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Abstract Results

- Image quality transfer (IQT) [1] is a machine-learning based  Uncertainty displays correspondence with reconstruction accuracy.
framework to enhance low quality images (e.g. clinical data) by id L ” <10*
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* We propose a Bayesian extension of IQT and demonstrate in AL 2 3
super-resolution of dMRI. L fo2 2
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* Results show:
1. our method improves reconstruction accuracy.
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2. our method provides a robust uncertainty estimate. = 26|
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3. the uncertainty measure can highlight unfamiliar regions 5 c 54|
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Fig.3 Reconstruction errors and uncertainty as colour maps.
The smaller, the "better’ (the more accurate and more confident)

* Super-resolution as a patch-wise regression (Fig.1) as in [1].
* Training data generation (Fig.2): high quality images from HCP are

downsampled to create matched pairs of high-res and low-res patches. |+ Synthetic data: known ground truth.
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i+ Uncertainty gives a surrogate measure of accuracy. |
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* Uncertainty highlights pathologies not present in training set by
assigning higher uncertainty
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 Node-wise Bayesian regression forest: the Bayesian linear model is used 5
to model the predictive distribution at each leaf node of each tree: =
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:C) Fig.5 Uncertainty maps on images of a brain tumour
- patient (contours highlighted).
Conclusions
Our method, Bayesian IQT: * Outperforms in accuracy the original IQT and standard interpolation
- provides an uncertainty measure which highly correlates techniques on three metrics in both healthy and pathological brains.
with the reconstruction accuracy, and is able to highlight E S e T B — -
pathologies not observed in the training data. e e
* improves reconstruction accuracy in super-resolution By YN - p— oz e
against the original IQT implementation and standard v s 1= ot L L.
interpolation methods. & R I T T
- retains generality of IQT; it can be applied to other T 2 e | e | 1
mOdalltleS (eg StrUCtU ral MRI, CT) and dlfferent appllcatlons . Size of training data T1o Size oftra.lnlng data x10 . Size of training data x10 | BIQT IQT BLR LR SplineCubic
) . ] Fig.6 Reconstruction accuracy of various super-resolution methods Fig.7 The average
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beyond super-resolution (e.g. image synthesis). VBB g Aty dowmsompled vt ros noues are super- b
resolved to recover the original resolution.
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