
Software Engineering Methods for AI-Driven
Deductive Legal Reasoning

Rohan Padhye
Carnegie Mellon University

Pittsburgh, USA
rohanpadhye@cmu.edu

Abstract
The recent proliferation of generative artificial intelligence
(AI) technologies such as pre-trained large language models
(LLMs) has opened up new frontiers in computational law.
An exciting area of development is the use of AI to automate
the deductive rule-based reasoning inherent in statutory
and contract law. This paper argues that such automated
deductive legal reasoning can now be viewed from the lens
of software engineering, treating LLMs as interpreters of
natural-language programs with natural-language inputs.
We show how it is possible to apply principled software en-
gineering techniques to enhance AI-driven legal reasoning
of complex statutes and to unlock new applications in au-
tomated meta-reasoning such as mutation-guided example
generation and metamorphic property-based testing.

CCS Concepts: • Applied computing → Law; • Comput-
ing methodologies→ Natural language generation; • In-
formation systems → Question answering; • Software
and its engineering → Software testing and debugging;
Search-based software engineering.

Keywords: computational law, generative artificial intelli-
gence, large language models, legal reasoning, statutory rea-
soning, software engineering, property-based testing, muta-
tion testing, example generation

ACM Reference Format:
Rohan Padhye. 2024. Software Engineering Methods for AI-Driven
Deductive Legal Reasoning. In Proceedings of the 2024 ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward! ’24), October 23–
25, 2024, Pasadena, CA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3689492.3690050

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1215-9/24/10
https://doi.org/10.1145/3689492.3690050

1 Introduction
Numeric computations in law, regulation, and contracts gov-
ern many aspects of our personal and professional lives—
owing taxes, qualifying for student financial aid, receiving
social security benefits, breaking a rental lease, paying down
a credit card balance, demanding compensation for a delayed
flight, and bequeathing property in a will, to name a few ex-
amples. In each of these cases, the logic of such computation
is encoded in legally-binding natural language documents of
sometimes monstrous complexity. The process of establish-
ing how such legal rules apply to specific situations usually
falls into the category of deductive legal reasoning [14] (as op-
posed to analogical or case-based legal reasoning that draws
upon precedents set by judges).
As such, deductive legal reasoning is highly mechanical

when all the relevant facts are precisely known. Yet, this
is by no means straightforward. For example, Appendix A
lists specific parts of the the Internal Revenue Code (IRC), the
body of statutory law that deals with U.S. federal taxation.
Consider the following (well-specified) problem:

Example 1. Alice and Bob are married and filing taxes jointly
for the year 2018. Alice was born on 1/1/1981 and Bob was born
on 12/30/1975. In 2018, Alice and Bob’s adjusted gross income
was $216,350. Alice and Bob do not itemize their deductions
and do not qualify for any deductions other than the standard
deduction. What is their taxable income for 2018?

Solution Approach. Although a seemingly simple question,
correctly answering it requires applying multiple compu-
tational rules from the IRC1 (ref. Appendix A): §63(b) and
§63(c)(1) to identify the calculation of standard deduction
and taxable income; §63(c)(2)(A)(i) and §63(c)(2)(C) to deter-
mine the formula for basic standard deduction applicable
to joint returns; §63(c)(7)(A)(ii) which overrides the value
$3,000 in the preceding formula with the value $12,000; as
well as realizing that several other rules such as §63(c)(3)
and §63(f)(1) do not apply because Alice and Bob are not
65 years old in 2018, and that inflation adjustments decreed
in §63(c)(4) and §63(c)(7)(B) do not apply in 2018. The final
answer is $216,350-(2×$12,000)=$192,350.

1While there are numerous paper worksheets and software packages pro-
duced by tax preparation services, those are not the law. Someone has
to manually interpret the statutes in the IRC, which is the ground truth
specification. This paper concerns the underlying legal analysis.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

85

https://orcid.org/0000-0003-4939-033X
https://doi.org/10.1145/3689492.3690050
https://doi.org/10.1145/3689492.3690050
https://creativecommons.org/licenses/by/4.0/

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Rohan Padhye

The reasoning process thus involves evaluating the com-
position of multiple rules, resolving internal cross-references,
handling exceptions that may invalidate seemingly applica-
ble rules, and performing arithmetic calculations; crucially,
however, this process assumes that all the facts (as they per-
tain to the rule-based reasoning) are clearly known and so
it does not deal with subjective interpretation of potentially
ambiguous terms [15]. Similar legal reasoning is required in
other previously mentioned domains: for example, determin-
ing to what extent an insurance policy might cover a particu-
lar incident, or correctly executing a will of a decedent given
specific circumstances about their assets and beneficiaries.

The complexity increases even further when considering
the objectives of those drafting the relevant legislation or
contracts, who may be interested in a form ofmeta-reasoning
of edge cases. For example, government legislators might
wonder if the tax law introduces any loopholes, whereas a tes-
tator might want to ensure that their will robustly expresses
their intentions even in circumstances where some of their
beneficiaries pass before themselves. The meta-reasoning
problem is one of validating a legal text to satisfy some desir-
able properties across the universe of hypothetical scenarios.
Naturally, researchers have attempted to automate de-

ductive legal reasoning to reduce the risk of costly errors;
however, classical approaches have focused on formalizing
the rules using special logics or domain-specific program-
ming languages [18, 19, 26, 27, 30]—while these approaches
are sound, the formalization process itself appears to be too
tedious for these techniques to achieve widespread adoption.

The recent proliferation of generative artificial intelligence
(Gen AI) technologies such as pre-trained large language
models (LLMs) have made it possible to directly automate
deductive legal reasoning using the natural language docu-
ments [4, 17, 31], with limited but progressively improving
success rates. For example, prompting Anthropic’s Claude 3
Opus [1] with a preface (ref. Fig. 1) and the text from Exam-
ple 1 is usually sufficient to solve the problem.2
In this paper, we argue that AI-driven legal reasoning is

essentially a form of (noisy) program execution, where both
the implementation code and the program input is repre-
sented in natural language—the language models are thus
interpreters. As such, it should be possible to understand,
debug, optimize, analyze, maintain, and evolve these docu-
ments as if they were programs using well-studied techniques
from the field of software engineering. With the help of a run-
ning example from tax law, we propose several applications
of software engineering to legal reasoning:

• Streamlined interpretation using subroutine inlining.
• Example generation using coverage analysis and mu-
tation testing.

• Edge-case analysis using property-based testing.

2All LLM prompts and corresponding LLM responses related to examples
listed in this paper are available at https://github.com/cmu-pasta/onward24.

