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Abstract 
 

Aggressive motion can occur in clinical and elderly care settings with people suffering 

from dementia, mental disorders, or other conditions that affect memory. Since identifying the 

nature of the event can be difficult with people who have memory and communication issues, 

other methods to identify and record aggressive motion would be useful for care providers to 

reduce re-occurrences of this activity. A wearable technology approach for human activity 

recognition was explored in this thesis to detect aggressive movements. This approach aims to 

provide a means to identify the person that initiated aggressive motion and to categorize the 

aggressive action.  

The main objective of this thesis was to determine the effectiveness of smartwatch accelerometer 

and gyroscope sensor data for classifying aggressive and non-aggressive activities. 30 able-

bodied participants donned two Microsoft Bands 2 smartwatches and performed an activity 

circuit of similar aggressive and non-aggressive movements. Statistical and physical features 

were extracted from the smartwatch sensors signals, and subsequently used by multiple 

classifiers to determine on a machine learning platform six performance metrics (accuracy, 

sensitivity, specificity, precision, F-score, Matthews correlation coefficient).  

 

This thesis demonstrated: 1) the best features for a binary classification; 2) the best and most 

practical machine learning classifier and feature selector model; 3) the evaluation metrics 

differences between unilateral smartwatch and bilateral smartwatches; 4) the most suitable 

machine learning algorithm for a multinomial classification.  
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1. Introduction 

Dementia is a mental disorder that affects more than 35 million people in the world, and 

is expected to double over the next 20 years [1]. In long-term residential care facilities, more 

than forty percent of the elderly (older than 65) are affected by this disorder. People suffering 

from dementia can sometimes become quickly agitated, verbally and even physically aggressive 

[2]. Kicking, hitting, or pushing are some aggressive motions frequently observed and listed in 

conventional scales such as the Cohen-Mansfield Agitation Inventory [3]. 

Direct observation of these activities is currently the main method used by caregivers to 

determine the events that took place [4]. However, such a method is very subjective, prone to 

diagnosis errors, and might increase the caregiver time load. The ability to quickly recognize 

aggressive situations could result in prompt intervention and a better understanding of the 

person’s activity. Tailored care could then be adopted to better solve this problem and help both 

the caregivers and the patients. 

Technology, by the means of Human Activity Recognition (HAR), could be used to address the 

problem of identification of aggressive motion. The use of smart technologies is increasingly 

applied in health-related applications and will be explored in this thesis. 

1.1. Rationale  

In the literature, aggressive motions and actions are predominantly monitored and 

analysed with intelligent vision systems. For instance, computer vision methods would detect 

when two people are fighting and resources can be put in place to de-escalate such situations. 

High surveillance areas such as prisons, airports, and healthcare settings might benefit from this 

technology to increase safety and security.  

Nevertheless, computer vision is financially and computationally expensive. For example, for 

healthcare applications, cameras installation would be required in several locations of the care 

facility, and the corresponding software for analysis would also be required. Additionally, 

surveillance prompts the issue of privacy, where it could be inappropriate to record all patient 

activities in a hospital setting.  
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A unique way of determining aggressive movements could involve wearable devices. The need 

exists for a wearable smartwatch approach that is non-obtrusive, easy to implement, and can be 

worn by people who initiate aggressive motion (dementia, etc.) to identify aggressive movements 

or physical escalating situations in an institutional setting. Thereby, smartwatches would enhance 

understanding of events not observed by staff and possibly provide an alarm to alert staff when 

an event has started.  

Utilizing smartwatches could enable people at the hospital to quickly intervene in some 

situations and help diagnose the occurrence of mental outbreaks if an alarm-based event system 

is adopted. Appropriate measures could be taken to help the elderly community, since 

care providers could better determine the best methods to reduce activity re-occurrence.  

Smartwatch studies typically do not address aggressive motion but mostly record daily activities 

that include walking, running, and exercising. In this thesis, we propose and evaluate combining 

machine learning classifiers and smartwatches to determine aggressive activity events.  

1.2. Objectives  

This thesis examined the use of smartwatch sensors for aggressive motion detection. The 

aim of the research was to determine if smartwatch technologies could correctly classify 

aggressive and non-aggressive movements. This aim was divided into four thesis objectives: 

1. Determine the best set of smartwatch sensor features to distinguish aggressive from non-

aggressive movements. 

Research questions 

a) How will the selected features perform? 

b) Will different selection methods output similar features? 

 

2. Determine the best machine learning classifier and feature selection model 

Research question 

a) What is the best classifier for recognizing aggressive from non-aggressive motion? 
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3. Determine the differences between bilateral smartwatches and unilateral smartwatches. 

Research questions 

a) Do bilateral watches yield better evaluation metrics than unilateral watches? 

b) Does the dominant wrist configuration gives better results than non-dominant?  

 

4. Determine the best machine-learning classifier for a multinomial aggressive classification  

Research questions 

a) Does multinomial classification perform worse than binary classification? 

b) Which movements will be confused as false positives and negatives? 

1.3. Thesis contributions 

The thesis produced positive contributions to the HAR scientific community, including 

evidence that smartwatches can be effective for detecting aggressive movements. The primary 

contributions of the thesis are: 

• An updated version of the TOHRC Data Logger Android app was built to connect the 

smart watches to an Android phone via Bluetooth. It is now possible to use smartwatches 

to record upper-body motion.  

• It was shown that only one smartwatch on the non-dominant hand can be effective for a 

binary aggressive activity classification 

• The best features were identified and coupled with appropriate machine learning 

classifiers to categorize aggressive and non-aggressive motion.  

• This novel research classified aggressive movements using exclusively smartwatch 

accelerometer and gyroscope sensors, making this research transferrable to other wrist-

worn wearable devices. 
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 1.4 Thesis outline  

The thesis follows a manuscript format and is composed of seven chapters.  

Chapter 2 provides a literature review; including, equipment used for HAR, analysis methods, 

and areas of application.  

Chapter 3 is a journal manuscript that addresses objective 1 and outputs the best set of features 

used for aggressive movement classification. 

Chapter 4 is a journal manuscript and addresses objective 2, resulting in the best classification 

method and feature selection method used for binary aggressive/non-aggressive classification. 

Chapter 5 comprises a conference paper that compares and evaluates bilateral watches to 

unilateral (dominant and non-dominant) performance. 

Chapter 6 contains a journal manuscript that presents a multinomial aggressive classification 

evaluation of ten activities. 

Chapter 7 summarizes the thesis, addresses the contributions, and proposed future work for HAR 

using smartwatches. 
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2. Literature Review 

This chapter provides details on the concept of Human Activity Recognition (HAR), the 

evolution of HAR systems, and the main steps used in an activity monitoring analysis, ranging 

from data collection to the performance evaluation. 

Human Activity Recognition involves visual or sensory pattern recognition that leads to 

interpreting and labeling a specific activity. The aim is to discover human physical activity 

patterns by analyzing movement data captured by multiple systems [5]. HAR is based on 

concepts such as mobility monitoring, movement tracking, and computer vision that determine 

the type of activity. As a growing field over the past decades, HAR helped to improve lives in 

different areas, including entertainment and healthcare. 

2.1 HAR areas of application 

 In sports, several attempts have been made to identify and deconstruct distinct phases of a 

play. As an illustration, Anik [6] identified patterns to recognize badminton movements: serve, 

smash, return, or backhand. Data were collected with accelerometer and gyroscope sensors 

attached to the badminton bat. Additionally, a baseball movement analysis by Lapinski analyzed 

forces and torques from the players [7].  

To improve participant golfing skills, Ghasemsadeh [8] developed a training system with motion 

sensors. The system determined the golfer’s skill level and expertise via signal progressing 

algorithms to calculate angular rotations of a person’s wrist during a golf swing. Feedback on 

movement quality was subsequently provided. 

Entertainment systems have incorporated HAR to improve the gaming experience. The gaming 

industry, with technology improvements, has introduced visual and inertial sensors (thoroughly 

explained in Section 2.1.2) in console accessories. Nintendo Wii controllers incorporate 

accelerometers to interact with the system through gesture recognition [9]. The Xbox 360 Kinect 

also records and detects user motion to interact directly with the game, emulating an activity 

whether it is a specific dance move, a fight simulation, or a car driving experience.  
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Video surveillance can detect abnormal activity in some environments (police stations, force 

protection, antiterrorism settings, etc.). HAR technology would identify and recognize suspicious 

activities or unusual events by detecting anomalies [10], [11]. Understanding such 

unconventional situations might help to de-escalate potential dangerous situations.  

HAR has been increasingly applied to the healthcare sector. Mobility monitoring, for example, 

can provide an objective portrait of patient’s mobility outside a clinical setting. Capela [12] used 

smartphone technologies to identify walking differences between able-bodied, elderly, and 

people with disabilities. Activity recognition can also be a risk assessment tool to evaluate fall 

detection for elderly people and aid people with limited mobility [13]. 

HAR is applicable to other fields that include augmented and virtual reality, rehabilitation 

programs, motion disorder identification, and smart homes [14]. Two main types of HAR 

systems can be used for activity recognition monitoring: external sensors fixed on a known 

location or inertial sensors directly located on a person [15].  

2.2 HAR external systems 

 External HAR systems have a longer history [16], with the sensor equipment attached to 

a fixed and predetermined location [17]. Activity recognition is via the interaction between 

people and sensors. The equipment can be vision-based (infrared cameras, depth cameras, RGB 

cameras, 3D motion capture sensors, Microsoft Kinect, Vicon cameras; Figure 2.1) or non-visual 

sensors (location sensors, light sensors, force plates, pressure mats) [15].  

Activity recognition with optical sensors, also known as cameras, requires video and image 

software analysis, and segmentation. Video-based systems have recognized activities such as 

sign language and gestures [18]. Sardsehmukh used a 3D HAR video dataset captured with a 

Kinect sensor. The Kinect sensor provided RGB and depth information [19]. The dataset was 

useful to help distinguish activities that included handshake, punch, kick, push, lift bag, and 

throw object. 

In clinical gait analysis, motion capture systems combined with force plates are used to extract 

parameters such as the cadence, step time, or velocity to assess gait impairment and walking 
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phases [20]. These external systems can monitor entire human body movement. However, they 

tend to be computationally expensive (heavy software analysis) and financially costly (material 

installation and costs). Another disadvantage is video-based HAR system privacy issues [15], 

since people can be visually recorded and identified. Furthermore, during the analysis, 

parameters such as lighting conditions, body size, position, and observer angle [16] can affect 

system performance.  

  

Figure 2.1: Vicon motion analysis camera (left) [21] and Microsoft Kinect sensor (right) 

2.3 Inertial or wearable sensors 

Wearable devices are smart electronic devices equipped with microcontrollers that are 

worn on the body as accessories or implants. Wearable sensors often use inertial measurement 

units or radio frequency identification tags to gather a person’s behavioral information. The 

sensors could be stand-alone (accelerometer, GPS, personal thermometer) or integrated into 

devices such as cell phones, personal digital assistants, or laptops. Smart glasses, smartphones, 

smart bands, smart clothing, and data gloves (Figure 2.2) are some new and trendy wearable 

devices [18]. 

   

Figure 2.2: Smart devices for activity monitoring: activity tracker smart band [22] (left), smart 

cloth [23] (middle), and smart glove [24] (right). 



8 

 

Wearable sensors used to be cumbersome and obtrusive (Figure 2.3), wrapping around the body 

to determine the type of movement a person was performing. Technology advancements have 

had a massive impact on the size of inertial-based sensors, transforming them from bulky devices 

that would hinder user motion to integrated chips in wireless micro-devices. 

Inertia sensors could be mounted on several body locations, depending on the type of study [25]. 

Common locations include the shoulder, neck, arm, forearm, thighs, and legs. Inertial systems 

could be located on one part of the body for a local analysis (e.g., band on a leg, smartphone in a 

pocket, smartwatch on a wrist). Alternatively, a more encompassing study could capture the 

entire body motion [26].  

A balanced number of sensors is important for HAR. Even though more data sources can enrich 

the knowledge about the activity [27], too many sensors might be invasive, expensive, 

uncomfortable, and not suitable for activity recognition. 

 

 

Figure 2.3: An experiment with sensors located all over the body [28] 

2.4 Smartphones 

Smartphones have become the most essential gadget in people’s lives. People carry their 

phones all the time and bring them everywhere; therefore, they are great tools for HAR. 

Smartphones are unobtrusive and contain multiple integrated sensors such as accelerometer, 

gyroscope, GPS, altimeter, magnetic field sensor, or pedometer, which in the past were used 
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individually. Smartphones also have excellent software development platforms (Android, iOS) 

for real-time HAR monitoring. 

Several HAR studies used smartphones as monitoring devices to identify a variety of dynamic 

activities (Table 2.1). Akhavian [29] attached a smartphone on the upper arm to collect data and 

recognize construction worker’s cutting, transporting, and installing lumber. The activities were 

sawing, loading, pushing, unloading, returning, hammering and turning the wrench. 

Chen [5] evaluated five actions (descending stairs, ascending stairs, walking, jogging, jumping) 

on a MEXZU MX3 running on Android 4.4.x. The phone was positioned at multiple locations: 

right upper arm, right hand, right jacket pocket, right trousers pocket, and waist. 

Table 2.1: HAR studies based on Smartphones 

Author Smartphone  Placement Activities Accuracy 

Capela, et 

al. [12] 

Blackberry 

Z10 
Pelvis 

Stand, sit, lie, walk, walk, 

stairs 
Not specified 

Chao, et al. 

[30] 

MEXZU 

MX3 
Waist 

Downstairs, upstairs, 

walking, running, jumping 
75.82%-90.65% 

Akhavia, et 

al. [29] 
Not Specified Upper arm 

Sawing, loading, pushing, 

unloading, returning, 

hammering and turning the 

wrench 

78.57%-96.64% 

Lee, et al. 

[31] 

Huawei 

Nexus 6P 

Held in hand, in 

pocket, in 

bag/knapsack 

Run, walk, stay still 92.71% 

Dernback, 

et al. [32] 

Samsung 

Captivate 
User choice 

Simple: biking, stairs, 

driving, lying, running, 

sitting, standing walking  

Complex: cleaning, 

cooking, medication, 

sweeping, washing hands, 

watering plants 

90% for simple 

activities and 50% 

for complex 

activities 

 

The optimal location for smartphone activity recognition is ambiguous. Several positions have 

been adopted with preferences around the body center of gravity. Studies have claimed that the 

ideal position is the back within a holster [33]. Chest and stomach have also been considered. 

Despite the smartphone capacity to integrate a multitude of sensors in one location, the main 

issues are with the phone positioning and phone orientation [34]. Acceleration and gyroscope 
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data can be influenced by the phone’s orientation and location, which vary during activity, 

leading to misclassifications and increased error rates. Some solutions to this problem include 

transformation matrices and using position/orientation-independent features [34]. Positioning 

and orientation might not be an issue for some wearables with consistent locations: smartwatches 

and smart bands. 

2.5 Smartwatches 

Smartbands and smartwatches are more natural to wear compared to smartphones, which 

require appropriate positions and an extra piece of equipment such as a holster. Wrist devices are 

more popular over the past few years, with the boom of the fitness and well-being industry. 

