Proceedings of the

15™" Junior Researcher Workshop
on Real-Time Computing 2022

(JRWRTC 2022)

Paris, France
07 - 08 June 2022

Crnzia—~

Table of contents

Junior Researcher Workshop on Real-Time Computing 2022

(JRWRTC 2022)
Message from the workshop chairs 5
Program committee 6
An automata-based method for interference analysis in multi-core processors7

Thomas Beck, Frédéric Boniol, Jérdme Ermont, Luc Maillet, and Franck Wartel

Data Access Time Estimation in Automotive LET Scheduling with Multi-core CPU 11
Risheng Xu, Max J. Friese, Hermann von Hasseln, and Dirk Nowotka

Joint Scheduling, Routing and Gateway Designation in Real-Time TSCH Networks 16
Miguel Gutiérrez Gaitan, Luis Almeida, Thomas Watteyne, Pedro M. d’Orey,
Pedro M. Santos, and Diego Dujovne

Toward Precise Real-Time Scheduling on NVidia GPUScccccccv v veeeeivecie e e 2. 20
Nordine Feddal, Houssam-Eddine Zahaf, and Giuseppe Lipari

Shortening gate closing time to limit bandwidth waste when implementing Time-Triggered
scheduling in TAS/TSN . e et et teeee eet s hebee tee tes ees een ae ae bees een s re ae vee ve een en as ne ea D)
Pierre-Julien Chaine and Marc Boyer

Message from the workshop chairs

JRWRTC 2022

It is our great pleasure to welcome you to the Junior Researcher Workshop on Real-Time
Computing 2022, which is held conjointly with the 30th International Conference on
Real-Time Networks and Systems (RTNS 2022). The main purpose of JRWRTC 2022 is to
bring together junior researchers (Ph.D. students, postdocs, etc.) working on real-time
systems. It is not only a good opportunity to present (ongoing) work and share ideas with
other junior researchers, but also a chance to engage in discussions with and to receive
feedback from the audience of the main conference.

This year, five peer-reviewed papers have been accepted, which were reviewed thoroughly
by the international program committee. We hope that the program committee’s detailed
comments and remarks will help the authors to submit more mature long versions of their
papers to the next edition of RTNS and would like to thank the members of the program
committee for their effort.

JRWRTC 2022 would not be possible without the generous contribution of many volunteers
and institutions which support RTNS 2022. Therefore, we would like to express our sincere
gratitude to our sponsors for their financial support: INRIA and Statinf. We would like to
thank the general chairs Liliana Cucu-Grosjean and Yasmina Abdeddaim for giving us the
opportunity to chair JRWRTC 2022. In particular, we thank Liliana Cucu-Grosjean for her
valuable help during the organization of the workshop. Moreover, we are very grateful to
the web chair Kevin Zagalo, the multimedia chair Mohamed Amine Khelassi, and the
publicity chair Georg von der Briiggen for their support. Not least, we thank the local
organizing committee and all others who helped to organize the conference — one of the first
in our domain to return to an in-person/hybrid format. Let us all look forward to a successful
continuation of the RTNS conference series!

Stéphan Plassart, EPFL, Switzerland
Lea Schonberger, TU Dortmund University, Germany

Workshop chairs

Program Committee

JRWRTC 2022

Abderaouf Nassim Amalou, University of Rennes, Inria, CNRS, IRISA, France
Pierre-Julien Chaine, Airbus, France
Anam Farrukh, Boston University, USA
Frédéric Fort, University of Lille, France
Anna Friebe, Milardalen University, Sweden
Damien Guidolin, RealTime-at-Work, France
Alexandre Honorat, Inria Grenoble, France
Sena Houeto, University of Colorado Colorado Springs, USA
Matheus Ladeira, ENSMA, France
Reza Mirosanlou, University of Waterloo, Canada
Sims Osborne, University of North Carolina, Chapel Hill, USA
Junjie Shi, TU Dortmund University, Germany
Seyed Mohammadhossein Tabatabaee, EPFL, Switzerland
Aaron Willcock, Wayne State University, USA

Kevin Zagalo, Inria Paris, France

An automata-based method for interference analysis in
multi-core processors

Thomas Beck
Airbus Defence and Space
Toulouse, France

Luc Maillet
Airbus Defence and Space
Toulouse, France

1. INTRODUCTION

Multi-core processors (MCPs) provide huge gains that al-
low replacing several embedded single-core processors with
a smaller number of computing platforms. However, such
processors face important challenges to their integration into
safety-critical systems. Due to resource sharing, unwanted
interferences may exist between the tasks hosted by the dif-
ferent cores that can cause unexpected delays.

Certification authorities have published a set of recom-
mendations [2] for designers who want to certify a MCP
hosting a set of safety-critical tasks. Basically, this entails
a two steps process: First, the designer must identify all
the interferences that can occur between the tasks. Second,
he must show that the severity of the interferences is com-
pliant with the real-time requirements of the tasks. Many
works have faced this interference challenge in MCPs. The
reader can refer to [4] for a large and complete overview of
the scientific work on timing verification for MCPs. Among
this work, a recent one [1] has shown that it is possible to
characterise tasks running on MCPs by a timed sequence of
Time Interest Points (TIPS), i.e., a sequence of instructions
on which the tasks can suffer from interference.

We focus on the issue of the identification of interferences.
We refine the notion of interference with two finer defini-
tions, related to the type of the components causing the
interference. And, considering that tasks can be abstracted
by timed sequences of TIPS, we develop an automata-based
method, inspired from [3], to count the interferences that
can occur between the tasks hosted by the processor.

2. METHOD OVERVIEW

The landscape in which the method is involved is shown
in Figure 1. Within this landscape, the scope of the paper is
highlighted by the gray box. Let us consider a set of tasks 7;
hosted by a MCP (on the left of the Figure). The objective
of the method is to compute an upper bound of the extra
timing penalty associated with each 7; due to interference
occurring in the architecture (on the right part of the Fig-
ure). For that purpose, we compute an upper bound of the
maximal interference number (noted IN;) from which each
7; can suffer. The approach relies on the analysis method
proposed by Carle et al. in [1] (on the left part of Figure
1). This method is based on the TIPS notion, which are
load and store instructions that generate and suffer from in-

Frédéric Boniol
ONERA
Toulouse, France

Jérobme Ermont
IRIT - INP - ENSEEIHT
Toulouse, France

Franck Wartel
Airbus Defence and Space
Toulouse, France

terference. By means of static analysis, Carle et al. show
that it is possible to extract a temporal segment sequence,
as the one shown in Figure 2, from the binary code of a task
. Each segment is characterised by a duration (noted d;,; for
task 7; and segment j), and the maximal number of memory
requests leaving the core and sent to the bus (noted ;).
These requests correspond to load and store operations that
are not always hit in the L1 cache of the core hosting the
task. For instance in Figure 2, 71 makes zero memory re-
quest in segment one, and at most three requests in segment
two. Such a sequence defines a bus access profile of the task
under consideration. It characterises its worst-case memory
activity that can lead to interference. As shown in Figure 1
we take these profiles as inputs, and we study an automata-
based method to count, by model-checking, the interference
that can occur for each 7; .

3. DEFINITIONS

Let us consider an archetypal MCP architecture depicted
Figure 3. This processor is composed of (1) two cores (Co
and C1) owning their private cache L1, (2) a shared cache
L2, (3) a DDR memory composed of one bank B, and (4) a
shared bus allowing the two cores to address the L2 cache
and the DDR. Each core C; hosts a task called ;.

Let us suppose that 79 and 7 are characterised by the
profiles shown in Figure 4. They are divided into three seg-
ments. 79 and 71 can compete to access the memory in the
first segment (from 0 to 10). In this segment, each task sends
at most 2 memory requests. In the next two segments, ei-
ther 79 or 71 does not send any request, leaving the memory
path available for the other task.

Requests from 79 and 7 could collide in the bus. If they
arrive at the same time, only one of them can pass, the
second one must wait. The effect of the interference is a
delay caused by a simultaneous collision.

According to the request path of 79 and 71, a second in-
terference could arrive in L2. However, the intrinsic nature
of this interference is different. Let us imagine for instance
that 7o reads a data from the bank B and put it in the
L2 cache. As long as the data remains in the cache, each
time 7o accesses it, its request path ends with L2. Let us
imagine now that 7 reads another data from the bank B.
According to the cache policy, data of 71 could evict data
of 1o from L2. Consequently, the next time 79 would try to
access its data, it should have to lengthen its request path

Memory access
analyser

J
The TIPS |
method [1] |
!
I
!

SW Task 7, - - Femmmmooe- Ly

Contribution of the paper

Behavioural interference
model (UPPAAL
automata network)

] IN: (max interference 71 timing inter-
F 71 profile — --

number for 71) ference penalty
-t 72 profile

IN, (max interference N T2 timing inter-

number for 72) ference penalty

HW components

IN, (max interference
number for 7,,)

T, timing inter-
ference penalty

[—

N ’ N

'
Multicore HW platform

Figure 1: Approach overview (the gray box highlights the scope of the paper, while dashed lines are out of the scope)

eu=1 e,u=3

WCET = 2 -

e -0 SWCET=T. g e =15

e WCET =12 e WCET=6 e, WCET = 31

Ne & e = »>e ‘ >e »
- S i, N v U,

o=l 1,=0 p,=3 =0 by =15

df=2 d =12 d.=7 = d =31

Figure 2: Example of bus access profile (excerpt from [1])

DDR
‘ Task 70 ‘ ‘ Task 71 ‘ Bank B
I I
‘ Core Co ‘ ‘ Core Cy ‘
[Cache L1, | [Cache L1y |
I I]
Shared
[AHB Bus

Figure 3: A simplified multi-core platform

n |p=2[p=0]u=2 o [u=2]p=2u=0

0 10 20 30 0 10 20 30

Figure 4: Bus access profile of 79 and 7

to the memory. The effect is similar to the bus interference:
70 would suffer from a longer delay. However, the scenario
of interference is different. There is no simultaneous colli-
sion. The two requests can occur at different time. In other
words, 71 provokes a delayed interference on Tp.

As shown in this example, in order to analyze the inter-
ferences that can occur, it is necessary to identify the types
of HW components. We consider two types of components:
transport and storage component.

Definition 1. A transport component is a component whose
internal state only depends on the presence or absence of a
request using it. If a request is using the component, then
it is “occupied”. Otherwise, it is “free”.

Definition 2. A storage component is a component whose
the internal state depends on previous requests (including
the current one if any).

AHB Bus of Figure 3 is a transport component. Examples

of “storage components” include caches and memory banks.
The content of a cache depends on the previous memory
requests that used it. It has a direct effect on the length of
next memory request paths. Following the distinction, we
refine the notion of interference.

Definition 3. An instantaneous interference occurs when-
ever at least two requests sent by two different tasks collide
on the same transport component.

Definition 4. A delayed interference occurs whenever a
request 7 sent by a task 7 uses a storage component whose
internal state has been made non-compliant with 7 by an-
other task 7’.

As explained below instantaneous interferences can occur
in AHB Bus Figure 3. And a delayed interference can oc-
cur in L2. In the same way, a second delayed interference
can occur in B. Indeed, a memory bank is composed of
a row buffer acting as a local cache. It contains the last
block of accessed data. Hence, requests to data in the row
buffer (one talks about “row hit” requests) are faster than
request to data not in the row (“row miss” requests). When
a “row miss” occurs, the requested data has to be fetched
in the row buffer, making the request time longer. As in
cache, the content of the row buffer depends on previous re-
quests. Hence, banks memory are storage components that
can cause delayed interferences.

4. MODELING

To model the interferences, we define two classes of au-
tomata: automata for HW components, and automata for
SW tasks.

4.1 HW components

The role of the HW component automata is to model the
answers of the component to requests sent by the tasks. It
determines if a request creates an interference in the compo-
nent and notifies the software automaton of this result. As
said in section 3, we consider two types of HW components:
transport and storage components.

4.1.1 Transport component

According to definition 1 a transport component is mod-
eled by the automaton Figure 5. It is composed of three
locations (Free, Occupied and Check), and three internal
data (waiting_queue, nb_elmt, and bus_state):

e waiting_queue is an internal list containing the identi-
fiers of the tasks waiting for the component.

e nb_elmt is the number of tasks currently waiting for
the component (including the task currently using it).

The three locations of this automaton are:

e Free: This location is the initial one. The component
is free and waits for a request. When a request arrives
the location changes to Occupied, and the function up-
date_bus is called. This function updates the internal
variables of the automaton to let it know which task
is calling it.

Occupied: The component is already occupied by a
request. Once the request is completed the next lo-
cation is Check if the internal waiting queue is not
empty (nb_elmt # 0) and Free if the queue is empty
(nb_elmt = 0). All outgoing transitions of the Occu-
pied location are waiting for the synchronization event
end_req. This event is sent by a task automaton when
it releases the component after its request has been
completed by the memory.

Check: This location’s purpose is to switch the task
whose request is handled by the component. It is a
transient location reached when the current task oc-
cupying the component is releasing it and when an-
other one is waiting for the component. The role of
location is to trigger the transition returning to Oc-
cupied to process the next request. Once again the
update_bus function is called when returning to Occu-
pied to change the internal variables of the component.

end_req? update_bus()
bus_state = FREE bus_grant[waiting_queue[0] - 1]!

nb_elmt ==0
Free . O“”“'heck
update_bus(),

= end_req?
bu_s;§[eia)[e3- occup nb_elmt > 0

Figure 5: Automaton of a transport component

update_st_col
P p— —— NORMAL Normal_delay

st_comp_normal!

ct_comp_interference!
delay == INTERFERENCE

check_delay() Interferences_delay

req_st_comp?

oLk ©

A
Check_delay

Figure 6: Automaton of a storage component

4.1.2 Storage component automata

Storage component generates delayed interferences, mean-
ing that a task can interfere with another one by modifying
the state of component. Storage components are modeled by
the automaton Figure 6. The idea is to determine if the com-
ponent reacts within a favorable delay (the normal case), or

conversely within an unfavorable one (the interference case),
when receiving a request. This notion of favorable delay is
related to the task asking for the component. The automa-
ton is composed of four locations:

e [DLE models the state where the component does not
handle any request. It is waiting for a memory ac-
cess request. When receiving it, it reaches Check_delay
and it calls the function check_delay which determines
whether there is an interference or not (i.e., whether
the component is in an internal favorable state or not).
check_delay compares the state of the component with
the state of the component if the task is alone. Fur-
ther explanations on this function are presented in the
section 5.