You are an expert legal reasoning system, capable of

reading legal statutes and applying them to given scenarios

by identifying the correct subset of sections that apply to

the particular situation.

In this conversation, we are only going to refer the

following statutes. Do not use your knowledge of any other

piece of legislation not provided in this conversation. If

any undefined section is referenced in a question, please

refuse to answer the question. The statutes referenced in

this conversation are as follows:

```
<Excerpts from the IRC as provided verbatim in Appendix A>

```

Figure 1. LLM system prompt for all examples in this paper.

Our hope is that this paper opens up new research direc-
tions at the cross-sections of computational law, artificial in-
telligence, and software engineering. We anticipate that such
research will enable the development of enhanced search
and analysis tools to assist lawmakers and citizens alike in
reasoning about complex legal documents.

2 Interpreting Substitutions via Inlining
One of the challenges with using LLMs for automated deduc-
tive legal reasoning is the cross-application of other sections
with substituted values. For example, consider the task of
determining the standard deduction for taxable year 2025,
which requires calculating cost-of-living adjustments using
hypothetical inflation data provided in Appendix B.3

Example 2. Alice and Bob are married and filing taxes jointly
for the year 2025. What is the basic standard deduction avail-
able to them?

Solving this task correctly requires several considerations:
1. For joint returns, §63(c)(2)(A)(i) declares the basic stan-

dard deduction to be 200% of the value in §63(c)(2)(C),
which is stated to be $3,000.

2. §63(c)(4) applies “adjustments for inflation” to the value
in §63(c)(2)(C)), but later §63(c)(7)(B)(i) overrides this
substitution by declaring that “Paragraph (4) shall not
apply” for 2025.

3. For 2025, §63(c)(7)(A)(ii) replaces the value “$3,000” in
§63(c)(2)(C)) with the value "$12,000".

4. As per §63(c)(7)(B)(ii), the value “$12,000” in §63(c)(2)(C))
is further increased using a cost-of-living adjustment
as per §1(f)(3), but applying the latter rule itself with
a substitution of “2017” for “2016”.

3At the time of writing (June 2024), the inflation data for calendar year 2024
is not yet fully known and consequently the standard deduction for 2025
has not yet been published by the IRS; so, we are confident that an LLM
will not be able to use external knowledge to solve this problem.

86

https://github.com/cmu-pasta/onward24

Software Engineering Methods for AI-Driven Deductive Legal Reasoning Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

<... System prompt (ref. Figure 1) ... >

<... Text of problem (e.g., Example 2) ... >

Let's think step by step as to which rules apply, and stop

if you come across an applicable rule R that requires

substitution of some value or phrase X in place of Y in

rule S. In this case, do not attempt to apply any other

rules or compute the final answer. Instead, I only want to

perform a single substitute. Please only return a modified

version of the relevant statute S with the substitution

performed. End your response with the following:

Modified rule: S

Modified by: R

Updated text for rule S: <new text replacing Y with X>

Figure 2. LLM Prompt incorporating subroutine inlining.

5. §1(f)(3)(A) provides a formula for computing a cost-
of-living adjustment using the C-CPI-U value for the
preceeding calendar year (i.e., 2024) and the CPI for
calendar year 2016 multiplied by the ratio of the C-
CPI-U for 2016 to the CPI for 2016 as in §1(f)(3)(B).
However, §1(f)(3)(C) comes into play, changing the cal-
culation because we are using “2017” instead of “2016”,
as determined in the previous step. Now, it appears we
must only use the C-CPI-U values of 2024 and 2017;
no multiplication is needed.

6. Plugging in the values from Appendix B, the adjust-
ment is calculated to be 24.82%.

7. Applying the adjustment and the rounding specified in
§63(c)(7)(B)(ii), the value “$12,000” from §63(c)(2)(C))
is therefore determined to change to “$14,950”.

8. Finally, stepping back to §63(c)(2)(A)(i), the basic stan-
dard deduction for a joint return is therefore 200% of
this adjusted value. So, the result is $29,900.

In our experiments, modern LLMs like Claude 3 Opus or
GPT-4 struggle to solve this task correctly evenwith few-shot
in-context learning [6] and using chain-of-thought reason-
ing [25]. There are simply too many subroutines, and the
LLM’s reasoning inevitably falters by using a wrong value
or applying it in the wrong place. The end result is almost
always incorrect—see Appendix C.2 for a sample response
where Claude produces a wrong answer.

Taking inspiration from inlining in software optimiza-
tion [10], we devised a prompting strategy where we asked
the LLM not to calculate the final answer, but just perform
one step of the substitution and reproduce a modified ver-
sion of the statute verbatim (ref. Figure 2). For example, after
step 2 above, the LLM will return the text in Appendix A
except with §63(c)(4) completely removed. After applying
step 3 above, the modified version of the statute will say the
following in place of §63(c)(2)(C) (emphasis added):

(2) Basic standard deduction
...
(B) $18,000 in the case of a head of household (as
defined in section 2(b)) , or
(C) $12,000 in any other case .

Continuing in this way, applying step 5 above changes the
text in §1(f)(3)(A) to say (emphasis added):

(3) Cost−of− living adjustment
For purposes of this subsection—
(A) In general

The cost−of− living adjustment for any calendar
year is the percentage (if any) by which—
(i) the C−CPI−U for the preceding calendar
year , exceeds
(ii) the C-CPI-U for calendar year 2017 .

and so on. Using amodified version of the statute with inlined
substitutions in each subsequent step allows the LLM to slow
down its chain of thought. With this process, Claude 3 Opus
is able to correctly solve Example 2 after seven iterations.4

3 Diverse Example Generation
Consider the task of generating one-paragraph example sce-
narios (as in Example 1) such that certain rules in the statute
apply in specific ways. This could be useful for documenta-
tion or education—for instance, the IRS embeds hundreds of
examples across its various publications and form instruc-
tions in order to demonstrate how federal tax law applies
across various circumstances. Additionally, high quality ex-
amples can also aid in training language models to perform
more accurate legal reasoning—researchers have found that
augmenting training data with additional examples improves
accuracy on some tasks in the COLIEE dataset [37].

In software engineering, the task analogous to diverse ex-
ample generation is that of constructing a high-quality suite
of test cases. Software tests are useful in many ways includ-
ing validation (i.e., checking whether a program behaves cor-
rectly), specification (i.e., writing a test before implementing
functionality, as in test-driven development [3]), and docu-
mentation (i.e., the test code demonstrates the behavior of a
certain application programming interface (API)).