These devices use micro-sensors to track inertial data and provide daily physiological 

information for health monitoring (number of steps, calories, heart rate signal) [17].  

Several studies have been conducted to classify activities; such as, writing, eating, sitting, and 

jumping using variants of smartwatches, with accuracies ranging from 80% to 90% (Table 2.2). 

Applications include a wrist-worn Actigraph to evaluate activity recognition and fall detection 

[35], a smartwatch system to identify gestures associated with writing the alphabet (accuracies 

between 94 and 99%) [36], and a Sony SWR50 smartwatch system that can detect stereotyped 

movements in children with a development disability [37]. Stereotyped movements consisted of 

clenching a fist, waving a hand, swinging an arm, raising an arm, lowering an arm, and throwing. 

Early detection of these movements could help to provide timely medical treatment to the 

children.  

Combining external and inertial sensors can provide better classification results and improve 

HAR metrics. For example, Xi Liu combined accelerometers and RGB-D sensors to identify 

twenty movements [38]. Nurwanto used accelerometer sensors data from a smartphone attached 

to the upper arm and a smartwatch on the wrist of the same limb to differentiate light sport 

exercises such as push up, sit up, and squat jump with accuracies from 77% to 97% [39]. 
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Table 2.2: Studies using smartwatches for activity recognition 

Sources Smartwatch types Activities 

Ardüser [36] LG Watch R Recognizing letters from the alphabet 

Lee and Song [31] SONY SWR50 

Developmental disability activities: clenching a fist, 

waving a hand, swinging an arm, raising an arm, 

lowering an arm, throwing 

Weiss [40] 
LG G smartwatch 

Samsung Galaxy S4 

Dribbling; catch; typing; handwriting; eat pasta, 

soup, sandwich, chips; drink 

Mortazavi, et al. 

[41] 
Samsung Galaxy Gear Sit, stand, lie, transitions 

2.6 Aggressive motion 

Aggressive motion can be characterized by a quick, sudden, and high-intensity movement 

done by one individual when a situation physically escalates. Identifying these movements is 

important for injury prevention. Studies to determine people’s aggressive or abnormal activity 

have typically been conducted using external sensors (video surveillance) or image datasets.  

Ouanane recognized aggressive human activity using two computer vision methods, bag of 

features and skeleton graph [42]. The experiments were performed on an action dataset and 

delivered a recognition rate of 96% between six actions: boxing, hand clapping, hand waving, 

jogging, running, and walking. Koh [43] proposed a method for detecting driving aggressiveness 

using a Galaxy Note 2 smartphone lateral acceleration. Aggressive driving consisted of iterated 

high-intensity u-turns and smooth driving was conducted on a smooth rectangular course. More 

recently, a Microsoft Kinect and a wearable accelerometer sensor were used to classify 

aggressive and agitated activities: hitting, pushing, throwing, tearing, kicking, and wandering [4].  

2.7 Steps for effective HAR monitoring 

 HAR is a complex task that requires different steps to make sure the activities are 

properly classified. The main phases are data collection, pre-processing, feature selection, and 

classification.  

2.7.1 Data collection 

To effectively collect smartwatch data, three units can be used: smartwatch, smartphone, 

computer. The smartwatch can be paired to a smartphone wirelessly (e.g., Bluetooth) and, by 
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means of an application, information can be sent to a storage unit for further analysis. To 

recognize hand-based activities, Weiss used a custom designed app for a smartwatch (LG G) and 

smartphone (Samsung Galaxy S4). The app collected accelerometer and gyroscope data from the 

phone/watch and sent the data via email to a server [40] for further processing.  

Smartwatches usually have low memory storage, and low capacity processing unit integrated, 

hence the need of a smartphone. However, some self-sufficient sophisticated smartwatch systems 

have been developed: the smartwatch features integrated chips and a processing unit that 

categorizes directly the activity and displays it on a screen. Mortazavi developed a tracking 

system to identify three posture states (sitting, standing and lying) using a Samsung Galaxy Gear 

smartwatch. An application was developed directly on the watch, which has an internal memory 

and a GUI providing directly the posture state to the user [41]. 

2.7.2 Pre-processing 

 Raw data may contain background noise such as outliers, errors, missing values or 

discrepancies. Pre-processing reduces the noise and diminishes the error rate after data 

collection. Raw signals can be pre-processed using methods such as filtering, Wavelet/Fourier 

transformation, or smoothing approximation [30]. Removing the timestamp, the orientation or 

transitions could also be considered as a preprocessing action [44].  

Time series data are continuous. For easier activity recognition, cutting down the continuous 

signal into segments facilitates feature extraction. The process of dividing the time series data 

into a series of discrete segments is called segmentation. Segmentation can be divided into 

activity-based, event-based, and sliding window. 

The activity-defined windowing procedure partitions the signal by activity changes [45]. Initial 

and end points of each activity are found during preprocessing. To identify the transition points, 

frequency changes of a signal can be tracked using wavelet decomposition or participants can 

provide feedback at the end of each activity by standing still for several seconds.  

For activities conducted in a certain order or consisting of sporadic actions, specific events can 

be used for segmentation. For example, in gait analysis, heel strike and toe-off events are discrete 

occurrences for stride signal partitioning [46]. 
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The sliding window technique consists of splitting the signal into windows of equal length with 

no gap between the windows. The windows may be overlapping or non-overlapping, depending 

on the analysis [46]. Adopting this approach is simpler to implement and does not require any 

pre-processing, contrary to the previous times-series segmentation methods. The sliding window 

approach is the most widely utilized for segmentation [45]. The sliding window is characterized 

by parameters such as the length and the step. The length could be fixed or dynamic [47]. The 

step determines if the window is overlapping. Sliding windows work well with periodic activities 

and are used frequently for medical applications.  

2.7.3 Dimensionality and feature selection 

 Selecting high-quality features for pattern recognition system input will lead to better 

classification accuracy and decreased error rates. In HAR systems, features are selected based on 

a combination of intuition and empirical experience [48]. Zhang used statistical features such as 

the mean, variance, and mean crossing rate for handwriting recognition. Intuition based on the 

physical world and real-life situations is portrayed through the movement’s physical features. 

For instance, eigenvalues of the dominant direction reflect the large vertical acceleration 

component that is expected when a person jumps [49]. Appendix A shows features that have 

been used in recent years for HAR.  

Increasing the number of features may improve activity class recognition and reduce the 

probability of error. However, at some point, adding features might be computationally 

expensive and create overfitting problems, especially when the features are redundant or the 

training set is small. This issue commonly reflects the curse of dimensionality: the number of 

instances required to estimate an arbitrary function with a given level of accuracy grows 

exponentially with the number of input features (feature space dimensionality) of the function.  

Two main techniques are used to decrease dimensionality: feature transformation and feature 

selection. Feature transformation creates new features based on combinations and 

transformations of the original extracted feature set [50]. Feature transformation includes 

unsupervised learning methods such as Principal Components Analysis, Factor Analysis [51], or 

non-negative matrix factorization [52]. 
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Feature selection identifies a smaller subset of relevant features from the original set by 

removing irrelevant, redundant, or noisy features. Feature selection usually leads to better 

learning performance (i.e., higher accuracy, lower computational cost, better model 

interpretability) [53]. Feature selection methods include filter, wrapper, or embedded methods.  

Filter methods select the features regardless of the classifier (learning algorithm). The least 

interesting features are suppressed and the model tends to be more robust to overfitting. Filter 

methods pick up the intrinsic properties (i.e. the relevance) of the features. Wrapper methods use 

a predictive model (classifier) to score feature subsets; the classifier performance metrics are 

used to evaluate and select the best features subset. Embedded methods incorporate feature 

selection in the classifier’s training process. 

Wrapper and Embedded methods are very classifier-dependent; therefore, the feature selection 

process is not generalizable across a variety of classifiers. Filter methods are preferred for HAR. 

Popular filter-based feature selection methods include ReliefF, Correlation, Chisquared, and 

Information Gain.  

ReliefF is an instance-based evaluator that samples instances randomly and checks the instances 

nearby of the same and different classes. ReliefF has been heavily used in HAR studies [54]. 

Correlation evaluates the worth of a feature by measuring Pearson's correlations between that 

feature and the class, whereas ChiSquared evaluates features by computing the feature’s Chi-

square statistics with respect to the class [55]. Information Gain (InfoGain) is a single-feature 

evaluator that measures the feature’s total entropy with respect to the class. 

2.7.4. Choosing a classifier 

Mitchell [56] defines a classifier as a mathematical function or an algorithm that maps 

input data (input features) to a category (class label). A classifier could also be constructed by a 

set of rules or methods. The algorithm learns the dataset patterns through training and testing, 

and leads to predicting performance metrics. 

The learning method could be either supervised or unsupervised. In supervised learning, the 

dataset and the correct output (class labels) are provided. The algorithm predicts the output and 

compares it to the known correct classes. Unsupervised learning methods are applied in problems 
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where there is no information about the output (data classes). In this case, the classification relies 

on methods such as clustering or association [51] to label a class. Capela claimed that HAR tends 

to adopt supervised learning [44]. 

The choice of a classifier is crucial to obtain satisfactory evaluation results. The “no free lunch” 

theorem states that one classifier cannot be considered as the best for a general HAR problem. In 

other words, there is no algorithm that is always superior to the others. For a specific application, 

the “best” classifier depends on parameters such as the problem hypotheses and the type of data 

analysed. The classifier choice also depends on data size (number of instances) and number of 

features (dimensionality of the feature vector). 

Several studies have compared classifiers, with different accuracy results [57]. Six general 

classifiers are described in Table 2.3: Support Vector Machines (SVM), k-Nearest Neighbours 

(kNN), Decision Trees, Random Forests, Neural Networks, and Naïve Bayes. 

SVM can be defined as a system using a hypothesis space of a linear function in a high 

dimensional feature space. This classifier relies on an optimal hyperplane to separate data 

classes. The optimal classifier is a probabilistic linear classifier computed to find the largest 

minimum distance between support vectors. SVMs perform well on data sets with a large 

number of features and can be used for linear or non-linear classification. 

kNN is an instance-based learning technique where the function is approximated locally. kNN 

finds a group of k instances in the training set that are nearest to the desired class and allocates 

the class label based on the predominance of a class in the local neighbourhood. kNN is defined 

by three main parameters: a set of labelled features, the distance measure between two data 

points and the number of nearest neighbours (k). kNN algorithms can handle missing values, are 

robust to outlying data points, and ease difficult models’ interpretation.  

Decision Trees are machine learning models resembling tree structures. They start with a single 

node (root), which branches into possible outcomes. Decision nodes have two or more branches, 

and leaf nodes represent the final decision. Tree model target values are a discrete set of values 

(classification trees) or continuous values (regression trees).  
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Table 2.3: Description of the main classifiers 

Classifier Advantages Drawbacks Studies 

Random 

Forest 

• Easier to understand 

• Fast, robust, good accuracy 

 

• Slower than trivial 

methods (Naïve Bayes, 

kNN) 

• Works best with equal 

classes (no imbalance) 

[35] 

SVM 

 

• Adequate with problems that might 

not be linearly separable 

• Great accuracies 

• Fits high dimensional problems, large 

amount of data 

• Good for multiclass  

• Can be inefficient to train 

• Memory intensive 

• Finding the kernel could 

be a challenge 

• Hard to interpret 

 

[35], [37], 

[41],[58] 

Decision 

Tree 

 

• Easy to interpret and explain 

• Fast to train 

• Non-parametric (does not require 

linearly separable data, handles 

outliers) 

• No distribution requirement, good for 

a few categories of variables 

• Easily overfit 

• Accuracy depends on data 

type  

 

[35],[40], [58] 

Naïve 

Bayes 

 

• Simple to implement and converge 

fast 

• High Performance 

 

• Variable independence 

assumption is 

constraining 

 

[35],[40],[58] 

Neural 

Network 

• Less formal statistical training 

• Multiple training algorithms 

• Detect all possible interactions 

between the predictor variables 

• Great for complex problems, can 

approximate any function, regardless 

of its linearity 

 

• Great computational 

burden  

 

[37], [40] 

kNN 

• Very simple to implement 

• Works well on basic recognition 

systems 

• Algorithm does not learn 

from training data 

• Slow 

 

 

Random Forests is an ensemble learning method for classification and regression, made of 

multiple decision trees. Random Forests mainly correct Decision Trees overfitting disadvantages. 

Artificial neural networks have been inspired by biological neural networks present in the brain. 

They are based on a collection of connected units (nodes), organized in layers and 

communicating with each other. Data propagates from the first (input) layer to the last (output) 
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layer through intermediate layers. Neural network structures include feed-forward propagation, 

back propagation, and perceptrons. 

Naïve Bayes is a probabilistic classifier founded on Bayes’ theorem. Features are assumed to be 

independent. The classifier is highly scalable and requires a large number of parameters. 

2.7.5. Evaluation 

 Correctly and incorrectly classified instances can be used to evaluate a classifier’s 

performance. For this thesis, an aggressive instance correctly identified by the classifier is 

considered a true positive (TP). An aggressive instance misclassified by the predictor is a false 

positive (FP). A non-aggressive instance correctly identified would be a true negative (TN). A 

misclassified non-aggressive instance is a false negative (FN). A confusion matrix (Table 2.4) 

maps these outcomes.  

 

Table 2.4: Confusion Matrix 

 Predicted Condition 

True 

Condition 

True Positive (TP) False Negative (FN) 

False Positive (FP) True Negative (TN) 

 

From the classified instances, three types of metrics can be extracted [59]: threshold metrics 

(accuracy, Lift, F-score), ordering/ranking metrics (ROC Area, Average Precision), probability 

metrics (RMS, Cross-entropy, Probability C). 

Accuracy is a common performance metric but classifier performance cannot only be described 

by accuracy. When class imbalances occur, accuracy is insufficient. For example, a HAR 

algorithm fed with 900 instances of gentle movement and 100 instances of aggressive 

movements will achieve 90% accuracy even if all movements are classified non-aggressive (i.e., 

the algorithm can still claim to be very good despite all the aggressive movements being 

misclassified). To deal with such issues, other metrics (i.e. precision, recall, F-score, etc.) 

provide additional insight into classification performance (Table 2.5).  
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A summed ranking classifier selection method can be used to combine several metrics to rank 

classifier performance [60]. The summed ranking method ranks classification models in 

descending order (best results ranked as 1) according to each metric. The ranks for all six metrics 

are subsequently summed to provide an overall ranking for each model. Models are sorted in 

descending order, since the lowest rank value indicated the best model. The ranking method does 

not focus on one metric and involves results from all six parameters. This gives a better, wider, 

and more generalizable representation of model performance. 