Check_delay is a transient location. Its role is to reach
Normal_delay or Interference_delay according to the
value of delay.

Normal_delay models the normal response delay of re-
quest. Once the request is completed the component
returns to IDLE and waits for another request. Before
returning to the IDLE, the automaton is waiting for
an occurrence of end_req sent by the task automaton
processing the current request. When taking the tran-
sition to IDLE, the update_st_comp function is called to
update the internal state variables of the component.

Interferences_delay: When an interference occurs the
response delay is extended. This location represents
the added delay induced by the interference. Thereby
the next location has to be Normal_delay because an
interference is represented by an extra time added to
the response delay.

4.2 Task automaton

A task automaton models the bus access profile of the task
and the path of the requests through the HW components
of the processor. Figure 7 gives the automaton of the task
To. It is composed of three parts. The first (locations Re-
quest_bus, Result_bus, and Waiting_bus) models the answer
of the bus to the request. The second part (locations Re-
quest_L2, Result_L2, and Waiting_L2) models the answer of
the L2 cache. And and the last part models the answer of
the DDR memory.

The initial location of the automaton is an Idle location.
It waits for a start (or a end) event from the scheduler (that
is, the automaton implementing the sequence of the segment
of the task profile). When receiving a start event, the local
counter nb_req is set to zero. And the automaton reaches
Request_bus. The three parts follow then the same pattern
composed of three locations:

e Request_cmp (where cmp is bus, L2, or DDR) models
the state in which the task has sent the request to the
component cmp and is waiting to know if the request
generates an interference. If there is an interference
the next location is Waiting_cmp. If there isn’t an
interference the next location is Results_cmp.

Waiting_cmp models the extra delay the task encoun-
ters due to the interference.

Results_cmp models the case in which the request is
normally completed (with or without interference). The

request_bus(num_partition)
bus_state == OCCUP &&
nb_req!=nb_access[num_partit

Waiting_bus

end_partition[num_partition-1]

req_bus!
request_bus(num_partition)
bus_state == FREE &&

req != nb_access[num_partition-1] [num_segt]

start_partition[num_partition-1] Resu

nb_req:=0

equest_bu

num_segt++
nb_req == nb_access[num_partition-1][num_seqt]

Waiting_L2 Waiting_DDR

DDR_interference?
DDR_normal?

Regylts L2

Cache_normal

ca DDR_norma
Request_L2

Results_DDR

synchro[num_partition-1

nb_req++ -0
TRy

Figure 7: Automaton for task 7y of example Figure 3

num_segt<nb_segt
start_partition[0]!

. ynchro[0]?

synchro[0] . synchro[1]?

tart_partition[1]

Figure 8: Scheduler automaton

next location is then the Request_cmp of the next com-
ponent or Idle if the component is a storage component
(L2 or DDR) and if the requested data is present in
the component. When the outgoing transition of this
location is taken, the task automaton sends an event
to the component automaton to notify it of the end of
the current request.

4.3 Scheduler automaton

The last automaton models the sequences of segments of
the task profiles. For instance, the profiles of 7o and 7 shown
in Figure 4 are modeled by the automaton in Figure 8. From
the initial location, the Scheduler starts the first segment of
70 and 71. Then it waits for an occurrence of synchro sent
by 70 and 71 at the end of their segment. When receiving
them, the scheduler notifies the end of the first segment,
and starts the second one. And so on until the last segment
(when num_segt == nb_segt).

S. INTERFERENCE ANALYSIS

To determine when an interference occurs we instrument
each component automaton with an algorithm to decide
whether or not the task accessing the component is suffer-
ing from an interference. These algorithms are dependent
on the type of the component under consideration.

Transport component. To count interferences in transport
components is very simple: there is an interference iff the
component is occupied and another request is waiting for it.

Storage component. For storage components, the decision
algorithm is more complex. To determine if an access from
a task X is affected by an access from a task Y, we not only
maintain the “actual” state of the component but also the
“virtual” state of the component for each task as if the task
was isolated. Such a “virtual” view of the component is only
paying attention to accesses from the task it is associated
to. It means that an access from task X to the storage com-
ponent affects both the “actual” view and its “virtual” view
of the component, but not the “virtual” view associated to
task Y. Thereby, for each access to a storage component we
are able to determine if there is interference or not by com-
paring the virtual view of the task with the actual view of
the storage component. If there is a difference between these

10

two views it means that an interference occurred. This algo-
rithm is implemented by the function check_delay() of each
storage automaton. In the example of a L2 direct mapped
cache with 16.384 lines of 32 bytes, our algorithm works on:
(1) an array cache_array containing 16 384 lists of 32 bytes
representing the current state of the L2 cache ; (2) one simi-
lar array task_i_array for each task i representing the virtual
state of the cache if the task were alone. Let us consider
two tasks. Imagine that task 1 requests a data stored in line
250. cache_array[250] and task_1_array[250] are updated.
Then task 2 accesses the same line, cache_array/250] and
task_2_array[250] are modified. When task 1 accesses again
line 250, task_I1_array[250] and cache_array[250] are differ-
ent meaning that task 1 suffers from an interference.

Interference analysis by model-checking. To compute an
upper bound of the number of interferences experienced by
each task in each component for each segment, we use the
UPPAAL model-checker. For instance, let us consider
nb_interf-L2[0,79] the number of interference in the first seg-
ment of 79 in cache L2 . UPPAAL shows that

V(] (nb_interf-L2[0,70] < 3)

that is, 3 is an upper bound of nb_interf-L2[0,7¢]. This com-
putation takes less than one second (UPPAAL 4.1.24 run-
ning on a 3,2 GHz Apple M1 Pro with 32 Go DDRS5).

6. NEXT WORK

The next step is to conduct a set of experiments to vali-
date the method. We plan to explore the GR740 processor:
a quad-core processor based on SPARC V8 architecture. Af-
ter this validation, the second work will consider finer place-
ment and replacement policies in our cache model in order
to capture more realistic configurations.

7. REFERENCES

[1] Thomas Carle and Hugues Cassé. Reducing timing
interferences in real-time applications running on
multicore architectures. In 18th International Workshop
on Worst-Case Ezecution Time Analysis, 2018.

[2] Certification Authorities Software Team. Multi-core
Processors - Position Paper. Technical Report CAST
32-A, November 2016.

[3] Andreas Gustavsson, Andreas Ermedahl, Bjérn Lisper,
and Paul Pettersson. Towards WCET analysis of
multicore architectures using UPPAAL. In 10th
International Workshop on Worst-Case Ezxecution
Time Analysis, 2010.

[4] Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joél
Goossens, Sebastian Altmeyer, and Robert 1. Davis. A
survey of timing verification techniques for multi-core
real-time systems. ACM Comput. Surv.,
52(3):56:1-56:38, 2019.

Data Access Time Estimation in Automotive LET
Scheduling with Multi-core CPU

Risheng Xu
Kiel University
Mercedes-Benz AG
Kiel & Sindelfingen, Germany
risheng.xu@mercedes-benz.com
rxu@informatik.uni-kiel.de

Hermann von Hasseln
Mercedes-Benz AG
Sindelfingen, Germany
hermann.v.hasselIn@mercedes-
benz.com

ABSTRACT

Timing analysis is used to ensure that real-time software
tasks are executed ahead of their deadlines. However, it
continues to be a challenge due to the memory contentions
in multi-core CPUs. We present a hybrid model that com-
bines formal modelling and Monte-Carlo simulation to es-
timate the maximum observed execution time (MOET) of
data access (read/write) for multi-core CPUs at the early
stage of development. The model is applied to a genuine
Mercedes-Benz powertrain software, and the derived results
are compared to the actual measurements.

Categories and Subject Descriptors

C.4 [Performance of Systems]; D.2 [Software Engineering]:
Software Architectures; D.4 [Operating System|: Reliability

Keywords
Automotive, LET Scheduling, Multi-core, Timing Analysis

1. INTRODUCTION

The automotive industry has adopted the Logical-Execution-

Time (LET) paradigm [12] as an approach to achieve better
time and value determinism in multi-core CPUs [11]. For
safe execution, the length of a LET time frame should at
least cover the maximum execution time of its tasks. In the
automotive V-model development process, we mainly rely
on two measurements to get the software execution time:

e Processor-in-the-Loop (PiL) Measurement: The time
measurement of a single function under the unit-test
environment in one CPU core.

e Hardware-in-the-Loop (HiL) Measurement: The time
measurement of the integrated binary file in multiple
CPU cores.

However, HiLi is not available until the late stages of the
V-model (after software integration). Any failed time re-
quirements here may result in costly task re-scheduling. Al-
though the PiL is available before integration, the results
may underestimate the data access time. Due to the fact

11

Max J. Friese
Mercedes-Benz AG
Sindelfingen, Germany
max_jonas.friese@mercedes-
benz.com

Dirk Nowotka

Kiel University
Kiel, Germany
dn@informatik.uni-kiel.de

that the PiL is performed on a single CPU core, the con-
tentions between cores are omitted.

On the other hand, the task scheduling starts in the early
stage of the development, even before the PiL.. To deter-
mine the maximum task execution time, i.e. the shortest
LET frame length, the current workaround is to use the HiLL
measurement from the previous version of the software, plus
a margin factor, as the new maximum in the current ver-
sion. However, there is no assurance that this upper bound
is sufficient for the coming software updates. Thus, a timing
model is needed, especially for data access time, to help the
scheduler make sure that the LET frames are reliable.

In this paper, we focus on the Maximum-Observed-Execution-

Time (MOET) of data accesses in an early stage (end-to-
end requirement phase). We use MOET rather than Worst-

Case-Execution-Time (WCET) for the following reasons: First,

the early-stage WCETSs are often over-pessimistic. With the
given WCETS, it is extremely difficult to schedule the tasks.
Second, we concede that the MOET is not the most se-
cure time upper bound. However, this is sufficient if we
require an intuitive evaluation in the early stage. The re-
liability of the complete software is still guaranteed by the
HiL-based analysis after software integration. Thus, we em-
ploy the Monte-Carlo method and select the maximum exe-
cution time across multiple simulations as MOET, acting as
the key performance indicator.

2. RELATED WORK

The authors in [19] give a comprehensive survey of timing
techniques in multi-core CPU, and we concentrate on the
most closely related works in this section.

The LET paradigm was first proposed in [12] as a pro-
gramming model. The implementation of LET for automo-
tive software is introduced by [18].

Many timing analyses are published for LET scheduling.
In [3] the authors compare different LET variants in AU-
TOSAR environment. In [20] the authors analyse the end-
to-end latency in LET scheduling. In [10] a formal analy-
ses for timing compositionality in LET scheduling is given.
However, the papers cited above have not compared the re-
sults of a WCET/MOET models with time measurement,

particularly in the context of a real-world project.

While the above LET analysis mainly focuses on software
tasks, the hardware modelling offers a complementary per-
spective. In [5] the authors present a general WCET model
for bus contention in multi-core CPUs. In [7], [15], [16] and
[2] the authors analyse the memory and pipeline behavior of
the Aurix platform. As we use the same platform, we refer
to some hardware parameters from those preceding papers.

3. SYSTEM MODEL

3.1 LET Model

The LET model implemented in [18] and [23] aims to en-
sure the tasks are executed in a deterministic order. The
implementation is shown in Figure 1, a LET task consists of
three phases: read-in phase, execution phase and write-out
phase. In the read-in and write-out phases, the local data
copy is synchronized with the data in global memory.

The read-in and write-out phase includes not only the
time required by data access but also other time parameters
as below:

e 7, wy, e and we: the delay before and after signal
access. We consider they are pre-measured constant
in our model.

e 7, and w,: the synchronization delay between read-in
and write-out. The details are modelled in Section 3.2.

e 7; and w;: the delay caused by the interrupt from the
tasks with higher priorities. Note the starting point of
r; and w; is flexible. They may happen before, after or
during data access. The length ranges between 0 and
a pre-measured upper bound.

e 7cet and weet: the core execution time (CET) of signal
read-in and write-out. These two parameters are the
main focus of this paper.

Depending on the position and the length of r5 and r;,
the 7. shifts between the end of r, and the start of r.. We
define this interval as possible range rp, for ree;. Similarly,
wpy is defined for weer. If we use the notation maz() to
present the maximum length of a time interval, formally we
can define

rpr =maz(rs) + max(r;) + maz(reet) (1)

Wpr =maz(ws) + maz(w;) + max(Weet) (2)

If the rpy or wp, overlaps with another rp, or wy,, in worst
case their weet or 7cet overlap with each other as well. This
leads to co-access requests to data and brings extra delays.
According to the type of overlap, we define 4 kinds of neigh-
bour for a given target job. First, Read-Read Neighbour
(RRN): 7, of the target job overlaps with the r,, of the
neighbour; Second, Write-Write Neighbour (WWN): wy, of
the target job overlaps with the wp, of the neighbour; Third,
Read-Write Neighbour (RWN): 7y, of the target job overlaps
with the wp, of the neighbour; Fourth, Write-Read Neigh-
bour (WRN): wp, of the target job overlaps with the 7. of
the neighbour.