3.1 Code Coverage
In software testing, the quality of a test suite is usually mea-
sured using criteria that track the diversity of program behav-
iors captured across all tests. The most widely used example
is that of code coverage, whichmeasures the fraction of source
code (often counted at the level of lines of code) exercised
across all tests. Code coverage is often used as an objective

4For this exercise, we manually ran the “iterations” by prompting the LLM
multiple times and performing the substitution of rule 𝑆 and cleanup of
rule 𝑅 as suggested by the LLM in its response (ref. Fig.2). In general, we
expect that this step can be automated with simple text-processing scripts.

87

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Rohan Padhye

function in automated test-input generation tools, such as
coverage-guided grey-box fuzzing [5].

Using LLMs, we can use the same principles as in software
testing to measure the coverage of available examples and to
generate more examples by targeting specific coverage crite-
ria. For example, asking Claude 3 Opus to solve Example 1
with a coverage trace (ref. Appendix C.3) correctly produces
a list of rules whose conditions were satisfied in this exam-
ple: “§63(b), §63(c)(1), §63(c)(7), §63(c)(7)(A)(ii), §63(c)(2)(A),
§63(c)(2)(C)”. Moreover, we can ask the LLM to synthesize
examples such that a particular rule is exercised in its cov-
erage. For instance, asking Claude for an example such that
§63(f)(1)(B) applies but §63(f)(1)(A) does not, produces:

Example 3. Charlie and Diane are married and filing taxes
jointly for the year 2018. Charlie was born on 3/15/1985 and
Diane was born on 8/22/1953. In 2018, Charlie and Diane’s
adjusted gross income was $185,000. Charlie and Diane do not
itemize their deductions and do not qualify for any deductions
other than the standard deduction.

Explanation (as per Claude). “In this scenario, Diane has at-
tained age 65 before the close of the 2018 tax year, so §63(f)(1)(B)
applies, entitling Charlie to an additional standard deduc-
tion amount for his spouse. However, Charlie himself has
not attained age 65 before the close of the 2018 tax year, so
§63(f)(1)(A) does not apply”.

3.2 Mutation Testing
In software testing, a criticism of the code coverage measure-
ment of test-suite quality is that it only cares about whether
certain lines of source code were exercised, but not the mean-
ing of those lines themselves. High-coverage test suites do
not necessarily find more faults than low-coverage ones [22].
Instead, what we really want is for our tests to be able to fail
when a software bug is introduced. Mutation testing [12, 32]
measures test-suite quality by artificially injecting “bugs”
and determining if tests fail on the buggy mutated programs.
The objective of a test writer is then to produce new tests that
would distinguish the behavior of the original program from
that of the mutation. This idea has also been used to auto-
mate test-input generation with the objective of maximizing
mutation-detection ability [16, 36].

We can apply the same principles as in software mutation
testing to generate examples that not only exercise certain le-
gal rules, but also distinguish them from other incorrect rules.
For example, we can ask an LLM to assume that §63(f)(1)(B)
is modified to remove the second clause, as follows:

(B) for the spouse of the taxpayer if the spouse
has attained age 65 before the close of the
taxable year and an additional exemption is allowable
to the taxpayer for such spouse under section 151(b) .

Then, we ask the model to synthesize an example such that
§63(f)(1)(B) would apply with the modified rule but it would

not apply with the original rule. Claude 3 Opus responds to
this challenge with the following example:

Example 4. Ellie and Frank are married, but they are fil-
ing their taxes separately for the year 2018. Ellie was born on
5/10/1980 and Frank was born on 2/28/1952. In 2018, Ellie’s
adjusted gross income was $75,000 and Frank’s adjusted gross
income was $50,000. Neither Ellie nor Frank itemize their de-
ductions and they do not qualify for any deductions other than
the standard deduction.

Explanation (as per Claude). “The modified rule [...] would
apply to Frank because he has attained age 65 before the
close of the 2018 tax year. This means Frankwould be entitled
to an additional standard deduction amount for being aged
65 or older, even though he and Ellie are filing separately.
However, under the original rule, §63(f)(1)(B) would not
apply to Frank because it requires not only that the spouse
has attained age 65, but also that “an additional exemption
is allowable to the taxpayer for such spouse under section
§151(b).” [...] In this scenario, Frank does have gross income,
so even though he is over 65, the original §63(f)(1)(B) would
not apply to him because Ellie cannot claim an additional
exemption for him under §151(b)."

Mutation testing thus helps with generating examples that
not only exercise specific parts of relevant statutes but also
provide a basis for reasoning about why certain rules are
written in a certain way.

4 Metamorphic Property-Based Testing
Property-based testing, originally introduced in Quickcheck
for Haskell [8], is a technique for writing generic tests that
express what properties a function should satisfy given any
imaginable input. Given a function 𝑓 : 𝑋 → 𝑌 and a pred-
icate 𝑝 : 𝑋 × 𝑌 → bool, we want to ensure that ∀𝑥 ∈ 𝑋 :
𝑝 (𝑥, 𝑓 (𝑥)). For example, given a sort function, we might
want to ensure that the output is always sorted and con-
tains a permutation of its input elements. The key idea of
property-based testing is to check such generic properties
using auto-generated inputs values via random sampling of
the input space 𝑋 .
A special class of property-based testing checks proper-

ties that should hold across multiple invocations of some
program function when the inputs are changed in a specified
manner—this is called metamorphic testing [7]. For example,
given a sort function, we can check whether sort(x) and
sort(reverse(x)) are equal for all values x.
Meta-reasoning tasks in statutory or contract law often

deal with ensuring that the legal text satisfies certain consis-
tency properties. For example, a desirable property of a tax
legislation may be that the same income dollar is not taxed
twice, or that the same expense dollar is not allowed as a
deduction in two different ways. In estate planning, consider
a complex last will and testament having many conditional

88

Software Engineering Methods for AI-Driven Deductive Legal Reasoning Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

branches to decide how assets should be distributed depend-
ing on which beneficiaries are alive at the time of the will’s
execution; the testator might want to ensure that benefi-
ciary 𝑋 always receives more than beneficiary 𝑌 regardless
of the circumstances and how the conditional branches are
resolved. Such meta-reasoning is thus a form of edge-case
analysis.
We argue that meta-reasoning tasks can potentially be

automated using the key principles of metamorphic property-
based testing and combining these with AI-driven techniques
of interpretation. For example, consider §63(c)(7)(B) from
the IRC (ref. Appendix A), which provides adjustments for
inflation to the basic standard deduction applicable in tax
years 2018–2025. One may want to analyze the code to ask:
Can the basic standard deduction available for single filers ever
decrease year-over-year in this period? Perhaps a legislator or
other stakeholder is interested in understanding the effects
of year-over-year deflation on the tax code. Answering this
question involves not just interpreting the statutes but also
reasoning about how they would apply in hypothetical edge-
case scenarios.
Unfortunately, asking an LLM to analyze general prop-

erties of legal statutes directly does not always produce ac-
curate results. When directly prompted with the aforemen-
tioned question, Claude 3 Opus determines “§63(c)(7)(B)(ii)
states that for taxable years beginning after 2018, these
$18,000 and $12,000 amounts shall each be increased by a
cost-of-living adjustment. [...] Since the amounts can only be
increased and not decreased according to this special rule for
2018-2025, the basic standard deduction cannot decrease year-
over-year within this period.” (emphasis added). However, it
turns out that this is not fully correct.