 

Table 2.5: Performance metrics 

Metric Formula 

Accuracy 
∑ TP +  ∑ TN

Total Population
 

Sensitivity  
TP

TP + FN
 

Specificity 
TN

FP + TN
 

Precision 
TP

TP + FP
 

F-score 
2. Precision. Sensitivity

Precision + Sensitivity 
 

Matthew Coefficient Correlation (MCC) 
TP. TN − FP. FN

√(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative 
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3. Feature Selection for Classification of Aggressive 

Movements using Smartwatches 

 

This chapter addresses Objective 1 by determining the best machine learning features that 

can classify aggressive and non-aggressive movements. Feature selection methods are evaluated 

by a random forest classifier to choose the best twenty features. The study is a proof of concept 

to determine how effective smartwatches can be in determining aggressive activities. Six 

performance metrics are evaluated: accuracy, sensitivity, specificity, precision, F-score and 

Matthew Coefficient Correlation (MCC). 

 

This chapter was submitted for publication to the Journal of Biomedical and Health Informatics: 

Tchuente, F, Lemaire, ED, Baddour, N, “Feature Selection for Classification of Aggressive 

Movements using Smartwatches”, Journal of Biomedical and Health Informatics, submitted July 

2018. 

 

3.1. Abstract 

Aggressive activities can occur in clinical and elderly care settings with people suffering 

from dementia, mental disorders, or other conditions that affect memory. Since identifying the 

nature of the event can be difficult with people who have memory and communication issues, 

other methods to identify and record aggressive motion would be useful for care providers that 

need to determine the best methods to reduce reoccurrences of this activity. A wearable 

technology approach for human activity recognition was explored to detect aggressive 

movements.  

Participants donned two Microsoft Bands 2 smartwatches and performed an activity circuit of 

similar aggressive and non-aggressive movements. Smartwatch accelerometer and gyroscope 

sensors captured data that was used to extract 136 features. Filter-based feature selection 
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methods (ReliefF, Information Gain, Chi-squared, Correlation, from the Waikato Environment 

for Knowledge Analysis, WEKA) were used to determine the best features for distinguishing 

between aggressive and non-aggressive movements. A Random Forest classifier with 5-fold 

cross-validation was used to evaluate performance metrics for each feature selection method. 

Derivative, range, and standard deviation were the best overall features across the feature 

selection methods. The average results from the four methods were 99% accuracy, 94.6% 

sensitivity, 99.8% specificity, and 98.6% precision.  

Accelerometer and gyroscope-based features (derivative, range, standard deviation) are relevant 

for classifying aggressive movements. The high-performance metrics support further 

investigation of a smartwatch approach for aggressive human activity recognition. 

3.2. Introduction 

The ability to identify and recognize human activities has improved considerably with the 

rapid pace of wearable technology advancements, such as miniaturized sensors embedded in 

phones, glasses, watches, and cameras. Smart devices have been applied for Human Activity 

Recognition (HAR) across the landscape of life: sports [61], entertainment [8], surveillance [10], 

healthcare [62]. Such tools may also be used to detect aggressive movements in clinical settings 

with patients suffering from dementia or mental illnesses and who exhibit periods of hostile 

behavior.  

For HAR, smart devices output sensor signals that are filtered, pre-processed, and segmented can 

be used to extract relevant features for categorizing the target movements. The process can be 

summarized as pre-processing, segmentation, feature extraction and selection, and finally 

classification [63]. Feature selection and extraction can enhance the efficiency of the classifier, 

reduce the chance of overfitting, and increase classification accuracy by removing unneeded and 

redundant parameters [64]. 

Movement aggressiveness is a branch of HAR that is typically analyzed using computer vision. 

However, image and video processing are computationally intensive and raise privacy issues, 

especially in clinical establishments or nursing homes where residents do not want to be 
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continuously video recorded. Ouanane [42] recognized aggressive human activity with two 

visual methods, bag of features and skeleton graph. The recognition rate was 96% for boxing, 

hand clapping, hand waving, jogging, running, and walking. 

Few researchers have attempted to classify aggressiveness using smart technologies. Koh (9) 

used a Galaxy Note 2 smartphone’s lateral acceleration to detect driving aggressiveness. 

Aggressive driving included high-intensity U-turn challenges and smooth driving was conducted 

on a smooth rectangular course. To date, published research is lacking on smartwatch 

applications for aggressive activity identification. 

The goal of this paper is to determine a viable feature set from smartwatch acceleration and 

gyroscope output that can discriminate between aggressive and non-aggressive motions, using a 

machine learning classifier. Wrist mounted inertial measurement units have a great potential for 

broad application within healthcare and elderly-care facilities and provide a repeatable location 

for capturing upper-limb related aggressive activities. Identification of aggressive movements 

will improve service delivery for care providers by enabling alarm-based notification of event 

onset and also providing quantitative information on who initiated the aggressive event, which is 

often difficult to understand in elderly care environments where dementia is prevalent. 

3.3. Methodology 

3.3.1. Data Collection and Equipment 

A convenience sample of 30 able-bodied adults(15 male, 15 female) were recruited from 

The Ottawa Hospital Rehabilitation Centre (TOHRC) staff, students, and volunteers, and the 

community. Characteristics included age (25.9±8.0), weight (70.2±11.9 kg), height (170.7± 8.6 

cm), and right-handedness (20 out of 30). This large variability is important because it broadens 

the range of possible movements and thereby potentially broader applicability of the classified 

movements beyond the population sample. The study was approved by the Ottawa Health 

Science Network and the University of Ottawa Research Ethics Board. All participants read and 

signed an informed consent form. 



22 

 

Each participant wore a Microsoft Band 2 (MSB2) smartwatch on each wrist and performed a 

series of aggressive and non-aggressive movements. The MSB2 sensors used in this project were 

the tri-axial accelerometer and tri-axial gyroscope (Figure 3.1). Aggressive actions were 

performed on a Body Opponent Bag (BOB) (Figure 3.2). The TOHRC Data Logger [65] 

Android app was modified for signal acquisition from two MSB2, with Bluetooth 

communication between the MSB2 and a Nexus 5 smartphone. Videos of the movements were 

recorded with a separate smartphone camera to provide gold standard activity timing.  

 

 

 

Figure 3.1: MSB2 accelerometer and 

gyroscope axes orientation 

 

Figure 3.2: Participant punching the 

Body Opponent Bag 

 

3.3.2. Circuit Activities 

Participants performed an activity circuit that included non-aggressive and aggressive 

actions (Table 3.1). Similar activities, such as slapping and clapping, were chosen to present 

opportunities for misclassification. 

3.3.3. Feature Selection and Evaluation 

Raw data were extracted from two MSB2 accelerometers and gyroscopes sensors at a 

frequency of 50 Hz. The data were divided into 1-second sliding windows (50 data points) for 
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feature extraction. One second represented enough time to capture each activity. Windows 

overlapped by 96% of the window length (window advanced by 2 data points). This resulted in 

18,379 instances for aggressive activities and 103,928 instances for non-aggressive activities. 

Table 3.1: Activities 

 

3.3.4.1 Feature Description 

Features were extracted from the twelve sensor data streams (tri-axial accelerometer and 

gyroscope data per smartband). Time-domain features were preferred because they are less 

computationally expensive than frequency-domain for HAR [66]. Two types of features were 

considered: statistical features and physical features (detailed in Section 2.7.3). Statistical 

features included mean, variance, median, range, standard deviation, skewness, kurtosis, 

maximum difference and pairwise correlation coefficient. Each of the statistical feature had 

twelve components and were extracted over each window. 

As an example, a window W made up of 50 x-acceleration data points {𝑎1, 𝑎2, … , 𝑎50} would 

have its mean x̅ defined as  

Movement Activity Description 

Aggressive 

movements 

Punch Participant punches BOB eight times, alternating 

hands 

Shove  Participant aggressively shoves BOB five times with 

both hands 

Slap Participant aggressively slaps BOB ten times 

alternating hands 

Shake Participant holds BOB’s neck and shakes BOB back 

and forth five times  

Non-Aggressive 

movements 

Transitions  Set of movements between an aggressive action and 

non-aggressive action (i.e., sitting, standing, moving, 

still) 

Clap Participant claps their hands ten times 

Wave Participant waves with the preferred hand as if they 

are saying goodbye  

Handshake Participant handshakes the project assistant 

Open/Close 

door 

Participant opens and closes the door three times 

Type on a 

keyboard 

Participant types the first verse of the Canadian 

National anthem 
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𝑥̅ =  ∑
𝑎𝑥(𝑖)

𝑛

𝑛

𝑖=1

 

Physical features included area under the curve (4 components), signal magnitude area (SMA, 

acceleration magnitude summed over three axes within each window normalized by the window 

length), sum of all squares (acceleration magnitude squared and summed over three axes, 

normalized by window length, 4 feature components), mean movement intensity (mMI: 

Euclidean norm of the total acceleration vector, 4 feature components), and variant movement 

intensity (vMI; 4 feature components). 

mMI = ∑
𝑀𝐼(𝑖)

𝑛

𝑛

𝑖=1

where MI(i) = √ax
2(i) + ay

2(i)+az
2(i) 

where ax (i), ay (i), and az (i) represent the acceleration sample of the x, y, and z axes and n is 

the number of data points. A total of 136 time-domain features were initially chosen to classify 

aggressive and non-aggressive movements. Appendix A provides more information on the 

features. 

3.3.4.1 Feature Selection 

Four filter-based WEKA feature selection methods were used to determine the best 20 

features or attributes for aggressive movements: ReliefF, Correlation, Information Gain, and 

ChiSquared.  

ReliefF is an instance-based evaluator that samples instances randomly and checks the instances 

nearby of the same and different classes. ReliefF has been heavily used in HAR studies [54].  

Correlation evaluates the worth of an attribute by measuring Pearson's correlations between that 

attribute and the class; whereas, ChiSquared evaluates attributes by computing the feature’s Chi-

square statistic with respect to the class [55].  

Information Gain (InfoGain) is another single-attribute evaluator that measures the attribute’s 

information gain with respect to the class. InfoGain measures the total entropy for an attribute if, 

for each of the attribute’s values, a unique classification can be made for the result attribute [55].  



25 

 

All these methods employ a ranker search that provides a specific rank to the features during the 

evaluation process, corresponding to a weight. The more the weight is applied to a feature, the 

more important the feature is for the selection method. For example, a feature ranked 3 is the 

third best feature. 

3.3.4.1 Evaluation  

To evaluate the selected features and assure that the feature set achieves appropriate 

performance, a Random Forest machine learning classifier with 5-fold cross validation was 

applied to the dataset. 5-fold cross-validation is consistent with the number of participants; each 

fold would contain enough data instances to be trained and tested effectively. 

Random Forest classification is fast and robust, thereby providing a viable approach for real-time 

aggressive activity identification. Random Forest has been an effective and powerful algorithm 

used in real-time HAR classification; for example, Sangjun et al. [67] used Random Forest to 

instantly detect hand gestures. Outcome measures were derived from a binary confusion table 

matrix and included accuracy, sensitivity, specificity, F-score, and MCC. 

3.4. Results 

3.4.1. Feature Selection 

Table 3.2 shows the feature sets from the four feature selection methods. Interestingly, 

InfoGain and Chi-Squared resulted in the same features. “Maximum difference” was the 

predominant feature, across all sensor axes. For ReliefF, “correlation between the axes” feature 

occurred most often, followed by acceleration features such as mean, area under the curve, and 

skewness. The two watches were equally represented with ReliefF (10 features from band 1 and 

10 features from band 2). The Correlation method had three predominant features: derivative, 

range, and standard deviation. These features were equally distributed between the two watches 

(10 features from the band 1 and 10 from the band 2). However, features based on the 

acceleration were more prominent (17 out of 20 features from the acceleration). All axes 

appeared in the features. 

  



26 

 

Table 3.2: Twenty best features selected for each method, in order of importance 

ReliefF Correlation  Chi Squared InfoGain 

Pcc_Gyr_yz_1 

Pcc_ Gyr xy_1 

Pcc_ Gyr_ yz_2 

Pcc_ Acc_yz_1 

Pcc_ Acc_ yz_2 

Pcc_ Gyr_ xz_1 

Pcc_ Acc_ xy_2 

Pcc_Acc_xy_1 

Pcc_ Gyr_ xz_2 

Pcc_ Gyr_ xy_2 

Pcc_ Acc_ xz_1 

Pcc_ Acc_ xz_2 

Mean_Acc_y_2 

Area_Acc_y_2 

Med_Acc_y_2 

Area_Acc_z_1 

Mean_Acc_z_1 

Med_Acc_z_1 

Skew_Acc_y_2 

Area_Acc_y_1 

Std_Acc_x_1 

Range_Acc_x_1 

Std_Acc_x_2 

Range_Acc_x_2 

Std_Acc_y_2 

Range_Acc_y_2 

SMA_Acc_2 

Range_Gyr_z_2 

AI_Acc_2 

AI_Acc_1 

Range_Acc_y_1 

SMA_Acc_1 

Std_Acc_y_1 

Range_Gyr_z_1 

Var_Acc_x_1 

Diff_Acc_x_1 

Range_Gyr_y_2 

Range_Acc_z_2 

Diff_Acc_x_2 

Diff_Acc_y_1 

Diff_Gyr_z_2 

Diff_Acc_x_2 

Diff_Acc_z_1 

Diff_Gyr_y_1 

Diff_Acc_y_1 

Diff_Acc_y_2 

Diff_Gyr_z_1 

Diff_Gyr_y_2 

Diff_Gyr_x_1 

Diff_Acc_z_2 

Diff_Acc_x_1 

Range_Acc_x_2 

Range_Acc_x_1 

Range_Acc_y_2 

Range_Acc_z_1 

Diff_Gyr_x_2 

Range_Acc_y_1 

Var_Acc_x_1 

Std_Acc_x_2 

Std_Acc_x_1 

Diff_Gyr_z_2 

Diff_Acc_x_2 

Diff_Gyr_y_1 

Diff_Acc_y_1 

Diff_Acc_z_1 

Diff_Acc_y_2 

Diff_Gyr_y_2 

Diff_Gyr_x_1 

Diff_Gyr_z_1 

Diff_Acc_z_2 

Diff_Acc_x_1 

Range_Acc_x_2 

Range_Acc_x_1 

Range_Acc_y_2 

Range_Acc_z_1 

Diff_Gyr_x_2 

Range_Acc_y_1 

Var_Acc_x_1 

Std_Acc_x_1 

Std_Acc_x_2 
Pcc=Pairwise Correlation Coefficient, Gyr=gyroscope, Acc=acceleration, Med=Median, Skew=skewness, 

SMA=signal magnitude area, Diff=maximum difference, Var=variance, Std=standard deviation, 1=left wrist, 

2=right wrist 

3.4.2. Feature evaluation 

Table 3.3 displays the Random Forest confusion matrix from the full feature set. With 

aggressive actions as the positive, 154 false positives and 557 false negatives were reported.  

Evaluation of the four methods (Table 3.4) resulted in an average accuracy of 99%, sensitivity of 

94.6%, specificity of 99.8%, and precision of 98.6%. The feature set determined by ChiSquared 

and InfoGain was the best when coupled with Random Forest. While still scoring above 0.9, 

ReliefF had lower outcome scores than the other feature selection sets, especially for sensitivity. 