The neighbour relationship defines all possible co-access
jobs. The first two neighbours may introduce extra con-
tention delays and affect the length of rce; and weet, while
the other two neighbours require extra synchronization de-
lay rs and ws to guarantee the data consistency.

12

Read-in Execution Write-out
] ~] ~ 1 ~
H € .. €, Idle
' '
Start End

Mor Wpr

Figure 1: LET Model with 3 Phases

Wy
mtw,i
mtrlj
I’pr

Figure 2: Example of Synchronization Delay

3.2 Synchronization Delay Model

To ensure data consistency, we require all the read-in op-
erations to wait until all the executing write-out operations
finish, and vice versa. The wait time is defined as synchro-
nization delay rs and ws.

As shown in Figure 2, consider two LET job T,,; and 7 ;
while the wy, from 7, ; overlaps with the r,, from 7, ;. The
rs of 7. ; is determined by two factors: The length of the
overlap area, and the length of weet. The maximum 75 of
job 7, ; is achieved when the wc¢ interval of 7,,,; complete
shifts to the overlap area, and the length of r, is then the
shorter one between the length of w..: and the overlap area.

Now, we consider the job to have multiple neighbours.
In practice, the length of a job is much longer than any
of the possible range wy, or 7, and the LET jobs in the
same core are scheduled without overlapping. Thus, each
wpy overlap at maximum with one rp,. per core, and vice
versa. In other words, each job has no more than one read-
write and one write-read neighbour within one core. We can
simply add up the maximum synchronization delay caused
by each neighbour and use this sum as the upper bound of
job’s synchronization delay. Given a job T n

Ts (Tm.,n) S Z

0€RW N (T n)

Ws (Tm,n) < Z

0EWRN (Tn n)

min(wpr (0) N Tpr(Tm,n)y Weet (0))

®3)

min(rpr(0) N Wpr (Tm,n);s Teet(0))

4)
3.3 Access Time Simulation

Data access is managed on the Aurix platform via the
SRI bus. When a job attempts to access the bus while it is
already serving another job, a memory contention occurs. In
Section 3.2, we mandate read-write/write-read neighbour to
synchronize with the target job. As a result, the contention
occurs only between read-read/write-write neighbours and
the target job. We consider the contention only happens in
data access, the contention-free instruction fetch is achieved

by either banked program flash or local program memory.
The data cache is forbidden because execution determinism
is required.

First, the data access in the LET job is accomplished
through a series of copy operations which are similar to
memcpy () as in [21]. The instructions mainly consist of two
parts: first is the load (1d) and store (st) instructions. De-
pending on the copy direction, one of these two instructions
requires access to global memory. This instruction generates
a SRI bus transaction [13], where the memory contention
may occur. The remaining instructions are used to decode
the memory address and are contention free. According to
the statement in [4], the Aurix pipeline avoids the domino
effect of time anomaly described in [22] and [17], and the
core is time-compositional under a constant upper bound.
Given the various pipeline states encountered during execu-
tion, it is reasonable to assume that the execution time d
of these contention-free instructions is within a pre-defined
time interval d € [dmin, dmaz]. Due to the limit of measure,
we are unable to obtain the distribution of d in the given in-
terval. Therefore, we assume that d has a uniform distribu-
tion. This is the input random variable for our Monte-Carlo
simulation.

Second, we generate two sequences for a job and one of
its neighbours. As shown in Figure 3. The white block
indicates that there are no contention in this cycle, whereas
the black block may have contentions. More precisely

1. We insert a low-level bus transaction after the load
and store instruction as black blocks. The required
stall cycle is shown in [14].

2. One bus transaction contains maximum 256 bits data
(block transfer mode) [14], Thus the non-atomic sig-
nals (e.g., array, structure) are split into multiple trans-
actions.

3. A random number of white blocks d € [dmin, dmac] are
inserted between two bus transactions to indicates the
execution time of those contention-free instructions. A
constant number of white blocks dconst are appended
to the end of the sequence as the constant cost for the
data access function.

Thirdly, we compare the sequences for the target and
neighbouring jobs. As illustrated in Figure 3, once two
transaction appear in the same cycle, a memory contention
is triggered. According to the hardware specification in [14],
one must wait until the other finishes.!. We assume the
target job always wait for its neighbour, to avoid underes-
timating its contention delay. Consequently, several black
blocks are inserted to the target job as stall cycles. Re-
peat the comparison for the target job and all related neigh-
bours, we now have the signal access cycles together with
contention delay. The simulation from Step 1 to Step 3 is
executed multiple times and the maximum value is saved as
a Maximum-Observed-Execution-Time (MOET).

3.4 Algorithm

In previous sections, we have discussed the synchroniza-
tion delay and the access time independently. However,
these two time variables are highly correlated, any changes

lwe configure all the cores to have the same SRI priority

13

Contention

Neighbour:

n

Figure 3: Example of the Memory Contention in Two Se-
quences

Target Job:

in one may effect the other. To address this issue, we pro-
pose a recursive algorithm that improves the precision of
the data access time r¢e; and wee: for a given task 7; during
multiple recursions.

1. Generate all the task jobs within the specified time
period (e.g, the hyper-period) of all tasks. Set the
maximum value for the possible range 7y, and wp,. In
this case, we set the r,, to the length of the job, and
the wy, to the length of the write-out phase with a
pre-defined tj),;; .

2. Identify four kinds of neighbours for all task jobs by
considering the overlaps of all rp, and wpy.

3. Simulate the maximum access time of weer and 7Tcet
based on identified neighbours.

4. Calculate the maximum time of synchronization delay
rs and ws based on rp., Wy, and the maximum value
of Wweer and 7eet.

5. Update the r,, and wp, using the maximum value of
Ts, Ws, Weet aNd 7Teer from last two steps.

6. Repeat the Step 2 to Step 5 until either the result is
convergent or an error occurs, e.g., the write-out phase
exceeds the LET job.

4. CASE STUDY
4.1 Setup

We evaluate the data access time of a genuine Mercedes-
Benz powertrain software in mass production. There are
thirty periodic LET tasks evaluated (e.g., energy manage-
ment, thermal management). The task periods vary from
2ms to 1000ms and the frame lengths are between 0.1 ms
to 4ms. The detailed parameters and source code are avail-
able online.? The modeled hardware is Aurix TC397, and
the software is allocated in domain 0 (CPU core 0-3). The
measurements are collected from HiL station [8] with Gliwa
tool [24]. We use CPU cycle as time unit in both model and
measurement. As the CPU main frequency is 300 M H z,
1 us = 300 cycle.

The algorithm is iterated three times in two hours before a
convergent result is observed. The Monte-Carlo simulation
is repeated 100 times for all overlapped jobs in every itera-
tion. In a schedule interval of 2 seconds, more than 2 x 10°
times of simulations are executed. The repetition is based
on two principles: First, the repetition must be sufficient for

https://gitlab.com /xrisheng/DAA

a clear distribution as Figure 6. Second, the model execu-
tion time should not impede the agile software development
process, eight hours or less is generally acceptable.

4.2 Result

25000 ..m.- Model
--#-- Measurement
20000

15000

10000

CPU Cycles

5000

. i
0 k% &% 2 LR 3 B

123 456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

LET Tasks

Figure 4: Maximum Read-in Time per Task

35000
-4 Model

30000 . 4. Measurement
25000
20000

15000

CPU Cycles

10000

5000
0 ‘"""“l'-‘-‘b‘.::5:-"==".-.‘5‘-f-‘“»'-t:::t'.'.'.t::t.:{::“w:""'-'-ti-'ffil“."'

123456 7 8 9101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

LET Tasks

Figure 5: Maximum Write-out Time per Task

2500

- A

-
1%
Q
=]

}

[N
o
Q
=]

f
]

$
0 J
150 250 350

Figure 6: Contention Delay Distribution for LET Task 1
Read-in

Frequency

[
o
o

450 550 650 750 850 950
Delay in CPU Cycle

As illustrated in Figure 4 and 5, we compare the maximum
access time predicted by our model to the measurement for
each task, the detailed data is listed in Appendix. In both
Figures the modelled values are either equal to or higher
than the measured values. The primary error (e.g., Task 22,
23 and 26 in Figure 5) is caused by an incomplete overview
of signal flow and task scheduling, which are under the IP
protection of the software supplier. In such case, we have to
overestimate the number of signals accessed.

14

The contention delay distribution of the read phase from
LET Task 1 is shown Figure 6 as an example. This dis-
tribution is created by superimposing multiple normal dis-
tributions. The reason for this is that the jobs of a LET
task have different patterns of overlap in the simulated time
period. Each pattern contributes a delay distribution based
on the preconditions specified in Section 3.3, and the task’s
total distribution is then the sum of the pattern’s distri-
butions. The scheduler may use the task’s distribution to
calculate confidence intervals and adjust the length of the
LET frame by an extra margin factor.

Additionally, we attempt to evaluate the powertrain soft-
ware using existing WCET tools aiT [9] and OTAWA [1],
both of which are based on static analysis. The OTAWA
does not currently support the TC397 platform, so we gave
up after evaluating the development effort. The aiT suf-
fers from state explosion by default analysis. Therefore, ex-
tra annotation must be added to improve the performance
(e.g., the number of loop cycles). The annotation requires a
comprehensive understanding of the source code. However,
our powertrain software is composed of the binary libraries
delivered from the supplier and machine-generated C code.
Both are difficult to parse. As a consequence, the existing
WCET tools are inapplicable to our use case.

5. CONCLUSION AND FUTURE WORK

In this paper, we focus on the data access time of LET
scheduling in Infineon Aurix platform. A hybrid model
consists of formal modelling and Monte-Carlo simulation is
used. We apply the presented model to a real Mercedes-
Benz powertrain software and compare the results to those
obtained using Hil. measurements.

For the future work, we plan to use an address-based
tracking tool (e.g., CEDAR [25]) to observe the instruction-
level execution time distribution of data access operations
(e.g., the variable d discussed in section 3.3). A measurement-
based probabilistic model [6] may help to improve the pre-
cision.

6. REFERENCES

[1] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat.
Otawa: An open toolbox for adaptive wcet analysis. In
IFIP International Workshop on Software Technolgies
for Embedded and Ubiquitous Systems, pages 35—46.
Springer, 2010.

[2] B. Binder, M. Asavoae, F. Brandner, B. Ben Hedia,
and M. Jan. Formal modeling and verification for
amplification timing anomalies in the superscalar
tricore architecture. International Journal on Software
Tools for Technology Transfer, pages 1-26, 2022.

[3] A. Biondi and M. Di Natale. Achieving predictable
multicore execution of automotive applications using
the let paradigm. In 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS), pages 240-250. IEEE, 2018.

[4] C. Cullmann, C. Ferdinand, G. Gebhard, D. Grund,
C. Maiza, J. Reineke, B. Triquet, and R. Wilhelm.
Predictability considerations in the design of
multi-core embedded systems. Proceedings of
Embedded Real Time Software and Systems, 36:42,
2010.

(5]

(6]

(7l

(8]
(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

D. Dasari and V. Nelis. An analysis of the impact of
bus contention on the wcet in multicores. In 2012
IEEE 14th International Conference on High
Performance Computing and Communication & 2012
IEEEFE 9th International Conference on Embedded
Software and Systems, pages 1450-1457. IEEE, 2012.
R. I. Davis and L. Cucu-Grosjean. A survey of
probabilistic timing analysis techniques for real-time
systems. LITES: Leibniz Transactions on Embedded
Systems, pages 1-60, 2019.

E. Diaz, E. Mezzetti, L. Kosmidis, J. Abella, and F. J.
Cazorla. Modelling multicore contention on the aurix
tm tc27x. In Proceedings of the 55th Annual Design
Automation Conference, pages 1-6, 2018.

dSPACE GmbH. Scalexio system.

C. Ferdinand and R. Heckmann. ait: Worst-case
execution time prediction by static program analysis.
In Building the Information Society, pages 377—-383.
Springer, 2004.

K.-B. Gemlau, J. Schlatow, M. Moéstl, and R. Ernst.
Compositional analysis of the waters industrial
challenge 2017. 2017.

J. Hennig, H. von Hasseln, H. Mohammad,

S. Resmerita, S. Lukesch, and A. Naderlinger.
Towards parallelizing legacy embedded control
software using the let programming paradigm. In 2016
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 1-1. IEEE
Computer Soc., 2016.

T. A. Henzinger, B. Horowitz, and C. M. Kirsch.
Giotto: A time-triggered language for embedded
programming. In International Workshop on
Embedded Software, pages 166-184. Springer, 2001.
"Infineon Technologies AG”. "Infineon AURIX TC27x
User Manual D-Step”, 12 2014. "Rev. 2.2”.

"Infineon Technologies AG”. “Infineon AURIX TC3xx
User Manual Part 1”7, 08 2020. "Rev. 1.6”.

P. Jungklass and M. Berekovic. Effects of concurrent
access to embedded multicore microcontrollers with
hard real-time demands. In 2018 IEEE 15th
International Symposium on Industrial Embedded
Systems (SIES), pages 1-9. IEEE, 2018.

L. Kosmidis, D. Compagnin, D. Morales, E. Mezzetti,
E. Quinones, J. Abella Ferrer, T. Vardanega, and F. J.
Cazorla Almeida. Measurement-based timing analysis
of the aurix caches. In 16th International Workshop
on Worst-Case Ezecution Time Analysis (WCET
2016), pages 9-1. Schloss Dagstuhl-Leibniz-Zentrum
fiir Informatik, 2016.

T. Lundqvist. A WCET Analysis Method for Pipelined
Microprocessors with Cache Memories. PhD thesis,
Chalmers University of Technology, Gothenburg,
Sweden, 2002.

R. Mader. Implementation of logical execution time in
an autosar based embedded automotive multi-core
application. In Dagstuhl Seminar 18092, 2018.