We can help Claude by expressing our question as a meta-
morphic property-based test to verify the monotonicity of
the inflation adjustments—Given any two years 𝑋 and 𝑌 ,
such that 2018 ≤ 𝑋 < 𝑌 ≤ 2025, and hypothetical C-CPI-U
values for the correspondingly preceding calendar years 𝐼𝑥
and 𝐼𝑦 in the numeric range [100, 200], calculate𝐷 (𝑋, 𝐼𝑥) and
𝐷 (𝑌, 𝐼𝑦) respectively, where function 𝐷 is the computation
of basic standard deduction for single filers in a given year
assuming a given C-CPI-U value for the preceding calendar
year; then check whether 𝐷 (𝑋, 𝐼𝑥) ≤ 𝐷 (𝑌, 𝐼𝑦) is true. Now
do this for random values of 𝑋,𝑌, 𝐼𝑥 , 𝐼𝑦 in a loop—in each
iteration, use the LLM to calculate the inflation adjustment
using the prompts shown earlier.

It takes about 2.4 iterations on average to discover that it
is indeed possible to violate the stated property. Although
the adjustments defined in §63(c)(7)(B) and §1(f)(3) do in-
deed only allow for increases to the basic standard deduction
value listed in §63(c)(2)(C) (which is “$12,000” in the period
2018–2025), the amount by which this value is increased can
seemingly decrease year-over-year if there is deflation during
those subsequent years. Property-based testing can reveal a

situation where the monotonicity property is violated: for in-
stance, 𝐷 (2024, 168.1)=$14,550 and 𝐷 (2025, 167.0)=$14,500;
that is, if there was a hypothetical 0.65% deflation in 2024,
then the basic standard deduction for single filers in tax year
2025 as computed by §63(c)(2)(C) and §1(f)(3) appears to be
$50 lower than that computed for the previous year.
Property-based testing thus allows us to reason about

invariants across many hypothetical scenarios.

5 Other Software Engineering Applications
Given our view of legal reasoning through the lens of soft-
ware engineering, one can imagine applications of a number
of other software analysis techniques.

Example Minmization. Delta debugging [38] is a tech-
nique for isolating the root cause of a program failure in
terms of input data (e.g., think of a large file that causes
a word processor to crash). The key idea is to repeatedly
slice and dice the input until we obtain the smallest possible
chunk that also reproduces the failure.
In legal reasoning or meta-reasoning, delta debugging

can be applied to any task where the output is an example
scenario (ref. Sections 3 and 4), and the objective is to find
the smallest example such that a particular rule applies in a
specific way. We only need to implement support for input
reduction operators, which for natural language inputs (such
as Examples 1–4) might mean deleting individual sentences
or logical clauses separated by conjunctions. After that, in-
put minimization via the 𝑑𝑑𝑚𝑖𝑛 algorithm [38] is simply an
application of interpretation (ref. Section 2) in a loop, with
the use of coverage analysis (ref. Section 3.1) to determine
whether reduced inputs exercise given rules (i.e., the oracle
of reduction).

Amendment Validation. Consider the meta-reasoning
task of understanding the scope of amendments to legislation
or contracts, such as a bill introduced by the U.S. Congress
that reforms the tax code, or a customized rider attached to
an insurance policy.

In software, change impact analysis [2] is a technique for
identifying which modules in a software get affected by a
small patch applied to the program. The basic idea is to build
a directed graph of various program modules and their inter-
dependencies using both static source code information and
dynamic hints from previous test executions. The impact of
changes can then be identified by following paths through
such a graph.

In legal reasoning, it is already possible to construct such
static dependency graphs by mining explicit cross-references
between various sections [11, 33]. With AI-driven interpreta-
tion and example generation with coverage analysis (ref. Sec-
tion 3.1), we can also add test cases as nodes in this graph.
An amendment that modifies existing rules could then be
analyzed by re-running “test cases” whose coverage directly

89

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Rohan Padhye

or indirectly depends on the modified rule. Just like with the
mutation testing approach (ref. Section 3.2), the goal here
would be to identify example scenarios (i.e., the “test cases”)
which are evaluated differently under the original and the
amended rules.

Amendment Composition. A stretch goal for using AI
in legal analysis would be to prototype new amendments
that have a specific impact on selected input scenarios.
In software engineering, the field of automatic program

repair (APR) [28] develops techniques for fixing bugs by
synthesizing appropriate patches. In a classical formation,
APR starts with a program and a suite of tests such that one
bug-revealing test fails. The task is to find a software patch
such that this test and all the other test cases in the original
suite pass with the new program. The key idea behind search-
based APR techniques is to search over a space of small
changes to the program until all the tests pass in the expected
way.

Generative AI could potentially be used to brainstorm
amendments to legal texts (the “patches”) having a desired
effect by providing natural language test scenarios such that
certain rules should apply in desirable ways. We expect this
application to be more useful in prototyping changes to
contracts between business entities rather than drafting leg-
islative bills.

6 Discussion
6.1 Threats to Validity
A key challenge with using LLMs to perform any sort of
reasoning or analysis task is to ensure the reliability of their
responses. LLMs are notorious for sometimes hallucinat-
ing [29] or providing incorrect responses for trivial reason-
ing tasks [4]. While we do not offer any silver bullets in
this paper, we note that this is a problem being actively
researched by the AI community [23, 35]; mitigation strate-
gies include extracting explanations for traceability [9] and
refining answers via self-reflecting feedback loops [13, 24].
One common failure mode we have observed pertains to

cases when the LLM is pre-trained on legal documents from
the domain. For example, whenworkingwith U.S. tax law, we
can be certain that commercial LLMs such as Claude would
have been trained on the official IRC statutes as well as thou-
sands of web articles discussing contemporary tax issues.
Consequently, we have found that applying techniques such
as mutation testing or presenting questions about hypothet-
ical new laws sometimes results in sub-optimal outcomes
because the model continues to “believe” the current law
instead of new rules or situations that we may provide in
prompts. In future work, we plan to investigate a mitigation
technique where key domain-specific terms in the statutes
(such as “taxable income”) are replaced by domain-agnostic
terms (such as “foobar”) in order to disconnect the model’s
grounding in background knowledge.