Table 3.3: Confusion matrix of the full data set 

  True Condition 

  Aggressive Non-Aggressive 

Predicted 

Condition 

Aggressive 17822 154 

Non- Aggressive 557 103774 
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Table 3.4: Performance metrics 

 Accuracy Sensitivity Specificity Precision F-score MCC 

Full Set  0.9941 0.970 0.999 0.991 0.980 0.977 

ReliefF 0.9822 0.893 0.998 0.987 0.938 0.929 

InfoGain 0.9918 0.960 0.997 0.985 0.972 0.967 

Chisquared 0.9918 0.960 0.997 0.985 0.972 0.967 

Correlation 0.9898 0.947 0.997 0.984 0.965 0.960 

3.5. Discussion 

This study demonstrated the viability of wrist-worn inertial sensors for classification of 

aggressive and non-aggressive movements. An appropriate twenty feature set achieved 

classification results above 0.96, and specificity near 1, which would indicate that this approach 

could be viable as an alarm or indicator within elderly or healthcare facilities. 

InfoGain and ChiSquared methods resulted in the same features, although not in the same 

ranking order, even though these two methods worked differently (information gain versus 

statistical analysis). The feature set’s strength is therefore highlighted. The main feature type for 

this set was maximum difference, with all twelve features represented. Range, which was the 

second discriminatory feature, was mainly based on three-dimensional accelerations. Since these 

features were based on the difference between the maximum and minimum gyroscope or 

acceleration values, aggressive movements could tend to have high differences in amplitude over 

short periods, compared to non-aggressive movements that tend to be more stable.  

The top ReliefF feature rankings were for pairwise correlations between axes for the 

accelerometer and gyroscope signals, followed by the mean, area under a curve, and skewness of 

accelerometer signals. ReliefF features were substantially different from the other methods in 

terms of selected features and presented no similarities with the other methods. The three main 

feature types were maximum difference, range, and standard deviation. The maximum difference 

and the range were also selected by InfoGain and ChiSquared.  

All these methods use signals from both smartwatches to obtain the features. The acceleration 

features occurred more frequently than the gyroscope features. Relief F, ChiSquared, and 

InfoGain used 14 accelerometer features out of 20, whereas Correlation feature selection only 
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used 3 gyroscope features out of 20. Since accelerometer-only wrist-worn devices could be less 

expensive and less power consuming, future research could explore accelerometer-only 

applications for aggressive activity classification. 

Few physical features were found in the reduced feature sets, with only integral and signal 

magnitude area (7th, 9th,10th and 12th features) using the Correlation method. This raises 

questions about the usefulness of such features for binary aggressive/non-aggressive 

classification. In future research, these physical features could be evaluated using a subset 

attribute evaluator such as Correlation-based Feature Selection or other methods such as the 

minimum-redundancy maximum-relevance (mRMR) to determine if the resulting sub-sets 

include more physical features. Features were considered in three dimensions, but no preference 

in one movement plane helped differentiate between classes.  

3.5.1. Random Forest Evaluation 

The Random Forest classifier performance metrics had approximately the same results 

with 20 features compared to 136.  

The high evaluation results, greater than 0.96, may reflect that this type of binary classification is 

easily differentiable because of the nature of the movements. Accuracy should not be the main 

metric to consider because of the large, but normal, class imbalance between the non-aggressive 

and aggressive movements. Class imbalance is a common phenomenon that is portrayed in many 

areas. In this case, real situational aggressive movements occur far less frequently than daily 

non-aggressive movements. The imbalance therefore reflects the real-life situation. Class 

imbalance could be addressed with a ranking method that combines all the performance metrics, 

as suggested by Drover [60].  

Sensitivity evaluates the ratio between the true positives (predicted aggressive actions that are 

really aggressive) and the actual positive conditions (instances of aggressive actions). The value 

of 94.6% indicates that more than five percent of the aggressive actions were not detected by the 

smartwatch. On the other hand, specificity was very high at 99.8% (i.e., non-aggressive 

movements were detected by the algorithm almost all the time).  
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The precision of 98.6% evaluated the “false alarms” or the ratio between the predicted 

aggressive movements that were really aggressive (true positives) compared to the aggressive 

predictions of the classifier. Only 1.4% of the movements classified by Random Forest as 

aggressive were actually non-aggressive. Our focus is to detect aggressive movements, allowing 

care staff to intervene and/or the event to be recorded, but avoid false alarms for aggressive 

situations that would consume human resources when reacting to the alarm. For an aggressive 

motion alarm application, such as minimally staffed night shifts on a dementia ward, high 

sensitivity is essential to avoid responses to false positive events. Therefore, the excellent 

sensitivity and precision results address these requirements.  

Overall, ReliefF took the longest time to compute and Random Forest methods had poorer 

results. The ReliefF feature set could be investigated with other classifiers to consider if it is 

viable for classification between aggressive and non-aggressive movements. 

ChiSquared and InfoGain methods, which presented the same feature set, had overall the best 

scores, but still slightly less than the full feature set. The feature set extracted from the two 

methods was therefore recommended for use in aggressive movement classification applications. 

From the high-performance metric scores, overfitting may have occurred. Overfitting may 

happen in HAR problems [68] and it is important to consider when generalizing results to other 

sets, especially in binary classes where two results might be easily differentiable. In this study, 5-

fold cross-validation was used to reduce the chance of overfitting.  

3.6. Conclusions and Future work 

This research identified a 20-feature set that can differentiate between aggressive and 

non-aggressive movements using wrist-worn smartwatch acceleration and gyroscope signals. Out 

of the four attribute selection methods (ReliefF, Chi-Squared, Correlation, InfoGain), the best 

features set was obtained using ChiSquared and InfoGain methods, in terms of accuracy; fewer 

false positives, and fewer false negatives were obtained. These two methods had the same 

features, even though they did not follow the same order. Future research could test other feature 

selection methods such as Correlation-based Feature Selection and mRMR to determine any 

similarities with the selected features in this research. Additional classifiers such as Neural 
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Networks or Support Vector machines can be tested to compare performance metrics. Future 

work should also apply the chosen features and classifier on data from elderly people to observe 

how the selected features perform with a different population. 
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4. Classification of Aggressive Movements using 

Smartwatches  
 

This chapter addresses Objective 2 by evaluating combinations of machine learning 

classifiers and feature selectors that will result in the best performance metrics to distinguish 

between aggressive and non-aggressive activities. Six classifiers (k-Nearest Neighbours, 

Random Forests, Neural networks, Support Vector Machines, Decision Tree, and Naïve Bayes) 

are associated with three feature selection methods (ReliefF, InfoGain and Correlation). The 

summed ranking is the method used to rank the eighteen possible models based on their 

evaluation metrics. 

 

4.1. Abstract 

Background 

 Recognizing aggressive motion is a challenging task in human activity recognition. 

Wearable smartwatch technology in combination with a machine learning classifier may be a 

viable approach for human aggressive motion classification. The objective of this paper was to 

determine the best Classification Model and Feature Selector (CM-FS) combination for 

separating aggressive from non-aggressive movements from data collected from the smartwatch. 

Methods 

 A ranking method was used to select relevant CM-FS models across accuracy, sensitivity, 

specificity, precision, F-score and Matthews Correlation Coefficient (MCC). The Waikato 

Environment for Knowledge Analysis (WEKA) was used. Six WEKA machine learning 

classifiers (k-Nearest Neighbours (kNN), Random Forest, Support Vector Machine, Decision 

Tree, Naïve Bayes) coupled with three machine learning feature selectors (ReliefF, InfoGain, 

Correlation) formed the models. The activity circuit included punch, shove, slap, and shake 

(aggressive) and clapping hands, waving, handshaking, opening/closing a door, typing on a 

computer keyboard (non-aggressive). 
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Results 

 A combination of kNN and ReliefF was found to be the best CM-FS model for separating 

aggressive actions from non-aggressive actions, with 99.6% accuracy, 98.4% sensitivity, 99.8% 

specificity, 98.9% precision, 0.987 F-score, and 0.984 MCC. The kNN and Random Forest 

classifiers, combined with any of the three feature selectors, generated the top models. On the 

other hand, models with Naïve Bayes or Support Vector Machine classifiers had poor 

performance for sensitivity, F-score, and MCC. 

Conclusion 

 The kNN and ReliefF combination results demonstrate that this smartwatch-based 

approach is a viable solution for identifying aggressive movements. This wrist-based wearable 

sensor approach could be used by care providers in settings where people suffer from dementia 

or mental health disorders, where random aggressive motions often occur. 

4.2. Background 

Human Activity Recognition (HAR) is a growing field that benefits different industries 

including sports and entertainment [6], [7], gaming, video surveillance [19], and healthcare [69]. 

In healthcare, HAR is used for a range of applications, from fall detection [35] to gait analysis 

[70] to rehabilitation [71]. Some clinical settings host people with dementia or mental illnesses, 

who may become aggressive and violent during their interactions with others in the living space. 

Identifying aggressive movements is therefore important for monitoring and preventing 

escalating situations. 

The best method to detect aggressive motions has not been determined. Computer vision has 

been applied to this task, with research on fight prevention and de-escalating aggressive motion 

situations [7]. However, computer vision methods can be very expensive financially and 

computationally (i.e., to analyze and study huge amounts of digital video). Privacy is also a 

concern, since people do not necessarily want to be filmed continuously. Smartwatches may be a 

viable alternative to computer vision based approaches to determine aggressive occurrences.  
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Smartwatch HAR has been applied to several sectors: Gjoreski [35] used wrist-worn Actigraph 

to evaluate activity recognition and fall detection. In 2016, Arduser attempted to recognize text 

using smartwatch motion data. A gesture recognition system was built to identify gestures 

associated to writing 26 letters of the Roman alphabet. Data were collected using a commercial, 

off the shelf smartwatch with accuracies ranging from 94% to 99% for letter recognition [36]. 

On the other hand, smartwatches could be helpful to detect stereotyped movements in children 

with developmental disability [37]. Lee and Song used a SONY SWR50 smartwatch to train, 

recognize, and test stereotyped movements (swinging an arm, raising an arm, throwing) on 

teenagers diagnosed with developmental disability. However, literature is lacking for smartwatch 

applications in aggressive motion detection. 

Appropriate machine learning is required for effective smartwatch HAR. A variety of classifiers 

have been used for wrist-worn sensor HAR: Random Forest, k-Nearest Neighbour, neural 

network, or decision trees [31], [64], [72]. To perform well, classifiers might use features from 

selection methods that include ReliefF and Correlation. 

The aim of this preliminary research was to determine the best combined “machine learning 

classifier and feature selection” model for classifying aggressive and non-aggressive activities 

using smartwatch inertial sensor data. A wrist-worn wearable sensor approach for detecting 

aggressive motion events could be an important tool to help manage care in the resource-limited 

area of elderly care. 

4.3. Methods 

 30 able-bodied and healthy participants (15 male, 15 female) were recruited from The 

Ottawa Hospital Rehabilitation Center (TOHRC) and the University of Ottawa. Characteristics 

included age (25.9±8.0), weight (70.2±11.9 kg), height (170.7± 8.6 cm), and righthandedness (20 

out of 30). The study was approved by the Ottawa Health Science Network and the University of 

Ottawa Research Ethics Board. All participants read and signed an informed consent form. 

The protocol consisted of aggressive and non-aggressive activities. Aggressive activities were 

punch, shove, slap, and shake a Body Opponent Bag (Figure 4.1). Non-aggressive activities were 
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clapping hands, waving, handshaking, opening/closing a door, and typing on a computer 

keyboard. Similar activities (e.g., slap, clap; shove, push a door open) were chosen to challenge 

the classifiers and evaluate potential false positive events. 

 

Figure 4.1: The Body Opponent Bag (BOB) 

Participants wore one Microsoft Band 2 (MSB2) per wrist and donned a holster on their pelvis 

that carried a Nexus 5 smartphone. The MSB2 recorded upper-limb motion at 50 Hz via their 

integrated tri-axial accelerometer and gyroscope. The Nexus 5 smartphone was connected via 

Bluetooth to the smartwatches using the TOHRC Data Logger Android app [65], updated for 

signal acquisition from two MSB2. A second smartphone was used to video record the 

participant’s movements and to serve as a gold standard comparator. The gold standard time was 

synchronized with smartwatch sensor output by shaking the hands at the beginning and end of 

the trial, providing a recognizable accelerometer signal and video event.  

4.3.1. Machine learning classifiers and feature selector 

 Six machine learning classifiers that have been used extensively across HAR areas [73] 

were evaluated: Random Forests (RF), k-Nearest Neighbours (kNN), Multilayer Perceptron 

Neural Network (MP), Support Vector Machines (SVM), Naïve Bayes (NB), and Decision Tree 

(DT). Waikato Environment for Knowledge Analysis (WEKA) [74] was used for all 

classifications. These machine learning classifiers were fed by feature sets from three popular 

feature selection methods: ReliefF (ReF), Infogain (IG), and Correlation (C). These methods 
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were used to select the 20 best features out of 136 from accelerometer and gyroscope sensor data 

(Tables 4.1 and 4.2) (more details on Chapter 3). 

Table 4.1: Description of features from accelerometer and gyroscope signals, from the two 

smartwatches  

 

Performance for each combination of Classification Method and Feature Selector (CM-FS) for 

differentiating aggressive and non-aggressive movements was calculated using accuracy, 

sensitivity, sensibility, precision, F-score, and Matthews Correlation Coefficient (MCC). For 

example, RF-ReF refers to the Random Forest classifier fed by the Relief-F feature set.   