C. Maiza, H. Rihani, J. M. Rivas, J. Goossens,

S. Altmeyer, and R. I. Davis. A survey of timing
verification techniques for multi-core real-time
systems. ACM Computing Surveys (CSUR),
52(3):1-38, 2019.

J. Martinez, I. Sahudo, and M. Bertogna. Analytical

15

21]

(22]

23]

(24]

(25]

characterization of end-to-end communication delays
with logical execution time. IEEFE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 37(11):2244-2254, 2018.

A. S. Peter Gliwa, Dr. Nicholas Merriam. Best
practice for timing optimization. Embedded Software
Engineering Congress 2018, 2018.

J. Reineke and R. Sen. Sound and efficient wcet
analysis in the presence of timing anomalies. In 9th
International Workshop on Worst-Case FExecution
Time Analysis (WCET’09). Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2009.

J. M. Rivas, J. J. Gutiérrez, J. L. Medina, and M. G.
Harbour. Comparison of memory access strategies in
multi-core platforms using mast. In International
Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), 2017.
O. Scheickl, C. Ainhauser, and P. Gliwa. Tool support
for seamless system development based on autosar
timing extensions. In Embedded Real Time Software
and Systems (ERTS2012), 2012.

A. Weiss, S. Gautham, A. V. Jayakumar, C. R. Elks,
D. R. Kuhn, R. N. Kacker, and T. B. Preusser.
Understanding and fixing complex faults in embedded
cyberphysical systems. Computer, 54(1):49-60, 2021.

Joint Scheduling, Routing and Gateway Designation
in Real-Time TSCH Networks

*
Miguel Gutiérrez Gaitan
mgg@fe.up.pt
CISTER Research Centre
University of Porto
Porto, Portugal

Pedro M. d’Orey
ore@isep.ipp.pt pss
CISTER Research Centre
University of Porto
Porto, Portugal

ABSTRACT

This research proposes a co-design framework for schedul-
ing, routing and gateway designation to improve the real-
time performance of low-power wireless mesh networks. We
target time-synchronized channel hopping (TSCH) networks
with centralized network management and a single gateway.
The end goal is to exploit existing trade-offs between the
three dimensions to enhance traffic schedulability at sys-
tems’ design time. The framework we propose considers
a global Earliest-Deadline-First (EDF) scheduler that oper-
ates in conjunction with the minimal-overlap (MO) shortest-
path routing, after a centrality-driven gateway designation is
concluded. Simulation results over varying settings suggest
our approach can lead to optimal or near-optimal real-time
network performance, with 3 times more schedulable flows
than a naive real-time configuration.

Keywords

Centrality, Network design, Low-power wireless mesh net-
works, TSCH.

1. INTRODUCTION

Wireless networks are at the heart of Industry 4.0 and the
Industrial Internet of Things (IIoT) [11], offering more flex-
ibility and scalability than their wired counterparts. Time-
synchronized channel-hopping (TSCH) is widely regarded as
the de-facto low-power wireless networking approach for de-
manding industrial applications, achieving ultra low-power
and wire-like reliability [2]. Its core features are time-division
multiple-access (TDMA) and frequency diversity, making it
ideal for real-time communication, and therefore often ap-
plied to real-time monitoring and process control [9].

Theoretical and empirical studies have analyzed the pre-
dictable and, thus, analyzable aspects of TSCH [6, 9]. These
works typically focus on prioritized packet scheduling [10]
and routing methods [4] for improved real-time network per-
formance. Our previous work looks at gateway designa-

*Corresponding author.

16

Luis Almeida
l[da@fe.up.pt
CISTER Research Centre
University of Porto Inria

Porto, Portugal

Pedro M. Santos
@isep.ipp.pt
CISTER Research Centre
Polytechnic Institute of Porto
Porto, Portugal

Thomas Watteyne

thomas.watteyne@inria.fr
AlO Team

Paris, France

Diego Dujovne
diego.dujovne@mail.udp.cl
Esc. de Inf. y Tel.

Diego Portales University
Santiago, Chile

Network
Manager
Sensor

Host
Application O‘/O

Figure 1: A low-power wireless mesh network.

Sensor

tion [3], the convenient positioning/selection of the gateway
within a given topology, for enhanced traffic schedulability.

In this work, we simultaneously deal with network design,
routing and resource allocation to provide a joint configura-
tion framework for improved real-time network performance
in TSCH networks. We first look at joint minimal-overlap
(MO) real-time routing and Earliest-Deadline-First (EDF)
scheduling [4] then combine it with centrality-driven gate-
way designation [3]. The goal is to complement the bene-
fits of the three approaches to further enhance the real-time
properties of the network at the system design time. To the
best of our knowledge, this paper proposes the first joint
scheduling, routing and gateway designation framework for
real-time TSCH-based networks.

2. PRELIMINARIES

We target low-power wireless sensor networks (WSNs) fo-
cused on industrial application in the broad sense (from
smart farming to automotive). A typical network (see Fig. 1)
is composed of several sensing nodes which have limited com-
putation capabilities and energy. These nodes are intercon-
nected wirelessly to more powerful networking equipment
(e.g. access points) capable of hosting a gateway and/or a
network manager. A gateway node is used to establish the
connection between the sensor nodes and the host applica-
tion. The specific application dictates the data collection
process, i.e. the sampling rate at each sensor node.

2.1 Network Model

We assume TSCH as the underlying medium access con-
trol (MAC) layer adopted to build up highly reliable and
low-power networks. TSCH supports multi-hop and multi-
channel communication over a globally synchronized TDMA
scheme. Transmissions take place inside time slots of fixed
duration allocated over up to m = 16 channels. A time slot
allows transmitting a single packet and receiving its corre-
sponding acknowledgement. A channel-hopping mechanism
is used to improve reliability against multi-path fading and
external interference. A global scheduler defines the channel
and the time slot used by the different links. In this paper,
we use a global EDF scheduling policy [8].

We model the long-term connectivity between the nodes
by a unidirected graph G = (V, E), where V is the set of
vertices (or nodes), F the set of edges (or links) between
those nodes. The number of vertices in G is denoted by
|Vl; the number of edges, |Eq|.

2.2 Flow Model

The global traffic flow pattern is assumed as converge-
cast, directed toward a single gateway. Packets are gen-
erated by a subset of n sensor nodes € V; the remaining
|[Va] — n — 1 nodes act solely as relays. Sensor nodes also
relay packets. Each sensor node transmits a periodic (and
deadline-constrained) data flow over a single route. We call
F ={f1, f2y ..., fn} the resulting set of n real-time network
flows. Each flow is characterized by a 4-parameter tuple
fi = (Ci,D;, Ti, ¢i). C; is the effective transmission time
between the source node s; and the gateway, D; is the dead-
line, T; is the period, ¢; is the multi-hop routing path. Note
C; does not consider interference from other flows. We as-
sume a flow never stops, i.e. new packets are always gener-
ated. The " packet in flow 7 is denoted f; -; it is generated
at time r; 4 such that 7; 41 —7;,4 = T;. In accordance with
EDF, fi, needs to reach the gateway before its absolute
deadline [d; 4 = 7,4 + Ds].

2.3 Performance Model

We consider the supply/demand-bound based schedulabil-
ity test proposed in [7] to quantify the real-time performance
of TSCH-based networks under EDF [5]. This method eval-
uates if the supply-bound function (sbf) — the minimal trans-
mission capacity offered by a network with m channels — is
equal or larger than the forced-forward demand-bound func-
tion [1] (FF-DBF-WSN) — the upper bound on the total net-
work time demanded by a set of n time-sensitive flows in
any interval of length £.

Formally, the schedulability test can be presented by (1).

FF-DBF-WSN(¢) < sbf(¢), V¢ > 0. (1)

Where sbf(¢) is a piecewise-linear function in all intervals
[h, h + 1] that satisfies (2).

sbf(0) = 0 Asbf(£ + h) — sbf(€) <m x h, Y0, h > 0; (2)

FF-DBF-WSN [7] is composed of two main terms: (7) chan-
nel contention due to mutually exclusive scheduling on

multiple channels, equivalent to FF-DBF for multiprocessors [1],

and (i) transmission conflicts due to multiple flows en-
countering on a common half-duplex link.

17

CHANNEL CONTENTION

FF-DBF-WSN({) = 1 E FF-DBF(fi,{) +
m
=1

> (2 -max{[£][41})

1,j=1

TRANSMISSION CONFLICTS

This results in (3), where A; ; is a factor representing the
path overlapping degree between any pair of flows f; and f;
€ F (with ¢ # j) in a given network G, defined by (4).

5(ig) 8’ (i5)
Ajj= Y Leng(ij) — Y (Leng (ij) — 3) (4)
q=1 q'=1

0(ig) is the total number of overlaps between f; and f;
of which §'(ij) are the ones larger than 3. The length of
the ¢"" and ¢'*" path overlap between f; and f; are called
Leng(ij) and Leny (i), respectively, with ¢ € [1,6(¢j)] and
q €[1,0'(ij)]. In convergecast, the factor expression is sim-
pler since all paths are directed to the same root: only one
path of arbitrary length is shared between any pair of flows.
This implies A(ij) = 3 for overlap paths larger than 3 hops.

3. A REAL-TIME TSCH FRAMEWORK

We consider the problem of co-designing the communi-
cation schedule, the routing topology and identifying the
gateway to improve traffic schedulability. We build upon
our prior research: the insights on joint EDF-MO schedul-
ing and routing [4] and the centrality-driven network desig-
nation strategy [3]. While these works have already demon-
strated — separately — their benefits, we show in this paper
that combining the featured EDF-MO real-time scheduling
and routing method with a judicious centrality-based gate-
way designation increases schedulability by up to 80% with
respect to a naive real-time configuration.

3.1 Joint EDF-MO Scheduling and Routing

Minimal-overlap (MO) shortest-path routing is a greedy
meta-heuristic search to find a suitable set of flow’s paths
that reduces the overall path overlapping degree in the net-
work [4]. The owverlaps — the set of nodes shared between
two different flow paths — have a direct influence on the anal-
ysis of worst-case end-to-end delays for TSCH-based net-
works [10]. This, in turn, can be translated into an impact
on network schedulability under a global EDF policy [12, 4].
The joint EDF-MO configuration takes advantage of this in-
bred network relationship to provide a set of disjoint paths
which minimizes the number of overlaps among flow paths,
regardless of the node designated as a gateway.

Algorithm 1 presents a pseudo-code of the MO routing
based on its theoretical definitions in [4]. The algorithm
consists of three major procedures: EDGEUPDATE (lines 1-
4), CALCOVERLAPS (lines 5-7) and the main method MoGH
(lines 8-21). The latter determines a new set of flow paths
®;, and its corresponding overall number of overlaps € at
each k" iteration to find the set of paths that provides min-
imal overlapping. This procedure stops when Qi = 0, or
after a kpqe number of iterations. EDGEUPDATE updates
the weights of the link for the input topology Gin, returning

Algorithm 1 Minimal-Overlap (MO) Routing
Input: G, F, kmaz, ¥
Output: ®opt, Qopt
1: procedure EDGEUPDATE(Gn, ®in)
sk=1)
2 ij (wv) =1+3.2 ¥
3 Gout Gm(V’ Eweighted)
4 return Got
5: procedure CALCOVERLAPS(®;y,)
6.
7
8
9

Qp =327, A
return Qout
: procedure MoGH(G, F, kmaz)

: k=0 > Initial Solution Start
10: P < SHORTESTPATH(G, F) > Hop-count-based
11: GY @

12: while k < kmaz and Q7" > 0 do > Greedy Search
13: G* « EDGEUPDATE(GF—1, &, _1)

14: ®;, < SHORTESTPATH(GF, F) > Weight-based
15: Q = CALCOVERLAPS(®y)

16: if Qp < Qin then

17: Qpin =

18: i = @y,

19: else)

20: Qpin — qmin

21: k=k+1

22: Popt = <I>Z”", Qopt = Q’km". > Best Solution

a new weighted graph Gou: over which new paths and over-
laps are calculated. Cost function W ;(u,v) determines the
weight of an edge (u, v) in Gou: as function of §;,; and 1. The
former is the number of overlaps between the paths of flows
fi and f; € F at graph Gin; the latter a user-defined pa-
rameter used to control the speed of convergence of the algo-
rithm. The SHORTESTPATH procedure provides the shortest
sequence of edges between two nodes in the graph, resort-
ing to classical weighted or hop-count-based shortest-path
mechanisms (e.g. Dijkstra). The CALCOVERLAPS procedure
returns the total number of overlaps in the network by sum-
ming every A; ; factor (as defined in Section 2), and which
represents the overlapping degree experienced by the paths
of any pair of flows f; and f; € F.

3.2 Centrality-Driven Gateway Designation

To further enhance network schedulability, we consider
the centrality-driven network designation strategy proposed
in [3]. We use network centrality from graph theory to pro-
vide convenient graph-based positions to designate the gate-
way in order to improve real-time network performance, by
design. Specifically, it uses the four most common central-
ity metrics in social network analysis: degree, betweenness,
closeness and eigenvector centrality, considered as near op-
timally correlated for the purposes of benchmarking.

Table 1 ! formally summarizes these four metrics.

!Notation. DC: degree(v,) is the number of edges of node
vq directly connected to any of the rest N — 1 nodes in the
graph G. BC: sp;, is the number of shortest paths between
any pair of vertices v, and vs, and sp,,s(vq) is the number of
those paths passing through node vq; CC: distance(vp, vq)
is the shortest-path (hop-count) distance between vertices
vp and vg, with p # ¢, Vv, € V. EC: A\pae(A) is the largest
eigenvalue of the adjacency matrix A = [aj,4|n, Where a;j 4
is the matrix element at row j and column ¢, and z; is the
jth value of the eigenvector = of graph G.