6.2 Alternative Approaches and Related Work
In this paper, most of the examples considered directly prompt-
ing an LLM to perform numeric calculations based on nat-
ural language text in legal statutes. An alternative to this
approach is to first prompt the LLM to synthesize an exe-
cutable program that performs the same computation and
then to execute such a program with inputs from a given
scenario. We attempted to do so using Catala [30], a domain-
specific programming language for formalizing statutes, as
well as regular Python; however, our initial experience with
this approach was quite unsatisfactory. One main problem
we encountered is that legal statutes do not have a clear
“entry point” and linear flow of logic; moreover, they do not
upfront declare which terms may be re-interpreted by other
sections. The task of manually transcribing statutes into
Catala or Python programs often requires making multiple
passes over the program to alter definitions. For example,
when some rule 𝑅 requires applying section 𝑆 but replacing
the term𝑋 in place of 𝑌 , we need to go back to the definition
of 𝑆 and convert constants or expressions into variables or
subroutines, respectively, so that we may plug-in 𝑋 as an
input. In our experience, we found current LLMs to not be
well-suited for this successive non-linear refinement of pro-
grams with standard prompting techniques, though future
research may discover more effective solutions.

Holzenberger and Van Durme [20, 21] have proposed per-
forming statutory reasoning by extracting the structure of
legal statutes in the form of graphs and Prolog programs—
the approach appears to be effective, but the representations
are not designed to be easy for humans to read and debug.
The software engineering techniques presented in our paper,
such as coverage analysis, mutation testing, or property-
based testing, could potentially be applied on top of these
Prolog programs as well.
Metamorphic testing has previously been applied to tax

preparation software [34]; it would be interesting to vali-
date the metamorphic properties used in this prior work by
applying them directly on the underlying natural-language
statutes.

6.3 Implications and Aspirations of the Work
How will the techniques proposed in this paper apply in
the real world? First, we want to clarify that we do not
expect AI-driven legal analysis tools to completely replace
any individual task performed by lawyers, primarily due
to the lack of reliability in any statistical model. Instead,
we anticipate that a software engineering approach to legal
reasoning will enable the development of search & analysis
tools that augment current legal processes that are performed
predominantly manually.
For lawmakers and other legal professionals involved in

drafting laws, policies, or contracts, SE+AI-enabled tools
could provide useful insights into the breadth and limitations

90

Software Engineering Methods for AI-Driven Deductive Legal Reasoning Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

of specific legal rules under consideration. Such tools can
help drafters avoid producing inconsistent documents or
making unintentional mistakes.

For ordinary citizens, legal analysis tools could potentially
help provide useful insights that are only otherwise available
to the more resourceful clients who can afford to retain
legal experts. For example, we can imagine tools that can
help individuals compare and demystify documents such as
insurance policies, rental leases, and credit card agreements
by providing “what-if” example generation and edge-case
analysis capabilities; while not a substitute for legal advice,
these insights could potentially form the basis for subsequent
negotiation unlocked by the increased transparency.

7 Conclusion
Generative AI has unlocked new ways of automating de-
ductive legal reasoning. The intricacies and peculiarities of
legalese make it much more suitable to treat statutes and con-
tracts as computer programs rather than as natural language
databases of information. Consequently, we argue that this
problem can benefit from the principled application of tech-
niques well-studied in the field of software engineering such
as code coverage, function inlining, mutation testing, meta-
morphic property-based testing, and more. We hope that this
paper forms the basis for researchers to investigate further
synergies across software analysis and computational law.

Acknowledgments
The author would like to thank the anonymous reviewers
of the Onward! track for their valuable comments and sug-
gestions for improvement. The paper also benefited from
feedback provided by Sarah Lawsky, Travis Breaux, Sarah
Santos, Vasudev Vikram, and Sam Estep. Finally, the author
thanks Bogdan Vasilescu for encouraging him to pursue and
publish these ideas.

A Excerpt from Internal Revenue Code
In this appendix, we list excerpts from 26 U.S.C. §63, §1,
and §151 (as of April 2024) that are provided to an LLM for
reasoning about tasks described in the sections above.
§63. Taxable income defined
...
(b) Individuals who do not itemize their deductions
In the case of an individual who does not elect to
itemize his deductions for the taxable year , for
purposes of this subtitle , the term “ taxable income”
means adjusted gross income, minus—
(1) the standard deduction ,
...

(c) Standard deduction
(1) In general
Except as otherwise provided in this subsection , the
term "standard deduction" means the sum of−

(A) the basic standard deduction , and

(B) the additional standard deduction .
(2) Basic standard deduction
For purposes of paragraph (1) , the basic standard
deduction is−

(A) 200 percent of the dollar amount in effect
under subparagraph (C) for the taxable year in the
case of−

(i) a joint return , or
(ii) a surviving spouse (as defined in section
2(a)) ,

(B) $4,400 in the case of a head of household (as
defined in section 2(b)) , or
(C) $3,000 in any other case .

(3) Additional standard deduction for aged and blind
For purposes of paragraph (1) , the additional standard
deduction is the sum of each additional amount to
which the taxpayer is entitled under subsection (f) .
(4) Adjustments for inflation

In the case of any taxable year beginning in a
calendar year after 1988, each dollar amount
contained in paragraph (2) (B) , (2) (C) , or (5) or
subsection (f) shall be increased by an amount
equal to—
...

(7) Special rules for taxable years 2018 through 2025
In the case of a taxable year beginning after
December 31, 2017, and before January 1, 2026−
(A) Increase in standard deduction

Paragraph (2) shall be applied—
(i) by substituting “$18,000” for “$4,400” in
subparagraph (B) , and
(ii) by substituting “$12,000” for “$3,000” in
subparagraph (C).

(B) Adjustment for inflation
(i) In general
Paragraph (4) shall not apply to the dollar
amounts contained in paragraphs (2) (B) and (2) (C) .
(ii) Adjustment of increased amounts

In the case of a taxable year beginning after
2018, the $18,000 and $12,000 amounts in
subparagraph (A) shall each be increased by an
amount equal to—
(I) such dollar amount, multiplied by
(II) the cost−of− living adjustment determined
under section 1(f) (3) for the calendar year in
which the taxable year begins , determined by
substituting “2017” for “2016” in subparagraph
(A)(ii) thereof .
If any increase under this clause is not a
multiple of $50, such increase shall be
rounded to the next lowest multiple of $50.