Features Description 
Number of 

features 

Statistical features 

Mean  Average for 3 axes 12 

Variance Variance for 3 axes 12 

Median Median for 3 axes 12 

Range Range for 3 axes  12 

Standard Deviation Standard deviation for 3 axes  12 

Skewness Degree of asymmetry for 3 axes  12 

Kurtosis Degree of peakedness for 3 axes 12 

Pairwise Correlation Coefficient Correlations between sensor axes  

(x,y; x,z; y,z) 

12 

Integral Area under the curve for 3 axes 12 

Maximum Difference or 

derivative 

Difference between the highest and the 

lowest value  

12 

Physical Features  

Movement intensity Average Movement Intensity (MI): 

Euclidean norm of the total acceleration 

vector after removing the static gravitational 

acceleration 

8 

Signal Magnitude Area (SMA) Acceleration magnitude summed over three 

axes, normalized by window length  

4 

Sum of All Squares Acceleration magnitude squared and summed 

over three axes, normalized by window 

length  

4 
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Table 4.2: Twenty best features selected for each method 

ReliefF Correlation Attribute InfoGain 

Pcc_Gyr_yz_1 

Pcc_ Gyr xy_1 

Pcc_ Gyr_ yz_2 

Pcc_ Acc_yz_1 

Pcc_ Acc_ yz_2 

Pcc_ Gyr_ xz_1 

Pcc_ Acc_ xy_2 

Pcc_Acc_xy_1 

Pcc_ Gyr_ xz_2 

Pcc_ Gyr_ xy_2 

Pcc_ Acc_ xz_1 

Pcc_ Acc_ xz_2 

Mean_Acc_y_2 

Area_Acc_y_2 

Med_Accy_2 

Area_Acc_z_1 

Mean_Acc_z_1 

Med_Acc_z_1 

Skew_Acc_y_2 

Area_Acc_y_1 

Std_Acc_x_1 

Range_Acc_x_1 

Std_Acc_x_2 

Range_Acc_x_2 

Std_Acc_y_2 

Range_Acc_y_2 

SMA_Acc_2 

Range_Gyr_z_2 

AI_Acc_2 

AI_Acc_1 

Range_Acc_y_1 

SMA_Acc_1 

Std_Acc_y_1 

Range_Gyr_z_1 

Var_Acc_x_1 

Diff_Acc_x_1 

Range_Gyr_y_2 

Range_Accz_2 

Diff_Acc_x_2 

Diff_Acc_y_1 

Diff_Gyr_z_2 

Diff_Acc_x_2 

Diff_Gyr_y_1 

Diff_Acc_y_1 

Diff_Acc_z_1 

Diff_Acc_y_2 

Diff_Gyr_y_2 

Diff_Gyr_x_1 

Diff_Gyr_z_1 

Diff_Acc_z_2 

Diff_Acc_x_1 

Range_Acc_x_2 

Range_Acc_x_1 

Range_Accy_2 

Range_Acc_z_1 

Diff_Gyr_x_2 

Range_Acc_y_1 

Var_Acc_x_1 

Std_Acc_x_1 

Std_Acc_x_2 

Pcc=Pairwise Correlation Coefficient, Gyr=gyroscope, Acc=acceleration, Med=Median, Skew=skewness, 

SMA=signal magnitude area, Diff=maximum difference, Var=variance, Std=standard deviation, 1=left wrist, 

2=right wrist 

 

The 18 CM-FS models were evaluated using a summed ranking method [60], where each 

performance metric was ranked for each CM-FS (best result ranked as 1) and then the ranks for 

all six metrics were summed to provide an overall ranking for each model. CM-FS models were 

sorted in descending order, since the lowest rank value indicated the best model. In the literature, 

accuracy tends to be the most used metric for evaluating classification results. However, this 

metric loses some of its power in cases of class imbalances, which occurs often in HAR. The 

ranking method does not focus on one metric, involving results from all six parameters. This 

gives a better, wider, and more generalizable representation of model performance. 
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4.4. Results 

kNN-ReF was the best model combination, with 99.6% accuracy, 98.4% sensitivity, 

99.8% specificity, 98.9% precision, 0.987 F-score, and 0.984 MCC (Table 4.3). kNN-ReF, RF-

IG, kNN-C, kNN-IG, RF-C and RF-ReF were the top 6 models, with average metrics of 99.16% 

accuracy, 95.75% sensitivity, 99.77% specificity, 98.82% precision, 0.9715 F-score, and 0.9670 

MCC.  

Table 4.3: Classification method and feature selection combination sorted by summed rank (best 

to worst). 

 

Score Rank 

Acc Sens Spec Prec FS MCC Acc Sens Spec Prec F MCC 

kNN-ReF 0.996 0.984 0.998 0.989 0.987 0.984 1 1 1 2 1 1 

RF-IG 0.992 0.962 0.998 0.998 0.974 0.97 4 4 1 1 4 4 

kNN-C 0.995 0.979 0.997 0.985 0.982 0.979 2 2 6 5 2 2 

kNN-IG 0.994 0.974 0.997 0.983 0.979 0.975 3 3 6 6 3 3 

RF-C 0.990 0.949 0.998 0.986 0.967 0.962 5 5 1 4 5 5 

RF-ReF 0.983 0.897 0.998 0.988 0.94 0.932 8 8 1 3 8 8 

DT-IG 0.985 0.941 0.993 0.959 0.95 0.941 6 6 8 7 6 6 

DT-C 0.983 0.932 0.992 0.956 0.944 0.934 7 7 9 8 7 7 

MP-C 0.966 0.837 0.989 0.93 0.881 0.862 9 11 10 10 9 9 

MP-IG 0.965 0.841 0.988 0.924 0.881 0.862 10 10 11 11 9 9 

DT-ReF 0.959 0.844 0.98 0.883 0.863 0.839 11 9 12 12 11 11 

SVM-C 0.949 0.774 0.98 0.876 0.822 0.794 12 14 12 13 12 12 

SVM-ReF 0.870 0.152 0.998 0.931 0.261 0.346 17 18 1 9 18 18 

SVM-IG 0.945 0.756 0.979 0.865 0.807 0.777 13 15 14 14 13 13 

NB-C 0.935 0.822 0.955 0.767 0.793 0.756 14 12 16 16 14 14 

MP-ReF 0.933 0.722 0.97 0.812 0.764 0.727 15 16 15 15 16 16 

NB-IG 0.929 0.813 0.949 0.742 0.776 0.735 16 13 17 17 15 15 

NB-ReF 0.855 0.54 0.911 0.52 0.53 0.444 18 17 18 18 17 17 

Acc=Accuracy, Sens=Sensitivity, Spec=Specificity, Prec=Precision, FS=F-Score, MCC= Matthews correlation 

coefficient 

The worst model used Naïve Bayes and ReliefF, with consistently lowest ranking across 

outcome measures. Naïve Bayes scored poorly regardless of the feature selector: NB-Ref was 

18th, NB-IG was 16th (tie), and NB-C was 15th. Figure 4.2 compares performance of kNN-ReF 

(best model), RF-ReF (good), MP-IG (average), and NB-ReF (worst).  
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Figure 4.2: Performance of four CM-FS models 

4.5. Discussion  

This research demonstrated that it is possible to classify aggressive and non-aggressive 

motions using accelerometer and gyroscope data from smartwatches. kNN-ReF was the best 

combination for this binary classification. These results were comparative or better than 

computer vision approaches that scored between 91% and 96% [42], [75]. Therefore, the 

proposed smartwatch method represents a viable way of identifying aggressive movements, 

possibly leading to a wearable system for alerting care providers of an aggressive event and 

logging information to better understand the aggressive situation. 

From all the evaluated combinations, the best model was kNN-ReF, which ranked 1st across all 

the performance metrics except precision, where it was 2nd. All kNN-ReF performance metrics 

were above 98.4%. Even though ReliefF was the worst ranked feature selector in general, it 

worked well with kNN. One explanation is that ReliefF uses inherently nearest neighbours to 

estimate attribute relevance, features that are selected, therefore ReliefF would be compatible 

with the kNN machine learning classifier. Villacampa [76] also noticed that combining ReliefF 

and kNN improved results in a binary classification. kNN-ReF was followed by RF-IG, kNN-C, 

kNN-IG, and RF-C in the group of five best models. Performance measures for these 

combinations were consistently in the top 5.  
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The worst model was NB-ReF, which had acceptable accuracy and specificity (85.46% and 

91.10%, respectively) but low sensitivity (54%), precision (52%), F-score (0.53), and MCC 

(0.44). This would result in a high number of false positives (aggressive actions that are 

incorrectly classified as non-aggressive) and false negatives (non-aggressive actions that are 

incorrectly classified as aggressive). The five lowest ranking models were NB-ReF, NB-IG, MP-

ReF, NB-C, and SVM-IG. SVM-ReF had especially low sensitivity (15.20%), F-score (0.2610) 

and MCC (0.346). Given these results, the Naïve Bayes and SVM classifiers in this research 

should not be used as machine learning tools to recognize aggressive movement. 

For individual performance measures, sensitivity was high for kNN-ReF, kNN-C, and kNN-IG. 

High sensitivity indicates few false negatives (aggressive actions that are not detected by the 

classifier), so these models are ideal if the priority is to identify all aggressive movements. 

Precision represents false alarms (actions classified as non-aggressive that, in reality, are 

aggressive). SVM-ReF, NB-ReF, and MP-ReF were the best-ranked precision models. 

Therefore, these models are suitable if the main criterion is to minimize false positives. F-score 

combines sensitivity and precision, but does not consider the correctly identified non-aggressive 

actions. MCC is a balanced measure that takes into account all the four confusion matrix 

components and is very useful when there is a class imbalance. F-score and MCC ranking results 

were the same and displayed similarities with the general summed ranking results. kNN-ReF, 

kNN-C, and kNN-IG were the top 3 F-score and MCC models. These 3 classifiers are part of the 

summed ranking best 5. In a situation where the summed ranking cannot be applied because of 

limited resources on the number of performance metrics, MCC or F-score can be directly 

selected for model ranking. 

A limitation of the approach in this research is that modelling and machine learning analysis 

were developed offline, meaning that the results were not obtained from a real-time system (i.e., 

a device that instantly notifies staff when an aggressive event occurs). Therefore, applying the 

selected models to a real-time platform might yield different performance metrics [77]. 
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4.6. Conclusions 

 In this paper, a smart-watch based approach for identifying aggressive activity was 

investigated and the objective was to determine the best Classification Model and Feature 

Selector (CM-FS) combination for separating aggressive from non-aggressive movements. The 

kNN classifier and ReliefF feature selection combination provided excellent aggressive 

movement classification results, with all performance metrics above 98%. Using this model, 

alarm-based notification of aggressive movements would lead to a miss rate of only 0.2% 

(incorrectly classifying an aggressive action as non-aggressive) and a false alarm rate of less than 

0.5% (incorrectly classifying a non-aggressive activity as aggressive). The metrics showed that 

this model could be used in a clinical setting to identify aggressive movements by means of 

smartwatches or other wrist-worn devices. Other powerful models such as RF-IG or kNN-C are 

suggested if the focus is on minimizing false positives or false negatives. Future research in this 

area should include model evaluation within a real-time system, testing with an elderly 

population that reflects people with dementia in healthcare settings, and a larger sample size that 

could provide more generalizable results. 
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5. Classification of Aggressive Movements with Unilateral or 

Bilateral Smartwatches 
 

This chapter addresses Objective 3 by comparing bilateral watches to unilateral watches 

for binary classification of aggressive movements. The two previous chapters based their 

methodologies on two smartwatches (one smartwatch per wrist). This chapter seeks to determine 

if one smartwatch (placed either on the dominant wrist, or the non-dominant wrist) can be as 

effective as two smartwatches when classifying aggressive and non-aggressive activities. 

 

This research was presented as a poster at the 40th IEEE Engineering in Medicine and Biology 

Society (EMBS). 

Tchuente, F, Lemaire, ED, Baddour, N, “Classification of Aggressive Movements with 

Unilateral or Bilateral Smartwatches”, 40th International Conference IEEE EMBS. 

 

5.1. Abstract 

 Recognizing aggressive motion is a human activity recognition task that could be 

implemented using wearable technology, such as smartwatches. Wrist-worn wearable sensors 

could be on the dominant, non-dominant, or both wrists. This research explored whether 

unilateral or bilateral smartwatches are best for classifying aggressive motion. Participants 

donned two Microsoft Band 2 smartwatches and performed an activity circuit of similar 

aggressive and non-aggressive movements. Smartwatch accelerometer and gyroscope sensors 

captured data that were used to extract features. Three situations were evaluated: two 

smartwatches (one per wrist), dominant wrist smartwatch, and non-dominant wrist smartwatch. 

A Random Forest machine learning classifier coupled with three machine learning feature 

selectors (ReliefF, InfoGain, Correlation) was used to evaluate performance metrics from each 

situation. Bilateral smartwatches performed the best with 99.2% accuracy, 96% sensitivity, 

99.7% sensibility, 98.5% precision, 0.972 F-score, and 0.967 Matthews Correlation Coefficient 
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(MCC), when Infogain feature selection was used. When only a single watch was available, the 

non-dominant wrist had better performance metrics than the dominant wrist. Results confirmed 

that wearing sensors on both wrists achieved the best classification results for aggressive and 

non-aggressive movements. This could be used to identify aggressive movements in healthcare 

facilities that host people with dementia or mental illnesses. 

5.2. Introduction 

Human Activity Recognition (HAR) benefits from wearable devices, which can be worn 

directly on the body. Examples of wearable devices include smartphones, smartglasses, 

smartclothes, and smartwatches [18]. To obtain the best results from wearable devices, sensor 

positioning and the number of sensors must be considered. Sensors can be put on different body 

locations depending on the type of study to be conducted [25]. Common locations include the 

pelvis [12], arm [78], waist [30] and wrist [39] .  

It is also important to ensure a balanced number of sensors for HAR. Too many sensors are 

invasive, expensive, uncomfortable, and not suitable for activity recognition. Atallah et al. [79] 

stated that classification results tended to improve when more accelerometers are worn whereas 

Cleland et al. [78] did not find any significant improvement when combining more than two 

sensors. Therefore, using more sensors does not necessarily result in better classification results. 

Wang et al. [81] performed activity recognition using fewer sensors (2 sensors compared to 13 

sensors), achieving comparable accuracy. Likewise, Mortazavi [82] proved that one sensor was 

able to produce similar accuracy metrics to multiple wearable sensors for posture tracking. The 

ideal situation would therefore be to minimize the number of sensors while maintaining or 

improving the performance metrics.  

In previous work (Chapters 3 and 4), two smartwatches were used to record upper limb 

movements with the assumption that bilateral data would enable better classification results 

because two smartwatches would be more suitable to record data from any upper-limb. 

Classification models using the two smartwatches distinguished between aggressive and non-

aggressive movements. 
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The goal of this chapter is to determine if a single watch (one wrist) for aggressive movement 

classification leads to different results from a two-smartwatch (two wrists) model. In other 

words, can one smartwatch yield better or comparable performance metrics than two 

smartwatches? The question was evaluated by comparing features extracted from bilateral 

smartwatches, dominant wrist smartwatch, and non-dominant wrist smartwatch. A successful 

classification model with only one wrist-worn wearable sensor would make this aggressive 

motion identification tool easier to implement in practice. 

5.3. Methods 

30 able-bodied and healthy participants (15 male, 15 female) were recruited from The 

Ottawa Hospital Rehabilitation Center (TOHRC) and the University of Ottawa. Characteristics 

included age (25.9±8.0), weight (70.2±11.9 kg), height (170.7± 8.6 cm), and right-handedness 

(20 out of 30). The study was approved by the Ottawa Health Science Network and the 

University of Ottawa Research Ethics Board. All participants read and signed an informed 

consent form. 

The protocol comprised both aggressive and non-aggressive activities. Aggressive activities were 

punch, shove, slap, and shaking a Body Opponent Bag (Figure 5.1). Non-aggressive activities 

consisted of clapping hands, waving, handshaking, opening/closing a door, and typing on a 

computer keyboard. Similar activities (e.g., slap/clap; shove/push a door open) were chosen to 

challenge the classifiers and evaluate potential false positive events. 

 
 

Figure 5.1: Body Opponent Bag (BOB) and Microsoft Band orientation 
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Participants wore one Microsoft Band 2 (MSB2) per wrist and donned a holster on their pelvis 

that carried a Nexus 5 smartphone. The MSB2 (Figure 5.1) recorded upper-limb motion at a 

frequency of 50 Hz via their integrated tri-axial accelerometer and gyroscope sensors. The Nexus 

5 smartphone was connected via Bluetooth to the smartwatches using the TOHRC Data Logger 

[65] Android app, updated for signal acquisition from two MSB2. A second smartphone video 

recorded the participant’s movements and served as a gold standard comparator. The gold 

standard time was synchronized with the smartwatch sensor output by shaking the hands at the 

beginning and end of the trial, providing a recognizable accelerometer signal and video event.  