18

Table 1: Network Centrality Metrics.

Metric Definition
Degree DO(vy) = “oeys)
Betweenness || BC(vq) = Z(Hér 5;0%(1),1)
_ 1
Closeness CC(vq) = s distance(vg,vg)
Eigenvector EC(vq) = m : Zé\’:1 Aj,q " Tj

4. PERFORMANCE EVALUATION
4.1 Simulation Setup

Wireless network. We consider a set of 100 mesh topolo-
gies generated from synthetic graphs. Each topology is cre-
ated using a sparse uniformly distributed random matrix of
N x N of zeros and ones, with target density d. N repre-
sents the total number of nodes, including the gateway; d
is the portion of other nodes each vertex is linked to. We
assume N = 75 and d = 0.10 for all topologies. We assume
the network is TSCH-based with m = 16 channels available,
and 10 ms time slots.

Network flows. A subset of n € [1,25] nodes is chosen ran-
domly as sensor nodes which transmit periodically deadline-
constrained data toward a single gateway. The rest of nodes
act as relay. Each period is randomly generated as 2", with
n € N € [2,7] slots. This implies a super-frame length of
H = 1280 ms. C; is computed directly from the number of
hops in ¢; and D; = T;.

Real-time performance assessment. We consider the
performance model described in Section 2. We evaluate
the schedulability over an interval equal to the super-frame
length, ¢ = H, when all the channels are available. We fur-
ther assume network management is centralized, scheduling
uses a global EDF policy, and routing can be either a hop-
count-based shortest-path routing (Dijkstra) or the featured
MO routing described in Algorithm 1. For MO, we further
consider the following: ¥ = 0.1 and kp,qz = 100.

4.2 Preliminary Results & Discussion

Fig. 2a (top) presents the schedulability ratio when a gate-
way is designated based on the degree centrality and a short-
est path routing is assumed. Fig. 2b (top) shows equivalent
results for a gateway designation based on the DC when
the MO routing is considered. Both configurations also in-
clude the case when the gateway is designated randomly.
The results show that a joint EDF-MO-DC framework can
schedule up to 3 times more flows than a basic routing con-
figuration, and up to twice more than the EDF-MO tuple.
Notably, achieving up to 80% better schedulability than a
naive real-time setting.

Figs. 2a (bottom) and 2b (bottom) presents the absolute
deviation in terms of schedulability ratio of the other cen-
trality metrics w.r.t. the DC. These results suggest none of
the metrics dominates over the others, regardless of the rout-
ing used. We also observe the deviation among the metrics
remains larger (up to ~ 20%) for the shortest path routing,
and almost marginal (< 3%) when MO is used.

Overall, the reported results highlight the relevance of ap-
plying a judicious gateway designation in real-time TSCH

2 Shortest
g Path
. 05
B —&— Degree
S Random
0n oL —/— . T Sea s =
1 5 10 15 20 25
Number of flows (n)
d=0.1,N=75m=16
c 02 [—9—BC ——cc EC|
s 22800t
E 0 é g \ W &9
s Shortest ;
a Path
1 5 10 15 20 25

Number of flows (n)

(a) Shortest Path Routing

d=0L N m ol eeea

0.5 Minimal
—8—Degree Overlap
Random
0
1 5 10 15 20 25

Number of flows (n)
d=0.1,N=75,m=16

Sched. Ratio

- 02 [—9—BC ——cC EC]
ie] L
g 0 €%
5 Minimal
a Overlap
-0.2 <
1 5 10 15 20 25

Number of flows (n)

(b) Minimal Overlap Routing.

Figure 2: Top: The schedulability ratio under varying number of network flows n € [1,25] for both shortest path routing and
minimal-overlap routing when using the degree centrality metric for gateway designation compared to a random benchmark.
Bottom: The absolute deviation in terms of schedulability ratio of the other centrality metrics w.r.t. the degree centrality.

networks, even if a real-time routing scheme is considered.

S. CONCLUSIONS

This paper presents a novel framework towards joint schedul-

ing, routing and gateway designation in real-time TSCH net-
works. By resorting to prior methods for joint routing and
scheduling, and centrality-driven gateway designation, we
show by simulation that a combined approach which takes
into account all three dimensions can improve schedulabil-
ity by ~ 80%, scheduling up to three time more real-time
flows than a basic configuration. We are working on fur-
ther investigating the performance of the framework with a
broader range of varying parameters (network density, num-
ber of channels, number of gateways) as well as to study its
applicability in related real-time network domains (wireless

TSN, 5G).

6. ACKNOWLEDGMENTS

This work was partially supported by National Funds through

FCT/MCTES (Portuguese Foundation for Science and Tech-

nology), within the CISTER Research Unit (UIDB/04234,/2020);

by the Operational Competitiveness Programme and Inter-
nationalization (COMPETE 2020) under the PT2020 Agree-
ment, through the European Regional Development Fund
(ERDF); by FCT and the ESF (European Social Fund)
through the Regional Operational Programme (ROP) Norte
2020, under PhD grant 2020.06685.BD.

7. REFERENCES

[1] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and
S. Stiller. Improved multiprocessor global
schedulability analysis. Real-Time Systems,
46(1):3—-24, 2010.

[2] D. Dujovne, T. Watteyne, X. Vilajosana, and
P. Thubert. 6TiSCH: deterministic IP-enabled
industrial internet (of things). IEEE Communications
Magazine, 52(12):36—41, 2014.

[3] M. G. Gaitdn, L. Almeida, A. Figueroa, and
D. Dujovne. Impact of network centrality on the
gateway designation of real-time TSCH networks. In
2021 17th IEEE Int. Conf. on Factory Communication
Systems (WFCS), pages 139-142. IEEE, 2021.

19

[4] M. G. Gaitdn, L. Almeida, P. M. Santos, and
P. Meumeu Yomsi. EDF scheduling and
minimal-overlap shortest-path routing for real-time
TSCH networks. In Proceedings of the 2nd Workshop
on Next Generation Real-Time Embedded Systems
(NG-RES 2021), volume 87, pages 2—-1. Schloss
Dagstuhl-Leibniz-Zentrum fiir Informatik, 2021.

[5] M. G. Gaitdn, P. M. Yomsi, P. M. Santos, and
L. Almeida. Work-in-progress: Assessing
supply/demand-bound based schedulability tests for
wireless sensor-actuator networks. In 2020 16th IEFEE
Int. Conf. on Factory Communication Systems
(WFCS), pages 1-4. IEEE, 2020.

[6] M. G. Gaitdn and P. Yomsi Meumeu. Multiprocessor
scheduling meets the industrial wireless: A brief
review. U. Porto Journal of Eng., 5(1):59-76, 2019.

[7] M. G. Gaitédn and P. M. Yomsi. FF-DBF-WIN: On
the forced-forward demand-bound function analysis
for wireless industrial networks. In Work-in-Progress
Session of the 30th Euromicro Conference on
Real-Time System (ECRTS), pages 13-15, 2018.

[8] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of the ACM (JACM),
20(1):46-61, 1973.

[9] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez,

D. Gunatilaka, C. Wu, L. Nie, and Y. Chen. Real-time
wireless sensor-actuator networks for industrial
cyber-physical systems. Proceedings of the IEEE,
104(5):1013-1024, 2015.

[10] A. Saifullah, Y. Xu, C. Lu, and Y. Chen. End-to-end
communication delay analysis in industrial wireless
networks. IEEE Transactions on Computers,
64(5):1361-1374, 2014.

[11] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and
M. Gidlund. Industrial internet of things: Challenges,
opportunities, and directions. IEEE Transactions on
Industrial Informatics, 14(11):4724-4734, 2018.

[12] C. Xia, X. Jin, and P. Zeng. Resource analysis for
wireless industrial networks. In 2016 12th
International Conference on Mobile Ad-Hoc and
Sensor Networks (MSN), pages 424-428. IEEE, 2016.

Toward Precise Real-Time Scheduling on NVidia GPUs

Nordine Feddal
Univ. Lille, CNRS, Inria,
Centrale Lille
UMR 9189 CRIStAL
F-59000 Lille, France
nordme.felcjlclialc.etu@unlv-
ille.fr

Houssam-Eddine Zahaf
Nantes Université, Ecole
Centrale Nantes, IMT
Atlantique(1) , CNRS, INRIA
(1), LS2N, UMR 6004,
F-44000 Nantes, France)
houssameddine.zahaf@univ-

Giuseppe Lipari
Univ. Lille, CNRS, Inria,
Centrale Lille
UMR 9189 CRIStAL
_F-59000 Lille, France
giuseppe.lipari@univ-
lille.fr

nantes.fr

ABSTRACT

Scheduling a set of real-time tasks on modern GPUs is chal-
lenging due to the black-box nature of most GPUs and the
lack of proper documentation. Moreover, with the rapid evo-
lution of GPUs architectures, an important problem is to de-
sign a real-time scheduler for current and future GPU archi-
tectures. This paper describes on-going efforts to schedule
real-time tasks on Nvidia GPUs. We propose the PRUDA
(Predictable Real-time CUDA) library to manage GPU re-
sources as multi-core systems.

Keywords
GPUs, CUDA, scheduling, multicore, real-time.

1. INTRODUCTION

Autonomous driving and Advanced Driver-Assistance Sys-
tems (ADAS) have received a particular attention from aca-
demic and industrial communities. These systems process
a large amount of data, on which a series of AI inference
kernels are applied. One of the main concerns to build these
systems is to ensure correctness, while guaranteeing the re-
spect of timing constraints, dictated by the evolution of the
surrounding obstacles and path planning. Satisfying these
constraints requires processing computer vision algorithms
(image preprocessing, computer vision inferences, and actu-
ation) within a predefined time window. Classical identical
core platforms, composed of a set of identical CPUs, are
not able to fulfill the required timing constraints, therefore
automotive industries are using heterogeneous platforms fea-
turing highly-parallel accelerators such as GPUs, along with
a set of identical CPU cores.

An example of such platform is the NVIDIA Jetson Fam-
ily. The Jetson AGX, for example, features 8 CPUs, along
with an integrated Volta GPU and other accelerators such as
Programmable Vision Accelerator (PVA) and Deep Learn-
ing Accelerator (DLA). A typical NVIDIA GPU is com-
posed of hundreds of components able to achieve compu-
tations called CUDA cores, arranged into a set of streaming
multiprocessors (SMs). The SMs share a complex memory
hierarchy at different levels.

While real-time systems require that the run-time behav-
ior can be analyzed to guarantee the respect of timing con-
straints, the GPU complex design make it difficult to pre-
dict the timing behavior of a real-time task. In addition,
NVIDIA GPUs internals are closed-source, for intellectual
property concerns, making it more difficult to control the

20

tasks’ execution within the GPU.

The real-time community has done a considerable effort

to conciliate predictability and performances for NVIDIA
GPUs. GPU scheduling has mainly been controlled by soft-
ware schedulers on the top of NVIDIA internals (see Section
3). In the same effort, our previous work [6] enables preemp-
tion at block level, and a first attempt to enable predictable
concurrent and parallel execution on GPUs. However, this
work is restricted to NVIDIA GPUs with a limited num-
ber of SMs. When using many SMs, unpredictable behavior
might be observed.
Contribution. In this paper, we present an evolution of
PRUDA, a programming platform to manage GPU resources.
PRUDA offers various strategies to control real-time exe-
cution within a GPU with CUDA. We use the GPU as a
multicore platform, where each SM is considered as a sep-
arate processor, and a kernel is executed exclusively on a
single processor. Each streaming multiprocessor is therefore
scheduled using a single core real-time policy, and different
kernels are either run on parallel on different SMs, or con-
currently on the same SM.

Organization: The remainder of this paper paper is orga-
nized as follows. We provide a brief overview of NVIDIA
GPUs and CUDA programming in Section 2. We briefly
report related work in Section 3. We then explore various
approaches to managing GPU execution using PRUDA in
Section 4, and draw our conclusions in Section 6.

2. BACKGROUND ON NVIDIA GPUS AND
THEIR PROGRAMMING

2.1 Overview on GPU architecture

CARMEL CPU

NVIDIA VOLTA GPU

Figure 1: Jetson AGX Xavier Architecture

NVIDIA GPUs are composed of multiple computing ele-
ments, called CUDA cores. Multiple CUDA cores are grouped
in a single abstract computation unit called streaming mul-
tiprocessor (SM). The different SMs and CUDA cores have a
complex interconnect with multiple levels of memory hierar-
chy. For the sake of simplicity, we only report the L2 cache,
which is shared between all SMs. A GPU features, as well,
one or multiple copy engines (CEs): they are coprocessors
responsible for achieving memory copy operations between
different memory spaces (from CPU to GPU, from GPU to
CPU).

In this work, we consider the NVIDIA Jetson AGX Xavier.
The Jetson AGX Xavier is composed of 8 ARM (ISA v8)
cores, two NVDIA DLAs (NVDLAs), a vision accelerator
and a single VOLTA GPU. The Volta GPU contains 512
CUDA cores, arranged in 8 SMs. The different SMs share
a cache of 512KB. CPUs and GPU share a common main
memory. We report this architecture in Figure 1.

2.2 GPU Programming

A GPU can be programmed using generic programming
platforms such as OpenCL or proprietary APIs such as CUDA
for NVIDIA GPUs. CUDA allows having a tighter control
over GPU resources, therefore it is the one used in this work.
Our library is implemented in C/C++ and compiled using
the NVIDIA NVCC compiler.

The CUDA API provides primitives and commands to
copy data between the CPU (commonly called host) and
the GPU (commonly called device), to allocate memory on
the device, and to submit work (commonly called kernels)
to the GPU.