...
(f) Aged or blind additional amounts
(1) Additional amounts for the aged
The taxpayer shall be entitled to an additional
amount of $600—
(A) for himself if he has attained age 65 before the
close of his taxable year , and

91

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Rohan Padhye

(B) for the spouse of the taxpayer if the spouse has
attained age 65 before the close of the taxable year
and an additional exemption is allowable to the
taxpayer for such spouse under section 151(b) .

...
§1. Tax imposed
...
(f) Adjustments in tax tables so that inflation will not
result in tax increases

...
(3) Cost−of− living adjustment

For purposes of this subsection—
(A) In general

The cost−of− living adjustment for any calendar
year is the percentage (if any) by which—
(i) the C−CPI−U for the preceding calendar
year , exceeds
(ii) the CPI for calendar year 2016,
multiplied by the amount determined under
subparagraph (B) .

(B) Amount determined
The amount determined under this clause is the
amount obtained by dividing—
(i) the C−CPI−U for calendar year 2016, by
(ii) the CPI for calendar year 2016.

(C) Special rule for adjustments with a base year
after 2016
For purposes of any provision of this title which
provides for the substitution of a year after 2016
for “2016” in subparagraph (A)(ii) , subparagraph
(A) shall be applied by substituting “the C−CPI−U
for calendar year 2016” for “the CPI for calendar
year 2016” and all that follows in clause (ii)
thereof .

(4) CPI for any calendar year
For purposes of paragraph (3) , the CPI for any
calendar year is the average of the Consumer Price
Index as of the close of the 12−month period ending on
August 31 of such calendar year .
(6) C−CPI−U

...
(B) Determination for calendar year
The C−CPI−U for any calendar year is the average
of the C−CPI−U as of the close of the 12−month
period ending on August 31 of such calendar year .
...

§151. Allowance of deductions for personal exemptions
(a) Allowance of deductions
In the case of an individual , the exemptions provided
by this section shall be allowed as deductions in
computing taxable income.
(b) Taxpayer and spouse
An exemption of the exemption amount for the taxpayer ;
and an additional exemption of the exemption amount
for the spouse of the taxpayer if a joint return is not
made by the taxpayer and his spouse, and if the
spouse, for the calendar year in which the taxable
year of the taxpayer begins , has no gross income and
is not the dependent of another taxpayer .
...

B Inflation Data for Cost-of-Living
Adjustments

The following table provides (hypothetical) values for the
Chained Consumer Price Index for All Urban Consumers
(C-CPI-U) for calendar years 2017–2024, calculated using the
averaging methodology in §1(f)(6)(B).

Year 2017 2018 2019 2020 2021 2022 2023 2024

Value 138.2 141.0 143.2 144.8 149.1 159.9 168.3 172.5

C Sample Transcripts
This section contains some samples from our interactions
with Anthropic’s Claude 3 Opus LLM, when prompted with
examples from the paper. The detailed transcripts are avail-
able at https://github.com/cmu-pasta/onward24.

C.1 Determining Standard Deduction without
Inflation Adjustments

When given the system prompt (ref. Fig. 1) followed by a
prompt containing Example 1 and the phrase “Let’s think
step by step” for zero-shot chain-of-thought [25], Claude
responds:

Okay, let's break this down step-by-step based on the given

statutes:

1. Determine the standard deduction for Alice and Bob in

2018:

- According to §63(c)(7)(A), for taxable years 2018

through 2025, the basic standard deduction for a joint

return is $24,000 ($18,000 substituted for $4,400 in §

63(c)(2)(B), and $12,000 substituted for $3,000 in §

63(c)(2)(C)).

2. Determine if Alice and Bob are entitled to any

additional standard deduction amounts:

- Per §63(f)(1)(A) and (B), taxpayers are entitled to an

additional $600 each if they have attained age 65 before

the close of the taxable year.

- In 2018, Alice was 37 years old (born in 1981), and

Bob was 43 years old (born in 1975). Neither had

attained age 65.

- Therefore, they are not entitled to any additional

standard deduction amounts.

3. Calculate their total standard deduction:

- Their total standard deduction is the basic standard

deduction of $24,000, as they do not qualify for any

additional standard deduction amounts.

4. Calculate their taxable income:

- According to §63(b), for individuals who do not

itemize their deductions, taxable income means adjusted

gross income minus the standard deduction.

92

https://github.com/cmu-pasta/onward24

Software Engineering Methods for AI-Driven Deductive Legal Reasoning Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

- Alice and Bob's adjusted gross income in 2018 was

$216,350.

- Their taxable income = $216,350 - $24,000 = $192,350.

Therefore, Alice and Bob's taxable income for 2018 is

$192,350.

C.2 Calculating Inflation Adjustments to Standard
Deduction without Inlining

When asked to solve Example 2 with only the system prompt
(ref. Fig. 1), inflation data (ref. Appendix B), and using zero-
shot chain-of-thought [25], Claude responds:

Okay, let's break this down step-by-step based on the

information provided in the statutes:

1. Determine the basic standard deduction:

- According to §63(c)(7)(A), for taxable years 2018

through 2025, the basic standard deduction for a joint

return is $18,000.

2. Adjust the basic standard deduction for inflation:

- §63(c)(7)(B)(ii) states that for taxable years

beginning after 2018, the $18,000 amount shall be

increased by the cost-of-living adjustment determined

under §1(f)(3), substituting "2017" for "2016" in §

1(f)(3)(A)(ii).

- The cost-of-living adjustment for 2025 is calculated

as follows:

* C-CPI-U for 2024 (preceding year): 172.5

* C-CPI-U for 2017: 138.2

* Adjustment = (172.5 / 138.2) - 1 = 0.2482 (24.82%)

- Increase the $18,000 basic standard deduction by

24.82%:

* $18,000 x (1 + 0.2482) = $22,467.60

- Round down to the nearest multiple of $50:

* Adjusted basic standard deduction = $22,450

3. Determine the additional standard deduction:

- According to §63(f)(1)(A) and (B), taxpayers are

entitled to an additional $600 each if they have

attained age 65 before the close of the taxable year.

- In 2025, Alice is 44 years old, and Bob is 49 years

old, so they are not entitled to the additional standard

deduction.

Therefore, for the tax year 2025, Alice and Bob's standard

deduction is $22,450.

This answer is incorrect. Although Claude correctly cal-
culates the inflation adjustment of 24.82%, it multiplies this
with a figure of $18,000 (corresponding to the basic standard
deduction for a head-of-household) instead of multiplying
by $12,000 and then doubling it for a joint return.

C.3 Coverage Tracing
The following is a user prompt for coverage tracing on Ex-
ample 1—the usual system prompt containing the statutes
(ref. Fig. 1) was also provided.

Alice and Bob are married and filing taxes jointly for the

year 2018. Alice was born on 1/1/1981 and Bob was born on

12/30/1975. In 2018, Alice and Bob's adjusted gross income

was $216,350. Alice and Bob do not itemize their deductions

and do not qualify for any deductions other than the

standard deduction. What is their taxable income for 2018?

Let's think step by step. In each step, reference the

section or paragraph number and justify your reasoning. If

you encounter any cross-references to other sections or

paragraphs, perform the reasoning in a sub-list and return

to the previous step. Do this recursively for any

subsequent cross-references. If you encounter any

substitutions of values, perform the substitution and

reproduce the substituted sentences verbatim before

deciding if they actually apply. End your response with two

special lines as follows:

Answer: <dollar amount calculated>

Coverage: <comma-separated list of rules referenced,

identified by their most specific section/paragraph numbers>

Relevance: <comma-separated list of rules that applied to

this case because the conditions were true, again

identified by their most specific section/paragraph numbers>

Claude’s response:

Okay, let's break this down step-by-step:

1. According to §63(b), since Alice and Bob do not itemize

their deductions, their taxable income is their adjusted

gross income minus the standard deduction.

- They have an adjusted gross income of $216,350.

- We need to calculate their standard deduction.

2. §63(c)(1) says the standard deduction is the sum of the

basic standard deduction and the additional standard

deduction.

3. For the basic standard deduction, §63(c)(2) provides

dollar amounts, but §63(c)(7) says for a taxable year

beginning after December 31, 2017 and before January 1,

2026, paragraph (2) shall be applied with some

substitutions.

1. §63(c)(7)(A)(i) says to substitute "$18,000" for

"$4,400" in §63(c)(2)(B).

- After substitution, §63(c)(2)(B) reads: "$18,000 in

the case of a head of household (as defined in

section 2(b))". This does not apply as Alice and Bob

are filing jointly, not as head of household.

2. §63(c)(7)(A)(ii) says to substitute "$12,000" for

"$3,000" in §63(c)(2)(C).

- After substitution, §63(c)(2)(C) reads: "$12,000 in

any other case".

93

Onward! ’24, October 23–25, 2024, Pasadena, CA, USA Rohan Padhye

3. §63(c)(2)(A) says the basic standard deduction is

200% of the amount in §63(c)(2)(C) for a joint return.

- Since §63(c)(2)(C) is $12,000 after the

substitution, the basic standard deduction for Alice

and Bob is $24,000.

4. For the additional standard deduction, §63(c)(3) says it

is the sum of the additional amounts the taxpayer is

entitled to under §63(f).

1. §63(f)(1)(A) provides an additional amount of $600 if

the taxpayer has attained age 65 before the close of the

taxable year. Bob was born on 12/30/1975, so he was 43

in 2018 and this does not apply. Alice was born on

1/1/1981, so she was 37 in 2018 and this also does not

apply.

2. §63(f)(1)(B) provides an additional $600 for the

spouse of the taxpayer if the spouse has attained age 65

and an additional exemption is allowable under §151(b).

Neither condition is met (Bob is under 65, and they are

filing jointly so §151(b) does not provide an additional

exemption). So this also does not apply.

- Therefore, Alice and Bob are not entitled to any

additional standard deduction under §63(f).

5. The total standard deduction is thus just the basic

standard deduction of $24,000.

6. Going back to §63(b), the taxable income is the adjusted

gross income of $216,350 minus the standard deduction of

$24,000.

Therefore:

Answer: $192,350

Coverage: §63(b), §63(c)(1), §63(c)(2), §63(c)(7), §

63(c)(7)(A)(i), §63(c)(7)(A)(ii), §63(c)(2)(A), §

63(c)(2)(C), §63(c)(3), §63(f), §63(f)(1)(A), §63(f)(1)(B),

§151(b)

Relevance: §63(b), §63(c)(1), §63(c)(7), §63(c)(7)(A)(ii), §

63(c)(2)(A), §63(c)(2)(C)

References
[1] Anthropic. 2024. Claude. https://www.anthropic.com/claude.
[2] Robert S Arnold. 1996. Software change impact analysis. IEEEComputer

Society Press.
[3] Kent Beck. 2003. Test-driven Development: By Example. Addison-Wesley

Professional.
[4] Andrew Blair-Stanek, Nils Holzenberger, and Benjamin Van Durme.

2023. Can GPT-3 perform statutory reasoning? arXiv preprint
arXiv:2302.06100 (2023).

[5] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016.
Coverage-based greybox fuzzing as markov chain. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 1032–1043.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing systems 33 (2020),
1877–1901.

[7] T.Y. Chen, S.C. Cheung, and S.M. Yiu. 1998.Metamorphic Testing: A New
Approach for Generating Next Test Cases. Technical Report HKUST-
CS98-01. The Hong Kong University of Science and Technology.

[8] Koen Claessen and John Hughes. 2000. QuickCheck: A Lightweight
Tool for Random Testing of Haskell Programs. In Proceedings of the 5th
ACM SIGPLAN International Conference on Functional Programming
(ICFP).

[9] Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan Xie, Hannah
Smith, Leighanna Pipatanangkura, and Peter Clark. 2021. Explaining
answers with entailment trees. arXiv preprint arXiv:2104.08661 (2021).

[10] Jack W. Davidson and AM Hollersnm. 1992. Subprogram inlining: A
study of its effects on program execution time. IEEE Transactions on
Software Engineering 18, 2 (1992), 89.

[11] Emile De Maat, Radboud Winkels, and Tom Van Engers. 2006. Auto-
mated detection of reference. In Proceedings of the 2006 conference on
Legal Knowledge and Information Systems: JURIX 2006: The Nineteenth
Annual Conference, Vol. 152. 41.

[12] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data
Selection: Help for the Practicing Programmer. Computer 11, 4 (1978),
34–41. https://doi.org/10.1109/C-M.1978.218136

[13] Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu,
Xian Li, Asli Celikyilmaz, and Jason Weston. 2023. Chain-of-
verification reduces hallucination in large language models. arXiv
preprint arXiv:2309.11495 (2023).

[14] Phoebe C. Ellsworth. 2005. Legal Reasoning. In The Cambridge Hand-
book of Thinking and Reasoning, K. J. Holyoak and R. G. Morrison Jr.
(Eds.). Cambridge University Press, New York, 685–704.

[15] Damien Falato. 2013. Is it a trade or business? Or a hobby or invest-
ment? https://www.thetaxadviser.com/newsletters/2023/may/is-it-a-
trade-or-business-or-a-hobby-or-investment.html. Online; Retreived
March 9, 2024.