Three conditions were investigated: both wrists (BW), dominant wrist (DW), non-dominant wrist 

(NDW). Features from these three cases were extracted and three feature selection methods 

(ReliefF, InfoGain, and Correlation) were used to generate feature sets for classification (Table 

5.1). BW was analyzed using the best 20 features (out of 136, for both wrists) (cf. Chapter 3). To 

maintain the same level of proportionality, DW and NDW used the 10 best features (out of 68). 

Features are described in Table 5.2 according to the following structure: 

FeatureAbbreviation_Sensor_AxisDirection_WatchNumber. The machine learning Random 

Forest classifier was used on the WEKA platform [12] with 5-fold cross-validation and then 

performance metrics were extracted. 
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Table 5.1: Feature descriptions per smartwatch 

Features Description # features 
Statistical Used to differentiate between two or more movements 

Mean Average of the signal 6 

Variance Variance of the signal 6 

Median Median of the signal 6 

Range Range of the signal 6 

Standard 

Deviation 

Measure of the spreadness of the signal 6 

Skewness The degree of asymmetry of the sensor signal distribution 6 

Kurtosis The degree of peakedness of the sensor signal distribution 6 

Pairwise 

Correlation 

Coefficient 

Correlation between two sensor axes, and between 

accelerometer and gyroscope sensors 

6 

Maximum 

Difference  

Difference between the highest and the lowest value of over 

the window 

6 

Physical From the physical interpretation of the human motion 

Mean of the 

Movement 

Intensity (mMI) 

 

  

Variance of the 

Movement 

intensity (vMI) 

Movement Intensity (MI): Euclidean norm of the acceleration 

vector (accelerometer data) and velocity vector (gyroscope 

data) 

For example, considering the acceleration 

𝑀𝐼(𝑖) = √𝑎𝑥
2(𝑖) + 𝑎𝑦

2(𝑖)+𝑎𝑧
2(𝑖) 

where 𝑎𝑥 (𝑖), 𝑎𝑦 (𝑖), 𝑎𝑛𝑑 𝑎𝑧 (𝑖) represent the 𝑖𝑡ℎ acceleration 

data point of the x, y, and z axis in each window, 

respectively. Mean and variance over the window 

4 

Signal 

Magnitude Area 

(SMA) 

The acceleration magnitude summed over three axes within 

each window normalized by the window length  

2 

Sum of All 

Squares 

Acceleration magnitude squared and summed over three axes, 

normalized by window length  

2 
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Table 5.2: Best features selected for each method 

 ReliefF Correlation InfoGain 

BW 

Pcc_Gyr_yz_1 

Pcc_ Gyr xy_1 

Pcc_ Gyr_ yz_2 

Pcc_ Acc_yz_1 

Pcc_ Acc_ yz_2 

Pcc_ Gyr_ xz_1 

Pcc_ Acc_ xy_2 

Pcc_Acc_xy_1 

Pcc_ Gyr_ xz_2 

Pcc_ Gyr_ xy_2 

Pcc_ Acc_ xz_1 

Pcc_ Acc_ xz_2 

Mean_Acc_y_2 

Area_Acc_y_2 

Med_Accy_2 

Area_Acc_z_1 

Mean_Acc_z_1 

Med_Acc_z_1 

Skew_Acc_y_2 

Area_Acc_y_1 

Std_Acc_x_1 

Range_Acc_x_1 

Std_Acc_x_2 

Range_Acc_x_2 

Std_Acc_y_2 

Range_Acc_y_2 

SMA_Acc_2 

Range_Gyr_z_2 

AI_Acc_2 

AI_Acc_1 

Range_Acc_y_1 

SMA_Acc_1 

Std_Acc_y_1 

Range_Gyr_z_1 

Var_Acc_x_1 

Diff_Acc_x_1 

Range_Gyr_y_2 

Range_Accz_2 

Diff_Acc_x_2 

Diff_Acc_y_1 

Diff_Gyr_z_2 

Diff_Acc_x_2 

Diff_Gyr_y_1 

Diff_Acc_y_1 

Diff_Acc_z_1 

Diff_Acc_y_2 

Diff_Gyr_y_2 

Diff_Gyr_x_1 

Diff_Gyr_z_1 

Diff_Acc_z_2 

Diff_Acc_x_1 

Range_Acc_x_2 

Range_Acc_x_1 

Range_Accy_2 

Range_Acc_z_1 

Diff_Gyr_x_2 

Range_Acc_y_1 

Var_Acc_x_1 

Std_Acc_x_1 

Std_Acc_x_2 

DW 

Pcc_yz_Acc 

Pcc_xz_Gyr 

Pcc_xy_Gyr 

Pcc_xz_Acc 

Pcc_yz_Gyr 

Pcc_xy_Acc 

Area_Acc_y 

Mean_Acc_y 

Med_Acc_y 

Med_Acc_z 

 

Std_Ac_cx 

Range_Acc_x 

AI_Acc 

SMA_Acc 

RangeAccy 

Std_Accy 

Range_Gyr_z 

Var_Acc_x 

Diff_Acc_x 

Range_Acc_z 

 

Diff_Acc_y 

Diff_Gyr_y 

Diff_Gyr_z 

Diff_Acc_x_ 

Diff_Gyr_x 

Diff_Acc_z 

Range_Acc_x 

Range_Acc_y 

Var_Acc_x 

Std_Acc_x 

 

NDW 

Pcc_yz_Acc 

Pcc_xy_Acc 

Pcc_yz_Gyr 

Pcc_xz_Acc 

Pcc_xy_Gyr 

Pcc_xz_Gyr 

Mean_Acc_y 

Area_Acc_y 

Med_Acc_y 

Skew_Acc_y 

Std_Acc_x 

Range_Acc_x 

Std_Acc_y 

Range_Acc_y 

SMA_Acc 

Range_Gyr_z 

AI_Acc 

Range_Gyr_y 

Range_Acc_z 

Diff_Gyr_z 

Diff_Acc_y 

Diff_Gyr_y 

Diff_Acc_z 

Diff_Acc_x 

Diff_Gyr_z 

Range_Acc_x 

Diff_Gyr_x 

Range_Acc_y 

Range_Acc_z 

Var_Acc_x 

 
Pcc=Pairwise Correlation Coefficient, Gyr=gyroscope, Acc=acceleration, Med=Median, Skew=skewness, SMA=signal magnitude area, 

Diff=maximum difference, Var=variance, Std=standard deviation, 1=left wrist, 2=right wrist 
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5.4. Results 

Evaluation metrics for the three feature selection approaches and smartwatch conditions 

are shown in Table 5.3. BW had the best results regardless of which feature selection method 

was used. The average results across the features selectors were 98.8% accuracy, 93.3% 

sensitivity, 99.7% specificity, 98.5% precision, 0.958 F-score, and 0.952 MCC. DW and NDW 

had comparable results. If the feature selector ReliefF was chosen, DW has a slight advantage on 

all the metrics, except for DW MCC (0.836) and NDW MCC (0.841). On the other hand, NDW 

had better statistics than the DW across the six performance metrics when InfoGain and 

Correlation methods were considered. As shown in Table 5.3, InfoGain was the best feature 

selector overall, with results in descending order of BW, NDW, and DW. ReliefF generally had 

worse results than the other feature selection techniques when using the Random Forest 

classifier. The differences between all methods were small. 

Table 5.3: Performance metrics using ReliefF, Infogain, and Correlation methods 

 

 

Acc Sens Spec Prec F MCC 

ReliefF 

BW 0.982 0.893 0.998 0.987 0.938 0.929 

DW 0.972 0.836 0.996 0.973 0.900 0.836 

NDW 0.961 0.766 0.996 0.968 0.855 0.841 

Infogain 

BW 0.992 0.960 0.997 0.985 0.972 0.967 

DW 0.986 0.925 0.996 0.978 0.951 0.943 

NDW 0.988 0.940 0.996 0.978 0.959 0.952 

Correlation 

BW 0.990 0.947 0.997 0.984 0.965 0.960 

DW 0.981 0.895 0.996 0.975 0.933 0.923 

NDW 0.984 0.911 0.997 0.980 0.944 0.936 
BW=Both wrists, DW=Dominant wrist, NDW=Non-dominant wrist, Acc= Accuracy, Sens= Sensitivity, Spec= Specificity, Pres= Precision, F= 
F-score 

 

5.5. Discussion 

The smartwatch approach was successful at classifying aggressive and non-aggressive 

movements. Both unilateral and bilateral smartwatch approaches were effective, with excellent 

results. All the results were above 77%, regardless of selected wrist. Therefore, any approach 
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could be used in a clinical care setting and achieve satisfactory results. However, the best results 

occurred with bilateral smartwatches. 

BW had better results than DW and NDW across the six metrics. Differences were substantial 

using ReliefF feature selection (up to 13% of difference in terms of sensitivity, 8% in terms of F-

score and 9% in terms of MCC between BW and NDW situations). When comparing BW and 

DW, the main differences appear in sensitivity (6%) and MCC (9%). The use of InfoGain and 

Correlation methods alleviates these differences to less than 5% across the performance metrics. 

A comparison between DW and NDW showed similarities. For ReliefF, the maximum difference 

in sensitivity was 6.7%. InfoGain and Correlation methods showed differences of less than 2% in 

favor of NDW. The main difference was in sensitivity (false positives, where aggressive 

situations might not be detected by the algorithm). This is not a desirable trait, therefore 6.7% is 

quite high. A suggestion would be to replace ReliefF (displaying high discrepancies) with the 

InfoGain feature set for unilateral classification. 

If achieving the highest performance metrics is a priority, smartwatches should be worn on both 

wrists. However, watches are generally not worn on both wrists, thus using two watches might 

be cumbersome. Two watches would collect more sensor data, hence requiring more resources 

for feature analysis and thus increasing processing time. Finally, it is also more expensive to 

equip all patients with two watches.  

The minor differences between the use of two watches (BW) and one watch (NDW or DW) 

(with Infogain) would lead to the adoption of the unilateral condition. As mentioned in the 

results, NDW had a slight advantage over DW in terms of outcome measures, therefore NDW is 

the preferred configuration. These results are convenient because the non-dominant hand is the 

most commonly worn way for watches. With the objective to minimize false positives, NDW 

leads to 98.8% accuracy, 94% sensitivity, 99.6% specificity, 97.8% precision, 0.959 F-score and 

0.952 MCC, which are very reasonable for a binary classification. There is nevertheless a slight 

trade-off between performance and convenience for the user and the installation team.  

To maintain proportionality between features, 10 features were considered for conditions where 

one smartwatch was considered (DW or NDW), whereas 20 features were used in the BW 
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condition. Increasing the number of features (DW or NDW) would break the proportionality 

implemented in this study but could lead to an improvement in unilateral smartwatch 

performance metrics.  

5.6. Conclusion 

Using one smartwatch per wrist provided excellent classification results, with performance 

metrics exceeding 77% when adopting a Random Forest classifier and the InfoGain feature 

selection method. This choice minimized false positives and false negatives that can easily occur 

in machine learning classification. Despite the impressive performance analytics, adopting two 

smartwatches requires more resources and processing time because the input features are 

doubled. To reduce these financial, computational, and practical issues, one smartwatch on the 

non-dominant wrist can be considered when implementing an aggressive movement 

identification application.  
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6. Multinomial Classification of Aggressive Movements 

using Smartwatches  
 

This chapter addresses Objective 4 by determining the best machine learning classifier for 

multinomial activities. Previous chapters focused on the binary nature of activities (aggressive or 

non-aggressive). More insight is provided here on the activities, which are classified in ten 

different classes: punch, shove, slap, shake, transitions, open/close a door, clap, wave, 

handshake, and type on a keyboard.  

 

6.1. Abstract 

Human Activity Recognition (HAR) involves visual or sensory pattern recognition that 

leads to interpreting and labeling a specific activity. Wearable devices such as smart bands and 

smartwatches facilitate activity recognition by providing multiple motion and biological signals 

as input for movement models. In this research, participants donned two Microsoft Band 2 

(MSB2) smartwatches and performed an activity circuit of ten similar aggressive and non-

aggressive movements, to investigate aggressive movement recognition from machine learning 

models. A multinomial classification (resulting in three or more movement categories) will be 

the main approach to determine the correct movement nature. 

136 time-domain features were extracted from MSB2 accelerometer and gyroscope data. These 

features fed five classifiers (kNN, Random Forest, Decisions Tree, Neural Network, Naïve 

Bayes) that were compared using a summed ranking method to determine the best algorithm for 

multinomial classification of punching, shoving, slapping, shake, transitions, opening/closing a 

door, clap, wave, handshake, and typing on a keyboard. 

kNN performed the best, with 99.5% accuracy, 99.5% sensitivity, 99.9% specificity, 99.5% 

precision, 0.995 F-score, and 0.994 MCC. Random Forest and Decision Tree, with slightly lower 

metrics, may also constitute viable options for aggressive movement recognition. 
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The results support this machine learning approach for aggressive movement classification that 

could be used in high surveillance areas, prisons, mental illness facilities, elderly care centres for 

people with dementia, or other accommodations that host people with potentially aggressive 

motion. 

6.2. Introduction 

 Clinical settings and healthcare facilities can host elderly people with bipolar disorder, 

schizophrenia, or dementia. Such mental illnesses may increase the likelihood of violent 

incidents [83]. A tool that identifies the onset of an aggressive incident, such as automatic 

activity recognition, could enable healthcare providers to appropriately intervene. As well, 

avoiding unnecessary interventions when an individual’s movements are not aggressive would 

make better use of time and resources. 

With progress in machine learning technologies, human activity recognition has been 

successfully applied in a broad range of sectors. For example, smartwatches and smartphones are 

increasingly used to classify simple and complex activities, from trivial daily movements 

(walking, standing, driving) to more sophisticated movements (cooking, watering plants, 

washing hands) with accuracies exceeding 90% [32]. Activities such as sitting, walking upstairs, 

and doing dishes have been helpful for evaluating elderly mobility routines [84]. Other 

applications have also been evaluated. For example, Lee and Song [37] used a smartwatch for 

activity classification for children with developmental disabilities, with average accuracies up to 

95% for throwing objects, clenching a fist, or raising the arm.  

Activity classification can be binary (two movement categories) or multinomial (three or more 

classes) [39],[64],[78]. In previous research, we used smartwatch accelerometer and gyroscope 

features and six machine learning classifiers for binary classification of aggressive or non-

aggressive movements (Chapter 4). The binary classification provided high-level insight towards 

the aggressive (or non-aggressive) nature of the activities. However, binomial classification does 

not provide the specific activity that was labelled as aggressive. A multinomial approach would 

provide more information and specifics on the classified activities, which is beneficial for 

helping care providers determine an appropriate intervention plan or for researchers to better 
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understand classification errors between similar aggressive movement and non-aggressive 

movements (e.g., slapping or clapping).  

This research investigated the effectiveness of smartwatch accelerometer and gyroscope signal 

features for identifying aggressive movements that might occur in a healthcare or eldercare 

institution. The aim was to determine the most appropriate machine learning model for correctly 

classifying an aggressive movement, while avoiding misclassification from similar non-

aggressive movements. A successful model would provide better information to care providers 

on the type of aggressive action, beyond the information provided by a simple binary alarm 

system that only identifies aggressive versus non-aggressive status. 

6.3. Methods 

6.3.1. Data Collection and Extraction 

 Thirty able-bodied and healthy participants (15 male, 15 female) were recruited from The 

Ottawa Hospital Rehabilitation Center (TOHRC) and the University of Ottawa. Characteristics 

included age (25.9±8.0), weight (70.2±11.9 kg), height (170.7± 8.6 cm), and right-handedness 

(20 out of 30). The study was approved by the Ottawa Health Science Network and the 

University of Ottawa Research Ethics Board. All participants provided informed consent. 

The protocol consisted of ten aggressive and non-aggressive activities (Table 6.1). Aggressive 

actions were performed on a Body Opponent Bag (BOB, Figure 6.1). Similar activities (e.g., 

slap, clap; shove, push a door open) were chosen to challenge the classifiers and evaluate 

potential false positive events (Table 6.1).  

 

Figure 6.1: Body Opponent Bag (BOB)  
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Table 6.1: Activities 

 

Participants wore one Microsoft Band 2 (MSB2) per wrist and donned a holster on their pelvis 

that carried a Nexus 5 smartphone. The MSB2 recorded upper-limb motion using the integrated 

tri-axial accelerometer and gyroscope. A Nexus 5 smartphone was connected via Bluetooth to 

the smartwatches using a modified TOHRC Data Logger Android app [65], updated for signal 

acquisition from two MSB2. A second smartphone video recorded the participant’s movements 

and serve as a gold standard comparator. The video time was synchronized with smartwatch 

sensor output by shaking the hands at the beginning and end of the trial, providing a recognizable 

accelerometer signal and video event. 

Raw data were extracted from the two MSB2 sensors at 50 Hz. The continuous raw data were 

divided into 1-second sliding windows (50 data points) for feature extraction. Windows 

overlapped by 96% of the window length (window advanced by 2 data points). This resulted in 

122,307 instances of ten multinomial activities (Figure 6.2). 

Movement Activity Description 

Aggressive  

Punch Participant punches BOB eight times, alternating hands 

Shove  Participant aggressively shoves BOB five times with both 

hands 

Slap Participant aggressively slaps BOB ten times with both 

hands 

Shake Participant holds BOB’s neck and shakes BOB back and 

forth five times  

Non-

Aggressive  

Transitions  Set of movements between an aggressive action and non-

aggressive action (i.e., sitting, standing, moving, still) 

Open/Close door Participant opens and closes the door three times 

Clap Participant claps their hands ten times 

Wave Participant waves with the preferred hand as if they are 

saying goodbye  

Handshake Participant handshakes the project assistant 

Type on a keyboard Participant types the first verse of the Canadian National 

anthem 
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Figure 6.2: Activity instances 

6.3.2. Classification and Evaluation 

136 time-domain features from the accelerometer and gyroscope smartwatch sensors 

were evaluated to determine the best classification results (Table 6.2). Five common machine 

learning classifiers were implemented using the Waikato Environment for Knowledge Analysis 

(WEKA) platform [74] and evaluated to determine the best model for distinguishing the different 

movements. Classifiers included k Nearest Neighbours (kNN), Multilayer Perceptron neural 

network (MP), Naïve Bayes (NB), J48 Decision Tree (DT), and Random Forest (RF).  

Evaluation metrics included accuracy, sensitivity, specificity, precision, F-score, and Matthews 

Correlation Coefficient (MCC) [85], [86]. The classifiers were evaluated using a summed 

ranking method [60], where each performance metric was ranked for each classifier and then the 

ranks for all six metrics were summed to provide an overall ranking for each model. Accuracy 

tends to be the most common metric for evaluating classification results but is not completely 

reliable when class imbalances occur, which happens frequently in Human Activity Recognition 

applications. The ranking method does not focus on only one metric, but involves results from all 

six parameters. A better, wider, and more generalizable representation of model performance is 

therefore provided.  
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Table 6.2: Description of features from accelerometer and gyroscope signals, from the two 

smartwatches 

Features Description 
Number of 

features 

Statistical features  

Mean  Average for each of 3 axes 12 

Variance Variance for each of 3 axes 12 

Median Median for each of 3 axes 12 

Range Range for each of 3 axes  12 

Standard Deviation Standard deviation each of for 3 axes  12 

Skewness Degree of asymmetry for each of 3 axes  12 

Kurtosis Degree of peakedness for each of 3 axes 12 

Pairwise Correlation Coefficient Correlations between sensor axes  

(x,y; x,z; y,z) 

12 

Integral Area under the curve for 3 axes 12 

Maximum Difference or 

derivative 

Difference between the highest and the 

lowest value of the acceleration 

12 

Physical Features  

Mean of the Movement 

Intensity (mMI)  

Variance of the Movement 

intensity (vMI) 

Movement Intensity (MI): Euclidean norm of 

the acceleration vector (accelerometer data) 

and velocity vector (gyroscope data) 

For example, considering the acceleration 

𝑀𝐼(𝑖) = √𝑎𝑥
2(𝑖) + 𝑎𝑦

2(𝑖)+𝑎𝑧
2(𝑖) 

where 𝑎𝑥 (𝑖), 𝑎𝑦 (𝑖), 𝑎𝑛𝑑 𝑎𝑧 (𝑖) represent the 

𝑖𝑡ℎ acceleration data point of the x, y, and z 

axis in each window, respectively. 

 

The mean and variance over the window are 

extracted from MI  

8 

Signal Magnitude Area (SMA) Acceleration magnitude summed over three 

axes, normalized by window length  

𝑆𝑀𝐴 = ∑|𝑎𝑥(𝑖)| + ∑|𝑎𝑦(𝑖)| + ∑|𝑎𝑧(𝑖)| 

4 

Sum of All squares Acceleration magnitude squared and summed 

over three axes, normalized by window 

length  

𝑆𝑎𝑆 = ∑ 𝑎𝑥
2(𝑖) + ∑ 𝑎𝑦

2(𝑖) + ∑ 𝑎𝑧
2(𝑖) 

4 
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6.4. Results  

kNN was the best classifier, with 99.5% accuracy, 99.5% sensitivity, 99.8% specificity, 

99.5% precision, 0.995 F-score, and 0.994 MCC (Table 6.3). Compared to the other algorithms, 

kNN was ranked first on every evaluation metric and followed by Random Forest, which was 

also a viable classifier for this application with results all above 99%. The Naive Bayes classifier 

did not perform well and therefore was not appropriate for this type of classification. 

Table 6.3: Classifier evaluation metrics with classifiers sorted by summed rank (best to worse) 

 

The kNN confusion matrix (Table 6.4) shows the classified activity classes compared to the true 

classes. False positives and negatives (off-diagonal numbers) were very small compared to the 

total number of instances. 

Table 6.4: kNN confusion matrix. 0: Transition, 1: Punch 2: Shove, 3: Slap, 4: Shake, 5: 

Open/close door, 6: Clap hands, 7: Wave, 8: Handshake, 9: Type 

 

 

 kNN RF DT MP NB 

Accuracy 0.995 0.992 0.961 0.883 0.554 

Sensitivity 0.995 0.992 0.961 0.883 0.554 

Specificity 0.998 0.997 0.989 0.962 0.909 

Precision 0.995 0.992 0.961 0.883 0.685 

F-score 0.995 0.992 0.961 0.882 0.501 

MCC 0.994 0.990 0.950 0.82 0.477 

   Classified as 

T
ru

e 
C

la
ss

 

Class 0 1 2 3 4 5 6 7 8 9 

0 44230 30 32 33 28 30 31 22 31 35 

1 44 4326 1 0 0 0 0 0 0 0 

2 26 1 4231 0 5 0 1 0 0 1 

3 35 0 0 6854 1 0 0 0 0 2 

4 33 1 4 0 3932 0 0 0 0 1 

5 36 0 0 0 0 22311 0 0 0 0 

6 32 0 0 0 1 0 3998 0 0 4 

7 33 0 0 0 0 0 0 2292 0 0 

8 27 0 0 0 0 0 0 0 1477 0 

9 34 0 0 7 0 0 0 0 0 28054 
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Performance metrics relative to each activity are shown in Table 6.5. Open/Close door and Type 

were ranked the best (i.e., easiest activities to classify), whereas wave and handshake had lower 

numbers, especially in terms of sensitivity and F-score. 

Table 6.5: Multinomial performance metrics for kNN 

6.5. Discussion 

The activity classification results show that smartwatches constitute a viable and effective 

approach for multinomial aggressive and non-aggressive movement classification. The kNN 

algorithm successfully classified multiple aggressive and non-aggressive categories, potentially 

leading to a wearable system that would alert care providers of a specific aggressive event and 

log information to better understand the aggressive situation. This logged information would 

provide insight on the person’s predominant aggressive motion. Knowing the type of aggressive 

activity may lead to a better care plan tailored to the person’s activity. 

kNN had the best performance metrics of all the classifiers, with all metrics exceeding 99.4%. A 

deeper analysis of the best classifier suggests that all the movements, whether aggressive or non-

aggressive, were well classified (Table 6.5). From punching to typing on a computer, few false 

positive and false negatives occurred among the movements.  

The maximum number of confused instances was 7, for shaking and typing. This result was 

surprising given the different nature and lack of similarities between the two movements. On the 

 

Sensitivity Specificity Precision F-Score MCC 

Transition 0.994 0.996 0.993 0.994 0.99 

Punch 0.990 0.999 0.993 0.991 0.991 

Shove 0.992 0.999 0.991 0.992 0.991 

Slap 0.994 0.999 0.994 0.994 0.994 

Shake 0.990 0.998 0.991 0.991 0.990 

Open/Close door 0.998 0.999 0.999 0.999 0.998 

Clap 0.991 0.999 0.992 0.991 0.991 

Wave 0.986 0.999 0.990 0.988 0.988 

Handshake 0.982 0.999 0.979 0.981 0.981 

Type 0.999 0.999 0.998 0.999 0.998 

Weighted Average 0.995 0.998 0.995 0.995 0.994 
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other hand, 5 false occurrences occurred between shaking and shoving. Both movements were 

considered aggressive and may have been confounded by participants during the experiment. 

More activities were anticipated to be mismatched by the classifier, since the experiment was 

designed with similar aggressive and non-aggressive activities to test the machine learning 

classifier strength. Thus, it was expected that movements such as clap and slap, shove and 

open/close door would have yielded a higher number of false positives and negatives. However, 

kNN was excellent at correctly identifying and effectively differentiating these activities. 

Despite the excellent kNN performance for target movements, transition movements represented 

an exception. The transition category was confused with all other activity classes of activities at 

least 22 times. Reciprocally, all the classes of activities were misidentified as transitions up to 44 

times. Transitions consist of a variety of non-classified movements such as walking around, 

sitting, staying still, and random movements (e.g., scratching head, adjusting sleeves) that 

happened during the experiment and may be confused with other activities.  

Several studies in the literature showed that some activities are difficult to distinguish and are 

typically misclassified. For example, walking and climbing stairs (participants often classified as 

climbing stairs when walking) [12], movements ranging from walking to cycling (maximum 

accuracy of 77%) [35], and complex activities (cooking, sweeping, taking medication; 50% 

accuracy) [32]. Despite the misclassification occurrences, misclassified transition actions 

represented a tiny percentage (less than 0.1%) of the total activities instances. Therefore, they 

were not sufficient to affect the kNN overall performance. Performance indicators were 

consistently high across the different activities. 

Comparable results were obtained in a previous study with a binary classification between 

aggressive and non-aggressive movements was conducted (Chapter 4), where kNN and a set of 

20 features yielded 99.6% accuracy, 98.4% sensitivity, 99.8% specificity, 98.9% precision, 0.987 

F-score and a 0.984 MCC. Besides this study, kNN was also the preferred classifier for Amancio 

[87] who compared supervised learning classifiers in HAR with Logistic Regression, SVM, 

CART, and Neural Networks. Despite the excellent performance metrics with offline analysis, 

research is needed to prove that the same results will occur when implemented as a real-time 

system that provides instant notification. Gillian argued that kNN could sometimes be slow for 
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gesture recognition in real-time if there were a large number of training examples [88]. In this 

case, kNN computing time would be a trade-off to its performance indicators. 

Random Forest and Decision Tree classifiers could be considered when classifying aggressive 

and non-aggressive activities, if kNN is not adaptable for a real-time system. Their performance 

metrics were between 95% and 99%, which are acceptable in the Human Activity Recognition 

field. Random Forests have already been used in various real-time systems, have been proven to 

be more efficient in real-time applications, and might have an advantage for online classification 

[89],[67].  

6.5.1 Limitations 

This study had limitations for video-segmentation and the population cohort. For manual 

video-segmentation of the gold-standard comparator, identifying one frame to represent the start 

or end of a transition state was typically difficult. Interpretation differences of several frames 

would be identified as errors, but these false positives or false negatives would be video 

interpretation variability instead of poor classifier performance. In a real-time system, a threshold 

could be implemented to handle this transition variability.  

Participants were young adults. Since an elderly population may perform the aggressive 

movements differently (slower and less intensity), future research is needed to test the model 

with older adults.  

6.6. Conclusion 

The best machine learning classifier for multinomial aggressive classification was kNN, 

which outperformed all others for accuracy, sensitivity, specificity, precision, F-score and MCC. 

kNN represents an effective classifier, which only misclassified very few instances of the ten 

activities, whether they were aggressive or not. Results show less than 0.1% of false positives 

and false negatives for each activity; it is therefore thus a great choice for a multinomial 

classification. 

Smartwatch accelerometer and gyroscope signals were effective for correctly identifying the 

target activities with excellent performance metrics. Random Forest and Decision Tree machine 
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learning alternatives can be successfully applied to a real-time classification that would provide 

instant notification at the onset of an aggressive situation. Future research should address how 

kNN works in a real-time aggressive activity environment and evaluation with a sufficiently 

large sample of elderly participants. 
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7. Thesis Conclusions and Future work 

 This thesis provided evidence that aggressive movements can be distinguished from non-

aggressive movements using accelerometer and gyroscope smartwatch sensor signals. The best 

feature sets were identified, as well as the best machine learning classifier. The thesis objectives 

and the corresponding questions are discussed below: 

7.1. Objective 1: Determine the best set of smartwatch sensor features to 

distinguish aggressive from non-aggressive motion 

Question 1: How will the selected features perform?  

 The performance metric target to prove that smartwatch sensors can effectively 

distinguish aggressive from non-aggressive movements was 75%, which was satisfactory for this 

proof of concept study. Four feature selection sets (ReliefF, InfoGain, Chi-Square, and 

Correlation) were evaluated with a Random Forest classifier and resulted in an average 99% 

accuracy, 94.6% sensitivity, 99.8% specificity, and 98.6% precision, 0.965 F-score and 0.96 

MCC. All the results were substantially higher than the 75% threshold. Smartwatch sensors are 

therefore viable for HAR aggressive classification. 

Question 2: Will different selection methods output similar features? 

 Different feature selection methods produced different feature sets. Four feature selection 

methods (ReliefF, InfoGain, Chi-Squared, Correlation) were considered to determine the twenty 

best high-performance features. ReliefF prioritized features such as the pairwise correlations 

between the three axes, mean accelerations in the three directions, and area under the curve 

attribute. However, the ReliefF feature set was the worst set when tested with a Random Forest 

classifier. 

The correlation method had three predominant features based on accelerometer and gyroscope 

signals: derivative, range, and standard deviation. Correlation also incorporated physical features 

such as the Signal Magnitude Area and Movement Intensity, features that were not selected by 

the other methods. 
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InfoGain and Chisquared provided the same feature set; the maximum difference and the range 

of the acceleration were ranked at the top. They produced the best feature set out of the four 

feature selection methods. 

7.2. Objective 2: Determine the best machine learning classifier and feature 

selection model 

Question: What is the best classification model for recognizing aggressive from non-

aggressive motion? 

 Random Forest, which was selected in Chapter 3, was not the overall best classifier to 

distinguish aggressive from non-aggressive activities. kNN-ReF (kNN and ReliefF) was the best 

model combination and ranked first across almost all the performance metrics with 99.6% 

accuracy, 98.4% sensitivity, 99.8% specificity, 98.9% precision, 0.987 F-score, and 0.984 MCC. 

The top four models of this study are dominated by kNN, which would be considered the best 

classifier.  

Nevertheless, the Random Forest classifier was second to best and still produced excellent 

performance metrics. Random Forest combined with Infogain had 99.2% accuracy, 96.2% 

sensitivity, 99.8% specificity, 99.8% precision, 0.974 F-score, and 0.970 MCC. 

7.3. Objective 3: Determine the differences between bilateral smartwatches 

and unilateral smartwatches 

Question 1: Do bilateral watches yield better evaluation metrics than unilateral 

watches? 

Bilateral watches outperformed unilateral watches. It was important to compare two 

wrists (BW) with one wrist (DW or NDW) wearable devices to determine if less resources can 

be attributed in practice. All performance metrics were above 77%, regardless of the selected 

wrist; however, BW had better results than DW and NDW across the six metrics, regardless of 

the feature selection method. The average results across the features selectors were 98.8% 

accuracy, 93.3% sensitivity, 99.7% specificity, 98.5% precision, 0.958 F-score, and 0.952 MCC. 
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Differences were substantial using ReliefF feature selection (up to 13% difference between BW 

and NDW for sensitivity, 8% for F-score, 9% for MCC). When comparing BW and DW, the 

main differences appear in sensitivity (6%) and MCC (9%). The use of InfoGain and Correlation 

methods alleviated these differences to less than 5% across the performance metrics.  

Question 2: Does the dominant wrist configuration gives better results than non-

dominant? 

NDW and DW had very similar results; however, NDW had a slight advantage. NDW 

had better results than DW across the six performance metrics when the best feature selection 

methods (InfoGain or Chi-Squared) were considered. InfoGain and Correlation methods had 

differences of less than 2% in favor NDW. 

NDW is the preferred configuration, which is convenient because the non-dominant hand is the 

most natural location when wearing a watch. With the objective to minimize false positives, 

NDH lead to 98.8% accuracy, 94% sensitivity, 99.6% specificity, 97.8% precision, 0.959 F-score 

and 0.952 MCC, which are very reasonable for a binary classification. 

7.4 Objective 4: Determine the machine-learning classifier for a multinomial 

aggressive classification  

Question 1: Does multinomial classification perform worse than binary 

classification? 

Chapter 4 compared classifiers across the six performance metrics on a binary 

classification, whereas Chapter 6 provided insight on a multinomial classification. Inconsistent 

with the hypothesis, generally, the multinomial classification performed slightly better than the 

binary classifier when using their top classifier, kNN. However, binary classification relied on 20 

features for classification whereas the multinomial classification considered the whole set of 136 

features. 
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Question 2: Which movements will be confused as false positives and negatives? 

The maximum number of confused instances was 7, for shaking and typing. This result 

was surprising given the different nature and lack of similarities between the two movements. On 

the other hand, 5 false occurrences happened between shaking and shoving. Both movements 

were considered aggressive and may have been confounded by participants during the 

experimentation phase. However, more activities were expected to be mismatched by the 

classifier than was actually found, since the experiment was designed with similar aggressive and 

non-aggressive activities to test the machine learning classifier strength. Thus, movements such 

as clap and slap, shove and open/close door could have yielded a higher number of false 

positives and negatives. This was not the case since less than 0.1% of the movements were 

confused, with only a few instances between shoving and shaking. The main confused instances 

happened with the most dominant class, transitions. 

7.5. Future Work 

This research provided evidence for aggressive movement classification using 

smartwatch sensors. Improvements could be made on certain aspects. 

1. The study only considered able-bodied participants for the proof of concept. However, a 

target market is the elderly, who may be affected by mental disorders such as dementia. 

Elderly aggressive movements could be slower and less intense. Classifier performance 

should be determined for this population. Elderly people with dementia who adopt 

perseverative activity and rip off their bandages, might do the same when wearing 

watches. 

2. Only 30 participants were recruited for the experiments. This represents a sufficient 

number but a larger sample combined with techniques different than cross-validation 

(i.e., Leave-one-out cross-validation or hold-out) might be considered. The results should 

be more generalizable. 

3. The thesis only relied on the smartwatch accelerometer and gyroscope sensors. Other 

sensors such as the galvanic skin response or heart rate might provide additional input to 

the aggressive nature of a movement. Additionally, smartphone accelerometer and 
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gyroscope sensors could also be considered for the classification. Future research can 

address if a combination of smartwatches and smartphones sensors provide better results 

than only smartwatches. 

4. The thesis is only based on four upper-limb aggressive movements. More movements can 

be evaluated. For example, it is unknown if smartwatches can detect a lower-limb 

aggressive movement such as a kick. 

5. A smartwatch real-time system that alerts the staff in case of an aggressive motion can be 

developed (at the onset of an aggressive movement). Research is needed to determine if 

the recommended classifiers in this thesis will perform well in a real-time system. 
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Appendix A: List of possible features 
 

Time domain Features 

Features Description 

Statistical features Used to differentiate between two or more movements 

Mean  Average of the signal 

Median Median of the signal 

Maximum Maximum of the signal 

Minimum Minimum of the signal 

Range Range of the signal 

Standard Deviation Measure how spread the signal is 

Root Mean Square The quadratic mean value of the signal 

Averaged Derivatives 

 

The mean value of the first order derivatives of the signal (in this 

case, this corresponds to jerk) 

Skewness The degree of asymmetry of the sensor signal distribution 

Kurtosis The degree of “peakedness” of the sensor signal distribution 

Interquartile Range Measure of the statistical dispersion, being equal to the difference 

between the 75th and the 25th percentiles of the signal 

Mean Crossing Rate The total number of times the signal changes from below average to 

above average or vice versa normalized by the window length 

Pearson Correlation Correlation between two sensor axes, and between accelerometer 

and gyroscope sensors 

Physical Features From the physical interpretation of the human motion 

Mean of sum of square 

(all 3 acceleration axes)  

 

Average movement Intensity (MI): The Euclidean norm of the total 

acceleration vector after removing the static gravitational 

acceleration, where 𝑎𝑥 (𝑖), 𝑎𝑦 (𝑖), 𝑎𝑛𝑑 𝑎𝑧 (𝑖) represent the 𝑡𝑡ℎ 

acceleration sample of the x, y, and z axis in each window, 

respectively. 

𝑀𝐼(𝑡) = √𝑎𝑥
2(𝑖) + 𝑎𝑦

2(𝑖)+𝑎𝑧
2(𝑖) 

Stdev of sum of squares 

(all 3 acceleration axes)  

 

Standard deviation of (𝑎𝑥
2(𝑖) + 𝑎𝑦

2(𝑖)+𝑎𝑧
2(𝑖)) 

Signal Magnitude Area 

(SMA) 

The acceleration magnitude summed over three axes within each 

window normalized by the window length  

Eigenvalues of Dominant 

Directions (EVA) 

The eigenvectors of the covariance matrix correspond to the 

dominant directions along which intensive human motion occurs 

The eigenvalues measure the corresponding relative motion 

magnitude along the directions. 
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Impulse Sum of absolute values x delta time 

Number of Peaks Number of maxima peaks 

Sum of ranges (SoR) 𝑆𝑜𝑅 =  𝑟𝑎𝑛𝑔𝑒𝑥 + 𝑟𝑎𝑛𝑔𝑒𝑦 + 𝑟𝑎𝑛𝑔𝑒𝑧 

Sum of standard deviation 

(SStD) 
𝑆𝑆𝑡𝐷 =  𝑆𝐷𝑥 + 𝑆𝐷𝑦 + 𝑆𝐷𝑧 

Simple moving average Sum of maximum accelerations for current windows, before, and 

after  

Gravity range Difference Sum of range of X and Z gravity components 

Averaged Rotation 

Angles related to Gravity 

Direction 

It calculates the cumulative rotation angles around gravity 

direction. The cumulative sum is then divided by the window 

length. This feature captures the rotation movement 

of the upper limb around gravity direction. 

 

Frequency Domain Features 

Fast Fourier Transform (FFT) Quartile: Percentage of acceleration frequencies in the first quartile 

(i.e., frequencies ≤ 12.5 Hz) of an FFT frequency plot for vertical, AP, and ML axes. 

Averaged acceleration energy  

Spectral entropy measure 

The frequency range power 

Abscise of the first frequency peak 

The dominant frequency over the window 

Median frequency 

Averaged velocity along heading direction 

Correlation between acceleration along gravity and heading directions  

Averaged velocity along gravity direction  

Averaged rotation angles related to gravity direction 

Averaged acceleration energy  

Averaged rotation energy 

Dominant frequency  
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Appendix B: Experimental Protocol 
 

A project assistant will review the protocol with each participant at the start of the test 

session and then ask the participant to complete a consent form. The project assistant will record 

the person’s age, sex, weight, height, and handedness. 

Before testing, the person will don a Microsoft Band smart watch on each wrist. The watch 

screen will be positioned on the front of the wrist (the side of the wrist that is down when the 

palm of the hand is down). 

The project assistant will start the Data Logger application on a smartphone and ensure that the 

two watches are connected to the phone via Bluetooth (i.e., two green checkmarks appear on the 

application screen). The project assistant will slide the button on the Data Logger screen to the 

right to start recording and then place the smartphone in a belt-holster at the posterior pelvis. The 

participant will stand still and then shake their wrists two times, to provide a synchronization 

movement between video and sensor data. At the end of the trial, the project assistant will swipe 

the Data Logger button to the right to stop data collection and save the data on the smartphone. 

For every trial, the person will be videoed using a separate smartphone. The smartphone video 

will be synchronized with the data recorded on the phone by the first accurately detected 

“shake”. Digital video will be used to validate the detected movements and provide contextual 

information. 

After the wrist shaking activity, each person will be instructed to complete a circuit of activities: 

1. From a standing position, shake both hands to indicate the start of the trial. 

2. Continue standing for at least 10 seconds. This standing phase can be used for phone 

orientation calibration. 
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3. Walk towards the Body Opponent Bag, stand still for 2-3 seconds, then aggressively punch 

the bag four times, alternating hands for each punch. 

4. Walk to a chair and sit down, Clap your hands ten times as if you were cheering at a game 

5. Stand and then wave one hand, as saying goodbye. Person can use their preferred hand (i.e., 

no instruction as to which hand to wave) 

6. Stand up, walk to the BOB, stand in front of the BOB for 2-3 seconds, and aggressively 

shove the BOB with both hands. Repeat five times. 

7. Handshake with the project assistant 

8. Walk to the laboratory door, open, and walk through. Project assistant closes the door 

without latching. Push the door open and walk through. Repeat 5 times. 

9. Walk to the BOB. Instruct the person to “Aggressively slap the head 5 times with each hand, 

alternating hands with each slap”. A total of 10 slaps will be performed by the participant. 

10. Walk towards a computer, sit down, and type the first verse of the Canadian national anthem 

11. Walk towards the BOB, stand still for 2-3 seconds, shake the BOB violently back and forth 

12. Standing still for 10 seconds. 

13. Shake both hands to indicate the end of the trial. 
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Appendix C: Methods and Equipment 
 

Data logger and Microsoft Band 2 (MSB2) 

 The TOHRC data logger is an app used to capture sensors data from a phone. The app 

was originally meant for Blackberry platforms [65]. However, the data logger has been adapted 

to the Android platform. The original code was updated to incorporate two MSB2 smartwatches 

signal sensors. Sensors from the smart bands (such as the X, Y, Z accelerometers and the 

gyroscopes or the galvanic skin response) were added. A Bluetooth connection was established 

between an Android Nexus 5 phone and the smart watches to facilitate the data transfer.  

Figure C.1 shows the differences between the two data logger versions (Picture of the Data 

Logger with Band 1 connected for example).  

 

  

Figure C.1: Data Logger Version 1 and Version 2 
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The Microsoft Band 2 (Microsoft second-generation smartwatch) is the wearable device used in 

this thesis. The health and fitness band was announced in October 2015. MSB2 is compatible to 

Android, Apple and Windows phone. The band incorporates multiple sensors (Figure C.2) that 

gather user physical data. 

The body of the band is made up of metal and surround a curved gorilla glass screen. The wrist 

band is made up of a thick strip of rubber that will be around the wrist. The device is made up of 

silicon and curved glass as well as a variety of sensors. The Band 2 has a 32 mm x 12.8 mm, 

320 x 128 pixel curved AMOLED screen with a lithium-polymer battery that could last about 

48 hours [90].  

 

Figure C.2: Microsoft Band 2 sensors 

The experiments involved the use of two MSB2 (one for each wrist). This thesis focuses on the 

accelerometer and gyroscope sensors. Figures C.2 and C.3 display the accelerometer and 

gyroscope axes.  
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Figure C.3: X, Y and Z axes for linear and angular accelerations 

The Body Opponent Bag (BOB) 

BOB is realistic, humanlike, and height adjustable equipment on which aggressive 

movements were performed. The covering is high strength Plastisol and an inner cavity is filled 

with tough urethane foam. The relatively soft covering avoids participants to get hurt when 

acting aggressive and the fact that BOB moves around its base has a positive output:  

• All the energy from the aggressive motion is absorbed by the equipment and not released 

on the participants hand (as it would happen with a wall made of concrete) 

• BOB mimics more the human being activity: a person who is hit will not stay still but 

move around 

The base was filled with water. 

 

Figure C.4: Body Opponent Bag (BOB) 
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Accelerometer linear acceleration over time 
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Appendix D: Ottawa Health Science Network Research 

Ethics Board Approval  
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Appendix E: The University of Ottawa Health Sciences and 

Science Research Ethics Board Approval 
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Appendix F: Recruitment Notice 
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Appendix G: Consent form 

 



88 

 

 



89 

 

 



90 

 

 