CUDA programs have a common structure, similar to the
one described in Figure 1. First, memory is allocated onto
the GPU visible GPU memory (Lines 15-17). Further, a
copy memory operation is achieved using the copy engine to
copy data from host CPU visible memory space to device
memory space (Lines 20-23). This operation is mandatory
even for integrated GPUs where the CPU host and the GPU
share the same physical memory. It allows an integrated
GPU code to be portable to discrete GPU code, without
any restrictions. This step can be transparent to the end
user if the unified memory is used (i.e. memory is allocated
using cudaMallocManaged). Further, the kernel is launched
on the GPU (Line 27), by invoking the CUDA kernel. We
further describe this operation, as it is a very important step
in the design of PRUDA.

Once the CUDA kernel completes on the GPU, the result
data is copied back to the host (Line 29). Finally, memory
is freed for both host and device. CUDA malloc and free are
costly operations. In the context of a real-time system, cud-
aMalloc is performed only once, before the real-time system
starts, and the memory is reused during the periodic execu-
tion of the tasks.

CUDA code that starts with token __global__ can be in-
voked from the host, while those that start with __device__
can only be invoked by another CUDA kernel. A CUDA ker-
nel represents the code that a single CUDA thread must ex-
ecute. A thread is identified by its number within its block.
Therefore, when a kernel is invoked, the CUDA developer
must specify the parameters numBlocks and threadsPerBlock
defining respectively the number of blocks and the number
of threads.

All threads of the same block are executed on the same

2

© W N o A W N =

11
12
13
14
15
16
17
18
19
20
21

1

Listing 1 A typical CPU-GPU code
__global__
void vecMul(int * A, int *B, int *C){
int i = blockDim.x * blockIdx.x + threadIdx.x;
Ccli]l = A[i] = B[il;
}

int main(int argc, char ** argv) {
// ... some CPU side initialization
int N = SIZE;
int *h_a, *h_b,

*h_c, *d_a, *d_b, *d_c;

// ... GPU size allocation and initialization
cudaMalloc(&d_a, N*sizeof(int));
cudaMalloc(&d_b, N*sizeof(int));
cudaMalloc(&d_c, N*sizeof(int));

cudaMemcpy(d_a, h_a, N*sizeof (int),
cudaMemcpyHostToDevice) ;

cudaMemcpy(d_b, h_b, N*sizeof (int),
cudaMemcpyHostToDevice) ;

int nbblock=8;
int nbthreads=N/nbblock;
vecMul<<<nbblock, nbthreads>>>(d_a, d_b,d_c);

cudaMemcpy (h_c, d_c, N*sizeof (int),
cudaMemcpyDeviceToHost) ;

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c);
free(h_a); free(h_b); free(h_c);

SM [1], however different blocks of the same kernel may be
executed on different SMs. The NVIDIA scheduler schedules
first blocks and then warps (a group of 32 threads). Threads
within a warp execute the same instruction on different data
following the Single Instruction, Multiple Thread (SIMT)
model.

CUDA API uses a FIFO queue data structure, to sub-
mit work to the device, in a FIFO policy. By default, GPU
commands are inserted into the default stream (i.e. NULL
stream). The CUDA stream can be defined in the kernel in-
vocation parameters. When the cuda stream is not defined,
the default stream is used, and all kernels are therefore exe-
cuted one after the other, allocating implicitly all the GPU
resources to the under running kernel. CUDA API allows
creating multiple streams to run concurrent and parallel ker-
nels within the GPU.

3. RELATED WORK

Over the past few years, there have been many studies
related to the implementation of a real-time GPU scheduler:
[4, 1, 2] have attacked the problem of providing support to
real-time systems onto GPUs from different perspectives.
Kato et al. proposed different platforms (TimeGraph and
RGEM) for non-preemptive scheduling for graphical tasks in
GPU [4, 3]. Authors of [1] tried to study how a GPU takes
scheduling decisions based on black-box experimentation on

the Jetson TX2 platform.

Capodieci et al. [5] modified the proprietary NVIDIA driver
to implement an event-driven scheduler allowing to use fine
grain preemption levels provided by recent GPUs (since Volta
architecture) under different policies such as EDF and fixed
priority. The authors used NVIDIA Drive PX platform that
is commonly used in ADAS and autonomous vehicle applica-
tion. However, some details were omitted, and their source
code was not released due to NVIDIA non-disclosure agree-
ments.

Elliott et al. [2] consider the GPU scheduling problem as
a synchronization problem. GPUSYNC is a real-time GPU
framework using k-exclusion locks to allow mutually exclu-
sive access to a number of GPUs in a system. GPUSync
source code can be found here '. The work in [5] has
closed sources whereas GPUSync [2] platform does not sup-
port GPU preemption. In both cases, GPU is used as a
single-core platform.

4. PRUDA

In this section, we present the design of PRUDA, our pro-
gramming platform. It is a set of functions to program real-
time tasks on NVIDIA GPUs and take scheduling decisions.
As described in [6], PRUDA uses CUDA streams to enforce
scheduling decision and concurrent execution.

A fixed priority can be assigned to every different CUDA
stream using the cudaCreateStream WithPriority primitive.
All kernels in a high-priority CUDA stream will be executed
prior to kernels in a low-priority CUDA stream. Moreover, if
a kernel in a low-priority stream is running, and a kernel of
a higher priority stream is submitted, the GPU can preempt
the current kernel to execute the kernel in the higher priority
stream. Fine-grained preemption capabilities are available
in NVIDIA GPUs starting from the PASCAL architecture.
In the PASCAL architecture a preemption is possible at the
block level, i.e. preemption is achieved when all threads of
a given block finish their execution.

PRUDA provides three strategies to implement scheduling
decisions, according to the user needs and goals. In the first
and the second strategy, the GPU is abstracted as a single
core platform. In this paper, we developed a third strategy
in which the GPU can be seen as a multi-core platform. The
new strategy is described in the next Section 5.

The different strategies have a common design: all tasks
scheduled using our platform are stored in a task-queue
called tq. When a task is activated, its priority is computed
and it is inserted accordingly to the active run-queue de-
noted by rq, by invoking the subscribe() function. Later,
according to the selected strategy, tasks are consumed from
rq, when the resched() function is invoked, which moves
the task from the active run-queue to the corresponding
CUDA stream.

4.1 Single-Stream strategy

The first strategy uses only one CUDA stream. Conse-
quently, once a PRUDA task is executing, it cannot be pre-
empted by another submitted PRUDA task before its com-
pletion. Only non-preemptive scheduling algorithms can be
implemented with this strategy. The advantage of this strat-
egy is that it is simple to implement, and it provides an

!GPUSYNC Project github. https://github.com/GElliott/
litmus-rt-gpusync/.

22

implicit synchronization between PRUDA tasks due to the
FIFO nature of the CUDA stream. However, as only one
PRUDA task can run at a given time, this strategy involves
reserving all GPU resources (all SMs) for the current run-
ning PRUDA task, even if the task is not using all GPUs
cores. This leads to GPUs resources waste, which can be
avoided by using another strategy to enable preemption and
concurrent execution between different PRUDA tasks.

4.2 Multiple-Stream strategy

Using this second strategy, PRUDA creates as many pri-
ority levels as there are streams, allowing concurrent kernel
execution and preemption. The Jetson AGX Xavier pro-
vides only two priority levels, one denoted high priority (h-
sq) and one denoted low priority (1-sq). When a scheduling
event occurs, the scheduler checks if:

e (1) h-sq = P A1l-sq = 0: the scheduler will allocate
the task to the 1-sq queue, therefore the task will be
submitted immediately to the GPU.

e (2) h-sq = 0 A 1-sq # 0: the scheduler checks if the
highest priority in rq is greater than the priority of the
task in 1-sq. If yes, the task is inserted into the high
priority queue h-sq. Therefore, it preempts the task
in 1-sq, when possible.

e (3) h-sq # 0 A 1-sq # 0: No scheduling decision are
taken.

This strategy solves the preemption limitations of the
single-stream, however it still uses the platform as a single
core.

5. PRUDA EXTENTION: SM AS CORE

The third strategy, called SM as core distinguishes two
types of kernels: those executing in a single stream, denoted
as K = {ki1, k2, - - }, and those that are free to execute on an
arbitrary number of SMs, without any restriction, denoted
as K. In this strategy, as many priority levels as streams are
created, similarly to the Multiple-Stream strategy. In addi-
tion to the scheduling structures described for the previous
strategy, the SM as core strategy creates a stream for noise
kernels and a stream for every SM. The goal of the noise
stream is to be able to asynchronously submit noise kernels,
having a high priority with respect to the executing kernels.
The other streams are defined to schedule kernels that are
meant to be allocated to a predefined SM. h-sq and 1-sq are
kept to schedule the kernels in /C, similarly to the previous
strategy.

First, we explain the general idea behind our strategy.
When the PRUDA scheduler selects kernel £ in K to exe-
cute on SM z, it first launches a noise kernel (k,) which
occupies all GPU resources on all SMs with dummy code.
Further, the threads of k,, executing on the SM z, where k is
meant to be allocated, exit immediately by invoking primi-
tive asm("exit;"). Therefore, the GPU internals will have
only one SM at disposal to schedule blocks of kernel k. The
other threads of the noise kernel k, are maintained active,
until kernel £ completes.

Although this solution allows allocating a kernel to a pre-
defined SM, all other SMs are occupied by dummy code, pre-
venting therefore other kernels to execute. We avoid these
scenarios by calibrating the number of threads and blocks of

the noise kernel. The goal is to define the number of blocks
and threads per block, such that the NVIDIA internals will
find only a single SM available for executing kernel k, with-
out occupying all the GPU resources, henceforth allowing
other kernels to execute. However, our solution is architec-
ture specific, i.e., the noise kernel configuration will depend
on the target GPU architecture (SM count, maximum num-
ber of threads per block, and maximum number of threads
per SM). PRUDA is able to automatically be adapted to
different GPUs, however the binary code can not be directly
ported to different GPUs, without breaking PRUDA sched-
uler.

PRUDA starts by computing the number of threads of the
noise kernel. It must allow all other kernels in K to execute,
therefore the number of threads of the noise kernel is set
such that the sum of noise kernel threads and the maximum
number of threads of any block of K does not exceed the
number of threads per SM, allowed by the GPU hardware
design, as follows:

nbThreads — MaxThreadsPerSM Zmaxblcckslze(lc)

, where:

e MaxThreadsPerSM is the maximum number of threads
per SM (2048 for Jetson AGX Xavier)

® MaXpiocksize(K) is the maximum number of threads as-
signed to kernel in K (in the example of Table 1 it is
equal to 512).

Our strategy modifies the number of blocks and threads
defined by the CUDA developer, such that our restrictions

are guaranteed to be respected at runtime. Therefore, PRUDA

provides a simple and efficient thread indexing mechanism
that the CUDA developer uses instead of CUDA classical
indexing mechanisms. PRUDA uses a global flag and inter-
block synchronization to its thread indexation mechanisms,
and keeps track of the running user- and noise-kernels.

We illustrate our approach by the following example.

EXAMPLE 1. £et Ki,Ks, K3 be 3 GPU kernels such that
K = {K2} and K = {K1,Ks}. The kernel parameters are
described in Table 1.

K, | Ko | K3

num blocks 6 6 6
threads per block | 512 | 256 | 512

Table 1: Task set I'.

The noise kernel size that allow K1 and K3 to execute
without any restriction is 768 threads per block.

Figure 2 illustrates the execution trace of the task set of
Table 1.

At time (a), Kernel K» arrives and, since it is in K and
allocated to SM-1, PRUDA launches a noise kernel k,, with
768 threads per block to fill all SMs except SM-1. PRUDA
reassigns the thread per block of Kernel Ko to 1024, so that
Kernel 2 cannot be dispatched on any other SM but SM-1.

At time (b), while k, and K are ezecuting, Kernel K;
arrives. As the noise kernel size is 768 threads per block,
at least 1 block of K1 can be executed on each SMs except
SM-1.

At time (c), while k,, and K> are still running, Kernel Ks
arrives and, like Ki; it can be executed on every SMs except
SM-1. At (d), K2 has completed its execution; it modifies

23

the global flag to notify the noise kernel ky, to stop execution.
At time (f), the noise kernel has finished.

MStream SM-1 M Stream LSQ

Stream
L NOISE

SM7
SM6
SM5
SM 4
SM3
SM2
SM1

SMO0

® O ©
T 11

K2 K1 K3

Figure 2: Concurrent Execution with One SM task.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, we extended the PRUDA library with new
strategy for real-time GPU management, which provides a
way to isolate the execution of a real-time task on a single
SM. This is achieved by means of noise kernels that fill any
SM except the one allocated to the task, and thus forces the
hardware scheduler to allocate the task on the selected SM.

At the moment, we influence the scheduling decision with
the concept of noise kernel by manipulating the number of
threads per block assigned to the noise kernel. In the future,
we want to take into account the amount of shared memory
and the number of register the block will use on the SM.
We plan to trace PRUDA task execution, and estimate a
possible GPU state at run time.

We also want to evaluate the performance of our library on
computer vision applications. To do this we plan to integrate
PRUDA into a CV library such as OPENCV.

References

[1] Tanya Amert et al. “GPU Scheduling on the NVIDIA
TX2: Hidden Details Revealed”. In: 2017 IEEE Real-
Time Systems Symposium (RTSS) (2017), pp. 104-115.

[2] Glenn A. Elliott, Bryan C. Ward, and James H. An-
derson. “GPUSync: A Framework for Real-Time GPU
Management”. In: 2013 IEEE 34th Real-Time Systems
Symposium. 2013, pp. 33—44. DO1: 10.1109/RTSS.2013.
12.

[3] Shinpei Kato et al. “RGEM: A Responsive GPGPU Ex-
ecution Model for Runtime Engines”. In: 2011 IEEE
32nd Real-Time Systems Symposium (2011), pp. 57—
66.

[4] Shinpei Kato et al. “TimeGraph: GPU Scheduling for
Real-Time Multi-Tasking Environments”. In: 2011 USENIX
Annual Technical Conference (USENIX ATC 11). Port-
land, OR: USENIX Association, June 2011. URL: https:
//www.usenix.org/conference/usenixatcl1/timegraph-
gpu-scheduling-real-time-multi-tasking-environments.

[6] Ignacio Sanudo Olmedo et al. “Dissecting the CUDA
scheduling hierarchy: a Performance and Predictability
Perspective”. In: 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). 2020,
pp- 213-225. DOI: 10.1109/RTAS48715.2020.000-5.

[6] Houssam-Eddine Zahaf and Giuseppe Lipari. “Design
and Analysis of Programming Platform for Accelerated
GPU-Like Architectures”. In: Proceedings of the 28th
International Conference on Real-Time Networks and
Systems. RTINS 2020. Paris, France: Association for Com-
puting Machinery, 2020, pp. 1-10. 1SBN: 9781450375931.
URL: https://doi.org/10.1145/3394810.3394826.

24

Shortening gate closing time to limit bandwidth waste
when implementing Time-Triggered scheduling in TAS/TSN

Pierre-dulien Chaine
Airbus
Toulouse — France

ABSTRACT

Time-Triggered (TT) communications consists in specifying
the instants (or time windows) at which any frame will be
transmitted on any network link. In TSN Ethernet, this
principle can be implemented using dedicated queues and
time-triggered gates. Since TSN can mix several kinds of
flows, the gates of non-TT flows are commonly closed dur-
ing a TT window (when TT flows are transmitted). This
is called “ezclusive gating”. In this paper, we propose to
use “protective gating”, that sets TT queues at the highest
priority levels and reduces this closing time to its minimal
value in order to save bandwidth while guaranteeing correct
TT behavior.

1. INTRODUCTION

Time-Triggered (TT) communications consists in specify-
ing offline the instants (or time windows) at which any frame
will be transmitted [1]. In a store and forward network, a
time window must be reserved for each frame on each link,
and a good schedule keeps the waiting time of each frame in
each switch as small as possible. Nevertheless, in complex
systems, TT applications may coexist with Event-Triggered
(ET) applications (i.e. producing ET data flows). In gen-
eral, the networking technologies allow ET flows to use the
medium outside the time windows dedicated to TT flows
[2]. This approach is called “ezclusive gating”. This time
partitioning may lead to some waste of bandwidth. In fact,
when the time window dedicated to a TT flow is not used,
or partially used, the unused time cannot be used by ET
flows.

In this paper, instead of protecting the whole TT time
window, we propose to protect only its beginning, while
setting T'T queues at the highest priority levels. This ap-
proach is called “protective gating” and, in the context of
a TSN (Time Sensitive Networking) network, can offer the
same guarantees to T'T traffic, while reducing the bandwidth
waste.

2. MEDIUM ACCESS IN TSN

Let us first recall the architecture and frame selection rules
in a TSN output port. A TSN output port is made of up
to 8 queues. To each queue is associated a Transmission
Selection Algorithm (TSA) and a gate. The port itself uses
a single static priority arbiter (cf. Figure 1).

The TSA determines, at each instant, if the head of queue
frame is “available for transmission” [3, § 8.6.8]. There
are currently 4 possible TSA (Static Priority, Credit-based

25

Marc Boyer
ONERA / DTIS, Université de Toulouse
F-31055 Toulouse — France

time
...... . 1 state interval

! cco—cc | 52ns
== cco=co | 104'ns
cco—-co [1230'ns
co0--co | 800 ns
coo-cc [52ns
000-—cc | 250ns

000---cc | 840 ns

GCL

Figure 1: Architecture of a TSN output port

Shaper, Enhanced Transmission Selection and Asynchronous
Traffic Shaper) [3, Table 8.6], [4]. Each TSA has its own
rules to determine the availability for transmission.

The gate is either open or closed. Each output port has
it own Gate Control List (GCL). Each entry in the list has
a duration (known as “Timelnterval”) and a state for each
queue gate (open or closed). A state machine crosses the list,
opening and closing each gate during the specified duration,
in a cyclic way, as defined in the Time Aware Shaper (TAS)
addendum [5].

The output port arbiter considers the set of queues satis-
fying three conditions: first, the head of queue frame is set
as available for transmission by the queue TSA, second, the
gate is open, and third, there is “sufficient time available to
transmit the entirety of that frame before the next gate-close
event” [5, §8.6.8.4]. Then, the arbiter selects, in this set, the
head of the queue frame with the highest priority (i.e. with
the highest queue number).

Note that this implies that when the gate of a queue is
closed, it is not sending any frame.

Also note that the condition on next closing event is of-
ten presented as a “guard band”, but to highlight the fact
that this condition is dynamic, depending on the frame size,
we will call it “next closing dynamic guard band” or simply
“dynamic guard band”.

3. TT COMMUNICATIONS IN TSN

3.1 TT communications in store-and-forward
networks

A TT schedule consists in considering a global time hori-
zon (often the least common multiple - lem - of the period
of all data flows), and allocate, to each frame sent to the
network during this period, a slot (aka time window) on ev-

AB

Figure 2: Simple topology

Eo — S e P time
E, — S, A1 Bl 4> 1]

S1 — So [A [C] [Ao]

SQ — E3 @

So — Ey A} -E—’

Figure 3: Example of TT schedule for network in Figure 2

ery link along its path from source to destination (this path
being considered as fixed).

Consider the network depicted in Figure 2 with three data
flows, A, B,C, with routing depicted on the Figure, and
assume a period P for B,C and P/2 for A.

A simple example of TT schedule is presented in Figure 3.
On each link, two slots, A; and Az, are reserved for flow A,
and only one slot, denoted B (resp. C) is reserved for flow
B (resp. flow C).

Consider first flow C: it has a slot scheduled on link
Eo — 51, and right after that (as soon as the frame is fully
received, plus some margin due to clock error and inter-
nal commutation delay), another slot is scheduled on link
S1 — S2, and the same on link Sz — E3. As shown in Fig-
ure 3, the frames of flow C spend the least amount of time
in intermediary buffers They thus benefits from the smallest
end-to-end network latency. The flow A has the same kind
of behavior, with slots A; and As. The situation is different
for B: it is sent just after A; on E; — Sy, but it stays longer
in the buffers of S; since it is forwarded only just before As.
It then experiences a latency larger than the other flows (but
it may be sufficient w.r.t. its requirements).

This behavior has been chosen to illustrate several points.
First, notice that it is not possible to ensure a minimal la-
tency for all frames without changing the instants at which
these frames are injected into the network (that may impose
to change the instants when the embedded data are com-
puted, or to induce some waiting time between computation
and injection). Second, some frames are sent back-to-back,
therefore, the sequence A; B can be seen either as two ad-
jacent slots, or as a single slot hosting two frames. Third,
some trade-offs may exist on slot size w.r.t ET data flows: on
the one hand, during a slot dedicated to TT frames, no ET
frame can be forwarded, therefore a large T'T slot increases
the latency of ET flows, which favors small slots; but on
the other hand, the time before a TT slot cannot always be
used (i.e. alarge ET frame cannot start its transmission if it
cannot be completed before the TT slot), creating a per-slot
penalty, which favors a small number of slots. Fourth, in
this schedule, frame B is fully received by S1 before frame
C, but is forwarded after.

In summary, building a TT shedule consists in defining
slots (without any encroachment between two slots) and
assigning frames to slots while optimizing criteria such as
number of slots, slot length, end-to-end frame latency, while

26

S1 — S [A1 [C] [Ay |
Q#7 [closed | _Open] closed [open] closed |
Q#6 | closed [openy closed]
Q#5-0[open | closed | OPeN | closed | Open |
exclusive gating
Q#5-0 [OPen_[p] open [PL_[P[open]

protected gating

Figure 4: Example of GCL schedule implementing TT sched-
ule for link S; — S> in Figure 3, with A, C at priority 7 and
B at priority 6.

The time-lines Q#7 and (Q#6 represent the state of the gates
for these TT queues, and QQ#5-0, represents the state of the
gates for all other queues, in the “exclusive gating” mode.
The “exclusive gating” mode uses the same gate scheduling
for queues Q#7 and (Q#6 but uses Q#S-O for the others.

satisfying that each frames will be received before its depar-
ture slot on any hops.

3.2 Implementing TT communications in TSN

As presented in Section 2, the TT behavior of TSN is
based on queues, not on flows. Then, to send a frame during
a predefined time window, this frame has to be written in a
queue before the time window, when the queue gate is closed.
The frame will be transmitted during the time window, when
the gate is open (if the slot is large enough).

Also note that the order of frames in a queue is in general
the arrival order®. Then, it is not possible to implement the
scheduling of Figure 3 using a single queue for TT frames
in Si, since B is received before C' but forwarded after?.
In this example, one solution would be to shift to the right
the slot dedicated to B on link E; — S; (i.e. postpone B
transmission). Then, it would be received after C' and the
output order will be the same as the input order. But for
illustration purposes, let us keep this scheduling.

To implement such a schedule in TSN, the common prac-
tice consists in assigning one or several queues to T'T flows
(in the example depicted in Figure 4, queues #7 and #6),
and opening the gate only during the slots of frames asso-
ciated to this queue. All non-TT queues keep their gate
closed when there is at least one TT-queue open, and open
it when all TT-queues are closed. The TT queues have no
TSA. This is known as “exclusive gating”.

Note that exclusive gating does not require that the TT
queues have the highest priority: during a slot, a TT queue
has exclusive access to the output port, and the static prior-
ity arbiter is useless. Nevertheless, it is a common practice
to do so.

4. STATE OF THE ART

Building a T'T schedule is a hard and old problem, and a
complete overview can be found in [6].

The opportunity to support both TT and ET flows in an
Ethernet context is a feature of TTEthernet. It relies on a
per-frame time slot allocation, with dedicated hardware sup-
port, and not on a per queue gate opening and closing. Like

!The exact requirements are specified in [3, § 8.6.6].
2In TTEthernet, such a scheduling is not a problem since
there is no order requirement between TT frames.

TSN, it has to handle the case of ET frames trying to access
the medium just before a TT slot, and supports 3 integra-
tion methods: timely block, shuffling and preemption [2]. A
lot of work have been done on the efficient computation of
a global schedule, see for example [7, 8, 9].

Once the IEEE have defined an ET real-time extension of
Ethernet, known as AVB, which ensures guaranteed latency
and controlled jitters, the need of “temporal isolation” for
“scheduled traffic” (ST) appeared, and it was proposed to
use a “separate class” (i.e. one dedicated queue) “in the
highest priority” [10].

As presented in Section 3.2, the queue-based storage of
frames requires to adapt the algorithms developed for TTEth-
ernet.

In order to cope with the potential non-determinism in-
duced by the loss of a frame, [11] adapts the constraints of
[7] and introduces Flow Isolation and Frame Isolation. In
order to take into account non-T'T traffic while building the
TT schedule, [12], [13] and [14] introduce strategies to mod-
ify the T'T frame schedule by either spacing the frame offsets
or gathering them.

Most recently, a second approach with configurations based
on schedule per group of frames instead of per frame, has
appeared. [15] applies the TTEthernet schedule generation
methodology [16] to TSN networks. The authors introduce
new sets of constraints adapted for group of frames sched-
ules as well as Stream Isolation, a fusion of Frame isolation
and Flow isolation to again cover the loss of a frame. In [17],
the same authors use their new constraints to implement a
configuration generator and compare their two approaches.
More recently [18] proposes a group of frames configura-
tion but chooses not to use exclusive gating like all other
configuration generators. Moreover, it considers non-TSN
end-stations (i.e. Ethernet) in their system.

The first use of the expression “exclusive gating” in the
context of TSN seems to appear in [19)].

5. PROPOSAL: PROTECTIVE GATING

Our proposal consists in relaxing the “exclusive gating” by
only closing the gate of each non-TT queue during a time
interval as small as possible (depending on the implementa-
tion®) just when the gate of a T'T queue opens, and setting
all TT queues to the highest priority levels (i.e. if there are
3 TT queues, they will be queues #7, #6, #5), eventually
by reassigning queues, but maintaining their relative order.
This reduction of the closing time is called ‘protective gat-
ing”, and is illustrated in Figure 4, where the P in gray boxes
stands for “Protective”.

Note that it does not mean that each closed window in the
non-TT scheduling is replaced by a single short “protective”
closing event: it may be replaced by several ones. Consider
Figure 4: if the third protective closing event was absent, if
frame B was lost or shorter than its slot, a non-TT frame
would be able to start its transmission before the A> slot
and prevent/delay the transmission of A; frame.

We claim that the small modification introduced by pro-
tective gating offers a small benefit without any cost.

5.1 Condition for no impact on TT traffic

3The duration associated to each opening/closing event
must be a multiple of an implementation-defined constant,
TickGranularity [5, §8.6.9.4.16].

27

«—— TT slot ——

open [closed open

«~ B — — [—

non-TT queue |

Figure 5: Bandwidth possible loss due to gate closing.

If all the frames that must be sent during a slot are in the

output queue before the slot opening, and if the TT queues

have highest priorities, then “protective gating” offers the
same behavior to these frames than “exclusive gating”.

Consider one T'T queue, and one of its slot. Assume that
there are n frames to be sent during the slot and that all are
in the output queue before the slot opening.

In an “exclusive gating” configuration, at the slot begin-
ning, the gate of this queue opens and all other gates are
closed (they are just closing or already closed). During the
whole slot, only this queue has its gate open, and only this
queue has access to the output port. Since all frames are
already in the queue, they are sent back-to-back (there is no
TSA to block a frame).

In a “protective gating” configuration, at the beginning of
the slot, the gate of this queue opens and all other gates are
closed (they are just closing or already closed). Then, the
head of the TT queue can be sent. At the end of transmission
of this first frame, the second frame of the slot is ready for
transmission. It may exist frames ready for transmission in
others queues, but these queues are non-TT. Since the T'T
queue has the highest priority, this second frame is sent just
after the first one. The same argument holds at the end of
this frame, and the next ones. Then, all frames of the slot
are sent back-to-back, a behavior equivalent to the “ezxclusive
gating” configuration.

5.2 Impact on non-TT traffic

After having shown that our approach do not penalize TT
traffic, let us discuss the impact on non-TT traffic.

5.2.1 Bandwidth gain

In exclusive gating, the TT traffic has two negative im-
pacts on the other flows. First, a frame can be blocked if it
cannot be fully transmitted before the gate closing (called
“dynamic guard band”). This blocking time (B in Figure 5)
is at most the transmission time of a frame of maximal size.
Second, no frame can be sent during a TT slot, even if no
TT frame is being sent. This unused time (U in Figure 5)
can be as large as the slot.

Our proposal does not address the blocking, but mitigates
the unused time. It creates a gain when a slot is not fully
used by TT frames. Let us now consider when this may
happen. Indeed, as presented in Section 4, there are several
ways to use the TAS mechanism in TSN. We use here the
terminology from [18].

The strategy used to build the TT schedule has an impact
on the possible gain, and the main strategies (0GCL, FGCL,
WND, FWND) will be presented further.

But let us start with a global discussion on slot size. The
simplest way to build a T'T schedule consists in considering
each TT frame independently, and assigning a slot to each
frame. But this may lead to a high number of slots. And
because of the dynamic guard band, this has a negative im-
pact. Moreover, this may lead to “a large number of GCL
events exceeding the hardware capabilities of existing TSN

devices” [18]. For these two reasons, it is better to reduce
the number of slots, putting several frames in the same slot.
Nevertheless, a long slot increases the latency of non-TT
flows, and a good TT schedule has also to consider non-TT
flows [20].

We now present the main ways to use TAS in TSN, and
the associated gain.

0GCL, FGCL.

The goal of 0GCL is to ensure 0 jitter to TT flows [11].
Frame-to-Window based GCL (FGCL) relaxes the 0 jitter
requirement [17]. But both consider schedules that assign
to each slot a fixed set of ordered frames.

These methods are not perfect. In fact, it has been shown
in [11] that, due to the queue-based storage, a loss of frame
can break the schedule. Counter-measures have been devel-
oped (called “flow isolation” and “frame isolation”) but they
tend to limit the number of frames per slot.

In these approaches, a slot may be not fully used either
when TT frames are of variable size (then requiring a reser-
vation for the maximal frame size), or when a TT frame is
absent (because of loss at network level, or because the ap-
plication did not produce the data, for example in case of
oversampling).

The gain provided by protective gating is then limited.

WND, FWND.

The requirement of knowing in advance which frames will
use which slot can be considered as an over-specification.
The Window-based scheduling (WND) and Flexible Window-
based scheduling (FWND) build schedules that ensure guar-
anteed latency for every frame, without knowing exactly
which slot a frame will use. This may lead to under uti-
lization of some slots [18, 21].

The protective gating then allows to re-use the unused
part of these slots.

5.2.2 Impact on credit-based shaper

The gate closing (associated to TT slots) also has an im-
pact on the Credit-based Shaper (CBS) Transmission Selec-
tion Algorithm. CBS is based on a credit associated to a
queue. Its value decreases when the queue sends a frame,
and increases either to refuel up to 0 or when the head of
queue is blocked by a frame of another queue. The value of
the refuel /increase slope is a network administration param-
eter. In case of gate closing, the value of the credit is frozen,
but the slope value is globally updated to compensate this
freeze time [5, §8.6.8.2 d)]. This rule seems to be designed
to avoid burst when the gate re-opens, but its real impact is
not well known [22]. In protective gating, most of this effect
may be reduced.

5.2.3 Easy emergency traffic integration (and 802.1AS

messages)

Emergency events, alarms, may be raised in an event-
triggered mode in real time systems. And they may require
as-soon-as-possible delivery, meaning that they need to have
a priority higher than TT traffic. Let us call EmT such
Emergency event-Triggered traffic, and assume a minimal
inter-arrival time between two EmT messages (or between
two bursts).

As shown in [23], these messages must be set in the highest
priority queue, Q#7, whose gate is always open. And TT

28

queues are placed just bellow, in queues Q#6, Q#5... But
an EmT frame maythen use a part of a TT slot, postpone
the TT frames and break the T'T schedule.

One solution would be to enlarge every TT slot to pro-
vision a possible burst of EmT frames. However, this may
lead to a very high over-reservation.

Another solution consists in enhancing TAS behavior by
dynamically enlarging TT slots in case of EmT frames [23].

Our claim is that such a feature can be implemented with-
out any modification to the standard, but just by a modi-
fication of the algorithms building the schedule and by the
use of protective gating. In fact, it is sufficient to build the
schedule and the slots (using either 0GCL, FGCL, WND
or FWND), as if a burst of EmT frames were present in
each slot. But at run time, only the real frames will use the
bandwidth.

Moreover, the computation of bounds on the latency for
lower priority queues (with network calculus for example,
as in [24]), can easily be updated to account correctly EmT
frames. One just have to separate the interference created
by TT and EmT. The EmT interference is computed us-
ing a minimal inter-arrival delay, and the TT interference is
computed using the part of slots dedicated to TT flows.

Last, if a configuration devotes uses Q#7 for EmT flows,
one may also use it to forward synchronization messages
devoted to time measurement and clock distribution [25].

5.3 Removing any protection?

In exclusive gating, the gate mechanism is used for two
purposes: the opening/closing of a TT queue is used to
schedule the T'T frames within slots, and the opposite clos-
ing of other queues is used to protect the slots.

In protective gating, part of the protection given by gate
closing is replaced by the static priority arbiter. One may
wonder if the slot protection could be implemented using
only static priority, to avoid the “blocking” penalty before a
slot.

This solution has already been experimented in TTEth-
ernet, and named “Shuffling” [2]. In such a case, a non-TT
frame can encroach the beginning of a slot. Then, when
building a schedule, each slot must be large enough to trans-
mit the TT frames allocated to this slot, plus some non-TT
perturbation. Without preemption, this effect is the maxi-
mal size of an Ethernet frame (1528 bytes, plus 20 bytes of
IFG) whereas the use of preemption can decrease it to 143
bytes [26]. And comparison on latency between shuffling
and “timely block” (which is equivalent to slot protection in
TSN) can be found in the context of TTEthernet in [27].
The shuffling of course creates a jitter equivalent to the en-
croachment time.

6. CONCLUSION

One strength of TSN is its ability support both Time-
Triggered (TT) and Event-Triggered (ET) flows. The im-
plementation is usually done using “exclusive gating” where
the gate mechanism is both used to implement the time
slots devoted to TT frames and to protect these slots from
ET frames. We propose in this paper “protective gating”, a
small modification than can offer limited gains in bandwidth
for ET flows but comes at no cost, then deserving considera-
tion. It may also open a new freedom parameter for building
schedules, since over-reservation in TT slots now comes at
no cost.

7.
(1]

[2

3

4

[5

(6]

[7

8

9

(10]

(11]

(12]

(13]

(14]

REFERENCES

H. Kopetz, “Event-triggered versus time-triggered
real-time systems,” in Operating Systems of the 90s
and Beyond, A. Karshmer and J. Nehmer, Eds.
Springer, 1991, pp. 86-101.

W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and

S. Varadarajan, “T'TEthernet dataflow concept,” in
Proc. of Eighth IEEE International Symposium on
Network Computing and Applications (NCA 2009),
july 2009, pp. 319 —322.

“IEEE standard for local and metropolitan area
networks — bridges and bridged networks,” IEEE,
IEEE Standard 802.1Q), 2018.

“IEEE standard for local and metropolitan area
networks — asynchronous traffic shaping,” IEEE, Tech.
Rep. 802.1Qcr, September 2020.

“IEEE standard for local and metropolitan area
networks—bridges and bridged networks—amendment
25: Enhancements for scheduled traffic,” IEEE, IEEE
Standard 802.1Qbv, 2015.

R. Obermaisser, Ed., Time-Triggered Communication,
ser. Embedded Systems. CRC Press, 2012.

W. Steiner, “An evaluation of SMT-based schedule
synthesis for time-triggered multi-hop networks,” 11
2010, pp. 375-384.

D. Téamag-Selicean, P. Pop, and W. Steiner, “Synthesis
of communication schedules for TTEthernet-based
mixed-criticality systems,” in Proc. of the 10th Int.
Conf. on Hardware/Software Codesign and System
Synthesis (CODES+ISSS 2012), ACM, Ed., 2012.

F. Pozo, G. Rodriguez-Navas, H. Hansson, and

W. Steiner, “Smt-based synthesis of ttethernet
schedules: A performance study,” in 10th IEEE
International Symposium on Industrial Embedded
Systems (SIES). 1EEE, 2015, pp. 1-4.

G. Alderisi, G. Patti, and L. L. Bello, “Introducing
support for scheduled traffic over ieee audio video
bridging networks,” in Proc. of the 18th IEEE
Conference on Emerging Technologies Factory
Automation (ETFA 2013), Sep. 2013, pp. 1-9.

S. S. Craciunas, R. S. Oliver, M. Chmelik, and

W. Steiner, “Scheduling real-time communication in
IEEE 802.1Qbv time sensitive networks,” in Proc. of
the 24th Int. Conf. on Real-Time Networks and
Systems (RTNS’16), ser. RTNS’16. New York, NY,
USA: ACM, 2016, pp. 183-192.

W. Steiner, “Synthesis of static communication
schedules for mixed-criticality systems,” in Proc. of the
14th IEEE Int. Symp. on
Object/Component/Service-Oriented Real-Time
Distributed Computing Workshops, ser. ISORCW ’11.
USA: IEEE, 2011, p. 11-18.

F. Diirr and N. G. Nayak, “No-wait packet scheduling
for ieee time-sensitive networks (tsn),” in Proc. of the
24th Int. Conf. on Real-Time Networks and Systems,
ser. RTNS ’16. New York, NY, USA: ACM, 2016.
B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjodin,
and S. Mubeen, “Synthesising schedules to improve
qos of best-effort traffic in tsn networks,” in 29th
International Conference on Real-Time Networks and
Systems (RTNS’21), April 2021. [Online]. Available:
http://www.es.mdh.se/publications/6159-

29

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

24]

(25]

(26]

27]

S. S. Craciunas, R. S. Oliver, and W. Steiner, “Formal
scheduling constraints for time-sensitive networks,”
2017.

S. S. Craciunas and R. S. Oliver, “Combined task- and
network-level scheduling for distributed time-triggered
systems,” Real-Time Syst., vol. 52, no. 2, p. 161-200,
Mar. 2016. [Online]. Available:
https://doi.org/10.1007/s11241-015-9244-x

R. Serna Oliver, S. S. Craciunas, and W. Steiner,
“IEEE 802.1Qbv gate control list synthesis using array
theory encoding,” in 2018 IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS), 2018, pp. 13-24.

N. Reusch, L. Zhao, S. S. Craciunas, and P. Pop,
“Window-based schedule synthesis for industrial IEEE
802.1 Qbv TSN networks,” IEEE, pp. 1-4, 2020.

R. Blair, “Analysis of converged network traffic using
time sensitive networking (TSN),” in Proc. of the
ODVA 2018 Industry Conference. Stone Mountain,
Georgia, USA: ODVA, October 2018.

B. Houtan, M. Ashjaei, M. Daneshtalab, M. Sjédin,
and S. Mubeen, “Synthesising schedules to improve
QoS of best-effort traffic in TSN networks,” in Proc. of
the 29th Int. Conf. on Real-Time Networks and
Systems (RTNS 2021), Nantes, France, April 2021.

M. Barzegaran, N. Reusch, L. Zhao, S. S. Craciunas,
and P. Pop, “Real-time guarantees for critical traffic in
ieee 802.1 gbv tsn networks with unscheduled and
unsynchronized end-systems,” Technical University of
Denmark (TUD), Tech. Rep., 2021. [Online].
Available: https://arxiv.org/abs/2105.01641

H. Daigmorte and M. Boyer, “Impact on credit freeze
before gate closing in cbs and gcl integration into tsn,”
in Proc. of the 27th Int. Conf. on Real-Time Networks
and Systems (RTNS 2019), Toulouse, France,
November 2019.

M. Kim, D. Hyeon, and J. Paek, “eTAS: enhanced
time-aware shaper for supporting non-isochronous
emergency traffic in time-sensitive networks,” IEEE
Internet of Things Journal, 2021.

L. Zhao, P. Pop, Z. Zheng, H. Daigmorte, and

M. Boyer, “Latency analysis of multiple classes of
AVB traffic in TSN with standard credit behavior
using network calculus,” IEEE Transactions on
Industrial Electronics, 2020.

“Local and metropolitan area networks - Timing and
Synchronization for Time-Sensitive Applications in
Bridged Local Area Network,” IEEE, Tech. Rep. IEEE
802.1AS, 2020.

D. Thiele and R. Ernst, “Formal worst-case
performance analysis of time-sensitive ethernet with
frame preemption,” in Proc. of 2016 IEEE 21th
Conference on Emerging Technologies and Factory
Automation (ETFA 2016), Berlin, Germany,
September 6-9 2016.

M. Boyer, H. Daigmorte, N. Navet, and J. Migge,
“Performance impact of the interactions between
time-triggered and rate-constrained transmissions in
TTEthernet,” in 8th European Congress on Embedded
Real Time Software and Systems (ERTSS 2016),
Toulouse, France, Jan. 2016. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01255939