[16] Gordon Fraser and Andreas Zeller. 2010. Mutation-driven genera-
tion of unit tests and oracles. In Proceedings of the 19th international
symposium on Software testing and analysis. 147–158.

[17] Randy Goebel, Yoshinobu Kano, Mi-Young Kim, Juliano Rabelo, Ken
Satoh, and Masaharu Yoshioka. 2023. Summary of the competition on
legal information, extraction/entailment (COLIEE) 2023. In Proceedings
of the Nineteenth International Conference on Artificial Intelligence and
Law. 472–480.

[18] Oliver Goodenough and Susan Salkind. 2022. Computable
Contracts and Insurance: An Introduction. MIT Computa-
tional Law Report (August 2022). https://law.mit.edu/pub/
computablecontractsandinsuranceanintroduction.

[19] Nils Holzenberger, Andrew Blair-Stanek, and Benjamin Van Durme.
2020. A dataset for statutory reasoning in tax law entailment and
question answering. arXiv preprint arXiv:2005.05257 (2020).

[20] Nils Holzenberger and Benjamin Van Durme. 2021. Factoring Statutory
Reasoning as Language Understanding Challenges. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association for Computational
Linguistics, 2742–2758. https://doi.org/10.18653/v1/2021.acl-long.213

[21] Nils Holzenberger and Benjamin Van Durme. 2023. Connecting sym-
bolic statutory reasoning with legal information extraction. In Pro-
ceedings of the Natural Legal Language Processing Workshop 2023. As-
sociation for Computational Linguistics, 113–131.

[22] Laura Inozemtseva and Reid Holmes. 2014. Coverage is not strongly
correlated with test suite effectiveness. In Proceedings of the 36th inter-
national conference on software engineering. 435–445.

[23] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko
Ishii, Ye Jin Bang, Andrea Madotto, and Pascale Fung. 2023. Survey of
hallucination in natural language generation. Comput. Surveys 55, 12
(2023), 1–38.

94

https://www.anthropic.com/claude
https://doi.org/10.1109/C-M.1978.218136
https://www.thetaxadviser.com/newsletters/2023/may/is-it-a-trade-or-business-or-a-hobby-or-investment.html
https://www.thetaxadviser.com/newsletters/2023/may/is-it-a-trade-or-business-or-a-hobby-or-investment.html
https://law.mit.edu/pub/computablecontractsandinsuranceanintroduction
https://law.mit.edu/pub/computablecontractsandinsuranceanintroduction
https://doi.org/10.18653/v1/2021.acl-long.213

Software Engineering Methods for AI-Driven Deductive Legal Reasoning Onward! ’24, October 23–25, 2024, Pasadena, CA, USA

[24] Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale
Fung. 2023. Towards mitigating LLM hallucination via self reflection.
In Findings of the Association for Computational Linguistics: EMNLP
2023. 1827–1843.

[25] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo,
and Yusuke Iwasawa. 2022. Large language models are zero-shot
reasoners. Advances in neural information processing systems 35 (2022),
22199–22213.

[26] Sarah B Lawsky. 2016. Formalizing the code. Tax L. Rev. 70 (2016),
377.

[27] Sarah B Lawsky. 2017. A logic for statutes. Fla. Tax Rev. 21 (2017), 60.
[28] Claire Le Goues, Michael Pradel, Abhik Roychoudhury, and Satish

Chandra. 2021. Automatic program repair. IEEE Software 38, 4 (2021),
22–27.

[29] Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald.
2020. On faithfulness and factuality in abstractive summarization.
arXiv preprint arXiv:2005.00661 (2020).

[30] Denis Merigoux, Nicolas Chataing, and Jonathan Protzenko. 2021.
Catala: a programming language for the law. Proceedings of the ACM
on Programming Languages 5, ICFP (2021), 1–29.

[31] John J Nay, David Karamardian, Sarah B Lawsky, Wenting Tao,
Meghana Bhat, Raghav Jain, Aaron Travis Lee, Jonathan H Choi, and
Jungo Kasai. 2024. Large language models as tax attorneys: a case
study in legal capabilities emergence. Philosophical Transactions of the
Royal Society A 382, 2270 (2024), 20230159.

[32] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon,
and Mark Harman. 2019. Mutation testing advances: an analysis and

survey. In Advances in Computers. Vol. 112. Elsevier, 275–378.
[33] Nicolas Sannier, Morayo Adedjouma, Mehrdad Sabetzadeh, and Lionel

Briand. 2017. An automated framework for detection and resolution
of cross references in legal texts. Requirements Engineering 22 (2017),
215–237.

[34] Saeid Tizpaz-Niari, Verya Monjezi, Morgan Wagner, Shiva Darian,
Krystia Reed, and Ashutosh Trivedi. 2023. Metamorphic testing and
debugging of tax preparation software. In 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering: Software Engineering in
Society (ICSE-SEIS). IEEE, 138–149.

[35] SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman
Chadha, and Amitava Das. 2024. A comprehensive survey of halluci-
nation mitigation techniques in large language models. arXiv preprint
arXiv:2401.01313 (2024).

[36] Vasudev Vikram, Isabella Laybourn, Ao Li, Nicole Nair, Kelton OBrien,
Rafaello Sanna, and Rohan Padhye. 2023. Guiding greybox fuzzingwith
mutation testing. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis. 929–941.

[37] Masaharu Yoshioka, Yasuhiro Aoki, and Youta Suzuki. 2021. BERT-
based ensemble methods with data augmentation for legal textual
entailment in COLIEE statute law task. In Proceedings of the eighteenth
international conference on artificial intelligence and law. 278–284.

[38] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating
failure-inducing input. IEEE Transactions on Software Engineering 28,
2 (2002), 183–200.

Received 2024-04-25; accepted 2024-08-08

95

	Abstract
	1 Introduction
	2 Interpreting Substitutions via Inlining
	3 Diverse Example Generation
	3.1 Code Coverage
	3.2 Mutation Testing

	4 Metamorphic Property-Based Testing
	5 Other Software Engineering Applications
	6 Discussion
	6.1 Threats to Validity
	6.2 Alternative Approaches and Related Work
	6.3 Implications and Aspirations of the Work

	7 Conclusion
	Acknowledgments
	A Excerpt from Internal Revenue Code
	B Inflation Data for Cost-of-Living Adjustments
	C Sample Transcripts
	C.1 Determining Standard Deduction without Inflation Adjustments
	C.2 Calculating Inflation Adjustments to Standard Deduction without Inlining
	C.3 Coverage Tracing

	References

