Xcode playground for
the Swift language [11], that allows dynamic visualization of
data structures and UI elements. However, these platforms are
also limited to the context specified in the code snippets and
do not assist in creating or simulating external services.

The simulation of an external environment is commonly
used in test-driven development through the use of mock
objects [12]. Mock objects could be used to prototype code
snippets as well, though the burden of mocking these objects
again falls on the user. Also, since the goal of a playground is
different from that of a test framework, it is possible that the
user is actually trying to test out the service itself, rather than
the code accessing it. Our approach solves both these issues
by provisioning real service instances in the cloud.

VI. CONCLUSION

The advent of cloud technologies and the increasing use of
the Web and social media to share code has made it possible
to develop new paradigms of sharing not just code fragments,
but executable code environments. In this paper we have
proposed such a smart programming playground, that can help
resolve programming context and instantiate dynamic services
to enable rapid prototyping of shared code snippets. With such
a system, we believe that developers who are exploring new
technologies can forget worrying about environment config-
uration and resource provisioning and focus on the creative
process of working with code.

REFERENCES

[1] C. Parnin and C. Treude, “Measuring API documentation on the web,” in
Proceedings of the 2nd International Workshop on Web 2.0 for Software
Engineering, ser. Web2SE ’11, 2011.

[2] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering, ser. ICSE 2014, 2014.

[3] J. Sillito, F. Maurer, S. M. Nasehi, and C. Burns, “What makes a good
code example?: A study of programming Q&A in StackOverflow,” in
Proceedings of the 2012 IEEE International Conference on Software
Maintenance (ICSM), ser. ICSM 12, 2012.

[4] “Apache Maven,” http://maven.apache.org, Accessed: February 2015.

[5] B. Dagenais and L. Hendren, “Enabling static analysis for partial Java
programs,” in Proceedings of the 23rd ACM SIGPLAN Conference on
Object-oriented Programming Systems Languages and Applications, ser.
OOPSLA 08, 2008.

[6] “IBM Bluemix,”
February 2015.

[7] “Cloud Foundry,” http://cloudfoundry.org, Accessed: February 2015.

[8] J. Galenson, P. Reames, R. Bodik, B. Hartmann, and K. Sen, “CodeHint:
Dynamic and interactive synthesis of code snippets,” in Proceedings
of the 36th International Conference on Software Engineering, ser.
ICSE’14, 2014.

[9] “Runnable.com,” http://runnable.com, Accessed: February 2015.

[10] “JSFiddle,” http://jsfiddle.net, Accessed: February 2015.

[11] “WWDC 2014 Session Videos - Swift Playgrounds,” https://developer.
apple.com/videos/wwdc/2014/?1d=408, Accessed: February 2015.

[12] K. Beck, Test-driven development by example. Addison-Wesley Long-

man, 2002.

http://www.ibm.com/software/bluemix, Accessed:

