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Abstract

Fast neural oscillations known as beta (12-30Hz) and gamma (30-100Hz) rhythms are recorded across

several brain areas of various species. They have been linked to diverse functions like perception,

attention, cognition, or interareal brain communication. The majority of the tasks performed by the

brain involves communication between brain areas. To efficiently perform communication, mathe-

matical models of brain activity require representing neural oscillations as sustained and coherent

rhythms. However, some recordings show that fast oscillations are not sustained or coherent. Rather

they are noisy and appear as short and random epochs of sustained activity called bursts. There-

fore, modeling such noisy oscillations and investigating their ability to show interareal coherence

and phase synchronization are important questions that need to be addressed.

In this thesis, we propose theoretical models of noisy oscillations in the gamma and beta bands

with the same properties as those observed in in vivo. Such models should exhibit dynamic and

statistical features of the data and support dynamic phase synchronization. We consider networks

composed of excitatory and inhibitory populations. Noise is the result of the finite size effect of the

system or the synaptic inputs. The associated dynamics of the Local Field Potentials (LFPs) are

modeled as linear equations, sustained by additive and/or multiplicative noises. Such oscillatory

LFPs are also known as noise-induced or quasi-cycles oscillations. The LFPs are better described

using the envelope-phase representation. In this framework, a burst is defined as an epoch during

which the envelope magnitude exceeds a given threshold. Fortunately, to the lowest order, the

envelope dynamics are uncoupled from the phase dynamics for both additive and multiplicative

noises. For additive noise, we derive the mean burst duration via a mean first passage time approach

and uncover an optimal range of parameters for healthy rhythms. Multiplicative noise is shown

theoretically to further synchronize neural activities and better explain pathologies with an excess
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of neural synchronization. We used the stochastic averaging method (SAM) as a theoretical tool to

derive the envelope-phase equations. The SAM is extended to extract the envelope-phase equations

of two coupled brain areas. The goal is to tackle the question of phase synchronization of noise-

induced oscillations with application to interareal brain communication. The results show that

noise and propagation delay are essential ingredients for dynamic phase synchronization of quasi-

cycles. This suggests that the noisy oscillations recorded in vivo and modeled here as quasi-cycles

are good candidates for such neural communication. We further extend the use of the SAM to

describe several coupled networks subject to white and colored noises across the Hopf bifurcation ie

in both quasi-cycle and limit cycle regimes. This allows the description of multiple brain areas in

the envelope-phase framework. The SAM constitutes an appropriate and flexible theoretical tool to

describe a large class of stochastic oscillatory phenomena through the envelope-phase framework.
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Sommaire

Des oscillations neuronales rapides appelées rythmes beta (12-30Hz) et gamma (30-100Hz) sont

observées dans plusieurs zones cérébrales de diverses espèces. Elles ont été liées à diverses fonctions

comme la perception, l’attention, la cognition ou la communication cérébrale. La majorité des tâches

effectuées par le cerveau impliquent la communication entre regions cérébrales. Pour effectuer une

communication efficace, les modèles mathématiques de l’activité cérébrale nécessitent de représenter

les oscillations neuronales comme des rythmes soutenus et cohérents. Cependant, les observations

experimentales montrent que les oscillations rapides ne sont ni soutenues ni cohérentes. Au contraire,

elles sont stochastiques et apparaissent sous forme de périodes brèves et aléatoires d’activité soutenue

appelées ”décharges” ou ”bursts”. Par conséquent, la modélisation de ces oscillations stochastiques

et l’étude de leur capacité à montrer la cohérence entre les régions du cerveau et la synchronisation

de phase sont des questions importantes qui doivent être abordées.

Dans cette thèse, nous proposons des modèles théoriques d’oscillations stochastiques dans les

bandes gamma et beta avec les mêmes propriétés que celles observées in vivo. Ces modèles de-

vraient présenter des caractéristiques dynamiques et statistiques des données experimentales et ren-

dre compte de la synchronisation de phase dynamique. Nous considérons des réseaux composés de

populations excitatrices et inhibitrices. Le bruit est le résultat de l’effet de taille finie du système ou

des signaux synaptiques. La dynamique associée des potentiels de champ locaux (LFP) est modélisée

à l’aide des équations linéaires, soutenues respectivement par des bruits additifs et multiplicatifs.

Ces LFP oscillatoires sont également appelées oscillations induites par le bruit ou quasi-cycles. Les

LFP sont mieux décrits en utilisant la représentation enveloppe-phase. Dans ce cadre, un ”burst”

est défini comme une époque pendant laquelle l’amplitude de l’enveloppe dépasse un seuil donné.

Heureusement, à l’ordre le plus bas, la dynamique d’enveloppe est découplée de celle de la phase
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pour les bruits additifs et multiplicatifs. Pour le bruit additif, nous calculons la durée moyenne des

”bursts” via une approche du temps moyen de premier passage et découvrons une région optimale de

paramètres pour des rythmes sains. Le bruit multiplicatif synchronise davantage les activités neu-

ronales et explique mieux les pathologies causées par un excès de synchronisation neuronale. Nous

avons utilisé la méthode du moyennage stochastique (SAM) comme outil théorique pour déduire

les équations de type enveloppe-phase. Le SAM est étendu pour extraire les équations de type

enveloppe-phase de deux zones cérébrales couplées. L’objectif est d’aborder la question de la syn-

chronisation de phase des oscillations induites par le bruit avec pour application la communication

entre régions cérébrales. Les résultats montrent que le bruit et le délai de propagation sont des

ingrédients essentiels pour la synchronisation dynamique de phase des quasi-cycles. Cela suggère

que les oscillations stochastiques enregistrées in vivo et modélisées ici comme des quasi-cycles sont de

bons candidats pour une telle communication neuronale. Nous étendons encore l’utilisation du SAM

pour décrire plusieurs réseaux couplés sujets à des bruits blancs et colorés à travers la bifurcation

de Hopf, c’est-à-dire dans des régimes de quasi-cycle et de cycle limite. Cela permet la description

de plusieurs zones cérébrales dans le cadre de la répresentation enveloppe-phase. Le SAM constitue

un outil théorique approprié et flexible pour décrire une grande classe de phénomènes oscillatoires

stochastiques dans la répresentation enveloppe-phase.
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1

Introduction

Oscillations are ubiquitous and pervasive. The motion of a pendulum, the rotation of the earth

around the sun, circadian rhythm, menstrual cycle in women, or a firefly that emits a pulse are

common examples of rhythmic behaviors that everybody can observe. Oscillations are also seen

in more complex phenomena like chemical and biochemical reactions. The number of predators

and prey, or susceptible, infectious, and recovered subjects in given ecosystems are examples of

ecological and epidemiological oscillations respectively. However, oscillations are even more present

and important in biological systems. The cardiac beats, the regulation of human genes are important

rhythmic processes for human life. Other interesting and critical biological rhythms for life are neural

rhythms. They are observed in the brain of several species. They represent the electrical spiking

activity of a single neuron or the collective dynamic of a large number of cells in a given region of

the brain. In this work, we are particularly interested in the dynamics and the function of neural

oscillations generated by large groups of neurons.

Neural oscillations are observed in the brains of several species, ranging from mice, monkeys to

humans[41]. They usually represent the rhythmic or repetitive excitability of the activities of large

groups of neurons recorded from specific brain regions like the cortex and subcortical structures.

They are grouped into several bands depending on their mean frequency, which represents the rate

at which the excitability of the activity is repeated. The functional role attributed to such oscillations

is linked to the precise frequency band where they belong. The slower delta oscillations (frequency

less than 5Hz) are believed to be related to memory consolidation while the theta rhythms (4-10

Hz) are linked to navigation, memory in the hippocampus, and working memory [41]. Fast rhythms

like beta (12-30 Hz) and gamma oscillations (30-100 Hz) are also seen. Beta oscillations are usually

related to motor functions. They are observed preferentially during muscle contraction and holding
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and disappear during the execution of movements [80]. They are linked to information storage and

working memory [80, 154]. The dysfunctions of beta oscillations are correlated with neurological

disorders such as Parkinson’s disease [147]. Gamma oscillations are among the most prevalent in the

brain. They appear in most cases as a response to a stimulus and have been associated with attention,

perception, cognition, working memory and interareal brain communication [42, 83, 85]. Their

dysfunctions are manifested in patients suffering from Alzheimer’s disease, epilepsy, or attention-

deficit hyperactivity disorder (ADHD) [113]. Faster rhythms than gamma (greater than 100Hz)

have also been recorded in the brain; these fast-gamma or ”sharp wave-ripples” are mostly linked to

memory. All these rhythms operate together and in a complementary way to allow efficient brain

functioning [41].

In this thesis, we are particularly interested in modeling fast beta and gamma oscillations. They

are believed to be important because their communication function is thought to be the basis of

large-scale integration i.e. the mechanism that coordinates the activities of distinct brain areas to

enable the emergence of coherent behavior and cognition [219]. To perform communication, neural

oscillations are believed to show sustained synchrony and to exhibit coherence with analog rhythms,

known as communication through coherence (CTC) [85]. However, several neural rhythms recorded

in vivo are not sustained but exhibit short and transient epochs of synchrony called bursts. The

appearance and duration of such bursts are random variables. The envelope, the frequency, and

the phase of the overall rhythms show strong fluctuations. These oscillations are closer to a filtered

noise than to coherent oscillations.

Given the strong stochasticity of neural oscillations in vivo, it may be hard to believe that they

can actually play a role in cognitive processes like previously claimed [41, 80, 85, 154]. In fact,

some authors believe that neural oscillations do not have any role in brain functioning. They are

only a reflection of excitation-inhibition interactions. One of their powerful arguments is the fact

that the phase of a stochastic gamma oscillation is not consistent to support a communication

function as formulated by CTC [185]. To reconcile the stochastic behavior of neural oscillations

with their hypothetic function like communication, we proceed theoretically and with numerical

simulations. More precisely, we ask two fundamental questions. 1) How can we mathematically

model noisy oscillations? 2) Are these models of noisy oscillations good candidates for interareal
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brain communication? The answers to these two questions are the focus of this thesis.

Previous studies have addressed the two main questions of this thesis. In recent studies, authors

have examined Local Field Potentials (LFPs) recorded in the primary visual cortex of awake and

anesthetized monkeys [228]. The results showed that oscillatory neural activities are compatible with

a filtered noise origin. Time-frequency analysis of the LFPs shows transient episodes of sustained

power with fluctuating frequency. To characterize such noisy oscillations, attention is paid to the

episodes of high power also known as bursts [228]. The mean duration and the variability of the mean

frequency of the bursts are computed and considered as essential markers of gamma oscillations. The

values of these markers are similar for both awake and anesthetized monkeys, suggesting that the

dynamics and statistics of gamma oscillations do not depend on brain states. Such behavior is also

observed in other species like cats and humans. The precise values of the gamma oscillation markers

vary depending on the subject. However, an acceptable range for the mean gamma burst duration

is 65-150 ms [228, 80]. Deviations from this range are related to neurological disorders like epilepsy,

ADHD, and Alzheimer’s disease.

Modeling of noisy oscillations in the gamma band is done using a network of coupled excitatory

and inhibitory populations. The effective dynamics of such populations for an isolated network is

a two-dimensional system of differential equations driven by noises [228]. In the dynamic point of

view, these oscillations are known as quasi-cycles[220]. Studies further reported the lack of auto-

coherence in such oscillations[39]. The majority of works done to address the high variability of

gamma oscillations in vivo have been performed using computational techniques of signal processing

like time-frequency analysis [228, 39, 38, 175, 154]. Theoretical frameworks such as the envelope-

phase description allowing the computation of burst duration are lacking. A recent study [102] has

however attempted to formulate such a description but is only partially satisfactory because it misses

the biological ingredients of the former two-dimensional equations.

The ability of noisy oscillations (similar in vivo recordings) to show flexible communication has

also been investigated recently [175]. The study was done computationally with two connected

networks, each representing a part of the brain. The results showed that despite the stochasticity

of gamma oscillations, flexible communication was possible during matching episodes of the burst
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within each network. However, the theoretical basis of such flexible communication was not ad-

dressed. More precisely, the work did not provide a theoretical basis of the consistent phase relation

between the two connected networks. Here, we aim to shed more light on the theoretical modeling of

stochastic gamma oscillations by performing the amplitude-phase decomposition of a stochastic os-

cillatory network dynamics. We also want to provide a theory that shows how noise-induced gamma

oscillations can exhibit robust and consistent phase locking, an essential ingredient for interareal

brain communication.

We proceed by using theoretical techniques of nonlinear and stochastic dynamics, numerical

simulations and techniques of signal processing. We model noisy oscillations with the bursting

structure using coupled stochastic differential equations (SDE) which are known as generalized

Langevin equations. Each equation mimics the dynamic of an excitatory (E) or inhibitory (I)

population subject to noise. Noise is the result of the finite size-effect of the system and/or the

random synaptic bombardment from other neurons. The effective dynamics of the Local Field

potentials (LFPs) are linear equations sustained by additive and multiplicative noise. Without noise,

oscillations vanish to a fixed point; noise is therefore critical for the maintenance of oscillations. This

class of oscillations is known in the literature as noise-induced or quasi-cycle oscillations respectively.

Within our models of linear equations sustained by noise, we define the bursts as the epoch where

the envelope of the LFP is sustained above a particular threshold. The time spent by the envelope

above the threshold is the duration of the burst.

To fully capture the bursting dynamics of the oscillatory LFPs we perform an envelope-phase

decomposition of the process. For that, we adapted the Stochastic Averaging Method (SAM) [187, 6]

previously used in another context to extract the envelope and the phase of the stochastic processes

represented by the E-I LFPs. The resulting envelope-phase dynamics shows an envelope that is not

coupled to the phase and allows us to compute the mean burst duration using first passage time

analysis. Multiplicative noise was found to cause even stronger oscillations and longer bursts than

additive noise.

We then extend to two brain areas these envelope-phase dynamics and investigate the possibility

of the areas to phase synchronize. This allows addressing the question of the ability for noise-induced
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oscillations to communicate since interareal brain communication is strongly linked to phase syn-

chronization or phase-locking. This is done through numerical simulations as well as our theoretical

models of envelope-phase dynamics obtained from the Stochastic Averaging Method (SAM). We fur-

ther extend the SAM theory to describe nonlinear oscillations known as noisy limit cycle oscillations,

and look at the dynamics of coupled brain areas in this context. The result is a set of envelope-phase

equations describing the slow envelope and phase components of the rhythms in each of the coupled

areas.

We note that the SAM method is not limited to neural oscillations and can be generalized to other

disciplines. It allows an envelope-phase description with a reduced number of parameters than the

former dynamics and is thus more appropriate for data-driven analysis. The SAM represents from

our point of view an appropriate and flexible method to extract the envelope and phase dynamics

of a large class of oscillatory phenomena present in nature.

The thesis is organized as follows. In chapter 1, we present the essential notions and concepts

necessary to understand the rest of the thesis. We review the notion of oscillation from a nonlinear

dynamics point of view using a general approach. We also extend the notion of oscillations in the

presence of noise and explain the meaning of its components. The notions of quasi-cycle and limit

cycle are then detailed. This establishes the importance of the envelope-phase description of the

oscillations. Since oscillations investigated in the rest of the thesis are noisy, we then indicate the

essential requirements for a theoretical treatment of stochastic phenomena. Among those important

notions, we focus on the concept of first passage time and stochastic averaging. We end this chapter

by introducing the particular case of neural oscillations. Chapter 2 presents the dynamics of Local

Field potential (LFPs) within an envelope-phase description starting from two linear coupled equa-

tions sustained by additive noise. We define the notion of a burst from the envelope dynamics alone

and compute the mean burst duration from a first passage time analysis. This chapter closes by

discussing the dynamics of the envelope in the parameter space and its ability to describe real brain

oscillations in healthy and diseased individuals as found in other studies.

In Chapter 3 we use different modeling of the noise which is assumed to have a synaptic origin

rather than a finite size-effect origin as in the previous Chapter. This leads to more realistic mod-

eling where Local Field potential is now described by linear equations sustained by multiplicative
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noise. An envelope-phase decomposition is performed and the resulting envelope dynamics is again

uncoupled from the phase dynamics. The first passage time analysis can also be done, but we do

not perform it here since it does not add anything new and unexpected. We discuss the additional

synchronization behavior with multiplicative noise compared to additive noise and its consequence

for disease dynamics. Chapter 4 is dedicated to the second question of the thesis related to the

ability of coupled oscillatory brain areas to communicate. This question is answered by investigat-

ing the phase-locking dynamics of two coupled networks each described by quasi-cycle oscillations.

We then extended the SAM from a single brain area as in chapters 2 and 3 to two coupled areas.

We obtained the envelope-phase dynamics for the coupled brain areas. This allows us to study the

phase-locking mechanisms of coupled quasi-cycles and to highlight the critical parameters, as the

propagation delay that enables such phase-locking. The SAM is studied more deeply in chapter

5. There, we include nonlinear terms to account for both quasi and noisy limit cycles in the same

dynamical equations instead of having separate dynamics for each regime. We also extended the

method to include more than 2 networks as in chapter 4. The new envelope-phase equations provide

a set of coupled SDE which can describe a large class of oscillatory phenomena in biology and other

disciplines across the deterministic threshold for oscillation onset.
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Chapter 1

Background

1.1 Stochastic Processes

1.1.1 Definitions and concepts

Many physical and biological systems do not evolve deterministically in time. Instead, their dynamics

are inherently random or stochastic. The times at which neurons in the brain emit action potentials

[92], the brain electrical activity of several species [215], the internal open and closed states on an

ion channel[29], and many chemical reactions are examples of stochastic processes [217]. In fact,

since the ambient environment is constantly fluctuating, many physical processes can be modeled

as stochastic processes [115]. This shows the importance of studying such processes. A stochastic

process can be defined as a process that evolves probabilistically in time. A system describing a

stochastic process possesses a time-dependent random variable. The outcomes of such a process are

not specified by its initial conditions as it is the case for deterministic one (except chaotic one). To

properly describe a stochastic system, we have to measure the values of its outcomes at each small

time increment.

In probability theory, we define a stochastic process as a family of random variables indexed by

the parameter time t. More precisely, a stochastic process is an indexed set X(t), t ∈ T of random

variables X(t) defined on the sample space Ω that includes all the possible outcomes of X(t). T

is the index set. T can be discrete or continuous. In this thesis, we focus on the case where T is

continuous. An element of Ω is called a random sample. A subset B of the sample space is called

a random event. The likelihood of the random event B is measured by the quantity P (B) known
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as the probability. We denote by x a particular outcome of X(t) at time t [115]. Similarly, the

set (x1, x2, x3, ..., xn) are possible outcomes X(t1), X(t2), ..., X(tn) of the stochastic process at times

(t1, t2, t3, ..., tn) respectively.

A random variable is characterized by its distribution functions and a pair of random variables by

their joint distribution function. The behavior of the stochastic process can be completely described

by the joint distribution function [207]

FX(x1, t1;x2, t2; ...;xn, tn) = PX(X1 ≤ x1;X2 ≤ x2; ...;Xn ≤ xn). (1.1)

The joint probability density is obtained as

pX(x1, t1;x2, t2; ...;xn, tn) =
∂nFX(x1, t1;x2, t2; ...;xn, tn)

∂x1∂x2, ..., ∂xn
. (1.2)

The mean value function µX(t) of the stochastic process X(t) is given as

µX(t) = E[X(t)] =

∫ ∞
−∞

xpX(x, t)dx. (1.3)

The autocorrelation function at two different time t1 and t2 is given by

RXX(t1, t2) = E[X(t1)X(t2)] =

∫ ∞
−∞

∫ ∞
−∞

xt1xt2pX(x1, t1;x2, t2)dx1dx2. (1.4)

The autocovariance function is similarly defined as

CXX(t1, t2) =E[(X(t1)− µX(t1))(X(t2)− µX(t2))]

=

∫ ∞
−∞

∫ ∞
−∞

(xt1 − µX(t1))(xt2 − µX(t2))pX(x1, t1;x2, t2)dx1dx2. (1.5)

If we consider the symmetry of the expectation integral we have the following relations

RXX(t1, t2) = RXX(t2, t1), CXX(t1, t2) = CXX(t2, t1). (1.6)

The variance function is obtained from the autocovariance function when t1 = t2 = t:
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σ2
X(t) = CXX(t, t) = E[(X(t)− µX(t))2]. (1.7)

The stochastic process X(t) is said to be strictly stationary if all its finite-dimensional probability

densities are invariant against a linear time-translation. This is expressed as:

pX(x1, t1;x2, t2; ...;xn, tn) = pX(x1, t1 + s;x2, t2 + s; ...;xn, tn + s). (1.8)

For the one-dimensional probability density, this becomes

pX(x, t) = pX(x, t+ s).

If we choose the particular value s = −t, the one-dimensional probability density is reduced to

pX(x, t) = pX(x, 0) = pX(x).

The probability density becomes time-independent. It follows that the corresponding mean value

function (if it exists) of the one-dimensional stochastic process is constant:

µX(t) = E[X(t)] =

∫ ∞
−∞

xpX(x, t)dx =

∫ ∞
−∞

xpX(x)dx = µ.

Moreover, the two-dimensional probability density becomes

pX(x1, t1;x2, t2) = pX(x1, t1 + s;x2, t2 + s).

Similarly, for the particular choice s = −t1, we have

pX(x1, t1 + s;x2, t2 + s) = pX(x1, 0;x2, t2 − t1) = pX(x1, x2, t2 − t1).

Then the two-dimensional probability density depends only on the difference t2 − t1:

pX(x1, t1;x2, t2) = pX(x1, x2, t2 − t1).
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The autocovariance takes the form

CXX(t1, t2) =E[(X(t1)− µ)(X(t2)− µ)]

=

∫ ∞
−∞

∫ ∞
−∞

(xt1 − µ)(xt2 − µ)PX(x1, x2, t2 − t1) (1.9)

=CXX(|t2 − t1|) (1.10)

=CXX(τ)

and also depends only on t2− t1. Similarly, the autocorrelation of a stationary stochastic process

also depends only on the difference t2 − t1 and can be written as RXX(t1, t2) = RXX(τ), where

τ = |t2 − t1|.

If one is interested in the frequency content of a stationary stochastic process X(t), the useful

quantity to investigate is the power spectral density function. We define it as the Fourier transform

of the stationary autocorrelation function

SXX(ω) =
1

2π

∫ ∞
−∞

RXX(τ)e−iωτdτ. (1.11)

The power spectral density function SXX(ω) exists when the autocorrelation function RXX(τ) is

absolutely integrable. The inverse fourier transform of SXX(ω) returns the autocorrelation function

RXX(τ) =

∫ ∞
−∞

SXX(ω)eiωτdω. (1.12)

The integral relations between the power spectral density and the autocorrelation functions are

called the Wiener-Khintchine relations. Some stochastic processes can be characterized by their

autocorrelation or their power spectral density functions. A stochastic process with a pronounced

concentration of its power spectral density function near a particular frequency is called a narrowband

process. If there is no single significantly dominating frequency and the power spectrum is distributed

over a wide band of frequencies, then the process is said to be a broadband process.
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1.1.2 Markov Processes

In nature, many physical and biological systems have a short memory of their past behavior. The

outcome in a near future is conditioned only by the most recent history behavior. The stochastic

processes of such systems are called Markov processes [207]. In other words, a stochastic process

X(t) is said to be Markovian if the knowledge of its present state is sufficient to predict its future

behavior without referring to any additional information on its history [115, 91]. Mathematically, let

tk be a sequence of times such that t1 < t2 < ... < tn and xn = X(tn). If the conditional probability

density satisfies the relation

pX(xn, tn|xn−1, tn−1; ...;x1, t1) = pX(xn, tn|xn−1, tn−1), (1.13)

then X(t) is said to be a Markov process. The probability of the event (xn, tn) conditional on the

past history (xn−1, tn−1; ...;x1, t1) depends only on the most recent past event (xn−1, tn−1). The

conditional probability p(xn, tn|xn−1, tn−1) is also known as the Transition probability. It completely

determines the evolution of the stochastic process X(t) provided some initial conditions. If the

process is stationary, the conditional probability density function only depends on the time difference

,

pX(xn, tn|xn−1, tn−1) = pX(xn, tn − tn−1|xn−1, 0). (1.14)

The joint probability of a Markov process can be expressed as

pX(xn, tn;xn−1, tn−1; ...;x1, t1) =

=pX(xn, tn|xn−1, tn−1)pX(xn−1, tn−1|xn−2, tn−2)...

pX(x2, t2|x1, t1)PX(x1, t1). (1.15)

The joint probability also depends on the conditional or transition probabilities pX(xi, ti|xj , tj).

Looking for analytical methods to compute the transition probability becomes more critical and will

be the focus of the next subsection.
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1.1.3 Diffusion Process: The Fokker Planck Equation

Let consider the three first events (x1, t1;x2, t2;x3, t3) of the stochastic process X(t). We define

pX(x3, t3|x1, t1) =

∫ ∞
−∞

pX(x3, t3;x2, t2|x1, t1)dx2

=

∫ ∞
−∞

pX(x3, t3|x2, t2;x1, t1)pX(x2, t2|x1, t1)dx2.

We introduce the Markov hypothesis,

pX(x3, t3|x2, t2;x1, t1) = PX(x3, t3|x2, t2).

The conditional probability pX(x3, t3|x1, t1) is reduced to

pX(x3, t3|x1, t1) =

∫ ∞
−∞

pX(x3, t3|x2, t2)pX(x2, t2|x1, t1)dx2. (1.16)

This relation is known as the Chapman-Kolmogorov equation. It relates all conditional probabilities

pX(xi, ti|xj , tj) to each other.

Let consider an arbitrary function Q(z). We assume that Q is also infinitely differentiable such

that,

lim
z→±∞

dnQ(z)

dzn
= 0 for any n > 0.

We consider the following integral

J =

∫ ∞
−∞

Q(z)
∂

∂t
pX(z, t|x0, t0)dz

=

∫ ∞
−∞

Q(z) lim
dt→0

1

dt

(
pX(z, t+ dt|x0, t0)− pX(z, t|x0, t0)

)
dz.

Here, t > t0. Following the Chapman-Kolmogorov equation we have the relation

pX(z, t+ dt|x0, t0) =

∫ ∞
−∞

pX(z, t+ dt|x, t)pX(x, t|x0, t0)dx.
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We perform the Taylor expansion of Q(z) around the point x and get the following relation

Q(z) = Q(x) + (z − x)Q
′
(x) +

(z − x)2

2
Q
′′
(x) + ... .

We define the following quantities

A(x, t) = lim
dt→0

1

dt

∫ ∞
−∞

(z − x)PX(z, t+ dt|x, t)dz

and

B(x, t) = lim
dt→0

1

dt

∫ ∞
−∞

(z − x)2PX(z, t+ dt|x, t)dz.

Setting dx = z − x, the above quantities A(x, t) and B(x, t) may be rewritten as

A(x, t) = lim
dt→0

1

dt
E
[
dX|X = x

]
and

B(x, t) = lim
dt→0

1

dt
E
[
dX2|X = x

]
.

Using all these relations and performing an integration by part, we obtain the following expression

0 =

∫ ∞
−∞

(
∂

∂t
pX +

∂

∂x

[
A(x, t)pX

]
− 1

2

∂2

∂x2

[
B(x, t)pX

]
+ ...

)
Q(x)dx.

Recall that Q(x) is an arbitrary function, therefore the partial differential equation governing

the dynamic of the conditional probability function is given as [207]

∂pX(x, t|x0, t0)

∂t
= − ∂

∂x

[
A(x, t)pX

]
+

1

2

∂2

∂x2

[
B(x, t)pX

]
− ... (1.17)

The Pawula theorem provides an answer to when to stop the series expansion in Eq.1.17.

It is stated that, in order for the probability density function pX(x, t|x0, t0) to be positive, the

series in Eq. 1.17 must stop after the first or second term. If it does not stop at the second term, it

must contain an infinite number of terms.

For the case where the stochastic process X(t) is a diffusion process, ie a process with continuous
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sample paths, it can be described by an Itô differential equation driven by Brownian motion. Then

the series expansion can be truncated at the second order. We then obtain the Fokker-Planck

Equation

∂pX(x, t|x0, t0)

∂t
= − ∂

∂x

[
A(x, t)pX

]
+

1

2

∂2

∂x2

[
B(x, t)pX

]
. (1.18)

The function A(x, t) is known as the drift term and describes the deterministic behavior of the

system at hand, while the function B(x, t) which is due to the stochasticity of the system is called the

diffusion term. For the case of an n-dimensional vector stochastic process X(t), the Fokker-Planck

equation can be obtained following the same steps as for the case of a one-dimensional stochastic

process. It is formulated as follows

∂pX(x, t|x0, t0)

∂t
= −

n∑
k=1

∂

∂xk

[
Ak(X, t)pX

]
+

1

2

n∑
j=1

n∑
k=1

∂2

∂xj∂xk

[
Bj,k(X, t)pX

]
. (1.19)

In contrast with the case of a one-dimensional stochastic process, the drift coefficients Ak(X, t)

are now elements of an n-dimensional drift vector A(X, t). The diffusion coefficients Bjk(X, t)

are coefficients of an n × n-symmetric diffusion matrix B(X, t). The complete determination of

the probability density function pX(X, t0|X0, t0) needs the specification of initial and boundary

conditions in the n-dimensional space spanned by the variables X. We note that the derivation of

the Fokker-Planck equations for one and n-dimensional stochastic vector process assumes that the

stochastic processes are Markov processes.

The corresponding Itô stochastic differential equation of the Fokker Planck equation (Eq.1.18)

can be written as

dX(t) =A(x, t)dt+
√
B(x, t)dW (t) (1.20)

X(t0) =x0.

The term W (t) is known as the Wiener process which is a mathematical formulation of the

Brownian motion which describe the rapid, perpetual, highly irregular motion of small particles
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suspended in a fluid [115]. It was named after the botanist Robert Brown who was the first to

observe the phenomenon and was theoretically formalized by Einstein [78]. The Wiener process is

a special stochastic process with the following properties:

• its mean is zero: E[W(t)]=0 ;

• its autocorrelation function is : E[W (t)W (s)] = min(t, s).

It can be shown that W (t) has independent increments over non-overlapping time intervals. The

increments of a Wiener process have zero mean:

E[W (t)−W (s)] = E[W (t)]− E[W (s)] = 0.

Let the differential increment of the Wiener process W(t) at time t be dW (t) = W (t+ dt)−W (t).

We then have the following relation

E[dW (t)dW (s)] =

 dt, t = s

0, otherwise .

The derivative of the Wiener process dW (t)
dt = ξ(t) is known as Gaussian white noise. It is a stationary

broadband process with zero mean and a delta distributed autocorrelation function. We can define

it by

• its mean, E[ξ(t)] = 0

• its autocorrelation, E[ξ(t)ξ(s)] = δ(t− s),

where the Dirac delta function is δ(t − s) = ∞ if t = s and δ(t − s) = 0 if t 6= s. From the

autocorrelation function, we can anticipate a constant power spectral density function for the white

noise for frequencies extending from zero to infinity. When the drift term of Eq.1.20 is a linear

function of the stochastic process with negative slope A(η, t) = − 1
τ η and the diffusion constant a

B(η, t) = D2, the stochastic differential equation Eq.1.20 is known as the Ornstein Uhlenbeck (OU)

process with the following properties [115]

• its mean is zero: E[η(t)] = 0.



1.1. STOCHASTIC PROCESSES 16

• its autocorrelation function is: E[η(t)η(s)] = τD2

2 exp
(
− 1

τ

∣∣t− s∣∣).
In contrast with the white noise which is delta correlated and therefore does not have any memory,

the OU process is exponentially correlated with a correlation time τ . The power spectrum of the OU

process can be easily obtained by taking the Fourier transform of its autocorrelation function. The

intensity Q of the OU process is obtained by integrating the autocorrelation function: the result is

Q = (τD)2. It can be shown that the white noise limit can be obtained if we keep Q constant while

decreasing the correlation time to zero. Explicitly the white noise is obtained when τ → 0, D →∞

such that Q = const [115].

So far, we have introduced the name Itô without explaining its meaning. We will give a brief

explanation. To solve the stochastic differential equation (Eq.1.20), one can try to perform a simple

integration with the usual rules of Riemann integration. However, the stochastic part of the SDE

is hard to interpret using the usual rules. In other words, the integral
∫ √

B(x, t)dW (t) is not

uniquely defined. Itô and Stratonovitch used different integration paths. Itô calculus approximates

the integral as the summation over small intervals of times [ti−1, ti] where the function B(x, t) is

evaluated at the left boundary of the time steps ti−1 whereas the Stratonovitch calculus evaluates

the same function at the center ti−1+ti
2 of the interval [207, 91, 115]. The two approximations are

correct in the mathematical sense but lead to different results and different calculus rules. However,

one can shift from one to the other type of SDE ( from Itô to Stratonovitch and vice versa) using a

correction known as Wong-Zakai correction. In this thesis, we will mainly use the Itô interpretation

of the SDE.

For an n-dimensional vector stochastic process, the Itô stochastic differential equation corre-

sponding to the Fokker-Planck equation 1.19 is given by

dX(t) =A(X, t)dt+
√
B(X, t)dW(t) (1.21)

X(t0) =X0

where W(t) is an n-dimensional vector Wiener process.
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1.1.4 First passage Time analysis

An important problem in stochastic dynamics is to know how long a homogeneous process described

by the Fokker-Planck equation returns outcomes in a certain range of the possible outcomes. In other

words, let suppose that the stochastic process X(t) describes the random position x of a particle.

The question will be to know how long the particle remains in a certain interval [a, b]. Put in other

words, we may ask how long it takes for the particle to leave for the first time the interval [a, b].

This is called the first passage time. The mean of this time is known as the mean first passage time.

Such a mean first passage time has a significant meaning in many physical and biological systems.

For example, the mean interspike interval of neurons in the brain can be interpreted as the mean

first passage time of the electrical voltage from a resting voltage to a threshold value.

Theoretically, the derivation of the formula to compute the mean first passage time involves

similar reasoning starting from the Chapman-Kolmogorov equation to obtain another version of the

Fokker-Planck equation known as the Backward Fokker-Planck equation. We will not review all

the steps of the derivation of this Backward equation. Instead, we simply state that it leads to the

following dynamics for the mean first passage time T (x) of a Markov stochastic process described

by the SDE Eq.1.20 [91]:

A(x)
dT (x)

dx
+

1

2
B(x)

d2T (x)

dx2
= −1, (1.22)

where T (x) is the mean first passage time. The exact calculation of T (x) depends on the boundary

conditions which themselves specify exactly the mean first passage time problem. The boundary

conditions are usually specified as absorbing or reflecting. An absorbing boundary condition means

that when the particle reaches such a boundary, it is absorbed and removed from the considered

interval where it was. If for example b is an absorbing boundary condition then T (b) = 0. In the

case where the boundary condition is reflecting, the particle is re-injected in the interval where it

was after hitting the boundary. At a reflecting boundary we then have dT (x)
dx

∣∣
x=a

= 0. The mean

first passage time is considered to be the moment of order 1 of T (x). Similarly, the moment of order

n can be obtained by solving the following second-order differential equation [91]
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A(x)
dTn(x)

dx
+

1

2
B(x)

d2Tn(x)

dx2
= −Tn−1(x) n > 1. (1.23)

Then, for a homogeneous Markov process described by an Itô differential equation, the mean first

passage time can be computed by solving the second-order differential equation Eq.1.22 with the

appropriate boundary conditions. However, the vast majority of physical and biological systems

cannot be described by Markov processes of the form Eq.1.20. Markov processes are the exception

and non-Markovian processes are what we are usually faced with in real situations. The concept of

first passage time as defined here no longer apply and needs to be redefined [216]. An important

path may be to first approximate such a Non-Markovian process to Markov process and then solve

the corresponding first passage time problem. Then, approximation methods to transform non-

Markovian to Markovian stochastic processes [187] are of great interest. In the following, we will

present one powerful method to approximate non-Markovian stochastic processes by Markovian ones.

1.1.5 Stochastic Averaging Method

We consider the process X the dynamics of which can be separated in two parts: a deterministic

ε2F and a stochastic εG dynamics. The process X is therefore a stochastic process which can be

described by a stochastic differential equation in the following form:

dX

dt
= ε2F(X, t) + εG(X, t,Y(t)). (1.24)

In this stochastic differential equation, X is an n-dimensional vector stochastic process and Y(t)

a p-dimensional vector stochastic process that drives the system. Let us assume that the elements

of Y(t) are broadband processes with zero means. Further, the vectors F and G verify certain

conditions [133] related to the measurability of the stochastic process and the boundedness of their

partial derivatives. Then X may be uniformly approximated over a time interval of order O(ε−1)

by an n-dimensional Markov process [6, 187]:

dX(t) = ε2m(X)dt+ εh(X)dW(t). (1.25)
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Here m(X) is the new drift vector, while h(X) is the new diffusion matrix. This equation must be

interpreted in the Itô sense. W(t) is an n-dimensional vector of independent Brownian motions.

The limit theorem in [133] specifies that X converges weakly to a Markov process as ε → 0. The

quantities m and h are defined as [187]:

m = T av
(
E
{
F
}

+

∫ 0

−∞
E

{(
∂G

∂X

)
t

(
G
)
t+τ

}
dτ

)
(1.26)

hh
′

= T av
(∫ ∞
−∞

E
{

(G)t(G
′
)t+τ

}
dτ

)
, (1.27)

where (‘) denotes transposition. In the explicit form [6] this leads to

mi(X) =T av
(
E
{
Fi
}

+
∑
j

∫ 0

−∞
E

{(
∂Gi
∂Xj

)
t

(
Gj
)
t+τ

}
dτ

)
(1.28)

[hh
′
]ij =T av

(∫ ∞
−∞

E
{

(Gi)t(Gj)t+τ
}
dτ

)
, i, j = 1, n. (1.29)

For illustration, let us consider the 2-dimensional case n = 2 , we have the following vectors

X =

X1

X2

 ,F =

F1

F2

 and G =

G1

G2

. Then Eq.1.28 leads to

m1(X) = T av
(
E
{
F1(X, t)

}
+

∫ 0

−∞
E

{
∂G1(t)

∂X1
G1(t+ τ)

}
dτ +

∫ 0

−∞
E

{
∂G1(t)

∂X2
G2(t+ τ)

}
dτ

)
,

m2(X) = T av
(
E
{
F2(X, t)

}
+

∫ 0

−∞
E

{
∂G2(t)

∂X1
G1(t+ τ)

}
dτ +

∫ 0

−∞
E

{
∂G2(t)

∂X2
G2(t+ τ)

}
dτ

)
.
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The coefficients hij of the diffusion matrix h are obtained from Eq.1.29 as

[hh′]11 = h2
11 + h2

12 = T av
(∫ ∞
−∞

E
{
G1(t)G1(t+ τ)

}
dτ

)
[hh′]12 = h11h21 + h12h22 = T av

(∫ ∞
−∞

E
{
G1(t)G2(t+ τ)

}
dτ

)
[hh′]21 = h11h21 + h12h22 = T av

(∫ ∞
−∞

E
{
G2(t)G1(t+ τ)

}
dτ

)
[hh′]22 = h2

21 + h2
22 = T av

(∫ ∞
−∞

E
{
G2(t)G2(t+ τ)

}
dτ

)
.

The coefficients hij can be obtained by solving the above 4-dimensional nonlinear system of equa-

tions. In the case where [hh’] is a diagonal matrix, an easy solution is obtained as

h12 = h21 = 0

h2
11 = T av

(∫ ∞
−∞

E
{
G1(t)G1(t+ τ)

}
dτ

)
h2

22 = T av
(∫ ∞
−∞

E
{
G2(t)G2(t+ τ)

}
dτ

)
.

In all the equations Eqs.1.26,1.27,1.28,1.29 above, E(.) denotes the expectation over the stochas-

tic processes and T av is a time-averaging operator:

T av
(
.
)

= lim
T→0

1

T

∫ t0+T

t0

(
.
)
dt

in which the integration is performed over t. When evaluating the expectations in equations 1.27

and 1.26 or 1.29 and 1.28 , the elements of X are considered as constants. When the expected

quantities in equations 1.27 and 1.26, or 1.29 and 1.28 are periodic of period T0, T av becomes an

averaging over one period:

T av
(
.
)

=
1

T0

∫ t0+T0

t0

(
.
)
dt ,

and the result will be independent of t0.

The step-by-step mathematical reasoning and details about the stochastic averaging method can

be found in [203] and [133]. In this thesis, we will be mostly interested in its direct application. The
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stochastic averaging method will be used in all the chapters and will be our main analytical tool.

For simplicity, we will omit the small parameter ε in the formulation but we will implicitly consider

that the deterministic and stochastic functions F and G are of orders O(ε2) and O(ε) respectively.

Similarly, the function m and the coefficients of the matrix h will be of orders O(ε2) and O(ε)

respectively.

1.2 Stochastic oscillations or rhythms

Despite the fact that many physical, biological, and physiological processes can be considered as

stochastic processes, they still bear a strong regular behavior. Among such stochastic processes

with dominant regular behavior, we have stochastic oscillations or rhythms. An oscillation in a

deterministic sense describes the repetitive and regular variation in time of a given quantity about

some mean value. The time after which the quantity timeseries repeats itself is constant and known

as the period. The amplitude of the oscillation is a constant value usually measured as the maxi-

mum variation of the quantitative measure. This definition of an oscillation is an idealization. In a

real situations, oscillations are never perfectly regular: they bear stochasticity. The amplitude and

the period are no longer constant but vary from cycle to cycle. The regular behavior of an oscilla-

tion defined previously disappears. We then have stochastic oscillations which are now considered

stochastic processes. The electrical activity of the brain which reflects the rhythmic collective and

coordinated spiking of several neurons, the almost 24-hour cycle shown by physiological processes

known as circadian rhythm or cardiac rhythm are examples of common stochastic oscillations inside

every human being. Other stochastic oscillations observed in nature include earthquake vibrations

and the variation in time of the number of prey and predators in an eco-system just to mention a

few. In Figs. 1.1, we have shown two different types of stochastic oscillations. The one in Fig. 1.1-A

is recorded from the brain of an anesthetized rat. The others Fig. 1.1-B are circadian oscillations

exhibited by two cells.

1.2.1 Stochastic description

Stochastic oscillations like many other stochastic processes can be described by a general non-Markov

stochastic differential equation of the form Eq. 1.24 (for simplicity we have dropped ε),
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Figure 1.1: Two types of ”real” stochastic oscillations. (A,Top) Stochastic oscillations
recorded from the brain of an anesthetized rat, taken from [9]. (Bottom, Left) Au-
tocorrelation function decreases quickly. (Right) Cycle-to-cycle amplitude and period
with their corresponding histogram. (B). Stochastic circadian rhythm. The figure was
taken from [222].
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dX

dt
= F(X, t) + G(X, t,Y(t)) (1.30)

where X describes the stochastic n-dimensional oscillatory vector process and Y(t) is a broadband

input process. In Figs. 1.1, we can observe that, despite the fact that the two oscillations (Figs.

1.1-(A, B)) are stochastic, some look more regular than others. In fact, stochastic oscillations in

Fig. 1.1-A seem less regular or more stochastic than those in Fig. 1.1-B. What are the origins of

such apparent differences? And how can we understand the dynamics of such oscillations from a

theoretical point of view? To answer those questions it is of interest to investigate the deterministic

behavior of Eq. 1.30 to better appreciate the effect of the noise on these dynamics.

1.2.2 Deterministic dynamic

The corresponding deterministic dynamic of Eq. 1.30 is obtained by setting G = 0,

dX

dt
= F(X, t). (1.31)

The behavior of the former oscillatory stochastic process described by Eq. 1.30 and reflected in

Fig. 1.1 depends strongly on the dynamics of the corresponding deterministic dynamic Eq. 1.31.

The study of this dynamic relies on the use of techniques of nonlinear dynamics [205]. We start with

the stability analysis.

Linear stability analysis

The first step towards understanding the behavior is to study the stability of its fixed points. They

are defined as specific points where the system is static ie where it does not evolve with time. Such

points are solutions of the time-independent Eq. 1.31 given as

F(X0) = 0, (1.32)

where X0 is the specific value (or values) of X where the condition Eq. 1.32 is met. The behavior of

the time-dependent Eq. 1.31 depends on the stability of the fixed point X0. To study the stability

of the fixed point, it suffices to examine how an infinitesimal perturbation δX around the fixed point
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behaves. For that, we seek for solution of Eq. 1.31 in the form X∗ = X0 + δX. After a Taylor

expansion truncated at the first order we get:

d(X0 + δX)

dt
= F(X0 + δX)

dX0

dt
+
dδX

dt
= F(X0) +

(
∂F

∂X

)
X0

δX +O(δX)2.

Taking in account the fixed point condition Eq. 1.32, we get the following dynamical system for the

perturbation:

dδX

dt
=

(
∂F

∂X

)
X0

δX. (1.33)

Here,

(
∂F

∂X

)
X0

is the so-called Jacobian matrix evaluated at the fixed point X0. More precisely,

let writes X0, X, δX and F in the following matrix form:

X0 =



X01

X02

...

X0n


, X =



X1

X2

...

Xn


, δX =



δX1

δX2

...

δXn


and F =



F1

F2

...

Fn


.

The Jacobian matrix then reads:

(
∂F

∂X

)
X0

=



∂F1

∂X1

∣∣
X=X0

∂F1

∂X2

∣∣
X=X0

· · · ∂F1

∂Xn

∣∣
X=X0

∂F2

∂X1

∣∣
X=X0

∂F2

∂X2

∣∣
X=X0

· · · ∂F2

∂Xn

∣∣
X=X0

...
...

. . .
...

∂Fn
∂X1

∣∣
X=X0

∂Fn
∂X2

∣∣
X=X0

· · · ∂Fn
∂Xn

∣∣
X=X0


.

If the perturbation δX vanishes with time, then the fixed point X0 is asymptotically stable. If

instead, the perturbation grows infinitely with time, the fixed point X0 is said to be unstable. An

appropriate way to solve Eq. 1.33 is to look for a solutions in the exponential form,

δX(t) = B̃eλt. (1.34)

The parameter λ shows the rate of growth or decay of the perturbation δX and B̃ represents the

complex amplitude of the perturbation. To find appropriate conditions on λ and B̃, we substitute
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the trial solution Eq. 1.34 inside Eq. 1.33 and obtain:

(
∂F

∂X

)
X0

B̃ = λB̃. (1.35)

In the language of linear algebra, if B̃ is an eigenvector and λ an eigenvalue of Eq. 1.35, then Eq.

1.34 is an eigen-solution. This leads to the following condition to obtain a non-trivial solution to

Eq. 1.35 :

∣∣∣∣( ∂F

∂X

)
X0

− λIn

∣∣∣∣ = 0. (1.36)

The symbol || means determinant, Eq. 1.36 is known as the characteristic equation and In is an

n× n identity matrix. Put in a matrix form the characteristic equation becomes

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂F1

∂X1

∣∣
X=X0

− λ ∂F1

∂X2

∣∣
X=X0

· · · ∂F1

∂Xn

∣∣
X=X0

∂F2

∂X1

∣∣
X=X0

∂F2

∂X2

∣∣
X=X0

− λ · · · ∂F2

∂Xn

∣∣
X=X0

...
...

. . .
...

∂Fn
∂X1

∣∣
X=X0

∂Fn
∂X2

∣∣
X=X0

· · · ∂Fn
∂Xn

∣∣
X=X0

− λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (1.37)

This determinant leads to a polynomial of order n in λ. The n solutions of the characteristic

equation Eq. 1.37 are the eigenvalues of the system Eq.1.31. In general, the eigenvalues can be

real or complex. For an oscillatory behavior, the dimension of the system should be greater than 1

(n ≥ 2), oscillations do not exist for a one-dimensional system. Moreover, the spectrum of eigenvalues

should show complex conjugates eigenvalues since the characteristic equation has real coefficients.

The behavior of the oscillatory stochastic system is related to those eigenvalues as we will show

below.

Limit cycle

Let consider the case where the dimension of the system is even, n = 2 × k. Moreover, the n-

dimensional system is made of k 2-dimensional subsystems. This may be the case where several 2-

dimensional subsystems are connected through coupling coefficients. In such a case, the eigenvalues

occur in complex conjugate pairs. The stability of the perturbation Eq. 1.34 depends on the
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Figure 1.2: Example of oscillations generated by a limit cycle. (A) Deterministic oscillations
generated by a two-dimensional model with the coefficient a = 31.4 and f(x) = 1/(1 +
e−x). The color blue corresponds to the variable X1 and the color red with X2. ((B))
The corresponding limit cycle attractor. We observe how the trajectory spirals towards
a closed orbit. For this example, the system exhibits a single pair of complex conjugate
eigenvalues with real positive part Re(λ) = 0.011. Results are obtained using numerical
simulations of Eq. 1.31 with the specific two-dimensional function F = [F1, F2]T specified
in Eqs. 1.38. A simple Euler integration scheme was used with time step dt=0.025 ms.

eigenvalue with the largest real part. If the largest real part is positive, then the perturbation δX

grows infinitely in an oscillatory way. However, if we take into account the full nonlinear system Eq.

1.31, we can see regular oscillations with bounded amplitudes. Then, the perturbation saturates on

an attractor called a limit cycle. This is the case of interest in Chapter 5 of this Thesis. The notion

of the limit cycle is more accessible in two dimensions. It represents an isolated closed trajectory.

The word isolated here refers to the fact that neighboring trajectories spiral towards or away from

the limit cycle. We will focus on the former ”stable” case where nearby trajectory spiral towards

a single limit cycle and will avoid other complex situations which involve for example co-existing

stable and unstable limit cycles. Limit cycles are important in many areas of science. They represent

self-sustained oscillations, ie oscillations that are not induced by any external periodic force. For
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illustrative purposes, we consider a two-dimensional system which exhibits a limit cycle attractor.

The deterministic function F is specified as follows:

F(X1, X2) =

F1(X1, X2)

F2(X1, X2)

 =

−0.1X1 + (1−X1)f(aX1 − 26.3X2 − 3.8)

−0.2X2 + 2(1−X2)f(32X1 − 1.3X2 − 8)

 , (1.38)

where the function f(x) = 1/(1+e−x). The factor (1−X)f(X) in these equations is inspired from the

Wilson-Cowan neural system that we study throughout this thesis. Numerical simulations show that

the variables X1 and X2 oscillate Fig. 1.2-(A). The corresponding attractor is a close orbit for the

specific value a = 31.4 as shown in Fig. 1.2-(B). The corresponding complex conjugate eigenvalues

have a positive real part Re(λ) = 0.011. However, if for example the value of the coefficient a is

lowered to a = 25.4, the two-dimensional model no longer exhibit self-sustained oscillations. In fact,

oscillations are short-lived and disappear after a short transient Fig. 1.3-(A). The corresponding

attractor is no longer a limit cycle but a stable fixed point Fig. 1.3-(B). The transition from the

fixed point to the limit cycle happens when the parameter a is increased and crosses a critical

value a∗. At the same time, the real part of the complex conjugate eigenvalue changes its sign

from negative to positive. The change of the behavior of a system when a critical parameter is

crossed is called a Bifurcation. For an oscillatory process, the emergence of a long-lived oscillation

when a parameter is crossed is known as a Hopf bifurcation. There exist two principal types of

Hopf bifurcation: subcritical and supercritical. Here, we will focus on the simpler supercritical Hopf

bifurcation which happens when a stable focus loses its stability and gives birth to a small-size limit-

cycle, the amplitude of which increases with the bifurcation parameter approximately as
√
a− a∗,

where a∗ is the value of the parameter at which the bifurcation occurs.

Deterministic systems with delay have infinite dimension. They can therefore exhibit a stable

fixed point and a transition towards a limit cycle via a Hopf bifurcation. The analysis done for the

case of two-dimensional system is valid for the dynamics with delay. However, the stability of the

delayed dynamics is investigated by looking at the sign of the eigenvalue with the maximal real part.

Deterministic oscillations in the absence of any time-dependent external signal are the conse-

quence of the presence of a limit cycle generated by the system. Now, let’s suppose that the deter-

ministic system is coupled to its random environment. Taking into account the external stochastic
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Figure 1.3: Damped oscillations when the system has complex conjugate eigenvalues
with negative real part. (A) Deterministic damped oscillations generated by a two-
dimensional model with the coefficient a = 25.4 and f(x) = 1/(1 + e−x). The color
blue corresponds to the variable X1 while the color red matches with X2. (B) The
corresponding stable focus attractor. We observe how the trajectory spirals towards a
fixed point. For this example, the system exhibits a single pair of complex conjugate
eigenvalues with real negative part Re(λ) = −0.0321. Results are obtained using nu-
merical simulations of Eq. 1.31 with the specific two-dimensional function F = [F1, F2]T

specified in Eqs. 1.38.

effects results in a system described by the stochastic differential equation Eq. 1.30. The behaviors

of the corresponding stochastic processes X1 and X2 depend on the associated deterministic system

Eq. 1.31. In other words, the fact that the stochastic processes look like Fig. 1.1 -(A) and Fig.

1.1-(B) depends on the fact that the attractor of the associated deterministic system is a stable fixed

point or a stable limit cycle.

1.2.3 Types of stochastic oscillations

Having described the deterministic behavior of an oscillatory system. We now assume that it is

coupled to random forces from the environment. As in the previous section, we consider a reduced

two-dimensional system. The expression of the stochastic function G(X,Y(t)) in Eq. 1.30 is given
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as

G(X1, X2, Y1(t), Y2(t)) =

G1(X1, X2, Y1(t), Y2(t))

G2(X1, X2, Y1(t), Y2(t))


=ε

 1
2Y1(t)

√
0.1X1 + (1−X1)f(aX1 − 26.3X2 − 3.8)

Y2(t)
√

0.2X2 + 2(1−X2)f(32X1 − 1.3X2 − 8)

 . (1.39)

This is an example where the strength of the noise is dependent on the state of the system. Here,

the stochastic processes Y1(t) and Y2(t) are two independent Gaussian white noises with zero mean

previously defined in section STOCHASTIC PROCESSES (section 1.1), and the parameter ε

measures the strength of the stochastic function G. We will choose the value of ε = 10−2 throughout

this chapter. We now investigate the behavior of the stochastic process Eq. 1.39 depending on the

fact that its corresponding deterministic system admits a stable limit cycle or a stable fixed point

(stable focus). In other words, what becomes the regular dynamic of the oscillations observed when

a stable limit cycle is present? What happens to the regular oscillating dynamics in the presence of

noise?

Stochastic limit-cycle oscillations

We first consider the case where the deterministic dynamics exhibit a stable limit cycle attractor.

Oscillations of the two variables are regular as shown in Fig. 1.2. We now coupled such deterministic

dynamics to the stochastic function G. This could mimic the case of a population of neurons coupled

to their noisy-environment, or the finite-size fluctuations in the activity of the population. The state

variables X1(t) and X2(t) are now stochastic processes and may be described by the properties of

stochastic processes mentioned in the previous section. For the sake of illustration, we will proceed

by numerical simulations to observe the behavior of the stochastic processes X1(t) and X2(t). The

results of such simulations are shown in Figs. 1.4.

We observe in Fig. 1.4-(A) that the effect of the stochastic part is to create slightly fluctuating

oscillations compared to the former deterministic ones in Fig. 1.2-(B). However, the corresponding

attractor is a stochastic limit cycle where the trajectory spirals randomly towards a closed orbit. We

call these oscillations stochastic limit cycle oscillations. A visual inspection leads to the assertion
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Figure 1.4: Stochastic behavior of oscillations when the underlying deterministic sys-
tem exhibits a stable limit cycle. (A) Stochastic oscillations generated by a two-
dimensional model with the coefficient a = 31.4 and f(x) = 1/(1 + e−x). The color
blue corresponds to the variable X1 and the color red with X2. (B) The corresponding
stochastic limit-cycle attractor. We observe how the trajectory spirals stochastically
towards a closed orbit. Results are obtained using numerical simulations of Eq. 1.30
with the deterministic function F = [F1, F2]T specified in Eqs. 1.38 and the stochastic
function G = [G1, G2]T in Eqs. 1.39. The equations were integrated numerically using
the Euler-Maruyama technique with time-step dt=0.025 ms.

that stochastic limit cycle oscillations generated by our stochastic differential equations may be of

similar nature to stochastic oscillations observed in vivo and reported in Fig. 1.1-(B). This suggests

that stochastic limit cycle oscillations modeled mathematically here could be observed in real data

from living cells.

Quasi-cycle or noise-induced oscillations

Now let us investigate what happens if the deterministic dynamics spiral towards a stable fixed

point as reported in Fig. 1.3. For this case the parameter a is shifted to a lower value a = 25.4.

We performed numerical simulations including the stochastic part G described in Eqs. 1.39 and

the full dynamics of the two processes X1 and X2 are described by Eqs. 1.30. The results of the
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Figure 1.5: Stochastic behavior of oscillations when the deterministic system exhibit a
stable limit cycle.(A): Stochastic oscillations generated by a two-dimensional model
with the coefficient a = 31.4 and f(x) = 1/(1 + e−x). The color blue corresponds to the
variable X1 while the color red matches with X2. (B): The corresponding stochastic
limit-cycle attractor. We observe how the trajectory spirals stochastically towards a
closed orbit. Results are obtained using numerical simulations of Eq. 1.30 with the
specific two-dimensional deterministic function F = [F1, F2]T specified in Eqs. 1.38 and
the stochastic function G = [G1, G2]T in Eqs. 1.39.

simulations show that oscillations are now sustained. The dampened oscillations observed when the

dynamics were deterministic Fig. 1.3-(A) now persist Fig. 1.5-(A). This suggests that oscillations

are noise-induced since they do not survive in the deterministic case. The corresponding attractor

Fig. 1.5-(B) is called a quasi-cycle.

The resulting oscillations are known as quasi-cycle oscillations or noise-induced oscillations.

The irregular behavior of such oscillations is more pronounced than what is seen for stochastic limit-

cycle oscillations. Such irregular or stochastic behavior is observed in many recorded data. For

example, oscillations recorded from the brain of a rat and presented in Fig. 1.1-(A) exhibit a similar

irregular behavior seen in the noise-induced oscillations generated by the stochastic differential

equations in Fig. 1.5-(A). Thus quasi-cycle oscillations may also be observed in living systems.
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Differences between noise-induced oscillations and stochastic limit cycle oscillations may be made

by characterizing their apparent ”irregular behavior” ie the variation of their amplitude, their

cycle to cycle period (or frequency), and the time instances at which peaks appear, and the phase.

Those characteristics may be crucial to discriminate the two types of stochastic oscillations which

may have different roles and functions. However, one should mention that such discrimination is

only possible when the stochastic function G is a weak function such that it represents the weak

coupling of the deterministic dynamics to its random environment. In the situations where the

stochastic function G is strong ie of similar size to the deterministic dynamics, it may be difficult

to discriminate between the two oscillation types at least by characterizing their components like

the amplitude, the frequency, and the phase. The situations with strong stochastic function G

need specialized techniques and we will not focus on those cases in this thesis. However, we will

pay special attention to the components of a stochastic oscillation like its amplitude, phase, and

frequency. In chapter 2, we use the term Transient synchrony regime to refer to the Quasi-cycle

regime.

1.2.4 Components of a stochastic oscillation

A better way to characterize a stochastic oscillation and maybe to discriminate whether it belongs to

the class of quasi-cycle or stochastic limit cycle oscillations is to extract its cycle-to-cycle amplitude,

phase and frequency processes which may themselves be stochastic processes .

The envelope

For the stochastic dynamics considered in Fig. 1.4-(A) and Fig. 1.5-(A) the cycle-to-cycle amplitude

as defined in Fig.1.1-(A) is not regular. We observe a tremendous variation for the case of noise-

induced oscillations Fig. 1.5-(A) while the variation is less pronounced for the case of stochastic

limit cycle oscillations in Fig. 1.4-(A). The process connecting the peaks of the cycle-to-cycle

amplitude is called the envelope process. The study of the dynamics of the envelope process may

give meaningful information about the dynamics of the oscillatory process itself. The appropriate

quantities to fully capture the envelope dynamics are the stochastic deviations from the fixed point

δX1 = X1 − X01 and δX2 = X2 − X02. We consider the dynamics of such deviations beyond the
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Figure 1.6: Envelope description of the stochastic oscillatory processes for both quasi and
stochastic limit cycles regimes. (A) The corresponding deterministic dynamic lies
in the limit cycle regime a = 31.4. The blue curve is the deviation process δX1(t) from
the fixed point X10 and is also a stochastic process. The red dots represent the peaks of
the cycle-to-cycle amplitude fluctuations of δX1(t). The black curve connecting the red
dots is defined as the envelope of the stochastic limit cycle oscillations. (B) Quasi-cycle
regime for a = 25.4. The deterministic dynamics exhibit a damped oscillation towards
the stable fixed point. The black curves connecting the red dots is defined as the envelope
process of the quasi-cycle oscillations. The red dots were obtained by using the findpeak
Matlab function and the envelope black curves are obtained by a third-order polynomial
interpolation through these red dots.

deterministic and linear analysis performed so far. We can compute them numerically and extract

their envelope processes by connecting the cycle-to-cycle peak amplitudes. For illustrative purposes,

we only consider the deviation from the process X1, however similar behavior also happens for the

process X2.

The envelope dynamic is also a stochastic process but no longer oscillatory. Its dynamics differ

depending on whether the oscillatory stochastic process is a stochastic limit cycle oscillation or a

quasi-cycle oscillation. For the stochastic limit cycle oscillation Fig. 1.6-(A) the deviation dynamic

is not symmetric about zero. The peaks of the cycle-to-cycle oscillation (red dots) have high values

and the corresponding envelope process (Black curve) does not exhibit strong variation. In contrast,
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for the quasi-cycle oscillation Fig. 1.6-(B) the deviation process is more symmetric about zero.

The peaks (red dots) have weaker values and the associated envelope process (black curve) exhibits

strong variations from one peak to the next. The dynamics of the envelope process is therefore an

important marker that can be used to characterize stochastic oscillations. This method results in

smooth curves that only connect peaks. Even if such curves already give the essential meaning of

the envelope processes, other definitions can be used. A common definition of the envelope process

is based on the Hilbert transform. In mathematics, the Hilbert transform is a linear operation

which takes a function x(t) and returns its corresponding analytic representation x(t) + jH[x](t).

The imaginary part H[x](t) of the analytic representation is defined as the convolution of the real

function x(t) with the function 1
πt known as the Cauchy kernel. The convolution integral defining

H[x](t) is an improper integral. It does not always converge due to the presence of the term 1
t which

is not integrable across t = 0. For this reason, the Hilbert transform is interpreted in the Cauchy

principal value sense. More precisely we have the following:

H[x] =
1

π
P

∫ ∞
−∞

x(τ)

t− τ
dτ (1.40)

where P signifies the Cauchy principal value. The envelope process of the function x(t) is then

defined as

Env(x)(t) =
√
x(t)2 +H2[x](t). (1.41)

The envelope defined in Eq.1.41 is the magnitude of the analytic signal. As in Fig. 1.6, it

captures the slowly varying features of the signal x(t). In this thesis, we will mostly apply the

Hilbert transform to numerically extract the envelope of the stochastic processes of interest. The

envelopes extracted from the Hilbert transform are not smoothed curves (as in Fig.1.6) but show

strong stochasticity as we will see in the main chapters of this thesis.

The Phase

As we have illustrated in Figs. 1.6, the envelope processes describe the slowly varying features of the

stochastic oscillatory processes both in the limit cycle and quasi-cycle regimes. However, this is not
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enough to describe the processes. Another important quantity of an oscillatory process is its phase.

Imagine a point on the limit cycle orbit, and a coordinate frame with origin at the center of the

orbit. This point can be identified in polar coordinates by its amplitude r and its angle θ. In this

illustration, the point is considered as the oscillatory process and the angle represents its phase. For

a limit cycle, with constant amplitude r, the phase alone defines the state of the oscillatory system.

This description assumes that the phase is a deterministic concept. For stochastic oscillatory systems,

the phase is not well defined, as the notion of a unique closed orbit is ambiguous. However, recent

studies have attempted to give alternative definitions of the phase in terms of Kolmogorov Backward

operator [209] and mean first passage times [197]. Another practical way to extract the phase of

a stochastic oscillatory system involves numerically computing the Hilbert transform. The phase is

usually defined through the Hilbert transform as the argument of the corresponding analytical signal

Arg(x)(t) = arctan

[
H[x](t)

x(t)

]
. (1.42)

In contrast to the slow features described by the envelope process, the phase contains the high-

frequency information about the oscillatory process of interest. The physical meaning of the phase

is a measure of the number of periods spanned by the process. Its actual value is usually scaled in

radians by multiplication by 2π. For example, a phase of 2π radian signifies that the process has

completed a full period of an oscillation and a phase of π radian is attained when the process has

accomplished only half of the period oscillation. This illustration of course considers a phase of 0

radian as the beginning of an oscillation period and the phase of 2π radian as its end. However,

another illustration may consider −π as the start of the oscillation period and π as its end. For our

oscillatory stochastic process of interest δX1, we have illustrated the notion of phase by numerical

extraction from the Hilbert transform. The phase time series are the black curves in Figs. 1.7 (A-B)

denoted θ(t). The analytic signal returns a phase defined from −π to π radians, the value −π radian

corresponds to the beginning of an oscillation period which matches with a trough of δX1(t), and

the value π corresponds to the end of the oscillation period which coincides with the next trough

of δX1(t). The phase of the stochastic limit cycle oscillation Fig.1.7 (A) is regular and does not

depend on the cycle-to-cycle amplitude values (red dots). However, for the quasi-cycle oscillations,
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Figure 1.7: Phase description of the stochastic oscillatory processes for the quasi- and
stochastic limit cycle regimes.(A) The corresponding deterministic dynamic lies in
the limit cycle regime a = 31.4. The blue curve is the deviation process δX1(t) from
the fixed point X10. The black curve represents the phase θ of the stochastic process
δX1(t). Red dots are the peak values of the cycle-to-cycle amplitude of the oscillation.
We define by Ti the time interval between the peaks at time ti and ti+1. (B) The
corresponding deterministic dynamics is a damped oscillation towards the stable fixed
point a = 25.4, in this quasi-cycle regime. The black curve is the phase of the deviation
process δX1(t). (C) Slow phase obtained from the fast phase θ1(t) in (A). (D) Slow
phase corresponding to the quasi-cycle oscillations in (B). All the curves in black were
obtained by using the Hilbert transform in Matlab.

Fig. 1.7 (B), the phase is a stochastic signal which seems to be more irregular when the cycle-to-

cycle amplitudes (red dots) have weak values. This suggests that the phase could be modulated by

the envelope process when oscillations are quasi-cycles; this property will be demonstrated in this

thesis.

An alternative definition of the phase involves two components: a fast component that linearly

increases at a constant rate, and a slow component which represents the deviation from this fast and

regular component. In this latter definition, the term phase then refers to the slow component, since

the fast part is regular and is known from the constant rate of its variation. We mathematically

define this latter phase using the relation
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θ(t) = ω0t+ φ(t), (1.43)

where θ(t) is the fast phase extracted through the Hilbert transform and φ(t) the corresponding

slow phase. The parameter ω0 is called the angular frequency and can be computed from the

stochastic process of interest. It will be subject to deeper analysis in the next section. We represent

this latter slow phase for our stochastic process δX1(t) for both the stochastic limit-cycle oscillation

in Fig. 1.7-(C) and the quasi-cycle oscillation in Fig. 1.7-(D). For the first regime, the variation

of phase φ1(t) is almost regular. However, for the second regime, the phase φ1(t) shows strong

fluctuations mostly corresponding with weak values of the cycle-to-cycle amplitudes (red dots) and

therefore of the envelope process. For these slow phases, we choose to change the references and

consider the phase now between 0 and 2π radian. Of course, this is just a choice for illustrative

purpose and one can bring back the range from −π to π as for the fast Hilbert phases. The two

definitions of the phase can be used equally since we can easily shift from one to the other. In many,

studies the Hilbert phase is used since it directly relates to the oscillation.

For limit cycle and weakly stochastic limit cycle oscillations, the Hilbert phase can be used alone

to represent the dynamic of the process, avoiding in this way the slow envelope. This makes sense

because the envelope is then almost constant and does not give any additional information about

the process than its constant value. The phase alone can then accurately describe this class of

oscillations. An illustration is seen in Fig. 1.7-(A) where the Hilbert phase is regular and describes

pretty well the start and the end of an oscillation and can be used alone to describe the process

δX1(t) if we can assume an almost constant value for its envelope. However, the slow phase φ1(t)

of the stochastic process can also be necessary in many situations. For quasi-cycle oscillations, this

slow phase seems to bear meaningful information since its variation is connected to the envelope

process. Also, the Hilbert phase cannot be used alone to describe the process as in the limit cycle

regime. The slow feature of the envelope is tied to the slow feature of the phase φ1(t). Another

advantage of the slow phase φ1(t) is the fact that it is more suitable for some analytical operations

such as the averaging procedure which usually requires a slow envelope and phase. We will mostly

use this second definition of the phase in Eq. 1.43 and take advantage of its suitability for averaging

methods.



1.2. STOCHASTIC OSCILLATIONS OR RHYTHMS 38

The frequency

We have defined the phase as an essential variable describing the state of a periodic system during

an oscillation period. To measure ”the velocity” of the phase e.g how fast the phase variable evolves,

e.g. another quantity known as the instantaneous frequency is used [20]. It measures the variation

of the phase at each instant of time t and is mathematically defined as the temporal derivative of

the phase. The instantaneous frequency of the stochastic process δX1(t) is then expressed as

f(t) =
1

2π

dθ1(t)

dt
. (1.44)

The corresponding signal f(t) computed through θ1(t) is a stochastic process or not, depending

on whether the corresponding phase is stochastic or not. The instantaneous frequency may be

characterized by its mean value called the frequency defined as:

f0 = E[f(t)]. (1.45)

The mean frequency or frequency is an essential marker of an oscillatory process and measures the

mean number of oscillation cycles per unit time. For deterministic processes, the instantaneous

frequency coincides with its mean. The main concern for stochastic processes is to extract their

frequency. The frequency of a stochastic oscillation can be computed in several ways. Let us define

by Ti the time interval between the peaks at time instances ti and ti+1 as described in Fig. 1.7-(A).

The values of Ti described a stochastic process depending on whether the corresponding oscillatory

process is stochastic. The mean of this latter stochastic process is the mean period T0 of the

oscillatory process, and the inverse of this mean is the frequency.

T0 = E[Ti] and f0 =
1

E[Ti]
. (1.46)

The angular frequency ω0 used in Eq. 1.43 is expressed using the frequency as ω0 = 2πf0. The

frequency can also be computed using the spectral properties of the stochastic process of interest.

In fact the frequency can be extracted from the autocorrelation function and the power spectral

density of the stochastic process.



1.2. STOCHASTIC OSCILLATIONS OR RHYTHMS 39

Figure 1.8: Frequency extraction from the stochastic oscillatory processes for both quasi
and stochastic limit cycle regimes.(A,B) The corresponding deterministic dynamic
lies in the limit cycle regime a = 31.4. The blue curve in (A) is the autocorrelation
function of the process δX1(t). The red dot corresponds to the first maximum after the
peak at zero lag. The location of this peak is the period of the oscillation (T0 = 14.1ms)
and its inverse is the frequency. In (B) the power spectral density is represented in blue
curve with its corresponding Gaussian fit in red. The mean of the Gaussian fit is the
frequency of the oscillation. (C,D) The deterministic dynamics is a damped oscillation
towards the stable fixed point with a = 25.4. The autocorrelation function is represented
in (C), while the power spectral density is showed in (D) with the same interpretation
for the red dot and the red curve as for the stochastic limit cycle.

Consider the normalized version of the autocorrelation function of the stochastic process δX1(t):

RδX1(τ) =
E[(δX1(t)− µδX1

)(δX1(t+ τ)− µδX1
)]

σ2
δX1

. (1.47)

It measures the similarity between the stochastic process δX1(t) and time-shifted copies of itself

as a function of the lag τ . For a lag τ = 0 the autocorrelation measures the similarity with an

identical copy of itself. Then we expect to have a maximum value of the autocorrelation which is 1,

as seen in Figs. 1.8-(A,C). The next maximum of the autocorrelation function corresponds to the

period of the stochastic oscillatory process δX1(t). To compute the frequency it suffices to take the
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inverse of the location of the next maximum of the autocorrelation function after the maximum at

zero lag. We have illustrated such maxima in Figs. 1.8-(A,C) as red dots. Their locations are the

periods of δX1(t) with value T0 = 14.1ms and T0 = 13.1ms for the stochastic limit cycle and quasi-

cycle oscillations, respectively. The corresponding frequencies are f0 = 71Hz and f0 = 76.33Hz

for the stochastic limit-cycle and the quasi-cycle oscillations, respectively. The autocorrelation,

therefore, provides a useful tool to compute the frequency of an oscillatory process. Moreover, it is

an important potential marker of the process and differs depending on whether the process describes

a stochastic limit cycle or a quasi-cycle oscillation. For instance the autocorrelation function vanishes

more quickly for the quasi-cycle (see,Figs. 1.8-(A,C)). This may be a tool to identify the regime

of in vivo oscillations. The power spectral density may also be a suitable quantity to compute the

frequency. Since it describes how the power of a signal is distributed over frequencies, we expect to

observe a maximum at the frequency of an oscillatory process. For our stochastic process δX1(t)

the power spectral density can be computed as follows:

• We define the process δX1T (t) as the restriction of δX1(t) to the interval [0, T ], ie

δX1T (t) =

 δX1(t), if 0 ≤ t ≤ T

0, otherwise .
(1.48)

• We further define by ˆδX1T (ω) the Fourier transform of δX1T (t).

• The power spectral density PSD of δX1T (t) is given by

SδX1T
(ω) = lim

T→∞

〈
| ˆδX1T (ω)|2

〉
T

. (1.49)

We therefore, use this latter expression Eq. 1.49 to compute the power spectral densities in

Fig. 1.8- (B,D). We observe that the power spectral densities show maxima for both stochastic

limit cycle and quasi-cycle oscillations. The locations of the maxima correspond to the values of

the frequency of the process δX1(t). However, the behavior of the PSD differs depending on the

regime considered. For the stochastic limit cycle oscillations in Fig. 1.8- (B) the PSD exhibits

several (at least two) peaks with one stronger than the others. The strongest peak is the peak
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at the oscillation frequency f0, and the frequencies at the secondary peaks are multiple integer of

the frequency (fi−1 = if0; i = 1, 2, ...). They are called higher-order harmonics. In the quasi-cycle

regime, the PSD has a single peak (see, Fig. 1.8- (D)); this peak has a smaller value than the

principal peak in the stochastic limit cycle regime. To extract the value of the locations of the peaks

of the PSD, we performed a Gaussian fitting of each of them (see red curves, Figs. 1.8- (B,D)).

The means of the corresponding fitted Gaussian functions are the frequencies of interest. Several

studies however represent the PSD on logarithmic scales. Such scaling allows extracting further

information, such as power-law features which appear at lower and higher frequencies. However, the

choice of scaling does not change the location of the frequency.

We have shown that the frequency can be extracted by several means. We can directly use the

stochastic process itself, its phase component, or other related quantities like the autocorrelation

function and the power spectral density PSD.

1.2.5 Envelope-Phase description

We have shown in the preceding sections that the stochastic oscillations δX1(t) can be decomposed

principally in their envelope and phase components (since the frequency can be deduced from the

phase). The envelope returns the slow features of the stochastic oscillations, and the phase describes

information about the fast dynamics of the rhythms. It is therefore of great interest to extract these

two important components. The envelope-phase description takes large importance in the quasi-cycle

regime since the phase is significantly modulated by the envelope, and the two are coupled. The

dynamics of the envelope is also an important marker to characterize quasi-cycle oscillations. For the

stochastic limit cycle regime, the phase alone may be enough to describe the oscillatory dynamics

if the envelope remains almost constant during the evolution of the process [2, 188, 225, 139]. This

assumption holds if the strength G of the stochastic part of Eq. 1.30 is weak or if the system is

deterministic.

However, for strong values of the stochastic function G, even the envelopes of limit cycles vary

strongly, and the phase alone is no longer sufficient to fully describe the dynamics of the processes.

In this strong noise limit, the envelope-phase decomposition is the appropriate framework. The

envelope-phase framework is also appropriate to address the case of several coupled oscillatory
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stochastic processes.

The dynamics of coupled stochastic oscillatory processes have been studied mostly using simple

models of interacting phases [2]. Such models neglect the envelope dynamics when they do consider

the envelope it is in the limit cycle regime, and typically for strong noise. A description that fully

takes into account the stochastic envelope and phase may be a useful generalization of these simple

phase models. However, such envelope-phase models have not received much attention because of

the lack of theoretical methods for their treatment. Also, a general method for the extraction of

envelope-phase representation for any specific oscillatory process is lacking. In this thesis, we are

mainly interested in the envelope-phase decomposition of stochastic oscillations with application to

neural rhythms. One of our goals is to extract the envelope-phase dynamics of stochastic neural

rhythms in quasi- and limit cycle regimes and the coupling of such rhythms across different brain

areas. For publication purpose, in chapter 5, we use the expression amplitude-phase to refer to the

envelope-phase description.

1.3 Neural rhythms

Neural rhythms are a type of stochastic oscillations recorded from several parts of the brains of

diverse species. They are seen in the brains of monkeys, cats, mice and even humans. Their origins

and precise functions are still debated.

1.3.1 Origin and description of neural rhythms

The basic elements of mammalian brains are neurons. A neuron is an electrically excitable cell

that consists of a body or soma, dendrites, and a single axon. Neurons like all cell are made of

an intracellular medium separated by an insulator membrane from the extracellular medium. In

contrast to other cell membranes, the neuron membrane is composed of a special combination of

ion channels that permits electrically charged particles (ions) to flow across it [202]. The membrane

also has ion pumps that chemically transport ions from one side of the membrane to the other. The

majority of ion channels are permeable only to specific types of ions. Some channels can be switched

between open and closed states by altering the voltage difference across the membrane. Others can

be switched between open and closed states by interactions with chemicals that diffuse through the
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extracellular fluid. The first type of ion channel is said to be voltage-gated, while the second is

chemically gated [202, 92].

A neuron has a net potential difference due to the intracellular and the extracellular media called

the resting membrane potential which lies at around -70 mV (the interior being more ). When an

electrical stimulus of sufficient strength reaches the neuron, it can drastically change the value of

the resting membrane potential and creates an electrical signal which then propagates through the

axon. This electrical signal caused by the stimulus is called an action potential and is the basic

unit of information used by a neuron to communicate with other neurons. An action potential is

created when a stimulus raises the membrane potential past the threshold potential which lies usually

around -50 to -55 mV. If the stimulus is too small i.e subthreshold, no action potential is created.

However, when the stimulus is just enough (threshold) or suprathreshold, an action potential is

created. The shape of the action potential is the same for all threshold or suprathreshold stimuli.

But a continuous applied suprathreshold stimulus creates action potentials at a rate proportional to

the stimulus intensity. The action potential is generated at the soma and then propagates through

the axon to the synapses where it is then transmitted to other neurons that are connected to it.

During its propagation through the axon, the shape, the velocity, and the intensity of an action

potential remain constants.

Consider two connected neurons, one sending an action potential through its synapses to the

other one. The neuron that sends an action potential is called the presynaptic neuron, and the one

which receives it is called the postsynaptic neuron. The postsynaptic neuron receives the action

potential through one of its dendrites. The action potential causes the presynaptic neuron to release

neurotransmitter molecules from its synapse onto such a dendrites. A neuron is called an excitatory

neuron if its neurotransmitters raises the membrane potential of target cells closer to or beyond the

threshold for an action potential generation. On the other hand, if its neurotransmitters inhibit the

target cells, the neuron is inhibitory. All brains are then made of excitatory and inhibitory neurons.

A neuron is not isolated in the brain but is connected to several other neurons through its

synapses and several neurons are connected to it through its dendrites. A group of interconnected

neurons is called a neural circuit or a neural network. The net sum of action potentials received by

a neuron from its presynaptic neurons in the network is integrated at the soma. If the voltage at the
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soma is above the threshold, the neuron emits an action potential or a spike. Neural activity can be

defined as the sum of all the electrical action potentials emitted by all the neurons in a specific brain

area. Such activity is usually measured using electrodes implanted inside the brain, and exhibits a

diverse range of behaviors. The names usually assigned to those recordings depend on the size of the

implanted electrodes and therefore the extent of the recorded region. For example, to record from a

single cell, an electrode with a diameter at the order of 1µm is needed. For the activity of a small

area known as a Local field potential (LFP), the diameter of the electrode should be on the order

of 1mm. And an electrode diameter on the order of 1cm correspond to recording from a larger area

known as Electroencephalogram (EEG) [219].

Neural oscillations are a specific behavior of neural activity recorded from the brain which in-

creases and decreases almost periodically. They can be seen in LFPs or EEG, however, the frequency

of LFPs and EEGs are different. While LFPs are usually fast rhythms such as beta (30-100Hz) or

gamma (30-100 Hz) oscillations, EEGs on the contrary are generally dominated by slower rhythms

such as alpha and delta [41]. However, even if the activity recorded from a particular brain area

is almost periodic, the emission of action potentials by a single neuron i.e. its spiking behavior, is

not always periodic. Single neuron spiking behavior can be highly irregular, similar to a Poisson

process when at the same time the activity of several similar neurons is periodic. Also, we can have

a situation where the oscillatory behavior comes from the oscillatory spiking of a single neuron. To

reconcile the spiking behavior of a single cell with the oscillatory activity of several neurons, many

mathematical models have been proposed .

1.3.2 Gamma oscillations

Understanding the behavior of a large group of neurons ie of neural networks is often achieved by

studying their corresponding mathematical models. The idea is to first write the dynamic of a single

neuron which reproduces the stochastic firing behavior observed in vivo. From a single neuron model,

one can therefore construct the corresponding network by adding coupling with other neurons. Such

models are usually known as spiking neural networks since the stochastic spiking activity of every

single neuron in the network can be mimicked and visualized. The activity of such networks is

usually defined as the sum of all action potentials (or time-course of the voltages) of all the neurons
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in the network divided by the total number of neurons. However, if someone is interested in the

activity dynamics only, the detailed modeling of every single neuron provided by spiking neural

networks may not be useful. All that matters is the dynamics of the activity of the populations

of neurons. In this spirit, mean-field models which only take into account population averaged

quantities have been developed. These models are sometimes stochastic since they represent the

average of stochastic quantities plus their fluctuations. They have a lower dimension than spiking

neural networks, which facilitates their mathematical analysis. In the case where their dynamics are

also oscillatory, they are governed by mathematical laws of stochastic oscillatory dynamics presented

in the previous sections. However, what is the real mechanism behind neural oscillations? In other

words, what causes the activity to oscillate? To answer these questions we consider a particular

type of oscillation known as fast neural rhythms of gamma oscillations (30-100 Hz). They have been

recorded in several brain areas and are believed to be involved in several cognitive processes [41, 42].

Two principal types of mechanisms have been invoked to explain their genesis.

PING Mechanism or E-I model

The first mechanism used to explain the generation of gamma oscillations is the Pyramidal-Interneuron

Network Gamma (PING) or the E-I model. This model is based on the reciprocal connections be-

tween populations of Pyramidal (excitatory or E) and Interneuron (inhibitory or I) neurons. Fast

excitation and delayed inhibition alternate in a rhythmic way. Excitatory neurons fire first due to

some excitation which can be an input from neurons external to the network. Then, they excite

inhibitory neurons, in return which fire and inhibit excitatory neurons. This eventually leads to a

decrease in the inhibition and the cycle starts again. In this model, a single neuron can fire stochas-

tically or periodically. Excitatory neurons fire early since they are the ones that excite inhibitory

neurons. The frequency of the underline rhythm depends on the propagation delay between excita-

tory and inhibitory neurons. Several mathematical models have been proposed to describe such a

PING mechanism, among which the Wilson-Cowan model [224]. In this thesis, we will mostly use

the Wilson-Cowan model to describe Gamma as well as Beta oscillations. We will use a modified

version of this model that includes stochastic inputs of finite-size and synaptic origins [220].
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ING Mechanism or I-I model

Gamma oscillations can also occur in networks of only inhibitory neurons known as Interneuron

Network Gamma (ING). In this mechanism, an external excitatory input excites inhibitory neurons,

which then fire rhythmically. The external excitatory input provides the excitation to generate the

spiking behavior observed during the peak of the oscillation, whereas the firings of inhibitory neurons

provide inhibition to silence the network as seen in the through of the oscillation. No matter the

mechanism of gamma oscillations, inhibitory neurons are required; They are critical to producing

gamma oscillations. Mathematically, mean-field models of gamma oscillations with only inhibitory

neurons may require to explicitly include a propagation delay [73]. The firing behavior of a single

neuron can also be periodic or stochastic in the ING mechanism.

1.4 Numerical Methods

Stochastic processes are not analytically solvable. We therefore referred to numerical methods to

obtain several results in this Thesis. Especially, numerical methods are required to obtain approx-

imate solutions of the Stochastic Differential Equations (SDE). The autocorrelation functions and

the power spectral densities are obtained from numerical methods.

• Euler-Maruyama method.

The majority of the SDE in this Thesis was simulated using the Euler-Maruyama scheme. Let

us consider the one-dimensional SDE in Eq.1.20. We suppose that the time axis is divided in

time-steps of equal size, ∆t. Practically, we assume that the process evolves during a total

time T sufficiently long (T →∞). The number of time-step of size dt is N = T/dt. The time

can be defined by the relation tn+1 = tn + ∆t, with n = 0, ..., N − 1 and t0 = 0. Morever, Xn

is the value of the stochastic process X(t) at tn and X0 is the initial condition. The value of

the stochastic process at time tn+1 can be obtained using the following

Xn+1 = Xn +A(Xn, tn)∆t+
√
B(Xn, tn)∆Wn. (1.50)
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In addition we have the relation:

∆Wn =
√

∆tN(0, 1),

where N(0, 1) is a Gaussian process with zero mean an unit standard deviation. The Euler-

Maruyama scheme is therefore expressed as

Xn+1 = Xn +A(Xn, tn)∆t+
√
B(Xn, tn)∆tN(0, 1). (1.51)

The Euler-Maruyama scheme can be extended to the case of an N-dimensional stochastic

differential equation as in Eq.1.21. However, in chapter 5, we also used for some simulations

the fourth order runge-kutta numerical scheme and its stochastic version [131].

• Power spectral densities and Autocorrelation functions

The power spectral densities were obtained using the Welch’s method as implemented in MAT-

LAB R2019b. We use a window size of 10 seconds with 50 percent overlap. The autocorrelation

functions were computed using the xcov method as implemented in MATLAB R2019. The

maximum lag was set to 50 ms.
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Chapter 2

Determinants of Brain Rhythm Burst Statistics

Abstract

Brain rhythms recorded in vivo, such as gamma oscillations, are notoriously variable both in ampli-

tude and frequency. They are characterized by transient epochs of higher amplitude known as bursts.

It has been suggested that, despite their short-life and random occurrence, bursts in gamma and

other rhythms can efficiently contribute to working memory or communication tasks. Abnormalities

in bursts have also been associated with e.g. motor and psychiatric disorders. It is thus crucial

to understand how single cell and connectivity parameters influence burst statistics and the corre-

sponding brain states. To address this problem, we consider a generic stochastic spiking recurrent

network of Pyramidal Interneuron Network Gamma (PING) type. Using the stochastic averaging

method, we derive dynamics for the phase and envelope of the amplitude process, and find that

they depend on only two meta-parameters that combine all the model parameters. This allows us

to identify an optimal parameter regime of healthy variability with similar statistics to that seen in

vivo; in this regime, oscillations and bursts are supported by synaptic noise. The probability density

for the rhythm’s envelope as well as the mean burst duration are then derived using first passage

time analysis. Our analysis enables us to link burst attributes, such as duration and frequency

content, to system parameters. Our general approach can be extended to different frequency bands,

network topologies and extra populations. It provides the much needed insight into the biophysical

determinants of rhythm burst statistics, and into what needs to be changed to correct rhythms with

pathological statistics.
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2.1 Introduction

Fast oscillations in brain activity in the 30-100 Hz range, known as gamma rhythms, are observed

across many brain regions and species, both in vitro and in vivo [53, 51, 208, 212]. They occur

either autonomously or are induced by external stimulation [50, 36, 56, 81, 3]. They have received

much attention because of their proposed roles in several major neuronal processes like perception,

cognition, binding, working memory or inter-areal communication [112, 24, 84, 86, 116, 104]. To

perform such tasks, it is generally believed that the gamma rhythm should be a coherent oscillation

with relatively constant amplitude and frequency, in particular in theories where the oscillation acts

as a clock signal [43, 11] with regular neuronal firing [124, 87].

However, several studies, focussing especially on gamma-range oscillations in monkey primary

visual cortex, have reported that the rhythms are broadband rather than coherent, and exhibit

transient epochs of elevated synchrony aptly termed ”gamma bursts”. The underlying neuronal

spiking activity is also quite irregular. These bursts of large oscillation amplitude alternate with

epochs of almost no synchrony where the oscillation amplitude is low. The frequency shows a lot

of variability, a consequence of the significant noisiness of the phase of the rhythm. Moreover, the

occurrence times and durations of gamma bursts are random, making such rhythms closer to a

broadband filtered noise than to a well-structured, almost periodic signal [229, 37, 40].

Despite their stochasticity, such bursty rhythms have been shown to correlate better with the per-

formance of certain tasks than more regular oscillations. Indeed, a recent study examined local field

potentials (LFP) and spiking activity from the prefrontal cortex of monkeys performing a working

memory task, and reported that working memory manifests itself through gamma bursts rather than

sustained activity [155]. Another study measured neuronal activity in the entorhinal-hippocampal

circuit while mice performed a reward-based spatial working memory task, and showed that gamma

bursts contribute to the successful execution of the task [230]. A plausible role for such gamma

bursts has recently been formulated computationally in the context of inter-areal synchronization

and communication [152, 175].

There is currently no theory that links the properties of a network to those of the bursty rhythm.

Here we provide such a general theory for a recurrent excitatory-inhibitory network. We show

how the burst statistics relate to single cell and network parameters, and consequently to different
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regimes of oscillation. Apart from shedding light on how the bursts arise and can be used for neural

computations, this theory provides the much-needed insight into how a system can be modified to

rectify undesirable burst statistics associated with pathology. A useful framework to address the

dynamics of such broadband oscillations is the amplitude-phase decomposition. The amplitude in

this framework reflects the level of network synchronization, where weak values of the amplitude

reflect little or no synchronization, whereas strong values reflect higher network synchronization.

The phase, which depends on the amplitude to a good approximation, contains all the information

about the temporal structure of the oscillation.

Amplitude-phase decompositions have been used in a number of computational studies to address

phase synchronization [219], inter-areal phase communication (generally known as communication

through coherence or CTC) [134, 175] and more generally different types of cross-frequency-coupling

(CFC) between brain circuits [121]. At the theoretical level, the search for such decompositions has

been pursued over the last decades, particularly for oscillations of varying degree of coherence both

at the single neuron and population levels [21, 30, 194, 193, 58]. Such studies belong to the broader

effort to describe stochastic oscillations, sometimes called ”quasi-cycles” in many areas of science

including nonlinear chemical oscillators and population biology (see e.g. [158, 159]). For the case

of broadband gamma oscillations, recent studies [17, 102, 103] have extracted from firing-rate-level

descriptions of the network the generic dynamics for the slowly-evolving envelope of the rapidly-

varying amplitude of the rhythm. This envelope can be seen as approximately connecting the peaks

of the fast rhythm. They also extracted dynamics for the rapidly-varying phase of the rhythm. A

burst is then seen as an epoch during which the envelope exceeds some threshold. This provided

insight into properties of the fluctuations of the gamma rhythm, although it did not allow the role

of the noise strength to be investigated.

Here, we first directly relate the dynamics of the envelope and phase of the rhythm to all the

biophysical parameters, including synaptic noise strength. From there, we develop a first passage

time analysis of the envelope to quantify the mean duration of bursts as a function of the parameters.

This enables us to uncover an ”optimal” dynamical regime of healthy amplitude and frequency

variability with similar statistics to those seen in certain in vivo data. Below, we use the term

”amplitude” to signify the magnitude of the fast variables, as distinguished from its slowly evolving
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”envelope”.

For concreteness, we focus on a known simple excitatory-inhibitory recurrent network of spiking

neurons with self-couplings exhibiting gamma oscillations, and investigate its ability to produce

bursting behavior. We find two master parameters that govern burst statistics, giving much needed

insight into burst generation and the correction of ”faulty” burst statistics. Our simple model can

also explain bursts observed in other frequency bands (such as beta), and thus constitutes a general

framework for studying bursty brain rhythms.

We first motivate the choice of microscopic model and its associated formulation in terms of a

noisy population firing rate model. We then derive (with details in the Methods) the noisy dynamics

of the amplitude and phase of the rhythm, identify dynamical regimes of interest for gamma bursts,

and perform first passage time (Fokker-Planck) analysis to characterize burst statistics. Comparisons

of envelope-phase dynamics to full network simulations validate our approach. We then discuss

how different combinations of biophysical parameters can underlie healthy and pathological rhythm

variability.

2.2 Methods

The Model

We begin by summarizing a recent model of noisy gamma activity that is based on a network of

nonlinear neurons that spike probabilistically [220]. This more biophysically realistic model is used

here to illustrate gamma bursts. We then review the relation of this model to the stochastic Wilson-

Cowan firing rate model and show its ability to also generate gamma bursts in terms of firing rate

rather than spike events. Our envelope-phase reduction will be derived from this rate model.

The network is composed of fully connected NE excitatory neurons and NI inhibitory neurons.

Each neuron can exist in one of the two following states: an active state (a) representing the firing

of an action potential and its accompanying refractory period, and a quiescent state (q) associated

with a neuron at rest. Each neuron follows a two-state Markov process. The dynamics of a neuron

are specified by the transition rates between the two states. The transition probability for the ith
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neuron to decay from the active to the quiescent state is

Pi(active→ quiescent, in time dt) = αidt

where αi, i = E, I is a constant; thus this transition probability does not depend on the input to the

neuron. It is typically high to mimic the largely deterministic nature of voltage reset after a spike.

In contrast, the transition probability from quiescent to active is:

Pi(quiescent→ active, in time dt) = βif(si(t))dt

with input

si(t) =
∑
jWijaj(t) + hi .

Here f is the neuron input-output response function, typically a sigmoid, Wij is the strength of the

positive or negative synaptic weight from a j-type cell onto an i-type cell, hi the external input,∑
jWijaj(t) the network input and si(t) the total input to neuron i. We set ai(t) = 0 if neuron i is

quiescent and ai(t) = 1 if it is active.

At the network level, we assume that the total synaptic weight from the excitatory population

to itself is Wee; the mean synaptic weight from an excitatory cell to another excitatory cell in the

excitatory population is just Wee/NE . Similar assumptions hold for the other connection strengths,

namely −Wii/NI between inhibitory neurons, Wie/Ne from excitatory to inhibitory neurons, and

−Wei/NI from inhibitory to excitatory neurons. Also, each excitatory neuron receives the same

external input hE ; likewise, all inhibitory neurons receive the external input hI . The total input

current sE to excitatory neurons and sI to inhibitory neurons are then given by

sE(t) =
Wee

NE
k(t)− Wei

NI
l(t) + hE (2.1)

sI(t) =
Wie

NE
k(t)− Wii

NI
l(t) + hI (2.2)

where k(t) is the number of active excitatory neurons and l(t) the number of active inhibitory

neurons. This network is simulated in discrete time using the Gillespie algorithm as in [220]. A
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typical simulation result is shown in Fig 2.3 where, in spite of the presence of a noisy rhythm, the

firing behavior of individual neurons (excitatory and inhibitory) is close to a Poisson process. Short-

lived gamma oscillations are produced at the network level especially in the transient synchrony

regime [220].

In this formalism, it is possible to approximate the Poisson statistics by Gaussian statistics for

firings in any time interval. This leads to the following activity of the excitatory population defined

as E(t) = k(t)/NE [220]:

dE(t)

dt
= −αEE(t) +

(
1− E(t)

)
βEf(sE(t)) + IE(t) (2.3)

Similarly for inhibitory neurons, we have:

dI(t)

dt
= −αII(t) +

(
1− I(t)

)
βIf(sI(t)) + II(t) (2.4)

with noise sources with time-dependent variances given by

IE(t) =

√(
1− E(t)

)
βEf(sE(t)) + αEE(t)

NE
ηE(t) and

II(t) =

√(
1− I(t)

)
βIf(sI(t)) + αII(t)

NI
ηI(t) .

Here ηE,I(t) are Gaussian white noises satisfying:

〈ηi(t)〉 = 0, 〈ηi(t)ηj(t′)〉 = δijδ(t− t′) i, j = {E, I} .

From the Linear Noise Approximation (LNA), if NE and NI are large but stochasticity is still

important, Gaussian approximation may be further apply. The activities (k, l) can then be repre-

sented as the sum of a deterministic component
(
E0, I0

)
scaled by the population sizes and stochastic

perturbations
(
ṼE(t), ṼI(t)

)
scaled by square root of the population sizes [220]. We then have

E(t) = E0(t) +
1√
NE

ṼE , I(t) = I0(t) +
1√
NI

ṼI(t) (2.5)

where E0(t) and I0(t) are solutions of the deterministic version of Eqs 2.3,2.4 above:
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dE0(t)

dt
= −αEE0(t) +

(
1− E0(t)

)
βEf(sE0(t)) (2.6)

dI0(t)

dt
= −αII0(t) +

(
1− I0(t)

)
βIf(sI0(t)) (2.7)

with

sE0
= WeeE0 −WeiI0 + hE , sI0 = WieE0 −WiiI0 + hI .

We focus on oscillations induced by noise, for which Eqs 2.6,2.7 must admit a stable equilibrium or

”fixed” point (i.e. its complex eigenvalues have negative real part). This fixed point is the solution

of

0 = −αEE∗0 +
(
1− E∗0

)
βEf(sE∗0 )

0 = −αII∗0 +
(
1− I∗0

)
βIf(sI∗0 ) . (2.8)

After a transient, the deterministic solution
(
E0(t), I0(t)

)
converges to the fixed point

(
E∗0 , I

∗
0

)
and

the LNA becomes:

E(t) = E∗0 +
1√
NE

ṼE(t), I(t) = I∗0 +
1√
NI

ṼI(t) . (2.9)

Replacing Eq 2.9 into Eqs 2.3,2.4 and keeping the terms of orderO(
√
NE) andO(

√
NI), the dynamics

of fluctuations around the equilibrium point are obtained:

dṼE(t)

dt
= A11ṼE(t) +A12ṼI(t) + σEηE(t) (2.10)

dṼI(t)

dt
= A21ṼE(t) +A22ṼI(t) + σIηI(t) . (2.11)

In terms of all the biophysical parameters of the original nonlinear stochastic spiking E-I network,the

seven parameters governing these fluctuations around the equilibrium are given by:
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A11 = −αE − βEf
(
sE∗0

)
+
(
1− E∗0

)
WeeβEf

′(
sE∗0

)
= − αE

1− E∗0
+ αEE

∗
0

[
1− αEE

∗
0

(1− E∗0 )βE

]
Wee

A12 = −
(
1− E∗0

)
WeiβEf

′(
sE∗0
)
cEI = −cEIαEE∗0

[
1− αEE

∗
0

(1− E∗0 )βE

]
Wei

A21 =
(
1− I∗0

)
WieβIf

′(
sI∗0
)
c−1
EI = c−1

EIαII
∗
0

[
1− αII

∗
0

(1− I∗0 )βI

]
Wie

A22 = −αI − βIf
(
sI∗0
)
−
(
1− I∗0

)
WiiβIf

′(
sI∗0
)

= − αI
1− I∗0

− αII∗0
[
1− αII

∗
0

(1− I∗0 )βI

]
Wii

σE =
√
αEE∗0 +

(
1− E∗0

)
βEf

(
sE∗0
)
; σI =

√
αII∗0 +

(
1− I∗0

)
βIf

(
sI∗0
)
; cEI =

√
NE
NI

.

Using the fixed point equations, the noise intensities can be rewritten as σE =
√

2αEE∗0 and

σI =
√

2αII∗0 . Therefore we obtain linear equations driven by noise which represent the LFP

dynamics ṼE and ṼI . Changing one parameter, such as the strength of connectivity of I cells onto E

cells Wei, will change a number of these parameters as well as the fixed points. In turn we will see

below that these changes impact only two ”master parameters” that govern the envelope dynamics.

2.2.1 Linear Analysis

We consider the linear stochastic Eqs 2.10,2.11 and first consider the deterministic case σE = σI = 0.

The associated noise-free linear system is written in the following matrix form:

dV 0(t)

dt
= AV 0(t)

where

V 0(t) =

V 0
E(t)

V 0
I (t)

 and A =

A11 A12

A21 A22

 .

We look for a trial solution in the form:V 0
E(t)

V 0
I (t)

 =

B̃E
B̃I

 eλt
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where B̃E = BEe
jθE and B̃I = BIe

jθI . The eigenvalue λ of the associated matrix A is found by

substituting the trial solution into the linear system, yielding

B̃E

B̃I
=
−A12

A11 − λ
= −A22 − λ

A21
.

The second equality leads to

λ =
1

2
(A11 +A22)± j

2

√
−(A11 −A22)2 − 4A12A21 .

We rewrite the eigenvalue in the compact form

λ = −ν ± jω0 (2.12)

with

ν = −A11 +A22

2
, ω0 =

1

2

√
−(A11 −A22)2 − 4A12A21 and j =

√
−1 .

This leads to the exact expression of the real amplitude ratio between the excitatory and inhibitory

LFPs:

BE
BI

=

√
−A12

A21
=

√√√√√√√
cEIαEE

∗
0

[
1− αEE

∗
0

(1− E∗0 )βE

]
Wei

c−1
EIαII

∗
0

[
1− αII

∗
0

(1− I∗0 )βI

]
Wie

≈
√

Wei

Wie

Note that the expression above is the modulus of the complex number B̃E
B̃I

. Likewise, the corre-

sponding phase difference is obtained by taking the argument Arg of the complex number B̃E
B̃I

δ = θE − θI = Arg

(
B̃E

B̃I

)
.

For the parameters used here we have the following expression for δ

δ = θE − θI = arctan

(
2ω0

A11 −A22

)
.

Note that in the absence of noise, the time-dependent amplitudes both go to zero exponentially with

characteristic time ν−1. One can nevertheless compute the ratio of amplitudes as above. However,

in the presence of noise, one can compute the ratio from simulated time series using the analytic
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signal technique. The amplitudes ratio and the phase difference are obtained by the following

approximations:

α =
BI
BE
≈

〈
Env

[
ṼI(t)

]
Env

[
ṼE(t)

]〉 and δ = θE − θI ≈

〈
Arg

[
ṼE(t)

]
−Arg

[
ṼI(t)

]〉
. (2.13)

Here
〈
.
〉

can be considered a time average of the stochastic process in Eq 2.10. Env is defined

as the envelope of the analytic signal associated with the LFP. For example, the analytic signal

corresponding to VE(t) is VE(t) + jH
[
VE(t)

]
, with the Hilbert transform H defined as

H[x] =
1

π
P

∫ ∞
−∞

x(τ)

t− τ
dτ (2.14)

where P signifies the Cauchy principal value. The envelope of the stochastic signal is then

Env[VE ] =
√
V 2
E +H2[VE ]. Likewise, the phase angle of the analytic signal is defined as

Arg[ṼE ] = arctan
[
H[VE ]/VE

]
.

The transition between the transient and high synchrony regimes happens when the real part of

the eigenvalue is zero. This condition is expressed as

− αE
1− E∗0

+ αEE
∗
0

[
1− αEE

∗
0

(1− E∗0 )βE

]
Wee −

αI
1− I∗0

− αII∗0
[
1− αII

∗
0

(1− I∗0 )βI

]
Wii = 0 . (2.15)

We use this expression to plot Fig 2.6 (Left panel). For Fig 2.6 (Right panel), we first use Eq 2.1 to

shift from the self-connectivity parameters to the
(
Wei,Wie

)
plane. We next derive an expression

for the dynamics governing the time evolution of the envelopes of the excitatory and inhibitory

stochastic processes themselves.

2.2.2 Stochastic Averaging Method (SAM)

Taking into account the constant ratio of envelopes and constant phase difference, the expression of

the excitatory and inhibitory LFPs are given by

VE(t) = ZE(t) cos(ω0t+ φE(t)) and VI(t) = αZE(t) cos(ω0t+ φE(t)− δ) . (2.16)
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We plug these expressions into the linear stochastic equations Eqs 2.10 and rewrite the resulting

equations in terms of variables ZE and φE as follows:

ŻE(t) = f1 (ZE , φE) + g1 (ZE , φE , ηE , ηI) (2.17)

φ̇E(t) = f2 (ZE , φE) + g2 (ZE , φE , ηE , ηI) (2.18)

with

f1 (ZE , φE) =
ZE

α sin δ

[
α
(
− ω0 sin(ω0t+ φE) +A11 cos(ω0t+ φE) + αA12 cos(ω0t+ φE − δ)) sin(ω0t+ φE − δ)

)
−

(
αω0 sin(ω0t+ φE − δ) +A21 cos(ω0t+ φE) + αA22 cos(ω0t+ φE − δ)

)
sin(ω0t+ φE)

]
(2.19)

f2 (ZE , φE) =
1

α sin δ

[
α
(
− ω0 sin(ω0t+ φE) +A11 cos(ω0t+ φE) + αA12 cos(ω0t+ φE − δ)) cos(ω0t+ φE − δ)−(

αω0 sin(ω0t+ φE − δ) +A21 cos(ω0t+ φE) + αA22 cos(ω0t+ φE − δ)
)

cos(ω0t+ φE)

]
(2.20)

and

g1 (ZE , φE , ηE , ηI) =
1

α sin δ

[
− σEα sin(ω0t+ φE − δ)ηE + σI sin(ω0t+ φE)ηI

]
(2.21)

g2 (ZE , φE , ηE , ηI) =
1

αZE sin δ

[
σI cos(ω0t+ φE)ηI − σEα cos(ω0t+ φE − δ)ηE

]
. (2.22)

The equations above can be written in a more compact form as

Ẋ(t) = f (X) + g(X, η) , (2.23)

with the following 2x1 matrix definitions: X =

ZE
φE

, f =

f1

f2

, g =

g1

g2

 and η =

ηE
ηI

 . The

stochastic averaging method (see section (1.1.5)) says that, under certain conditions (usually met

for regular functions like f and g), the above system of two stochastic differential equations can be
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approximated by the following 2-dimensional Markov process [187, 6]:

dX(t) = m(X)dt+ h(X)dW (t) , (2.24)

where m is a 2x1 matrix, h is a 2x2 matrix and W (t) denotes a 2-dimensional vector of independent

Wiener processes with unit variance. Also, m and h are respectively O(ε2) and O(ε) functions

defined as:

m = T av
(
E
{
f
}

+

∫ 0

−∞
E

{(
∂g

∂X

)
t

(
g
)
t+τ

}
dτ

)
(2.25)

h(h
′
) = T av

(∫ ∞
−∞

E
{

(g)t((g)
′
)t+τ

}
dτ

)
(2.26)

Here (′) denotes transposition, and

(
∂g

∂X

)
t

is a 2x2 Jacobian matrix. Moreover, E. denotes the

expectation operator and T av is the time averaging operator defined by

T av
(
.
)

=
1

T0

∫ t0+T0

t0

(
.
)
dt (2.27)

where T0 = 2π
ω0

is the period of a gamma oscillation cycle. When evaluating the expectations in

the stochastic averages formula, the elements of X are treated as constants in time. A somewhat

lengthy calculation leads to the resulting Markov processes for the LFP envelope and phase:

dZE(t) =

(
−νZE(t) +

D

2ZE(t)

)
dt+

√
DdW1(t) (2.28)

dφE(t) =

√
D

ZE(t)
dW2(t) (2.29)

Note that the coefficient D is zero when both the excitatory and/or inhibitory noise intensities

σE and σI are zero. One can call it a noise-induced coefficient in the drift part of the stochastic

differential equation for the envelope.

For computational purposes, the envelope and phase equations above can be rewritten using two
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independent Ornstein-Uhlenbeck (OU) processes as:

dE1(t) = −νE1(t)dt+
√
DdW1(t) (2.30)

dE2(t) = −νE2(t)dt+
√
DdW2(t) (2.31)

from which we can extract the envelope and phase:

ZE(t) =
√
E2

1(t) + E2
2(t) φE(t) = arctan

(
E2(t)

E1(t)

)
. (2.32)

These quantities satisfy the differential equations for ZE and φE above. The envelope and phase

processes are then the envelope and phase of two independent Ornstein-Uhlenbeck processes with the

same parameters. Our simulations actually use these two OU processes, rather than the ZE − φE

equations above, in order to avoid the occurrence of negative values of ZE . The corresponding

equations for the inhibitory population are obtained from these ones by using the ratio and phase

difference factors in Eq 2.13. This ratio and phase difference are to be interpreted as constant

averaged quantities; they will fluctuate around these quantities in any finite realization.

Probability distributions in Figs 2.1 show that the dynamics obtained from SAM are statistically

equivalent to those of the LNA. This suggests that our SAM is an appropriate framework for envelope

and phase dynamics of bursty gamma oscillations

2.2.3 Probability density and Mean First Passage Times (MFPT)

For simplicity, we consider the envelope of the excitatory population and denote it z(t). The envelope

process with its initial condition is given by (see Eqs 2.28):

dz(t) =

(
−νz(t) +

D

2z(t)

)
dt+

√
DdW (t)

z(0) = z0 . (2.33)

The associated Fokker-Planck equation for the probability density of z(t), conditioned on the initial

condition, is given by
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Figure 2.1: Probability distributions of LFPs ((a) and (b)), envelopes ((c) and (d)) and
phases ((e) and (f)) computed from LNA versus SAM. Solid lines are distribu-
tions computed from LNA Eqs 2.10,2.11, while crossed lines are those computed from
SAM Eqs 2.28,2.29 and Eq 2.16. Blues (a), (c) and (e) corresponds to excitatory com-
ponents and reds (b), (d) and (f) to Inhibitory ones. We can observe good matching
between LNA and SAM dynamics, this shows that the dynamics obtained from SAM
are statistical equivalent to those in the LNA. The parameters are taken from Table 2.1.

∂P (z, t|z0, 0)

∂t
= − ∂

∂z

[
−νz +

D

2z

]
P (z, t|z0, 0) +

D

2

∂2P (z, t|z0, 0)

∂z2
. (2.34)

In the stationary limit, this reduces to the differential equation

− d

dz

[
−νz +

D

2z

]
P (z) +

D

2

d2P (z)

dz2
= 0 .

The stationary probability function then reads

P (z) =

(
2ν

D

)
z exp

(
− ν

D
z2

)
. (2.35)
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The peak value is obtained by imposing

dP (z)

dz

∣∣∣∣
z=z∗

= 0 (2.36)

which leads to

z∗ =

√
D

2ν
. (2.37)

Note that z∗ ≡ R in the main text. Properties such as the mean and standard deviation of z(t) can

be easily computed from the stationary probability density function, and are known for decades as

properties of the Rayleigh distribution [207]. The mean and the standard deviation are given by:

E[z] =

√
π

2
z∗ and std[z] =

√
E[z2]− E[z]2 = z∗

(√
4− π

2

)
.

A burst is defined as an epoch during which the envelope process stays above a particular threshold

(see Fig 2.2). A full theoretical treatment leading to the density of such epochs - known as residence

times - is mathematically very involved and beyond the scope of this paper. Rather, here we resort

to an approximate derivation of the properties of these epochs that yields some analytical insight

into their parameter dependence. The burst duration can be seen to correspond roughly to the

time the amplitude process spends reaching its maximum value after crossing the threshold from

below, plus the time it spends from this maximum value until it crosses the threshold again but

from above (see Fig 2.2). These two durations can be expressed distinctly by their associated Mean

First Passage Times (MFPT). Generally, the MFPT from an initial condition z0 to a specific border

of an interval A where the amplitude process is confined is given by [91]:

T (z0) = −
∫ ∞

0

t
∂

∂t

∫
A

dzP (z, t|z0, 0)dt . (2.38)

The MFPT also satisfies the following first-order differential equation [91]:

(
−νz0 +

D

2z0

)
dT (z0)

dz0
+
D

2

d2T (z0)

d2z0
= −1 . (2.39)

In our case, we define the interval where the process lies to be A = [b, c] where b is the threshold

defining the start and the end of a burst, while c is a ”typical” maximum value that the envelope
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process can attain during that burst. During the period when the envelope increases towards its

maximum, an absorbing boundary condition is imposed at c leading to T1(c) = 0, and a reflecting

boundary condition is imposed at b, given by
dT1(z0)

dz0

∣∣∣∣
z0=b

= 0. This results in the following

expression for the ”first” MFPT on the way up:

T1(z0) =
e(−

ν
D b

2)

2ν

[
Ei
( ν
D
c2
)
− Ei

( ν
D
z2

0

)]
− 1

ν
log

(
c

z0

)
(2.40)

where Ei is the integral exponential function defined as [101] :

Ei(x) = −
∫
ex

x
dx .

Further, assigning the threshold value b to the initial condition of an above-threshold epoch, then

the first MFPT is given by

T1(b) =
e(−

ν
D b

2)

2ν

[
Ei
( ν
D
c2
)
− Ei

( ν
D
b2
)]
− 1

ν
log
(c
b

)
. (2.41)

To compute the time interval for the process to leave its maximum value and cross the threshold

from above, a reflecting boundary condition is now set at c, which translates into
dT2(z0)

dz0

∣∣∣∣
z0=c

= 0,

and an absorbing condition at b, T2(b) = 0. The associated ”second” MFPT is then given by

T2(z0) =
e(−

ν
D c

2)

2ν

[
Ei
( ν
D
b2
)
− Ei

( ν
D
z2

0

)]
+

1

ν
log
(z0

b

)
. (2.42)

We now assign z0 = c and the second mean duration is

T2(c) =
e(−

ν
D c

2)

2ν

[
Ei
( ν
D
b2
)
− Ei

( ν
D
c2
)]

+
1

ν
log
(c
b

)
. (2.43)

Therefore, the approximated burst duration is given by T = T1(b) + T2(c), which simplifies to

T =

(
1

2ν

)[
exp

(
− 1

2

(
b

R

)2)
−exp

(
− 1

2

(
c

R

)2)][
Ei

(
− 1

2

(
c

R

)2)
−Ei

(
− 1

2

(
b

R

)2)]
, (2.44)

Were we have used the relation R =
√

D
2ν
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Figure 2.2: Typical burst duration following our approach. Computation of the mean burst
duration. The green bars show the increase and decrease of the envelope process in
black. The vertical dashed magenta line shows the separation between the two mean
first passage times. The red bar sets the value of the threshold b. A typical burst is the
epoch during which the envelope stays above the threshold and the burst duration is the
corresponding time.

While the choice of b and c are arbitrary, we found that satisfactory estimates of mean burst

durations followed from choices that made intuitive sense. Specifically, we chose the threshold to be

equal to half the median of the envelope density P (z); this corresponds to setting b = R
√

ln(2)/2 ≈

0.59R. We choose the value of c as the mean of P (z), i.e. R
√
π/2 plus one standard deviation

R
√

(4− π)/2:

c = R

(√
π

2
+

√
4− π

2

)
.

This approximate analysis provides an estimate of the mean burst duration as a function of the

synchronization parameter R. One could also choose a threshold that does not depend on R or any

other parameter, but that would yield no bursts for smaller R values, even though close inspection

of the smaller envelope reveals burstiness at the smaller scale.

Table

Parameters values used throughout this chapter, unless specified in the caption of certain figures.
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Table 2.1: Model parameters, definition and value.

Parameter Desription value
αE decay rate of an excitatory cell 0.1 ms−1

αI decay rate of an inhibitory cell 0.2 ms−1

βE maximal firing rate of an excitatory cell 1
βI maximal firing rate of an inhibitory cell 2
hE External input to the excitatory population -3.8
hI External input to the inhibitory population -8
Wee Recurrent excitatory synaptic coefficient 27.4
Wii Recurrent inhibitory synaptic coefficient 1.3
Wei Synaptic connection from inhibitory to excitatory cells 26.3
Wie Synaptic connection from excitatory to inhibitory cells 32
NE Number of excitatory cells 800
NI Number of inhibitory cells 200

2.3 Results

Our starting point is the work of Xing et al. (2012)[229]. They showed that for the specific case

of bursty gamma rhythms, LFP’s from macaque visual cortex are well modeled by a simplified

version of the classic Wilson-Cowan (WC) rate model for reciprocally connected excitatory (E) and

inhibitory (I) populations. The classic WC model (1972)[224], which accounts for oscillations in such

EI networks, includes neurons with a graded response beyond threshold. Our goal is to characterize,

both theoretically and numerically, the effect of system parameters including noise on bursting.

However, the noise incorporated into the WC model in Xing et al [229] is not properly scaled with

system size (i.e. with the number of neurons) as in recent theoretical work. Furthermore, the

firing rate-versus-input characteristic for their neurons was a step function. This strong nonlinearity

amounts to a less realistic two-state (active-inactive) description of single neuron function, and

impedes analytical work. We therefore wish to use an improved version of their WC model, closer

to the classic one and that allows us to formulate a theory in the first place. This requires a smooth

nonlinearity with properly scaled noise. Applications of our approach to other LFP data including

from humans are currently being pursued and will appear elsewhere. We therefore begin here by

discussing why we focus on quasi-cycles, then show network simulations with two-state neurons to

set the stage for the WC model we will use. This is because the network with two-state neurons has

been shown to be well approximated by the WC model with smooth nonlinearities and system-size

dependent noise (Wallace et al. 2011 [220]). Then we proceed with analyzing the bursty rhythm
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properties of that model.

2.3.1 Network Model for stochastic gamma-band activity

Two principal types of computational models have been proposed to explain the variability, and

in particular the bursts responsible for the fast temporal decorrelation of gamma rhythms seen in

vivo. The first proposes that broadband gamma rhythms result from synchronous chaos, a form of

randomness that does not rely on noise but rather on the nonlinear properties of the network and

the external stimulus. This requires multiple PING or ING (Interneuron Network Gamma) circuits

in the presence of strong long-range excitatory connections [13, 15]. The second type involves a

single PING or ING circuit with a stable equilibrium, i.e. without noise all firing rates are constant;

the operating regime must therefore be near the onset of oscillatory synchrony. The variability then

results from the noise in the circuit [33, 229, 175]. We consider a simple model of this latter type,

namely the network of stochastic spiking neurons in [220], where noise is due to the probabilistic

transitions between quiescent and active states of single neurons. This noise vanishes when the

network has an infinite number of cells. Intrinsic to the network, this noise reflects the probabilistic

nature of spiking, with probability proportional to neural input, which mimics the biophysical reality

of spontaneous and input-driven neural activity.

This simple network reproduces features such as bursts of population synchrony and irregular

single neuron firing as seen in vivo and in more realistic networks. In addition, mean-field analysis

[217] shows that such a network is a stochastic version of the well-known Wilson-Cowan firing rate

model [224]. Average quantities like activities or LFPs can be described by analytical equations (see

Methods), which is not generally possible for complex network models. This stochastic Wilson-

Cowan model, like more complex biophysical network models [175], exhibits two oscillatory regimes.

The Transient synchrony regime is one where noise is required to see oscillations, i.e. the noise

induces them. In this regime, oscillations appear during transient epochs of network synchronization

called ”bursts” with varying lifetimes (Fig 2.3). In contrast, the High synchrony regime does not

exhibit bursts for small noise; highly coherent oscillations occur in the absence of noise. The level of

network synchronization is always high, and epochs of desynchronization are very rare. Moreover,

the model can generate oscillations in several frequency bands (beta, gamma, and high gamma)
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Figure 2.3: Stochastic oscillatory rhythm generated by a recurrent stochastic Wilson-
Cowan (E-I) network (see Methods) working in the transient synchrony
regime. Top: Raster plot. Middle: Excitatory E(t) (blue) and inhibitory I(t) (red)
activities. Bottom: Excitatory (blue) and inhibitory (red) LFPs. They show epochs
of high amplitude corresponding to synchronized activity followed by epochs of low am-
plitude corresponding to desynchronized or less synchronized activity. Excitatory and
inhibitory activities and their corresponding LFPs display a slight phase difference. The
raster plot and activities were simulated using the exact Gillespie algorithm [94, 220]).
The LFPs were obtained by first removing the signal means from the respective exci-
tatory and inhibitory activities, followed by filtering using a Butterworth second-order
filter with a lower cutoff frequency of 20 Hz and upper cutoff frequency of 100 Hz. The
parameters are taken in Table 2.1 excepted Wee = 25.3.

and exhibits other non-oscillatory dynamics like the asynchronous regime . Direct simulations of

the model use the exact Gillespie algorithm [93]. With parameters in the transient synchrony

regime, it is possible to extract the activities of the excitatory and inhibitory populations and their

corresponding LFPs (see Fig 2.3, lower panel).
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2.3.2 Local Field Potentials (LFPs) can be described by stochastic linear equations

Recorded activities in vivo are usually filtered according to the frequency band of interest before

analysis. Filtered activities are then considered as a measure of LFPs [41, 52]. A similar method

can be applied to network activities extracted directly from numerical simulations Fig 2.3(lower

panel). The filtering used here first removes the mean from any time-varying activity to keep the

part induced by noise; broadband gamma activity in vivo has in fact been likened to filtered noise

[40, 37, 229]. The zero-mean activity is then filtered using a bandpass filter with lower and higher

cutoff frequencies in the gamma band limits Fig 2.3 (Bottom).

A similar result can be achieved analytically by deriving the dynamics of the stochastic parts

of the activities. From mean field analysis [220, 26, 74], the dynamics of excitatory and inhibitory

activities can be obtained in terms of the stochastic Wilson-Cowan equations, in which there is one

(nonlinear) equation for each of the excitatory (E) and inhibitory (I) populations (Methods). The

behavior of the E population is coupled to that of the I population and vice-versa. The linear stability

analysis of the noise-free analogs of these equations (i.e. of the Wilson-Cowan equations) shows that

many parameters lead to a stable fixed equilibrium (as we will see below). Oscillatory regimes

correspond to the parameter ranges where the corresponding eigenvalues of the system are complex

conjugates. If the real part of the eigenvalues is negative, the deterministic equations have damped

oscillations; the corresponding stochastic Wilson-Cowan network operates then in the Transient

synchrony regime (also know as the quasi-cycle regime) where oscillations, albeit irregular ones,

are sustained by noise. This regime is very popular and has already been used to underlie frequency-

specific, hierarchical corticocortical [162, 127] and thalamocortical [123] interactions, although with

a reduced level of complexity. The analytical treatment in the present study might very well serve

as a starting point to understand these large-scale interactions at a more fundamental level. If

instead the real part of the eigenvalue is positive, the nonlinear deterministic equations exhibit

coherent oscillations with almost constant amplitude and frequency; the stochastic network is then

in the High synchrony regime where the noise has a relatively smaller effect. Mathematically, the

transition from the transient to the high synchrony regime upon changing parameters corresponds

to a Hopf bifurcation.

A Linear Noise Approximation (LNA) further yields a linear approximation to the stochastic



2.3. RESULTS 69

nonlinear dynamics for the LFPs [217, 220, 26, 74] :

dṼE(t)

dt
= A11ṼE(t) +A12ṼI(t) + σEηE(t) (2.45)

dṼI(t)

dt
= A21ṼE(t) +A22ṼI(t) + σIηI(t) (2.46)

The quantities ṼE and ṼI represent the excitatory and inhibitory LFPs respectively, and their time

evolutions again depend on one another. The coefficients Ai,j (i,j=1,2) and the noise strengths σE

and σI all depend on the single cell and connectivity parameters of the original nonlinear system

(Methods). The inputs ηE and ηI are two independent zero-mean Gaussian white noises. The

LFPs, which are filtered, zero-mean versions of the activities, can also be seen here as filtered

versions of two white noises driving the recurrent E-I network [229], where the filter parameters are

the Ai,j ’s.

The amplitudes of the LFPs directly simulated from the two coupled linear stochastic equations

fluctuate stochastically [102]. The same is true for the frequency which also exhibits variability in

the gamma band; not surprisingly, the E and I phases are stochastic. A closer inspection reveals

that the epochs of nearly constant phase correspond to epochs of high LFP amplitudes (gamma

bursts) [102]. Such noisy filtered signals exhibit the stochasticity and the bursting structure of

recorded LFPs in vivo [40, 37, 229]. Moreover, analytical studies of these signals (Methods) reveal

properties such as the approximately constant ratio of LFPs from E and I cells, and approximately

constant phase differences [102].

The same properties are present in LFPs extracted directly from simulations of the full micro-

scopic nonlinear network. Figure 2.4 presents properties of the envelopes and phases of the LFPs

for this full nonlinear network, for its linear approximation using only two equations (Eqs.2.45,2.46),

and corresponding theoretical predictions. This serves as a guide for the modeling hypotheses we

make below to derive envelope-phase dynamics. It is clear that the envelope and phase properties

for the full nonlinear network are in good agreement with those obtained from simulations of the

linear stochastic dynamics
(
Fig 2.4 (a-b)

)
. Frequencies present in the LFP have a mean in the

gamma band
(
Fig 2.4 (c-d)

)
; their distribution agrees well with that of the rhythms extracted from

simulations of the full nonlinear network. LFP envelope distributions from the linear and nonlinear
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systems are also in good agreement
(
Fig 2.4(e-f)

)
. Thus LFPs generated using the simple linear

stochastic equations are statistically similar to those extracted from the full nonlinear excitatory-

inhibitory network, which themselves are similar to recorded LFPs in vivo [229]. Note that instead

of considering a single LFP measure, namely the sum of the excitatory and inhibitory LFPs as is

often done, here for completeness the two quantities are analyzed separately; they are linked by their

ratio and phase difference as shown in Fig 2.4(a-b).

2.3.3 Envelope and Phase equations

We consider the coupled stochastic equations for the LFP dynamics in the transient synchrony

regime. The goal is to derive equations governing the time evolution of the envelopes and phases

of excitatory and inhibitory LFPs described in Eqs 2.45,2.46. We make three hypotheses about the

LFP properties (Fig 2.4):

1. The distribution of the ratio between excitatory and inhibitory LFP envelopes is approximately

Gaussian [102], as shown in Fig 2.4 (a). Instead, a constant ratio is assumed, whose value

equals the mean of the associated Gaussian distribution. This choice is made because in the

PING model the numbers of E and I cells which fired during an oscillation cycle are almost

proportional. This has been observed in a computational study of a more complex network

[99] and in vivo as well [9].

2. The phase difference between excitatory and inhibitory oscillations is also approximately Gaus-

sian [102] as observed in Fig 2.4 (b). A constant phase difference is assumed, and made equal

to the mean of the corresponding Gaussian distribution. This choice is based on the fact that

the inhibitory neurons fire a small delay time after excitatory neurons during each oscillation

cycle (this delay is smaller than the period of the oscillation), a known property of the PING

model (Fig 2.3 bottom) [42, 220].

3. The frequencies of the excitatory and inhibitory LFPs have moderate variability but are also

approximately Gaussian (Fig 2.4(c-d) ); we choose the mean of those distributions as the

mean LFP frequencies.

Without loss of generality, we seek an expression for the excitatory LFP in a sinusoidal form,
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Figure 2.4: Properties of analytic versus filtered LFPs. Properties of the envelope and phase
of the excitatory and inhibitory LFPs in Eqs2.45,2.46 obtained via the analytic signal
technique (see Methods). Shown are the distributions of (a) the ratio of the envelopes
of the inhibitory and excitatory LFPs (I/E), (b) the phase difference between E and
I LFPs (c), the instantaneous frequency of the excitatory LFP, (d) the instantaneous
frequency of the inhibitory LFP, (e) the envelope of the excitatory LFP and (f) the
envelope of the inhibitory LFP. For all panels, distributions in black come from exact
numerical simulations of the full nonlinear stochastic Wilson-Cowan neural network with
2-state neurons (Fig 2.3 bottom panel), while those in red come from the approximate
linear stochastic model, Eqs 2.45,2.46. In panels (a-d), the vertical blue lines represent
analytical predictions of the means of those distributions (Methods). For panels (a-b),
the means were computed using Eq 2.13, while for panels (c-d) we use the expression of
ω0 right after Eq 2.50. The instantaneous frequencies (Panels (e-f)) are obtained as in
[102].
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with an envelope ZE(t) and phase φE(t) and a constant mean frequency ω0 to be defined below.

The dynamics of the inhibitory LFP can be directly derived from this expression using the three

assumptions above. The envelope ratio and phase difference between the excitatory and inhibitory

LFPs are computed from the linear stochastic Eqs 2.45,2.46 as

α ≡

〈
Env

[
ṼI(t)

]
Env

[
ṼE(t)

]〉 and δ ≡

〈
Arg

[
ṼE(t)

]
−Arg

[
ṼI(t)

]〉
(2.47)

Here
〈
.
〉

can be considered a time average of the stochastic process in Eqs 2.45,2.46. The envelope

Env is defined as the magnitude of the analytic signal associated with the LFP (see Methods).

Likewise, Arg[ṼE ] is the phase angle of the analytic signal. We choose to work with the excitatory

LFP in the form

VE(t) = ZE(t) cos
(
ω0t+ φE(t)

)
. (2.48)

We seek the functions ZE(t) and φE(t) by substituting Eq 2.48 into Eq 2.47 to first obtain their

inhibitory counterparts, then inserting both into Eqs 2.45,2.46 and finally applying the Stochastic

Averaging Method (SAM) (see Methods). This yields the following dynamics of the envelope and

phase (see Eq 2.49-2.50):

dZE(t) =

(
− νZE(t) +

D

2ZE(t)

)
dt+

√
DdW1(t) (2.49)

dφE(t) =

√
D

ZE(t)
dW2(t) (2.50)

where

ν = −A11 +A22

2
, ω0 =

1

2

√
−(A11 −A22)2 − 4A12A21 and D = −A12

2ω2
0

(
−A12σ

2
I +A21σ

2
E

)
.

Here, W1(t) and W2(t) are independent Brownian motions (their time derivatives are Gaussian white

noises), ν is the absolute value of the real part of the eigenvalues of the Eqs 2.45,2.46 with zero noise,

and ω0 is the peak frequency. The effective noise strength D in the envelope equation depends on

the network coefficients governing the linear stochastic dynamics of the E and I populations, in

particular on the two noise intensities. In the transient synchrony regime, D is either positive (A12
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is always negative, and A21 is always positive), or zero if both those intensities are zero.

Inspection of these dynamics reveals that the time evolutions of the envelope and the phase are

both driven by noises. With D = 0, the envelope decays to zero, and the phase remains constant.

This is again in agreement with the idea that gamma-band LFPs are close to filtered noise in

this description. In particular, the envelope equation highlights the importance of noise for the

appearance of bursts in the LFP dynamics.

Interestingly the dynamics of the envelope of the LFP is not coupled to that of the phase in

this approximation; the reverse is not true, as the phase evolution depends on the envelope. The

phase undergoes a Brownian motion with envelope-dependent intensity. In contrast with [102],

our envelope-phase decomposition refers directly to all network parameters through ν and D and

shows clearly the importance of the noise for the LFP dynamics. Consequently, it is easier with our

description to investigate how different network parameters effectively shape the bursting structure

of LFPs. In addition, our approach does not theoretically require the limitation ν/ω0 << 1 as in

[102]. In fact, we tested our approach for values of ν/ω0 even close to one and found good agreement

with the corresponding Eqs 2.45,2.46 (not shown).

Equation 2.49 is well-known in the statistics literature and is associated with the Rayleigh Process

which describes the envelope of a periodic Gaussian process with uniformly distributed phase [91,

207]. It also finds applications in the theory of stochastic mechanical and seismic vibrations where

it models the envelope of a damped harmonic oscillator sustained by noise [200]. Eqs 2.49,2.50 both

represent the envelope and the phase of a 2-dimensional independent Ornstein-Uhlenbeck process

with parameters ν and D see [91]. The uncoupling of the envelope and phase equations allows

a derivation of certain statistical properties such as the joint probability of envelope and phase

[200]. The dynamics of the inhibitory LFP can be easily recovered from Eqs 2.47-2.48 (see Eq 2.16

in Methods). Numerical simulations of LFPs derived from these envelope-phase equations show

similar statistical properties as the simulated LFPs from the linear model driven by additive noise

in Eqs 2.45,2.46
(
see Figs. 2.5 and Methods

)
.

From an experimental standpoint, it is of interest to know the proportion of time that the process

spends near different envelopes. This can be obtained by computing the probability density for the

process, either theoretically (if possible), or in an approximate form using numerical simulations of
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the process. The density for the envelope can in fact be computed analytically as the stationary den-

sity of the Fokker-Planck equation Eq 2.34 obtained from Eq 2.49, namely Eq 2.35 in the Methods

section:

P (ZE) =

(
2ν

D

)
ZE exp

(
− ν

D
Z2
E

)
. (2.51)

The peak R of the stationary density of this noisy envelope process lies at

R ≡
√
D

2ν
. (2.52)

The peak value R, which is the most probable envelope amplitude value, will be used below as a

measure of the degree of network synchronization. A low value of R reflects the fact that the network

is poorly synchronized, and can’t build up a strong oscillation; conversely, a high value of R implies

a strong degree of network synchrony leading to strong oscillations in the recurrent circuit. One

could use a more standard measure of the network oscillatory strength, such as a spectral coherence

measure; generally we expect such measures to be proportional to R in this transient synchrony

regime. But we have focused instead on a measure that is directly relevant to the envelope bursts.

We have thus provided a derivation for the envelope-phase dynamics for gamma oscillations in

the transient synchrony regime that explicitly includes dependencies on all the parameters of the

original full nonlinear model. The envelope-phase model is able to exhibit transient oscillations - and

hence bursts - in other frequency bands by changing synaptic coefficients or synaptic time constants.

2.3.4 Envelope dynamics suggests distinct types of fluctuation amplification

Our envelope-phase equations depend on network parameters through ν and D which are functions

of all the parameters of the original network model of the LFPs. We first investigate how these

parameters lead to different network dynamics. We aim to understand this dependence in terms of

connectivity parameters by varying two of them at a time while keeping constant the two others

as well as all other parameters. In the plane of the parameters governing the strength of recurrent

connections, (Wee,Wii), we identify two easily separable regimes: transient synchrony and high

synchrony (Fig 2.6 left panel). However, other dynamical regimes not reported here may also be

present. The plane of the parameters governing feedforward connectivity, (Wei,Wie), gives a more
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Figure 2.5: Dynamics of the LFPs, their envelopes and their phases components from
Eqs 2.45,2.46, Eqs 2.49,2.50 and Eq 2.48 (also Eq 2.16 in Methods). (a), (c)
and (e): LFPs, envelopes and phases from the Stochastic Averaging Method (SAM) Eqs
2.49,2.50 and Eq 2.48 (also Eq 2.16 in Methods). (b), (d) and (f): LFPs, envelopes
and phases from LNA Eqs 2.45,2.46. As in the previous figures, blue corresponds to
excitatory components and red to inhibitory ones. In the SAM case, the envelopes and
phases processes were simulated using two independent OU processes (see Methods,
Eqs 2.30,Eq 2.34), integrated using the Euler-Maruyama method. The envelopes and
phases dynamics in the LNA case were obtained by applying the Hilbert transform on
the excitatory and inhibitory LFPs (ṼE,I(t)).The parameters are taken in Table 2.1.

complex array of possible transitions, and involves a third regime: an asynchronous non-oscillatory

state. Two types of transitions from transient synchrony can occur: one to a high synchrony regime

via a Hopf bifurcation (an equilibrium gives way to a periodic activity pattern), and another to the

asynchronous regime (Fig 2.6 right panel).

The value of R controls the magnitude of the envelope fluctuations, which in turn reflect different

degrees of amplification of the white noise fluctuations that drive the E-I system. It also reflects the

competition between the internal network noise and the deterministic oscillation. We can increase

R by either decreasing the value of ν (which depends on A11 and A22) at constant effective noise

strength D, or increase the value of D at constant ν, or increase D while decreasing ν.

In the first scenario, decreasing ν increases the damping time of oscillations, i.e. they are longer-

lived. This scenario affects both the amplification of the fluctuations, i.e. the burst size, as well as
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Figure 2.6: Different dynamics of the stochastic spiking network in the parameter space.
Left: Recurrent plane (Wee,Wii). Black dots correspond to the four different values of
the parameter R, obtained from left to right using the parameters (a) Wee = 20.4, ν =
0.0648, D = 0.0512, R = 0.6288. (b) Wee = 27.4, ν = 0.0182, D = 0.0613, R = 1.2999.
(c) Wee = 28.4, ν = 0.0110, D = 0.0613, R = 1.6900. (d) Wee = 29.4, ν = 0.0038, D =
0.0648, R = 2.9194. Right: Feed-forward plane (Wie,Wei). Red and green curves with
dots correspond respectively to the bifurcation lines between the transient and high
synchrony regimes and the transient synchrony and asynchronous regimes. Left: The
red bifurcation curve was plotted by setting ν = 0 through linear stability analysis
(see Methods, Eq 2.15). The transient synchrony regime then corresponds to the area
ν < 0 and the high synchrony regime to ν > 0. Right: The red curve corresponds to
the transition between the two oscillatory regimes as described in the Left case. The
green curve corresponds to the case ω0 = 0 and the asynchronous regime corresponds to
the case where ν < 0. The two black dots in the right panel refer to two points at the
same distance of the transition but at different frequencies (The diagram of frequencies
is not displayed here). Wei sets the strength of the feedback inhibition received by the
excitatory population, and Wie sets the strength of the feedback excitation received
by the inhibitory population. And Wee and Wii are respectively recurrent excitation
(excitation received by the excitatory population from itself) and recurrent inhibition
(inhibition received by the inhibitory population from itself). For this right panel we
have chosen hE = −7 instead of hE = −8 as in all other figures.
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Figure 2.7: Dynamics of the envelope fluctuations (black) and their associated LFPs
(blue) for the same four parameter values used in Fig 2.6:(a) R=0.6288, (b)
R=1.2999, (c) R=1.6900, and (d) R=2.9194. Insets show the corresponding probability
densities for these fluctuations, computed both numerically as well as analytically using
Eq 2.35 (red curve). Note how the size of the fluctuations and their durations increase
as R increases, i.e. as the network becomes more synchronized.
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the duration of these amplifications, i.e. the burst duration; without fluctuations, the rhythm would

just die out. Such envelope amplification has been observed both in computational studies and in

vivo in another frequency band [181, 99]. A simple way to implement this scenario in our model is

to increase the recurrent excitation. This reduces the value of ν without significantly changing D;

this can be seen from the fact that ν clearly depends on Wee, and D depends on Wee through ω0

(see expressions below Eq 2.50 and in Methods ).

The second scenario corresponds to a different type of amplification since it does not change ν;

it thus keeps the amplification duration constant. We do not detail this type of amplification; its

complexity requires an elaborate treatment that goes beyond our study. We verified that feedback

inhibition can cause the increase of D at constant ν (we do not detail it here; however the expression

of D depends clearly on Wei through A12, see below Eq 2.50 and Methods). The third scenario is

a mixture of the previous two.

The first scenario is appealing for our purposes since it yields rhythms similar to those seen in

healthy and diseased states. We consider four points along a horizontal line in the recurrent plane of

parameter space (Fig 2.6 left panel), lying increasingly closer to the transition between the transient

and the high synchrony regimes. As R increases, so does the network synchronization (Fig 2.7),

although the peak frequency of the rhythm stays around 85 Hz for our choice of parameters. Far

from the transition, i.e. for a low value of R, there is a lack of synchronization (Fig 2.7(a)). The

density of the envelope values has low variance (Fig 2.7(a) inset). But the mode of this density

and the duration of bursts are likely too small to support reliable communication through coherent

oscillations. The notion of burst itself is compromised as it is difficult to extract from the surrounding

small fluctuations. In addition, a similar lack of synchronization is observed in patients suffering

of schizophrenia (negative symptoms) [143, 142, 201]and constitutes one of the common markers of

this pathology.

A working point too close to the transition, corresponding to a high value of R, leads to strong

synchronization (Fig 2.7(d)). The broadness of the envelope distribution means high variability

of the underlying amplitude value (Fig 2.7(inset)). Burst durations can last more than 1 second.

However, it has been argued that such excessive synchronization could lead to the repetition of

the same message and impede the transmission of other messages [80]. This could also destroy the
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flexible routing of information observed when synchronization is more moderate [175]. Also, such

long burst durations go counter to the fast temporal decorrelation of gamma band activity observed

in vivo [136, 55]. They have been associated with dysfunctions resulting from an excess of excitation

or lack of inhibition which lead to sustained high envelope amplitude as seen in epilepsy [82, 4, 223]

or Attention Deficit Hyperactivity Disorder (ADHD)[232] .

Between these extremes, we show two working points with intermediate values of R (Fig 2.7

(b-c)). There we find moderate envelope values and burst durations (Fig 2.7(b-c)). This suggests

an optimal brain state between excess and lack of synchronization. Here and below, we use the

word “optimal” to describe a range of parameters, rather than a specific set of parameter values,

for which the burst statistics resemble those seen in healthy recordings from the monkeys. We

can in fact propose three regimes in the transient synchrony regime: a noise-dominated regime

at low R, an oscillation-dominated regime at high R, and an oscillation-noise regime at in-

termediate values of R. We can then assign pathologies related to lack of synchronization to the

noise-dominated regime, those related to excessive synchronization to the oscillation-dominated

regime, and healthy states to the oscillation-noise regime. The fact that the oscillation-noise

regime covers a range of parameters relates to the fact that different healthy subjects can exhibit

different gamma amplitude modulations.

Along a vertical line in the (Wie,Wei) parameter space (Fig 2.6 right), two points at a relative

same distance to the transition line lead to rhythms that can differ significantly in their peak fre-

quency (not shown). The amplitude modulations are however similar. Such points could correspond

to separate brain states, such as awake or anesthetized, as reported in [229]. Our envelope-phase

equations provide a simple explanation of how, in biophysical terms, different amplitude modulations

of brain rhythms can relate to different brain states, assuming basic E-I connectivity.

2.3.5 Dynamics and statistics of Gamma bursts

Burst Extraction

We define gamma bursts formally as epochs where the envelope process is sustained above a specific

threshold. The corresponding burst duration is, therefore, the time the process spends above that

threshold. Burst durations recorded in vivo have short mean values (on the order 100 ms). Our
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envelope process is not coupled with the phase process and allows in principle the derivation of the

mean burst duration in terms of mean first passage times (MFPT) away from the threshold and

back to it. Our derivation (see Eq 2.44 in Methods) gives the following approximate mean burst

duration in terms of network parameters:

T =

(
1

2ν

)[
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− 1

2

(
b
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)2)
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)
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Here Ei is the exponential integral function, b is the threshold and c is an estimate of a typical

maximal value that the process can reach during the burst.

Choosing the values of b and c to reveal burst characteristics regardless of the magnitude and

durations scales of the fluctuations, as we did here, requires that these values be proportional to R.

This enables the extraction of bursts and estimates of burst duration using a threshold and maximum

value that scale with the mean size of the envelope fluctuations. Other choices are possible, but

with this choice, the substantial variation of the burst duration is governed by the value of ν only

(in the first scenario discussed at the end of the previous section). This choice would also work in

the second scenario where D increases while ν is kept fixed, and the scenario where both covary.

Numerically, choosing a threshold for burst extraction is known as the Pepisode technique [49, 52,

166, 218]. This technique has the advantage that it easily detects bursts. However, it also has some

limitations. The first limitation is the fact that the choice of the threshold quantitatively affects

the results. The second limitation comes from the fact that, since the envelope process is a noisy

signal, rapid fluctuations regularly occur that spend too little time above threshold to be considered

as meaningful bursts. Such rapid fluctuations create false bursts and their consideration leads to

biased exponential distributions for burst durations. To address the first point, we avoid choosing a

value of threshold that is too small relative to the typical size of fluctuations, thereby averting most

false bursts, or that is so high that several relevant bursts are excluded.

After choosing the threshold b, we deal with the second limitation by implementing a second
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”threshold”, or rather, second criterion: a fluctuation is considered a burst only if its envelope

exceeds the mean of the envelope process for at least two oscillation cycles. This removes the

artefactual short bursts, keeping only proper bursts. Further testing has revealed that changing

the threshold value only modifies our results quantitatively rather than qualitatively. For example,

increasing (decreasing) b slightly decreases (increases) the mode of the density of burst durations.

Gamma burst extraction in previous studies has been done using time-frequency analysis of the

LFP. This involves thresholding the power of the smoothed version of the LFP. The advantage

of those analyses is that they return both the burst duration and peak frequency content of the

LFP. This usually allows one to compute marginal distributions of burst duration and burst peak

frequency. From those distributions, one can calculate the mean burst duration and the mean burst

peak frequency. Here, burst extraction using our criteria naturally returns a range of durations.

Furthermore, to obtain the range of associated peak frequencies, we computed the corresponding

peak frequency in each burst using the corresponding LFP epoch. With the set of burst durations

and their corresponding peak frequencies, we can then compute the marginal distributions of the

burst duration, their corresponding peak frequency, and their associated mean values.

Burst Duration and Peak Frequency: Mean and Variability

The mean burst duration observed in vivo is usually short (less than 100 ms on average) but its

exact value varies depending on the brain state and animal subject, as well as the accuracy of the

method used to extract bursts [37, 229]. A normal mean burst duration observed in data is in the

range (60-150 ms) [37, 229]. The mean burst durations computed from marginal distributions and

from Eq 2.44 vary across parameter space, and thus for the four R values of interest in our study

(Fig 2.8). We observe an increase in the mean values as the transition between the transient and

high synchrony regimes is approached (Fig 2.6 and insets). The precise values are respectively 35.00

ms (a), 74.50 ms (b), 112.25 ms (c) and 514.60 ms (d) for the four points in the phase parameters

(see green and red vertical bars in Fig 2.8, computed from burst duration marginal distributions and

from Eq 2.44, respectively). The durations computed in (b) and (c) fall inside the in vivo range.

The duration of 35.00 ms calculated in (a) is too short and the corresponding envelope amplification

too weak compared to in vivo recordings. Such short durations are not seen in healthy subjects, but
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have been seen in psychiatric disorders such as schizophrenia. Further, the duration of 514.60 ms

observed in (d) is too long, with a corresponding excessive envelope amplification uncharacteristic

of healthy subjects.

Burst peak frequencies obtained in our analysis are characterized by their marginal distributions

(not shown here). Unlike the burst duration distributions, the burst peak frequency distributions

are approximately Gaussian. Also unlike the burst durations, the mean extracted from burst peak

frequency distributions is roughly the same across the four cases (it is around 85 Hz). However,

visual inspection suggests that burst peak frequency variability is reduced as the transition from

transient to high synchrony is approached; this is confirmed by their distributions (Fig 2.8 insets).

Indeed, burst peak frequency variability is an essential marker of gamma bursts in data. We define

variability (peak-frequency deviation) as the difference between absolute peak frequency for the

gamma burst and the mean peak gamma frequency, averaged across all of the gamma bursts [229].

We then numerically compute from long time series a distribution of peak-frequency deviation values,

and quantify the spread of this distribution by a standard deviation. This latter deviation is thus

a measure of the burst peak frequency variability. We computed the standard deviations for each

of the four points in the space parameter. Their values decrease as we get closer to the transition

between the two regimes. The exact values of these standard deviations are respectively SD1=19.1

Hz (a), SD2=8.1 Hz (b), SD3=5.4 Hz (c) and SD4=1.6 Hz (d). We compared these values for those

observed in recorded data and found that the cases (b) and (c) gave relatively good agreement.

For illustration, mean burst duration and burst peak frequency variability measures computed

from recording on an anesthetized monkey in [229] are respectively 65 ms and SD=8.8 Hz. These

values are relatively close to our case in (b) where we have a mean burst duration and a burst peak

frequency variability of 74.50 ms and SD=8.1 Hz respectively. Furthermore, data from awake and

anesthetized monkeys suggests that variability decreases as mean burst duration increases. This is

illustrated by a slight decrease in the burst peak frequency variability from SD=9 Hz to SD=8.8

Hz, following a small increase of the mean burst duration from 62 ms to 65 ms for an anesthetized

and an awake monkey, respectively. This supports the relative weakness of our computed burst

peak frequency variability (SD=5.4 ms) associated with a relatively high value of the mean burst

duration (112.25 ms) in case (c) of our analysis. The burst peak frequency variability in cases (b)
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and (c) are therefore more likely to be observed in vivo. For the case (a) the burst peak frequency

variability SD=19.1 Hz is too high. In contrast, the case (d) shows a reduced variability SD=1.6 Hz,

close to a highly coherent oscillation process. Such regularity disagrees with the stochastic nature

of gamma-band oscillations observed in vivo [37].

Joint Distribution of Burst Duration and Peak Frequency

Next, we investigate the count of occurrences of a burst at a given oscillatory frequency with a

specific duration. This is done using the joint distribution of burst duration and peak frequency

[37, 229]. Such distributions are investigated over the same four values of R (Fig 2.9). The first case

(Fig 2.9(a)) does not show any structure close to what is observed in the data, as the bursts are too

short and frequencies quite high. In Fig 2.9(d) the joint distribution shows a mode corresponding to

the mean burst duration of 514 ms and peak frequency around 85 Hz. However, the lack of variability

of the burst peak frequency and the excessive burst durations associated with this process disqualifies

it as a model of stochastic gamma oscillations observed in vivo.

The remaining cases (Fig 2.9(b-c)) are good approximations of observed gamma oscillations

[37, 229]. They show modes corresponding respectively to mean burst duration and peak frequency

similar to what has been done in previous computational and experimental studies [175, 37, 229]. We

therefore conclude that there exists an optimal parameter range which reproduces the burst durations

and their corresponding peak frequency variability observed in vivo. This region coincides with the

oscillation-noise regime defined previously. This suggests that a mixture of intrinsic network noise

and noise-free fixed point dynamics are needed to produce observed gamma oscillations. Indeed the

two other regimes (noise-dominated and oscillation-dominated) both fail to reproduce in vivo data.

The theoretical expression of the mean burst duration Eq 2.44, through its direct dependence

on R (note the prefactor 1/ν) can partially explain these normal, perhaps optimal brain states. In

fact, we remark that choosing an optimal state in our model corresponds first to choosing ν such

that its inverse falls inside or is near to the range (60-150 ms) of mean burst durations seen in vivo.

Then, we need to make sure that the value of D is sufficient such that the value of the amplification

strength R is high enough (and D needs to be not too small relative to ν, because values of D close

to zero decrease R to zero). In our illustration, values of (1/ν) for the four increasing values of R
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Figure 2.8: Distributions of burst durations (histograms in blue), their corresponding
means (vertical line in green) and theoretical mean values (vertical line red).
Distributions in insets correspond to associated peak frequency variability
in Hz.Theoretical values were computed from Eq 2.44 and the value of c was chosen as
the sum of the mean and the standard deviation of each envelope process (Methods).
The four cases correspond respectively to different values of R in the previous figures,
namely (a) R=0.6288, (b) R=1.2999, (c) R=1.6900, and (d) R=2.9194. The mean burst
duration increases as we get closer to the transition between the high and transient
synchrony regimes and the corresponding peak frequency variability decreases. The
mean values computed from histograms (vertical green lines) are, respectively, 35.00
ms, 74.50 ms, 112.25 ms and 514.60 ms, and those from Eq 2.44 (vertical red lines)
are 27 ms, 86.10 ms, 132.90 ms and 465.50 ms. The associated standard deviations of
the peak frequency variability are respectively SD1=19.1 Hz, SD2=8.1 Hz, SD3=5.4 Hz
and SD4=1.6 Hz. Furthermore, we observe mean burst durations with corresponding
peak frequency variability in the range of the experimental observation for the two
intermediate working points (b) and (c).
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Figure 2.9: Joint distribution of burst durations and burst peak frequencies.The four cases
correspond respectively to the four different values of R used in previous figures, namely
(a) R=0.6288, (b) R=1.2999, (c) R=1.6900, and (d) R=2.9194. Panels (b-c) best rep-
resent the combinations of frequencies and burst durations seen experimentally.

are, respectively, 15.43 ms, 54.9 ms, 90.90 ms and 263.15 ms, and values of D are almost constant

around 0.06, but not too small relative to values of ν. The values of (1/ν) in (a) and (d) are clearly

away from the considered range. Also the value of (1/ν) of the paper of [229] is 66.67 ms and falls

inside the normal range found here.

2.4 Discussion

We obtained an envelope-phase representation of broadband gamma oscillatory LFP’s seen in vivo,

and consequently of noisy rhythms in general, by considering a simple neural network in the PING
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scenario with the essential properties of excitatory and inhibitory cell types. From numerical sim-

ulations of the excitatory and inhibitory LFP dynamics, we observed that their ratio of envelopes,

their phase difference as well as their respective peak frequencies all follow approximately Gaussian

distributions. This allowed us to link these LFPs together, and to consider just the excitatory LFP

as the network LFP. We further applied the Stochastic Averaging Method (SAM) to extract evo-

lution equations for the slow envelope of the LFP amplitude and the corresponding phase of the

LFP in terms of the parameters of the original microscopic network. The distribution of frequencies

in the LFP could also be derived from the phase dynamics. The envelope-phase equations depend

on all single-neuron and network parameters, and are in agreement with these quantities extracted

through the analytic signal technique based on the Hilbert transform of the LFP time series.

Under certain conditions, the envelope-phase equations produce dynamics that resemble recorded

LFPs in vivo. The model therefore provides an appropriate theoretical framework for studying

LFPs of rhythms and for our ultimate goal of characterizing burst dynamics in terms of all network

parameters. We have followed our formulation for that latter purpose. While many parameters

govern the E-I dynamics, surprisingly few combinations of those parameters actually determine

the envelope and phase dynamics. We investigated how the envelope process evolves across the

parameter subspace relating to connectivity. Specifically, we chose four points in that subspace

below the bifurcation between the transient synchrony and high synchrony regimes, which appears

most relevant to gamma bursts. We found that the amplification of noisy perturbations - seen in

large excursions of the envelope, i.e. bursts - and the corresponding burst durations increase as the

transition is approached.

In the close vicinity of the transition, envelope amplifications and their durations become ex-

cessive, with possible relevance to disorders such as epilepsy and ADHD [113]. Far away from the

transition, the process appears more noise-like, with the envelope exhibiting weak amplifications with

very short lifetimes. The lack of synchronization in this latter case is accompanied by a reduced

spectral power at gamma frequencies, and is sometimes observed in patients with neurological disor-

ders like schizophrenia [113]. Between these two points, the two other parameter sets yield moderate

amplifications and durations. These provide a better match to modulations observed in vivo. This

suggests that there is an optimal region in the parameter space where healthy dynamics lie.
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2.4.1 Non-normal amplification as a mechanism for Gamma bursts?

We showed that burst generation can depend on ν by changing Wee, and on D by changing Wei.

The notion of an optimal region for in vivo gamma bursts first requires that the inverse of ν falls

inside or lies near the healthy range (60-150 ms). But this is not sufficient, since a value of D close

to zero will lead to a value of R close to zero and therefore to very little amplification; decreasing ν

further to recover some amplification then leads to burst durations outside the healthy range. Thus,

the value of D also has a great importance for burst generation. The parameters ν and D appear

to influence distinct types of amplification, but what types specifically?

While a full answer to this question exceeds the scope of our paper, we remark that amplification

in the envelope process obtained by approaching the transition (through decreasing ν in our ”first

scenario”) ressembles what is known as ”normal amplification”. Normal amplification results from

the real part of the eigenvalues of the linear noise-free dynamics being small. Very close to the

transition, the absolute value of the real part of the eigenvalues, i.e. ν, approaches zero. Conse-

quently, the amplification scales as ν−1/2 (Eq 2.52), while the amplification duration is proportional

to ν−1 (Eq 2.44). Therefore, bursts occur with explosive amplification and very long duration. Such

amplification in a neural network is mostly induced by mutual excitation among neurons, resulting

from strong recurrent excitation coefficients (Fig 2.6); recall that increasing Wee makes ν tend to-

ward zero, since A11, which increases with Wee, is positive and A22 < 0. In contrast, far from the

transition, ν is not that small, and as a consequence, the corresponding normal amplification and

its lifetime are smaller.

The two points in the middle correspond to sufficient normal amplification (not too weak and

not too strong). This suggests that strong normal amplification does not agree with in vivo data.

Furthermore, the value of D must be sufficient to avoid very weak amplification.

Interestingly, the amplification seen by increasing D at fixed ν (second scenario) may produce

bursts that are compatible with those seen experimentally, as long as the values of ν are in the

middle range mentioned above. Increasing D under these conditions has the advantage of increasing

the burst magnitude without increasing burst duration. This corresponds better to the so-called

non-normal amplification [213, 111, 110, 89]. Such amplification is believed to play an important

role in selective amplification observed in cat primary visual cortex (V1) [174, 167]. It is also called
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balanced amplification because it is associated with the stabilization of strong recurrent excitation

by feedback inhibition [167]. This could be the dominant amplification used by a healthy brain to

produce bursts in gamma and perhaps also beta rhythms, as long as ν is properly set to produce

normal amplification. Therefore, the two types of amplifications may underlie healthy conditions.

2.4.2 Envelope-phase decomposition of more complex neural networks using SAM

Our study uses a network which does not model neurons with intrinsic voltage dynamics, and neglects

the additional excitatory (AMPA and NMDA) and inhibitory (GABA-A) synaptic receptor dynamics

[35]. Furthermore, noise is an intrinsic property in our network due to finite-size effects. But noise

in real neural networks in vivo comes also from the constant bombardment of synaptic inputs,

including those whose origin is outside the network [35]. Our approach could be applied to such

detailed spiking networks given the approximate linear dynamics that have been extracted for those

networks. For example, the Dynamic Mean Field (DMF) technique can be applied to more detailed

realistic models [227, 65, 63]. DMF adequately approximates the temporal dynamics of the complex

network by stochastic nonlinear equations close to our stochastic equations for the excitatory and

Inhibitory activities (Methods) (Eqs 2.3,2.4 ). Such stochastic nonlinear equations can be further

linearized around the stable fixed point; the resulting linear stochastic equations sustained by noise

provide a fairly good approximation of the complex network dynamics [65, 63, 65]. Therefore for

the purpose of studying gamma bursts in such realistic networks, it could suffice to tune parameters

in the vicinity of the transient and high synchrony regimes, as in our study.The same can be said of

neural field theoretic approaches with intrinsic noise to describe rhythms where linearization can be

used to investigate spectra and the emergence of rhythms [119].

Rate dynamics can also be derived for conductance-based spiking networks [129]. Such dynamics

can be linearized, and our envelope-phase decomposition can be fully applied. In fact, this is true

for any spiking network which can be described by 2D rate equations or 2D activity dynamics. Our

approach could further be extended to networks with complex topology, such as the 2D plane model

of the primary visual cortex [130, 129], or to multiple coupled E-I networks [61, 63, 65]. The resulting

dynamics can be used to study the effect of the feedback from extrastriate cortex on visual cortex

[130, 129], phase-synchronization between brain rhythms [219, 152], inter-areal brain communication
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[84, 86, 175], functional connectivity [45, 46, 61] or cross-frequency coupling more generally.

The extension of our model to beta rhythms may involve considering other mechanistic origins

of the oscillations, such as thalamocortical loops. Likewise, bursty gamma rhythms may arise from

inputs from extrastriate cortex [129]. Our method could be applied to the putative circuitry as long

as the associated loop causes a damped oscillation.

It may be that bursts in one frequency range are the result of a cross-frequency interaction,

i.e. between a fast rhythm and another slower rhythm both emerging from the feedback structure.

Our modeling framework could still be used if the dynamics of the corresponding two networks are

damped, i.e. with linearized dynamics having eigenvalues with negative real part and imaginary

values corresponding to the two frequencies present.

Alternately, we could further develop our framework to describe the potential situation where a

quasi-cycle in e.g. the gamma range is driven by a slower (e.g. beta) rhythm arising outside of the

feedback loop. This would likely lead to stochastic amplitude-phase equations as we have described

in our work, with the noise-induced rhythm being modulated by the time-dependent forcing. The

mean frequency of the quasi-cycle would have to be significantly faster than the external forcing. Its

mean amplitude would also have to be smaller than that of the quasi-cycle for the analysis to carry

through to this driven case – otherwise, the external modulation could drag the fast rhythm in and

out of the quasi-cycle regime. This analysis could be further developed to account for the transients

that occur when this external input is switched on.

Preliminary simulations of a periodically forced gamma quasi-cycle reveal that the properties of

the bursts change according to the frequency and the amplitude of the external input (not shown).

The effect also depends on whether the forcing is applied to the excitatory population only, the in-

hibitory population only, or to both populations. The precise dependence of gamma burst properties

on such external input parameters and network regimes is not a trivial problem, and our work in

this direction promises to be a stand-alone hefty story.

2.4.3 Envelope-phase decomposition of an all-to-all delayed inhibitory network

We have also investigated broadband rhythms generated by a population of stochastic two-state

neurons (as in Fig 2.3) but with all-to-all delayed inhibitory coupling. The delay and the proximity
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of a Hopf bifurcation are necessary for the appearance of the quasi-cycles [34, 73], and differs from

the ING mechanism. The same transition between transient synchrony and high synchrony occurs

in that model as it does in our study based on the PING mechanism. We have verified numerically,

using the Hilbert transform to extract the envelope of the rhythm, that a qualitatively similar

behaviour of the burst magnitude and duration occurs in this inhibitory system as the transition is

approached from the transient synchrony side (not shown). We also see an analogous optimal region

in the subspace of parameter space spanned by the delay and the inhibitory coupling strength, where

the variability in the burst duration and in the peak frequency during bursts resembles those seen in

vivo. This further supports the generality of our result, in the sense that the essential determinants of

the burst statistics are there again the presence of noise in the vicinity of a bifurcation to synchrony.

Again, to understand rhythm bursts, our envelope approach could be applied to the linearizable

formalisms that have been proposed for noise-induced rhythms and their spectra in this case such

as [34, 73], and [120] in the spatio-temporal noise-driven neural field case.

Future work should also consider the statistics of bursts in the chaotic networks with long range

excitatory connections that produce fast decorrelating gamma rhythms [13, 15], to see whether they

exhibit qualitatively different features than those discussed here. And while our approach can easily

be adapted to rhythms in other frequency bands, it does rely on linearization, and thus may not

provide adequate descriptions of envelope and phase dynamics for all nonlinearities that underlie

brain rhythms. One expects in those cases as well that our approach will provide a good first

understanding of the parameter range underlying observed burst statistics, and what to do in case

these statistics fall out of the healthy range.
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Chapter 3

Brain Rhythm Are Enhanced by Multiplicative Noise

Abstract

Many healthy and pathological brain rhythms, including beta and gamma rhythms and essential

tremor, are suspected to be induced by noise. This yields randomly occurring, brief epochs of higher

amplitude oscillatory activity known as ”bursts”, the statistics of which are important for proper

neural function. Here we consider a more realistic model with both multiplicative and additive noise

instead of only additive noise, to understand how state-dependent fluctuations further affect rhythm

induction. For illustrative purposes, we calibrate the model at the lower end of the beta band

that relates to movement; parameter tuning can extend the relevance of our analysis to the higher

frequency gamma band or to lower frequency essential tremors. A stochastic Wilson-Cowan model

for reciprocally as well as self-coupled excitatory (E) and inhibitory (I) populations is analyzed in the

parameter regime where the noise-free dynamics spiral in to a fixed point. Noisy oscillations known

as quasi-cycles are then generated by stochastic synaptic inputs. The corresponding dynamics of

E and I local field potentials can be studied using linear stochastic differential equations subject

to both additive and multiplicative noises. As the prevalence of bursts is proportional to the slow

envelope of the E and I firing activities, we perform an envelope-phase decomposition using the

Stochastic Averaging Method (SAM). The resulting envelope dynamics are uni-directionally coupled

to the phase dynamics as in the case of additive noise alone; but both dynamics involve new noise-

dependent terms. We derive the stationary probability and compute power spectral densities of

envelope fluctuations. We find that multiplicative noise can enhance network synchronization by
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reducing the magnitude of the negative real part of the complex conjugate eigenvalues. Higher noise

can lead to a ”virtual limit cycle” where the deterministically stable eigenvalues around the fixed

point acquire a positive real part, making the system act more like a noisy limit cycle rather than

a quasi-cycle. Multiplicative noise can thus exacerbate synchronization, and possibly contribute to

the onset of symptoms in certain motor diseases.
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Neural signals recorded from the brain of patients suffering from motor dysfunctions

can exhibit exaggerated oscillatory activity. Rhythms in healthy patients are not con-

tinually sustained, but rather appear in random epochs known as bursts. The duration,

amplitude and frequency of such bursts are critical markers that increasingly help char-

acterize the degree of dysfunction. Hence the study of bursts provides an additional

tool towards understanding the origin and function of brain rhythms. At the micro-

scopic level, the appearance of exaggerated bursts is believed to be the consequence of

an increase in excitability of the cells as well as enhanced cellular connectivity. In this

study, we model low-frequency brain rhythms in terms of fluctuations in the rhythm’s

slow envelope and phase. The increase in excitability of the cells is accounted for by in-

cluding noise inside the response function of a single neuron. This analysis leads to two

kinds of noise, called additive and multiplicative, which are shown to extend the epochs

of network synchronization compared to previous, simpler analyses based solely on ad-

ditive noise. More generally our study expands our understanding of how more realistic

noise in neural circuits can generate and sustain brain oscillations in health and disease.
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3.1 Introduction

Oscillations are recorded in brain of several species [41]. They are grouped depending on the values

of their mean frequencies. Among the most prevalent are beta (13-30 Hz) and gamma (30-100

Hz) band oscillations. Certain important movement disorders like essential tremor actually occur

around 5Hz. Gamma-band oscillations have been linked to inter-areal communication [83, 85, 175],

neural computation and working memory [154, 153], and their dysfunction associated to epilepsy and

Alzheimer’s disease. Beta-band oscillations play an important role in motor function [80, 79, 146] and

working memory [154, 153] and their dysfunction is most dramatically seen in Parkinson’s disease

(PD) that affects the sub-thalamic nuclei [47, 147, 60]. Other brain oscillations include the slower

delta (0.5-3.5 Hz), theta (3.5-7 Hz) and alpha (7-13 Hz) rhythms [41]. Slightly below the beta range

is that of essential tremor (ET) [71], which can occur at the same time as PD, yet originates in

thalamic structures (with paths through the cortex) without self-inhibition. Based on that study

of ET, self-inhibition is actually excluded below to simplify our analysis; self-connectivity of the

inhibitory population can however be included with results qualitatively similar to those reported

here.

In health, such rhythms often appear randomly as short epochs of synchrony called ”bursts”

(see Fig.1) [154, 80, 228]. Despite their variability, the rhythms can still be characterized by their

distributions of burst duration and frequency content. The stochastic nature of such oscillations

suggests an important role for noise in their generation and statistics. The goal of this paper is to

develop our understanding of these bursts beyond linear models with additive noise.

Bursts are also used in another context in neuroscience, namely, single cell activity that consists

of alternating phases of fast repetitive firing and quiescence. This differs from the bursts we focus on

here, which occur at the population level and do not require such single cell dynamics. We further

clarify the meaning of other terms that will recur below.

In this paper we are not simulating a network of cells, but rather only two population activity

variables. These variables denote, respectively, the fraction of cell of a given type that are firing at any

given time. The agreement between the dynamics of these variables and detailed network simulations

has already been established [220]. That study also showed that higher network synchrony drives

large amplitude oscillations. So while we consider only two population variables, we use ”synchrony”
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to denote strong collective firing which is reflected in large positive excursions in the two population

activities.

Here an oscillation corresponds to the approximately periodically synchronized spiking of many

cells. Several neurons fire together during a small interval of time, after which the network activity

is low or ”quiescent”. Then the synchronized firing repeats. Together these active and quiescent

intervals, or phases, constitute an oscillation. The period of this oscillation is the sum of the durations

of these two phases. The amplitude of the oscillation refers to the difference between the maximum

number of neurons that fired during the active phase and the minimum number during the quiescent

phase. When noise is present, this cycle-to-cycle difference will be averaged across many cycles. In

a spiking neural network, one could quantify the amplitude by counting the actual number of spikes

fired by neurons of a given type in every cycle.

While the dynamical behavior is not strictly periodic when noise is present, here the network

oscillation is closer to periodic the weaker the noise is and the closer the system is to the limit cycle

regime. If the system lies in the quasi-cycle regime, the amplitude, and to a lesser extent the period

of the oscillation, are irregular, as a consequence of the fluctuations in the synchronized firings of the

neurons. But without noise, the dynamics decay to a fixed point. The rhythm is characterized by

short and randomly occurring epochs of random duration - typically three or four oscillation cycles

- during which stronger synchronized spiking is observed followed by quiescence. Such epochs of

high amplitude and more regular period are called ”bursts”; they are separated by epochs of low

amplitude associated with poor synchronization between the neurons.

We also refer to synchronization as the coordinated spiking of many neurons, regardless of

whether such spiking events repeat at periodic intervals. The level of synchronization then cor-

responds to the number of neurons that fire together in a synchronization event. If the network now

evolves in the limit cycle regime, oscillations are regular, and bursts are rare. at least in the weak

noise limit. The level of synchronization during the active phase of the oscillation is again a measure

of the amplitude, and is higher compared to the quasi-cycle regime.

Current models of bursty network oscillations suggest that without noise, of synaptic and/or other

origin, the burstiness would disappear, and any transient would exhibit an underdamped behaviour

back to some stable equilibrium [220, 228, 182, 71]. Noise is thus assumed to be a stochastic input
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critical to trigger the oscillations, leading even to the assertion that rhythms may only be linearly

filtered noise [228]. The context of those papers as well as of the current paper is an underdamped

regime close to a Hopf bifurcation.

However, the mechanisms by which noise triggers population oscillations is slowly being devel-

oped, and important questions remain. Does noise act at the population level, and just population-

averaged quantities like local field potentials (LFPs) feel it? Or is it important to consider the effect

of noise on every neuron arising from e.g. its synaptic input? Much modeling work considers the

first scenario [102, 182, 228], leading to additive noise-driven population activity. Here, we consider

the latter scenario where noise is added to the input of the firing (or ”input-output response”) func-

tion of the neuron, thereby mimicking more closely synaptic noise, albeit in a population model

context. The dynamics of the corresponding macroscopic quantities like the LFPs are now subject

to multiplicative noise, which turns into both additive and multiplicative noise when the model

nonlinearities are expanded to lowest order. This is a novel modeling direction for rhythm bursts

observed in vivo.

Bursts can also be seen as temporary increases in the slowly-evolving amplitude of the oscillation,

i.e. in the rhythm’s ”envelope”. Thus a better understanding of burst dynamics and statistics may

rely on an envelope-phase decomposition as an appropriate framework. Within this framework,

a burst can be defined as the epoch where the envelope of an oscillation is moderate to large by

some criterion. Such an envelope-phase decomposition has been recently performed in the gamma

frequency range and in the scenario where noise is only additive [102, 182]. It is important to note

that envelopes are a nonlinear feature of a system, and can be calculated analytically or numerically

(e.g. via the analytical signal technique) for both linear or nonlinear narrowband systems generating

fluctuating rhythms. The work on rhythm bursts can thus be seen as complementary to other efforts

to understand the origin and processing of envelopes in neural systems [163], and in communication

systems more generally.

Here we consider the scenario where noise acts as both additive and multiplicative. We chose

model parameters that lead to the lower beta range, and in fact they could easily be tuned to bring

them a bit lower into that of essential tremor with the same qualitative results - or higher into

the gamma range. As in our previous study with purely additive noise [182], we use an analytical
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technique, the Stochastic Averaging Method (SAM) [187], to calculate the envelope-phase dynamics.

We also exploit again the constant amplitude ratio and phase difference which exists between the

inhibitory and excitatory components in the deterministic limit. As in previous models with only

additive noise, we find that the envelope dynamics are uncoupled from the phase dynamics to lowest

order of approximation; this is generally possible if we replace the sum of two Wiener processes by

another Wiener process.

We study the dynamics of the envelope depending on its distance to the bifurcation as previously.

But in addition, we investigate the effect of noise type and intensity. Our results show again that the

oscillations have larger mean amplitude and hence higher envelope values when we are close to the

transition to the Hopf bifurcation, but this effect is amplified by multiplicative noise. Paradoxically,

this noise acts like a deterministic synchronizing effect, in the sense that it increases the real part

of the complex conjugate eigenvalues around the fixed point, and therefore pushes the system closer

to the Hopf bifurcation. From the point of view of the slow envelope of the rhythm, this noise

decreases the decay rate of the envelope to zero, enabling the noise to kick the envelope to larger

values, thereby producing larger bursts. This can be seen as the creation of a ”virtual limit-cycle”

by the multiplicative noise, even though the noiseless system has a simple stable focus. The analysis

below shows that the damping rate, i.e. the real part of the eigenvalues around the fixed point, can

become positive when the noise strength is sufficient large.

The virtual limit cycle created is highly synchronized, but nevertheless exhibits random bursts.

However, these bursts are long epochs of aberrant synchronization, compared to the healthier range of

150-200 ms [80]. Such long epochs of aberrant synchronization is often observed in patients suffering

from Parkinson’s diseases (PD) [211, 148]. The mechanism by which the multiplicative noise induces

a virtual limit cycle here adds to the list of possible mechanisms underlying pathological bursts in

ET, or through simple modifications of model parameters, PD or other motor dysfunctions.

The outline of our paper is as follows. We first present the nonlinear Wilson-Cowan model with

synaptic noise. Expansion of this model to quadratic order yields a simplified model in which we

thereafter neglect the nonlinearities but keep the additive and novel multiplicative noise terms. We

discuss the Itô and Stratonovich interpretations of the resulting stochastic differential equations

(SDE), pursuing to show analysis and results with the Itô one, and eventually discussing how the
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Stratonovich one just reinforces our results. The oscillatory properties of these ”LFP” dynamics are

then presented. An envelope-phase reduction using the Stochastic averaging method is applied to the

linear SDE with additive and multiplicative noise, revealing the novel effect of the multiplicative noise

on the envelope and phase dynamics: at low noise one sees a noise-induced oscillation, i.e. a quasi-

cycle, around an otherwise stable fixed point, and a higher noise causes the effective damping rate

to become smaller, even positive, creating a stronger noise-induced limit cycle. Using Fokker-Planck

analysis, a closed form expression for the stationary probability density of envelope fluctuations and

for the peak of this density are obtained. A Discussion follows, which also comments on the possible

relevance of our work for understanding pathological brain rhythms.

3.2 The Model

3.2.1 Expanding the stochastic Wilson-Cowan model

We consider the classical Wilson-Cowan model (WC) for oscillation generation. The model involves

a population (E) of excitatory cells and another (I) of inhibitory cells. Each population is coupled to

itself, and reciprocally (although not symmetrically) coupled to the other. The mean synaptic cou-

pling strengths between excitatory cells and from inhibitory to excitatory cells are given respectively

by WEE and WEI . Similarly, the mean synaptic coupling among inhibitory cells and from excitatory

to inhibitory cells are WII and WIE , respectively. In addition, an excitatory cell receives an external

stimulus composed of a constant bias hE and a stochastic part ηE ; likewise, every inhibitory cell

also receives an external stimulus hI plus a stochastic component ηI .

We are interested in the parameter regime where the deterministic dynamics have complex con-

jugate eigenvalues. Moreover, our main focus is on beta-band oscillations (13-30 Hz). The WC

model is a good candidate for such oscillations; one precise biophysical justification can be found in

[71]. The corresponding equations for the activities of the E and I populations are given by:

dE(t)

dt
= −αEE(t) +

(
1− E(t)

)
βEf(sE(t)) (3.1)

dI(t)

dt
= −αII(t) +

(
1− I(t)

)
βIf(sI(t)) . (3.2)

where f(x) = 1/(1 + exp(−x)) is the single neuron firing (or ”response”) function of its combined
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excitatory, inhibitory and external synaptic inputs:

sE(t) = WEEE(t)−WEII(t) + hE + ηE(t) (3.3)

sI(t) = WIEE(t)−WIII(t) + hI + ηI(t) . (3.4)

Note that the coupling coefficients W are positive by definition. Here ηE(t) and ηI(t) are Gaussian,

potentially broadband noises of the Ornstein-Uhlenbeck (OU) type:

< ηE(t) >=< ηI(t) >= 0, < ηE(t)ηI(t) >= 0

P (ηE) =
1√

πτEΣ2
E

exp

[
−η2

E

τEΣ2
E

]
, P (ηI) =

1√
πτIΣ2

I

exp

[
−η2

I

τIΣ2
I

]

< ηE(t)ηE(t
′
) >=

τEΣ2
E

2
e
−|t−t

′
|

τE , < ηI(t)ηI(t
′
) >=

τIΣ
2
I

2
e
−|t−t

′
|

τI .

These OU processes satisfy the following stochastic differential equations:

dηE(t)

dt
= −ηE(t)/τE + ΣEξE(t) (3.5)

dηI(t)

dt
= −ηI(t)/τI + ΣIξI(t) . (3.6)

where ξE,I(t) are Gaussian white noises, with the following properties:

< ξE(t) >=< ξI(t) >= 0, < ξE(t)ξI(t) >= 0

< ξE(t)ξE(t
′
) >=< ξI(t)ξI(t

′
) >= δ(t− t

′
) .

The excitatory and inhibitory OU noises have correlation times τE and τI , respectively. The

Gaussian white noise limit for the E or I noise can be taken by letting τE,I → 0, ΣE,I → ∞

while keeping constant the noise intensity (i.e. the integral of the E or I OU noise autocorrelation

function), i.e. (τE,IΣE,I)
2 = (σE,I)

2 = const [115] . The noise appears on the input of the response

function of every single cell. This suggests that every single cell receives stochastic inputs. This

differs from the usual modeling approach where the stochastic inputs are added to the E and I
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dynamical equations [220, 182, 71]. In these latter models, such noise has been added to simply

account for stochastic effects, but has also been used to describe finite size effects (with state-

dependent amplitude), vanishing in the limit of an infinite network. In that latter case, it is an

emergent property which is felt by macroscopic quantities like the LFPs in each population.

Here, we wish to treat the case where noise acts directly at the microscopic level, accounting

mainly for the stochastic synaptic input to each neuron. Such a description is also of interest in

practical stimulation contexts such as non-invasive and deep brain stimulation [67], during which

the synaptic bombardment of individual neurons is ongoing. In the WC model, individual neurons

are not represented, but rather the activity of a population as a whole; yet the effect of synaptic

noise can be approximated in the same way by including it in the response function.

We performed numerical simulations of the case described by Eqs.(3.1)-(3.2) with colored noises

described above. The noise-free (ΣE = ΣI = 0) dynamics are assumed to have a stable focus

fixed point (E0, I0). We are interested in the deviations from such a fixed point induced by noise.

The simulations consist of the excitatory (E(t) − E0) and inhibitory (I(t) − I0) deviations time

series Fig. 3.1-(a) and the spectrogram of the excitatory deviation Fig. 3.1-(b). The results of

such simulations show stochastic oscillations appearing as short epochs of sustained activities (both

excitatory and inhibitory). These transient epochs of sustained activities are clear representation

of bursts as observed in Fig. 3.1-(a). The spectrogram Fig. 3.1-(b) is an efficient way to highlight

the bursting structure of quasi-cycle oscillations. The spectrogram returns the transient nature of

the envelope of the excitatory deviation E(t) − E0. However, it does not give the dynamics of the

envelope of the process and does not allow analytical treatment. An appropriate framework for

theoretical purposes is the envelope-phase dynamics of the process E(t)− E0.

To obtain such envelope dynamics of the deviation processes described in Fig. 3.1-(a), we look

for solutions of Eqs.(3.1)-(3.2) in the form:

E(t) = E0 + VE(t) , I(t) = I0 + VI(t) . (3.7)

The corresponding deviations VE(t) and VI(t), that we consider as measures of Local Field Potential

(LFPs), are obtained here by Taylor expansion of the sigmoidal functions to first order as follows,
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Figure 3.1: Low frequency oscillations in the Stochastic Wilson-Cowan model Eqs.(3.1)-
(3.2). (a) Time series of the excitatory (blue) and inhibitory (red) deviations from
equilibrium E(t)−E0 and I(t)− I0 respectively, computed from Eqs.(3.1) and (3.2). A
smoothing second-order Butterworth filter was applied to the noisy oscillations before-
hand. (b) Time-frequency description of the excitatory deviation E(t)−E0. The tran-
sient nature of the oscillations is seen, especially in the form of two bursts around 1500
and 2000 ms. Bursts also stand out in the spectrogram as epochs when the power of the
oscillation is large (warmer colors). Parameter values are: WEE = 27.4,WII = 0,WEI =
26.3,WIE = 27, hE = −3.8, hI = −8, αE = 0.02ms−1, αI = 0.04ms−1, βE = 1, and
βI = 2. For this set of parameters, the system lies in the quasi-cycle regime. Ex-
ternal OU processes are close to Gaussian white noises, with parameters τE,I = 0.1ms,
ΣE,I = 0.01ms−1/2. Numerical simulations were made using an Euler-Maruyama scheme
with a time step of 0.025 ms. The same numerical scheme with the same time step was
used for all other figures.
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f(sE0 + δsE(t)) = f(sE0) + f
′
(sE0)(δsE(t)) +O(δsE(t))

2 (3.8)

f(sI0 + δsI(t)) = f(sI0) + f
′
(sI0)(δsI(t)) +O(δsI(t))

2 (3.9)

with

sE0
= WEEE0 −WEII0 + hE , sI0 = WIEE0 −WIII0 + hI

δsE(t) = WEEVE(t)−WEIVI(t) + ηE(t), δsI(t) = WIEVE(t)−WIIVI(t) + ηI(t)

The resulting dynamics are expressed as:

dVE
dt

=AEEVE +AEIVI +MEEV
2
E +MEIVEVI +

(
aE + bEVE

)
ηE(t) (3.10)

dVI
dt

=AIEVE +AIIVI +MIIV
2
I +MIEVEVI +

(
aI + bIVI

)
ηI(t) (3.11)

with the following definitions:

AEE = −
[
αE + βEf(sE0

)− (1− E0)βEf
′
(sE0

)WEE

]
AII = −

[
αI + βIf(sI0) + (1− I0)βIf

′
(sI0)WII

]
AEI = −(1− E0)βEf

′
(sE0

)WEI ; AIE = (1− I0)βIf
′
(sI0)WIE

MEE = −βEf
′
(sE0)WEE , MIE = −βIf

′
(sI0)WIE

MII = βIf
′
(sI0)WII , MEI = βEf

′
(sE0)WEI

aE = (1− E0)βEf
′
(sE0

), aI = (1− I0)βIf
′
(sI0)

bE = −βEf
′
(sE0

), bI = −βIf
′
(sI0)

Note that Eqs.3.10, 3.11 do not contain all the nonlinear terms, but only those that arise by the Taylor

expansion of the firing function in Eqs. 3.8, 3.9 which incorporate the noise inside f . Furthermore,

we will be keeping only the linear terms for the rest of this chapter. The stochastic processes ηE,I

are correlated with correlation times τE,I . The use of band-limited noise allowed us so far to avoid
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the problem of taking a nonlinear function (namely, the response function f) of Gaussian white

noise, and to use standard calculus.

Note that we could try to tackle the higher dimensional envelope-phase reduction and Fokker-

Planck analysis required by the colored noise stochastic differential system Eqs.(3.10)-(3.11). We

prefer to avoid this route and aim for a more tractable approach as a first pass to the effect of

multiplicative and additive noise.

Thus we concentrate on weakly correlated or un-correlated noise. This limit is motivated by

the fact that ET are relatively slow oscillations compared to τE,I which are typically less than 10

ms; past research has in fact shown that synaptic inputs can be modelled as Gaussian white noise

[76, 186]. We restrict our study to the situation τE,I → 0, ΣE,I → ∞ while keeping constant the

intensities (τE,IΣE,I)
2 = (σE,I)

2. The correlated inputs ηE,I are replaced by Gaussian white noises

σE,IξE,I .

The presence of multiplicative noise requires us however to choose an interpretation for the

resulting stochastic integrals. We can choose the Itô interpretation of the resulting stochastic differ-

ential equation (SDE), which may arise in response to the question: what happens to quasi-cycles

(oscillations below the Hopf bifurcation) when one includes stochastic effects inside the response

function of a single neuron? The result is multiplicative and additive noise, and we can first look at

the white noise case after the expansion has been performed. This is the approach followed below.

Consequently, simulations are performed with the Euler-Maruyama method which is of Itô-type,

and are compared to Fokker-Planck analysis carried out in the Itô picture.

An alternative approach, in answer to the same question, takes the white noise limit of Eqs.(3.10)-

(3.11) by making the correlation times τE and τI tend to zero (keeping intensities constant). This

question is the one associated with the Stratonovich interpretation of the stochastic integrals. A

common approach is then to convert the Stratonovich SDE into its Itô counterpart, and integrate

the latter numerically using the Euler-Maruyama method. This would lead to a different Itô dy-

namics than in the first approach due to the presence of multiplicative noise. Itô and Stratonovich

interpretations are expected to yield similar results if the coefficients bE and bI are small to mod-

erate. Below we pursue the approach with the Itô interpretation of Eqs.(3.10)-(3.11), and further

show that the Stratonovich approach simply causes an increase in the AEE and AII coefficients in
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an otherwise identical analysis of the stochastic WC model and envelope-phase equations. In fact,

the Stratonovich interpretation amplifies the effects that we report.

The dynamics of excitatory and inhibitory LFPs Eqs.(3.10)-(3.11) can now be written in the Itô

interpretation in the form:

dVE
dt

=AEEVE +AEIVI +MEEV
2
E +MEIVEVI +

(
σ1
E + σ2

EVE
)
ξE(t) (3.12)

dVI
dt

=AIEVE +AIIVI +MIIV
2
I +MIEVEVI +

(
σ1
I + σ2

IVI
)
ξI(t) (3.13)

with the following coefficients:

σ1
E = aEσE , σ1

I = aIσI (3.14)

σ2
E = bEσE , σ2

I = bIσI . (3.15)

Note in the last definitions that the ”2”s are superscripts, not powers, and this notation will be used

henceforth. In the rest of the paper we will use σI as our master noise parameter, which enslaves

the computation of all other noise parameters since we will also set σ2
E = σ2

I . We will refer to the

Gaussian white noise-driven Eqs.(3.12)-(3.13) instead of Eqs.(3.1)-(3.2) as the stochastic WC model

with quadratic nonlinearity. Oscillations are then seen to be driven by a combination of additive

and multiplicative noise, in contrast to other models where only additive noise is present (see e.g.

[102, 182, 71] for recent references), or where state-dependent finite size noise is used [220].

3.2.2 Stochastic oscillations

We investigate the generation of oscillations in our model. To understand the effect of noise on such

behavior, we first simulate Eqs.(3.12)-(3.13) without external stochastic inputs (σE = 0 and σI = 0)

to investigate its ability to generate long-lived oscillations. For that we compute the synchronization

level as the mean of the amplitudes of oscillations after transients have passed (without noise, this

can be done using one value). The results show that, for weak values of the feedback excitation

WEI , the model was able to produce oscillations. However, increasing the value of this coupling

parameter decreases the oscillation amplitude until the oscillation disappears (black curve, Fig. 3.2-

(a)). Oscillations emerge through a Hopf bifurcation (vertical dashed green line in Fig. 3.2(a)) at
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W ∗IE = 20.8. Such a transition is characterized by a change in sign of the real part of the most

unstable complex conjugate pair of eigenvalues.

We now take into account stochastic external inputs. Oscillations start to emerge even where

they were not present in the deterministic case (see coloured curves Fig. 3.2-(a)). The stochastic

inputs then induce oscillations in this regime. Also, high noise intensities induce on average higher

amplitude oscillations in the stable-focus domain (below the Hopf) as expected; the situation is

reversed in the limit-cycle domain. This is due to the fact the noise is multiplicative and its effect

is non trivial when the system becomes highly nonlinear. We also compute the peak frequency of

the oscillation in the deterministic and the noise-induced regions. The frequency values are in the

low beta-band for our parameter choice (Fig. 3.2-(b)). The model without self-inhibition therefore

generates oscillations in the beta range. These oscillations are known in the literature as quasi-cycles

oscillations. In this domain, oscillations appear as short epochs of synchrony, i.e. as bursts. Such

oscillations are observed in the brain of several species [228, 154, 80]. In the rest of this chapter, we

will only focus on the noise-induced oscillations or quasi-cycle regime. All the results obtained have

to be interpreted in that context.

3.2.3 Quasi-cycle regime

We now investigate the properties of noise-induced beta oscillations. The dynamics of slow oscil-

lations have recently been modelled using linear equations sustained by additive noise, producing

many features of the activity recorded in vivo fairly well [71]. In our case here, we face both ad-

ditive and multiplicative noise components. We focus on modeling the LFPs by first linearizing

Eqs.(3.12)-(3.13):

dVE
dt

= AEEVE +AEIVI +
(
σ1
E + σ2

EVE
)
ξE(t) (3.16)

dVI
dt

= AIEVE +AIIVI +
(
σ1
I + σ2

IVI
)
ξI(t) . (3.17)

Hereafter, these two linear equations will be referred to as the stochastic Wilson-Cowan dynamics

(SWC). This is the system used to analyze oscillatory properties and from which we derive - and

to which we compare - envelope dynamics. As for the case of the LFP sustained by only additive
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Figure 3.2: Low frequency oscillations in the Stochastic Wilson-Cowan model with
quadratic nonlinearity Eqs.(3.12)-(3.13). (a) Synchronization level as a function
of E to I connectivity, computed as cycle-to-cycle oscillation amplitudes (peak minus
trough) averaged over a long simulation after transients. A smoothing convolution fil-
ter was applied to the noisy oscillation beforehand. For the deterministic case (black),
oscillations appear only in the limit cycle region defined by WIE < W ∗IE . When Gaus-
sian white noise is added, oscillations are also induced in the complementary region
WIE > W ∗IE . The synchronization level of noise-induced oscillations increases with
noise intensity, and the opposite holds in the limit cycle regime. The vertical dashed
line (green) corresponds to the Hopf bifurcation at WIE = 20.8. (b) Mean oscillation
frequency for the deterministic (black, measured from transient response) and stochas-
tic cases. This frequency increases with coupling strength in the limit-cycle region to-
wards the Hopf bifurcation, and decreases thereafter until it stabilizes. Noise decreases
the mean oscillation frequency. Parameter values are: WEE = 27.4,WII = 0,WEI =
26.3, hE = −3.8, hI = −8, αE = 0.02, αI = 0.04, βE = 1, and βI = 2. In the next figures,
only WIE and σI will be changed, with σ2

E = σ2
I (see Eqs.3.15).
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noises, we found that in the quasi-cycle regime, the amplitude ratio and phase difference between

inhibitory and excitatory populations converge to a fixed value. Also, the peak frequency of the

excitatory and inhibitory LFPs converge to a fixed value. These fixed values can be computed in

the deterministic limit of Eq.(3.16) and Eq.(3.17), as can the stability properties.

Linear Stability Analysis

We first consider the linear stochastic Eqs.(3.16)-(3.17) in the deterministic case σE = σI = 0. The

associated noise-free linear system is written in matrix form:

dV 0(t)

dt
= AV 0(t)

where

V 0(t) =

V 0
E(t)

V 0
I (t)

 and A =

AEE AEI

AIE AII

 .

We look for a trial solution in the form:V 0
E(t)

V 0
I (t)

 =

B̃E
B̃I

 eλt

where B̃E = BEe
jθE and B̃I = BIe

jθI . The eigenvalues λ of the associated matrix A are found by

substituting the trial solution into the linear system, yielding

B̃E

B̃I
=
−AEI
AEE − λ

= −AII − λ
AIE

.

The second equality leads to

λ =
1

2
(AEE +AII)±

j

2

√
−(AEE −AII)2 − 4AEIAIE .

We rewrite the eigenvalues in the compact form

λ = −ν ± jω0 (3.18)
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Figure 3.3: Properties of the quasi-cycle regime. Amplitude ratio density (a), phase difference
density (b), and density of oscillation frequencies of the (c) inhibitory and (d) excita-
tory and populations frequencies are nearly Gaussian, with means near their predicted
theoretical values (very near to the imaginary part ω0/2π of the eigenvalues in the case
of the frequencies). Black curves are the results of numerical simulations of Eqs.(3.16)-
(3.17). Amplitudes, phases and frequencies used to construct the shown densities of
these quantities were extracted through the Hilbert transform Eq.(3.21). Vertical blue
lines are theoretical values obtained through linear stability analysis. The parameters
are WIE = 21 and σI = 0.1, with other parameters as in Fig.3.2.
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with

ν = −AEE +AII
2

(3.19)

ω0 =
1

2

√
−(AEE −AII)2 − 4AEIAIE . (3.20)

This leads to the exact expression of the amplitude ratio α between the inhibitory and excitatory

LFPs:

α =

∣∣∣∣ B̃IB̃E
∣∣∣∣ =

BI
BE

=

√
AIE
−AEI

.

Similarly, the phase difference δ can be obtained using the following relation

δ = θI − θE = Arg

(
B̃I

B̃E

)
.

For the parameters used here, we found

δ = θI − θE = arctan

(
−2ω0

AEE −AII

)
.

The symbols || and Arg are respectively the modulus and the argument of the complex number B̃I
B̃I

.

Note that, in the absence of noise, the time-dependent amplitudes both go to zero exponentially with

characteristic time ν−1. One can nevertheless compute the ratio of amplitudes as above. However,

in the presence of noise, one can compute the ratio from simulated time series using the analytic

signal technique. The amplitudes ratio and the phase difference are obtained by the following

approximations:

α =
BI
BE
≈

〈
Env

[
VI(t)

]
Env

[
VE(t)

]〉

and

δ = θI − θE ≈

〈
Arg

[
VI(t)

]
−Arg

[
VE(t)

]〉
.

Here
〈
.
〉

can be considered a time average of the stochastic process in Eqs.(3.16)-(3.17). Env is

defined as the envelope of the analytic signal associated with the LFP. For example, the analytic
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signal corresponding to VE(t) is VE(t) + jH
[
VE(t)

]
, with the Hilbert transform H defined as

H[x] =
1

π
P

∫ ∞
−∞

x(τ)

t− τ
dτ (3.21)

where P signifies the Cauchy principal value. The envelope of the stochastic signal is then Env[VE ] =√
V 2
E +H2[VE ]. Likewise, the phase angle of the analytic signal is defined asArg[VE ] = arctan

[
H[VE ]/VE

]
.

We next derive an expression for the dynamics governing the time evolution of the envelopes of the

E and I stochastic processes themselves.

3.3 Envelope-phase decomposition of LFP with multiplicative noise

3.3.1 Stochastic Averaging Method

In the quasi-cycle regime, oscillations appear as short epochs of synchrony called bursts. The

appearance and duration of such beta bursts are random. They correspond to epochs of high values

of the amplitude of the envelope of the LFP’s VE and VI . The knowledge of the envelope dynamics

is necessary to better characterize burst properties like their duration, although here we focus on

the distribution of the envelope amplitudes. The envelope dynamics can be obtained through an

envelope-phase decomposition of the E and I LFPs described in Eqs.(3.16)-(3.17). The novelty

compared to [102, 182] is the multiplicative noise. We define the E and I LFPs in envelope form as

follows:

VE = ZE cos
(
ω0t+ φE

)
(3.22)

VI = αZE cos
(
ω0t+ φE + δ

)
, (3.23)

where ZE and φE represent the stochastic envelope and phase of the excitatory LFP. The idea is

to extract the dynamics of the envelope ZE and the phase φE of the excitatory LFP. This form

is inspired by the properties of constant amplitude ratio and phase difference between E and I

LFPs, as well as the peak mean frequency that can be approximated by the value of the imaginary

part of the rightmost complex conjugate eigenvalues. We reason that these deterministic relations

are approximately preserved in the noisy case. The effect of noise is mainly to induce deviations
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around the deterministic values of the amplitude ratio, phase difference and mean frequency. This

is supported by the results in Fig. 3.3. This assumption holds more effectively for weak values of

the noise and when the dynamics are close to the Hopf bifurcation. We then inserted Eqs.(3.22) into

Eqs.(3.16) and (3.17) and obtained the following envelope-phase dynamics:

dZE
dt

= F1

(
ZE , φE

)
+G1

(
ZE , φE , ξE , ξI

)
(3.24)

dφE
dt

= F2

(
ZE , φE

)
+G2

(
ZE , φE , ξE , ξI

)
(3.25)

with the definitions:

F1

(
ZE , φE

)
=

1

α sin(δ)

[
αf1

(
ZE , φE

)
sin(ω0t+ φE + δ)− f2

(
ZE , φE

)
sin(ω0t+ φE)

]
F2

(
ZE , φE

)
=

1

αZE sin(δ)

[
αf1

(
ZE , φE

)
cos(ω0t+ φE + δ)− f2

(
ZE , φE

)
cos(ω0t+ φE)

]
G1

(
ZE , φE , ξE , ξI

)
=

1

α sin(δ)

[
αg1

(
ZE , φE , ξE , ξI

)
sin(ω0t+ φE + δ)− g2

(
ZE , φE , ξE , ξI

)
sin(ω0t+ φE)

]
G2

(
ZE , φE , ξE , ξI

)
=

1

αZE sin(δ)

[
αg1

(
ZE , φE , ξE , ξI

)
cos(ω0t+ φE + δ)− g2

(
ZE , φE , ξE , ξI

)
cos(ω0t+ φE)

]
f1
(
ZE , φE

)
= ω0ZE sin(ω0t+ φE) +AEEZE cos(ω0t+ φE) +AEIαZE cos(ω0t+ φE + δ)

f2
(
ZE , φE

)
= αω0ZE sin(ω0t+ φE + δ) +AIEZE cos(ω0t+ φE) +AIIαZE cos(ω0t+ φE + δ)

g1
(
ZE , φE , ξE , ξI

)
=

[
σ1
E + σ2

EZE cos(ω0t+ φE)

]
ξE(t); g2

(
ZE , φE , ξE(t), ξI

)
=

[
σ1
I + σ2

IαZE cos(ω0t+ φE + δ)

]
ξI(t).

To obtain reduced dynamics for the envelope and phase of the E-LFP, we applied the Stochastic

Averaging Method (SAM) [187, 6]. The SAM stipulates that the system of equations (3.24) and

(3.25) can under certain conditions (which apply here, such as broadband noise and underdamped

oscillatory deterministic behaviour) be approximated to a two-dimensional Markov process given by:

d

ZE(t)

φE(t)

 =

m1

m2

 dt+

h11 h12

h21 h22


dW 0

1 (t)

dW 0
2 (t)

 , (3.26)

m = T av
(
E
{
F
}

+

∫ 0

−∞
E

{(
∂G

∂X

)
t

(
G
)
t+τ

}
dτ

)
,
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Figure 3.4: Envelope-phase dynamics through the Stochastic Averaging Method (SAM).
Time-frequency representation of beta oscillations obtained through the linear SWC dy-
namics Eqs. (3.16)-(3.17) with additive and multiplicative noise (a). Beta oscillation
(blue) its envelope (black) (b), and its stochastic phase (c). The envelope and stochas-
tic phase dynamics are obtained through the Hilbert transform. (d,e,f) Same as in
(a,b,c) but using envelope-phase dynamics Eqs.(3.33)-(3.34) resulting from the SAM
method. The envelope-phase dynamics obtained through the SAM technique displays
similar bursting structure to that observed for the simulation of the SWC model. The
parameters are WIE = 27 and σI = 2.5.
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hh
′

= T av
(∫ ∞
−∞

E
{

(G)t(G
′
)t+τ

}
dτ

)
.

Here (′) denotes transposition, hh′ is the product of the matrix h with its transpose, the hij are

the elements of the matrix h, and

(
∂G

∂X

)
t

is a 2x2 Jacobian matrix. The functions m and h

are, respectively, O(ε2) and O(ε) where ε is a small number. This number can be seen as being

proportional to the rate of attenuation −ν of the oscillation below the Hopf bifurcation, which itself

must satisfy ν/ω0 < 1 to guarantee an underdamped relaxation to the fixed point. Moreover, E.

denotes the expectation operator and T av is the time averaging operator defined by

T av
(
.
)

=
1

T0

∫ t0+T0

t0

(
.
)
dt .

After some calculations we end up with the following expressions:

m1 = −
(
ν − ν1

)
ZE(t) +

D0

2ZE(t)
; m2 = −η

h2
11 + h2

12 = D0 +D1Z
2
E(t)

h11h21 + h12h22 =
cos(δ)

16 sin(δ)

[
(σ2
E)2 − (σ2

I )2

]
ZE(t)

h2
21 + h2

22 = D2 +
D0

Z2
E(t)

with the following definitions:

ν = −AEE +AII
2

; D0 =
(σ1
I )2 + (ασ1

E)2

2α2 sin2(δ)
; D1 =

[
1 + 2 sin2(δ)

][
(σ2
I )2 + (σ2

E)2
]

8 sin2(δ)

D2 =

[
1 + 2 cos2(δ)

][
(σ2
I )2 + (σ2

E)2
]

8 sin2(δ)
; η =

(
(σ2
I )2 + (σ2

E)2
)

8 sin2(δ)

ν1 =
3
[
(σ2
E)2 + (σ2

I )2
]

+ 2
[
(cos(δ)σ2

E)2 + (sin(δ)σ2
I )2
]

16 sin2(δ)
.

The coefficients hij i, j = 1, 2 of the matrix h are the solutions of a nonlinear 4-dimensional system

of equations (see equations in hij above) and the corresponding envelope-phase dynamics are given
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by:

dZE(t) = m1(t)dt+ h11dW
0
1 (t) + h12dW

0
2 (t)

dφE(t) = m2(t)dt+ h12dW
0
1 (t) + h22dW

0
2 (t).

This system of coupled equations can be approximated as follows

dZE(t) = m1(t)dt+
√
h2

11 + h2
12dW1(t)

dφE(t) = m2(t)dt+
√
h2

12 + h2
22dW2(t).

The noise terms h11dW
0
1 (t)+h12dW

0
2 (t) and h12dW

0
1 (t)+h0

22dW2(t) are replaced by
√
h2

11 + h2
12dW1(t)

and
√
h2

12 + h2
22dW2(t) respectively, where W1(t) and W2(t) are two independent Wiener processes.

The new noise coefficients depend only on the diagonal elements of the matrix GtG
′

t+τ . This avoids

solving the nonlinear 4-dimensional equations in hij and allows an easy derivation of the envelope-

phase dynamics since the quantities
√
h2

11 + h2
12 and

√
h2

12 + h2
22 are available from direct integration

of the diagonal coefficients of the matrix GtG
′

t+τ (see equations in hij above). In this work, we im-

pose the condition (see Eqs.3.15):

σ2
E = σ2

I . (3.27)

It can be further expressed as:

σE =
βIf

′
(sI0)

βEf
′(sE0)

σI . (3.28)

Then all the noise intensities can be simultaneously altered by only adjusting the value of σI . We

have made this choice throughout our paper. The condition Eq.(3.27) further reduces the expression

of some coefficients to:

D1 =

(
1 + 2 sin2(δ)

)
(σ2
I )2

4 sin2(δ)
(3.29)

D2 =

(
1 + 2 cos2(δ)

)
(σ2
I )2

4 sin2(δ)
(3.30)



3.3. ENVELOPE-PHASE DECOMPOSITION OF LFP WITH MULTIPLICATIVE
NOISE 115

η =
(σ2
I )2

4 sin2(δ)
(3.31)

ν1 =
(σ2
I )2

2 sin2(δ)
. (3.32)

We then obtain the following dynamics for the envelope-phase dynamics:

dZE(t) =

[
− νefZE(t) +

D0

2ZE(t)

]
dt+

[
D0 +D1Z

2
E(t)

] 1
2 dW1(t) (3.33)

dφE(t) = −ηdt+

[
D2 +

D0

Z2
E(t)

] 1
2

dW2(t) , (3.34)

where νef ≡ ν − ν1 (in the Itô interpretation). To verify the validity of our envelope-phase model

obtained through the SAM technique, we compute the envelope and phase dynamics and the corre-

sponding LFPs Fig. 3.4-(e,f). We also computed the time-frequency representation which allows the

visualization of the frequency content of the oscillation as time evolves (Fig. 3.4-(d)). It also reveals

bursts in the oscillations as red hot spots. We compared theses quantities to those obtained through

the linear SWC Eqs.(3.16)-(3.17), see Figs. 3.4-(a,b,c). We can observe that the envelope-phase

dynamics capture well the bursting structure observed in the linear SWC model. Thus, the spectral

properties present in the linear SWC model are also contained in the envelope-phase dynamics.

To further analyze the spectral behavior of our envelope-phase dynamics, we computed the

power spectral densities of the LFPs and their envelopes for both the linear SWC equations and

envelope-phase ones Figs. 3.5. We found that the envelope-phase dynamics capture well the power

spectral densities present in the linear SWC equations. This is observed for both the LFPs and their

envelopes. In summary, the envelope-phase dynamics presented here can be considered as good

candidates for low frequency ET oscillations.

As for the case of additive noise only, the envelope dynamics are not coupled with the phase

dynamics. However, multiplicative noises induce additional terms both in the drift and diffusion

coefficients of the two processes. The diffusion coefficient of the envelope dynamics becomes a

function of ZE . The coefficients induced by the multiplicative noise are ν1,D1,D2 and η. We

remark that the coefficient νef = ν − ν1 can be seen as the effective real part of the complex

conjugate eigenvalues. The coefficient ν1 is induced by the multiplicative noise. Importantly, the
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Figure 3.5: Power spectra of the LFPs and the corresponding envelopes.(a) Power spec-
tra of the LFPs, i.e. fluctuations around the fixed point. Dynamics from the SWC
Eqs.(3.16)-(3.17) (red) are compared to those of the envelope Eqs. (3.33) obtained from
the SAM method and substituted into the LFPs Eqs.(3.22). (b) Power spectra of the
envelope dynamics only, both from the SWC using the Hilbert transform (red), and from
simulation of our envelope dynamics Eq.(3.33) (black). Excellent agreement is found in
both panels. For all panels, we have used the Pwelch Matlab function for the spectral
computations. Numerical simulations in this figure and the following figures 3.6-3.7 were
performed during a total duration of 100 s. The parameters are WIE = 21 and σI = 0.1.

effective real part is smaller than the true real part, suggesting that multiplicative noise enhances

the synchronization of the oscillations. In fact the value of the real part of the eigenvalue gives the

synchronization strength and the level of oscillations amplitude.

The fact that multiplicative noise reduces this value corresponds to bringing the model nearer



3.3. ENVELOPE-PHASE DECOMPOSITION OF LFP WITH MULTIPLICATIVE
NOISE 117

to the Hopf bifurcation and therefore to produce more synchrony. This can be seen in Fig. 3.2-(a)

where it is clear that the level of synchronization increases as the value of the noises does. Of course,

this is the combined effect of additive and multiplicative noise. The phase dynamics also contain

a term which is induced by the multiplicative noise. This term is negative and acts to reduce the

mean frequency of the oscillations. When these coefficients are equal to zero, we recover the former

case of additive noise only studied in [102, 182].

3.3.2 Envelope density

The decoupling of the envelope dynamics from the phase dynamics allows a tractable analytical

treatment. We first look at the envelope probability density using the associated Fokker-Planck

equation

∂P (ZE , t)

∂t
= − ∂

∂ZE

[(
− νefZE +

D0

2ZE

)
P (ZE , t)

]
+

∂2

∂Z2
E

[(
D0 +D1Z

2
E

2

)
P (ZE , t)

]
. (3.35)

In the stationary limit, the above equation reduces to

− d

dZE

[(
− νefZE +

D0

2ZE

)
Ps(ZE)

]
+

d2

dZ2
E

[(
D0 +D1Z

2
E

2

)
Ps(ZE)

]
= 0 .

This leads to the normalized expression of Ps(ZE):

Ps(ZE) =
2γD1D

γ
0ZE(

D0 +D1Z2
E

)γ+1 (3.36)

where γ = νef/D1 + 1/2. This density peaks at

Z∗E =

√
D0

2
(
D1 + νef

) . (3.37)

The probability density of the I population and its corresponding peak can be recovered by taking

into account the amplitude ratio and phase difference between the two processes. We observe an

excellent match between the envelopes pdf and their peaks computed from the analytical expression

Eqs. (3.36)-(3.37) and those extracted through Hilbert transform performed on the simulated time
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Figure 3.6: Probability densities of envelope fluctuations obtained through the SAM Eq.(3.36)
(black) and from simulations of the SWC Eqs.(3.16)-(3.17) (red). The vertical blue lines
are the peaks computed from the analytically determined SAM densities (Eq.(3.37)).
Excitatory envelope fluctuations P (ZE) are shown in (a), and inhibitory ones P (ZI) in
(b). The parameters are WIE = 24 and σI = 0.5.

series Eqs.(3.16)-(3.17) (see Fig. 3.6). This expression for Ps(ZE) is valid as long as γ > 0, i.e.

νef > −D1/2; otherwise, the envelope realizations will diverge. The condition γ > 0, or−νef < D1/2

with D1 > 0 implies that the envelope dynamics Eq.(3.33) also describes the case −νef > 0 which

corresponds to the virtual limit-cycle previously mentioned. Then, the term ”virtual limit-cycle”

only refers to the fact that the effective real part of the complex conjugate eigenvalue becomes

positive. The reader should not confuse this term with the usual limit cycle. The expression of the

density (Eq.(3.36)) for the multiplicative case here is not a Rayleigh distribution as in the case of

only additive noise. The peak Z∗E is also different from that case [182]. There is an additional term
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Figure 3.7: Effect of noise and the distance to the bifurcation on the envelope probability
densities. Black curves correspond to the probability densities obtained through the
SAM method Eqs. (3.33) and (3.36), and colored curves to the linear SWC Eqs.(3.16)-
(3.17) with corresponding noise intensities. (a) Regime far from the Hopf bifurcation.
(b-c) Regime at an intermediate distance to the Hopf bifurcation. Notice that envelope
values are larger for higher noise intensities. (d) Regime very close to the bifurcation.
The amplitudes of the envelope increase when the distance to the bifurcation is re-
duced. Higher noise intensities also increase the amplitude of the envelope processes in
all regimes. For a point at a fixed distance to the bifurcation, increasing noise has the
same effect as reducing the distance to the bifurcation.

D1 in the denominator of the square-root, and the absolute value of the complex conjugate real part

is now replaced by its effective value. This expression suggests that multiplicative noise has two

opposite effects. The first effect acts through νef to synchronize the network in a ”deterministic”

way. The second effect via D1 is to desynchronize the network in a ”stochastic” manner.
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To further understand the dynamics of the envelope, we investigate the effect of both the noise

intensity and the distance to the Hopf bifurcation in Fig. 3.7. For that we both vary the bifurcation

parameter WIE and the noise intensity σI . We observe that reducing the distance to the Hopf

bifurcation synchronizes the system by reducing the deterministic real part of the complex conjugate

eigenvalues - this is similar to what happens in a deterministic system near a Hopf bifurcation. We

also reported analog behaviour in a previous study on gamma bursts [182]. The new mechanism is

the noise-induced synchronization in a ”deterministic” way through the coefficient ν1, which reduces

the deterministic eigenvalue ν via the relation νef = ν − ν1.

These phenomena are showed in Fig. 3.7. Noise and the vicinity of the bifurcation act together to

synchronize the system in a ”deterministic” way. There are also the roles played by the multiplicative

noise through D1 and the additive noise through D0; however such roles are difficult to interpret by

a simple visual inspection of the densities in Fig. 3.7. To better understand the role of these latter

parameters, it is appropriate to refer to Eq.(3.37). The role of D0 has been previously discussed: its

main effect is to increase the amplitude of the envelope by creating bursts. The role of D1 should be

to prevent the system from synchronizing too fast. However, we remark that the effect of the effective

real part of the complex conjugate eigenvalues is more prominent. It is clear that the peak increases

with the noise intensity, i.e. higher noise produces larger envelopes, as does the approach of the

bifurcation (here by decreasing WIE). The fact that the effective real part of the complex conjugate

eigenvalues is higher than the true deterministic real part implies that the system can act ”virtually”

as a limit cycle despite the fact that its true complex conjugate eigenvalues have negative real part.

To investigate the possibility of such behavior, we consider a point close to the Hopf bifurcation

and vary the noise intensity. The result is the transition of the real part from negative, to less

negative, and eventually to positive. This suggests that the system acts as a limit cycle (see Fig.

3.8). Multiplicative noise-induced synchronization is therefore a new mechanism which is absent in

the case of only additive noise, and may be part of the operation of neural systems that generate

rhythms.
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Figure 3.8: Noise-induced virtual limit cycle. Effective real part of the complex conjugate
eigenvalues as the noise intensity σI increases. For lower intensity, one observes the
usual quasi-cycle behaviour. A sufficiently strong noise intensity induces a virtual limit
cycle by increasing the effective eigenvalue from negative to positive. The Stratonovich
interpretation enables this sign change for even smaller noise. The value of the feedback
excitation WIE = 21 as in Figure 3.7-(b).
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3.3.3 Envelope-Phase dynamics in the Stratonovich interpretation

The calculations using the SAM can readily be performed in the Stratonovich interpretation of the

nonlinear dynamics with additive and multiplicative noise. The results is that two of the coefficients

of the linear part of the dynamics (i.e. drift coefficients) become :

AstratoEE = AEE +
1

2

(
σ2
E

)2
; AstratoII = AII +

1

2

(
σ2
I

)2
. (3.38)

Consequently, the real part of the eigenvalue in the envelope dynamics in Eq.(3.33) becomes:

−νstrato =

(
AstratoEE +AstratoII

)
2

(see linear stability)

=− ν +
1

4

(
(σ2
E)2 + (σ2

I )2
)

(ν = νito)

=− νito +
1

4

(
(σ2
E)2 + (σ2

I )2
)
.

Therefore,

−νstratoef =− νef +
1

4

(
(σ2
E)2 + (σ2

I )2
)

(νef = νitoef )

=− νitoef +
1

4

(
(σ2
E)2 + (σ2

I )2
)
.

Finally,

νstratoef = νitoef −
1

4

(
(σ2
E)2 + (σ2

I )2
)
. (3.39)

In the Stratonovitch interpretation, one just has to replace the νef = νitoef in Eq.(3.33) by νstratoef

derived in Eq.(3.39). A comparison of the Itô and Stratonovich approaches is seen in Fig. 3.8,

where the negative of the effective damping rate is plotted versus noise intensity. It is seen that

the Stratonovich interpretation causes the effective damping to become positive at a smaller noise

intensity than in the Itô case. For small noise such as σI = 0.1, numerical simulations will barely

differ from those in the Itô interpretation (not shown). A higher noise will allow the virtual limit

cycle to be reached more quickly. In essence, the effects we have discussed up to now survive, and

in fact are even stronger in the Stratonovich interpretation.
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3.4 Discussion

In summary, we have built a model of bursty oscillations in the beta frequency range. Oscillations are

assumed to be triggered by stochastic synaptic inputs driving individual neurons, and that without

this noise, the dynamics are a simple stable focus. To lowest order, this leads to LFP dynamics

that are linear SDEs subject to both additive and multiplicative noises. The choice of the linear

Stochastic Wilson Cowan dynamics is motivated by a recent study [71] which showed that such

a linear model is a good candidate to explain abnormal oscillations recorded in vivo relating to

essential tremor. An envelope-phase analysis of these equations was then performed using the SAM

method in the regime of underdamped oscillation, i.e. below but near the Hopf bifurcation.

With additive noise only, it has been shown that the envelope variable undergoes a random walk

in a nonlinear potential, being attracted to zero (i.e. no rhythm) with a relaxation rate −ν, and

being driven away from zero by a term that scales with the additive noise intensity (Do). Including

the noise in the firing function rather than additively results in envelope-phase dynamics that contain

two additional terms ν1 and D1 that scale up with noise intensity, and that are purely induced by

the excitatory and inhibitory multiplicative noises.

The first term is added to the drift term and decreases the magnitude of the real part of the

complex conjugate eigenvalues. As this part determines the relaxation rate of the envelope to zero,

a smaller real part means that the envelope amplitude will be larger on average. In other words, the

multiplicative noise brings on more synchronization. At moderate noise, it is even possible for the

relaxation rate to change sign as shown in Fig. 3.8. However, the nonlinear envelope dynamics are

derived from the linear WC dynamics in Eqs.(3.16)-(3.17), and actually diverge when the effective

relaxation rate −νef becomes greater than D1/2. The second term appears in the diffusion coefficient

and is proportional to the square of the envelope dynamics. This means that the envelope fluctuates

more strongly when it is larger. The envelope dynamics thus have additional features compared to

the pure additive noise case.

The phase dynamics Eq.(3.34) also contain two new terms that are absent in the purely additive

noise case. The first term actually creates a drift component, i.e. it induces a rotation at a noise

intensity dependent mean frequency η. This results in an effective, noise-induced imaginary part of

the complex conjugate eigenvalues. The last term is added on the diffusion coefficient and is just a
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constant term that increases the phase noise intensity.

With the extra multiplicative noise, the envelope is still uni-directionally coupled to the phase

to lowest order, as was the case with additive noise only. This allowed an analytically tractable

steady state solution to the Fokker-Planck equation for the envelope density in terms of all system

parameters, including the synaptic strength WIE and noise intensities. We limited our analysis to

these two parameters as they generically reflected what can be expected from the dynamics. Other

combinations could of course be considered. In fact our theory contains all parameters, but for

simulations we choose the value of WII = 0 [173, 71]. While more work would be needed to make

a more general statement, the essential ingredient for the added synchrony caused by multiplicative

noise may simply be the operation of the stochastic rate model near but below a Hopf bifurcation.

And the condition WII = 0 is not essential according to preliminary simulations and inspection of

the theory.

Thus, in all the cases we have looked at, an increase in the noise intensities acting on the firing

functions of E and I cells brings the network closer to the Hopf bifurcation, thereby increasing

the synchronization level of the network. This can be viewed as multiplicative noise boosting a

coherence resonance-type effect [150, 180] already present in the additive noise-induced oscillation

that constitutes the quasi-cycle.

And close enough to the bifurcation, increasing the amount of noise actually changes the sign of

the envelope decay rate, making the system act like a limit cycle - termed here a virtual limit cycle

- despite the fact that the underlying fast E-I system has stable complex conjugate eigenvalues.

This noise-induced transition can already be seen in the envelope dynamics Eq.(3.33), since the

condition of existence of the envelope dynamics is −νef < D1/2 with D1 > 0 which implies that a

value of −νef > 0 can meet such condition and therefore describes the envelope dynamics Eq.(3.33).

However a full and proper analysis of the virtual limit cycle is more appropriate from the nonlinear

fast dynamics Eqs.(3.12)-(3.13), rather than the linear dynamics Eqs.(3.16)-(3.17) as done here.

The synchronization enhancement by multiplicative noise may underlie some of the aberrant

synchronization observed in patients suffering from motor dysfunctions. It may also be seen in the

gamma range where the same mechanism operates; a simple change in the model time constants

could produce such a move to higher rhythm frequency. Our study shows how this relates to the
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more precise modeling of noise, and to the EI coupling strength. Our assumption of WII = 0

was motivated by a recent study [71] of essential tremor based on thalamic circuitry, and slightly

simplified our analysis.

In contrast, while there are a number of models for different aspects of Parkinson’s diseases,

those generally assume WEE = 0 at the level of the sub-thalamic nuclei (STN), and WII > 0 at

the level of the globus pallidus-e (GPe). Including the feedback loop from STN to cortex and back

actually amounts to a self-inhibition of STN, yet the interaction of oscillatory mechanisms complicate

the matter further. State-of-the-art models of PD also consider firing function nonlinearity, bursting

dynamics, and delayed feedback between brain nuclei, including to the cortex and back [177, 190]. It

would be interesting to investigate how beta bursts arise in these models, and whether the enhanced

synchronization discussed here for multiplicative noise appears and can be linked to symptoms. In

fact it is possible to extend the SAM approach to delayed connectivity to obtain envelope-phase

dynamics with delays [183]. These extensions may then lead to further insights into DBS.

Finally, if the multiplicative noise intensities are set to zero, we recover the case of only additive

noise for which an optimal range of parameters, at an intermediate distance to the Hopf bifurcation,

produces spectra and bursts similar to those seen in healthy in vivo preparations [228, 182]. As

multiplicative noise promotes synchronization, its inclusion may result in the optimal range being

shifted further from the Hopf boundary. This and the other predictions of our study could be further

verified using a large scale network model of spiking neurons wired together to generate rhythms.
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Chapter 4

Phase Dynamics of Delay-Coupled Quasi-Cycles with

Application to Brain Rhythms

Abstract

We consider the phase locking of two delay-coupled quasi-cycles. A coupled envelope-phase system

obtained via stochastic averaging enables a stability analysis. While for deterministic limit cycle

oscillators the coupling can produce in-phase, anti-phase and the intermediate ”out-of-phase” locking

(OPL) behaviour via spontaneous symmetry breaking, such outcomes for the quasi-cycle case are

shown to require instead both noise and coupling delay. The theory, which applies the stochastic

averaging method to delayed dynamics, generates stochastic stability functions that predict the

numerically observed OPL behaviour as a function of all the system parameters. OPL for coupled

quasi-cycles occurs for additive or multiplicative noise, and for coupled E-I as well as I-I networks.

Our theory also predicts that the bifurcation at which the in-phase state becomes unstable lies at

smaller delays for stronger noise. The noise produces the realistic quasi-cycle rhythms and out-of-

phase behaviour, all the while causing random reversals of the phase leader. Asymmetry in the

coupling between networks, as well as heterogeneity within each network, also allows for quasi-cycle

OPL, although it produces asymmetric bifurcations that bias the leadership towards one of the

networks. These results are relevant to communication between brain and other networks that rely

on noise-induced rather than noise-perturbed rhythms.
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4.1 Introduction

Noisy oscillations are observed in a wide variety of systems. Our understanding of the behaviour

of these systems in isolation and in networks is governed by the underlying dynamical origin of the

oscillation. The case in which the system possesses a deterministic limit cycle which is perturbed by

noise has received much attention [179, 1, 210]. Much is known about the synchronization properties

of noise-perturbed limit cycle systems, such as their ability to lock in-phase (IP), in anti-phase (AP),

or at phase differences in between, i.e. out-of-phase locking (OPL). In contrast, there may be no

underlying deterministic limit cycle, and the generation of the observed oscillations relies on noise.

Although studied to a much lesser extent, these noise-induced oscillations, known as ”quasi-cycles”,

arise in an increasing number of contexts, from semiconductor lasers to brain dynamics and epidemics

[114, 27, 161, 192]. Theory is particularly lacking for coupled quasi-cycles, thought to enable e.g.

oscillation (or ”rhythm”)-based communication between brain areas [192, 175].

In this work, the stochastic averaging method (SAM) is used to obtain an envelope-phase de-

scription for coupled quasi-cycles. It reveals a novel mechanism for OPL. Delays are included as

they are often non-negligible compared to other system time scales [69, 141].

Although the findings below apply generally, we are particularly motivated by the communication

between brain areas, thought to require the phase difference between two rhythms in separate areas

being constant over some time interval [219]. The sign of this difference reveals the leadership

and direction of the information flow between the areas [152]. For identical, symmetrically coupled

networks the available theory, based on deterministic oscillators, invokes spontaneous symmetry

breaking (SSB) to explain OPL. SSB is a deterministic effect where the two-oscillator system loses

symmetry beyond a critical parameter value, with one becoming the leader and the other the laggard

[14, 72]. Flexible, reversible bi-directional communication can then be achieved with brief external

pulses that reverse the leadership [16, 134, 226].

However, there is increasing evidence that many brain rhythms are noise-induced and manifest

only in brief epochs of random duration [141, 228, 175, 182]. OPL can also be seen, but phase locking

of quasi-cycles is not well understood, a specific motivator for our work. While SSB is here shown

to not occur for coupled quasi-cycles, OPL can arise thanks both to delays and the smoothing by

noise of the bifurcation between IP and AP.
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Two dominant mechanisms for rhythms in the higher ”gamma” frequency range have been re-

ported in the experimental and theoretical neuroscience literature: PING, which involves recipro-

cally and self-coupled excitatory and inhibitory neurons (EI), and ING which sees inhibitory neurons

coupled to one another, often with a delay (II). The mechanism of delay and noise-induced OPL

in coupled quasi-cycles is shown below to be present in two coupled EI networks (our main focus),

as well as in two coupled II networks. In both cases, this OPL persists even if the networks are

heterogeneous but symmetrically coupled, or identical but asymmetrically coupled. This suggests

a strong and robust mechanism which could underlie some of the dynamic functional connectivity

observed in the brain of several species at rest and when performing certain tasks [117, 118, 100].

These coupled dynamics, in which each network exhibits quasi-cycle behaviour in isolation, also

enable bidirectional exchanges of information between networks [175]. The leadership can then al-

ternate randomly between the two networks following fluctuations in the random inputs, as well as

be biased by external pulses as in the case of the coupled oscillator dynamics. We thus extend to

noise-induced rhythms the property of communication through coherence [83, 85] and its expanded

version with propagation delay [12].

After presentation of the general PING model with noise, we derive the envelope-phase dynamics

by extending the SAM technique to delayed coupling. Analysis of the symmetric case reveals the

delay-and-noise-induced OPL phenomenon in the coupled quasi-cycles. This is followed by an ex-

tension to the asymmetric and heterogeneous cases. We complete our study of coupled quasi-cycles

by considering the alternative ING model in the same cases, and end with a discussion and outlook

onto future works.

4.2 Model of coupled E-I networks

We are motivated by the work on stochastic EI networks in [220], in which all neurons in each

population are simulated as two-state systems that are either quiescent or active. This leads to a

two-dimensional Wilson-Cowan-type rate model with an E and an I population each with their own

finite size fluctuations. This formalism can also model sparse connectivity through an appropriate

scaling of the mean synaptic coupling coefficients. To set the scene, we describe their model in the

microscopic, multi-neuron context with specific neuron numbers. However, all the analytical and
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Figure 4.1: Model. (a) Two delay-coupled E-I networks.
(b-c) Fluctuation timeseries of E1 (blue) and E2 (red) around their equilibrium points,
modelling local field potentials (LFPs), from simulations of the SWC system Eqs.(4.1)
with LEE = 2.0, LIE = 0.5. The in-phase synchronization seen in (b) for τ = 1ms
is replaced by out-of-phase behaviour (OPL) for τ = 3.5ms in (c). Other parame-
ters are WEE = 27.4,WII = 1.3,WIE = 32,WEI = 26.3, hE = −3.8, hI = −8, αE =
0.1ms−1, αI = 0.2ms−1, βE = 1, βI = 2, σ = 0.006ms−1/2. All simulations in our paper
are done with the Euler-Maruyama method with time step 0.05 ms, except for Fig.4.3
where the time step is shorter. A second-order butterworth bandpass filter was applied
to the fluctuations in Fig.1(b,c) to limit frequencies to the gamma band [30-100] Hz.

numerical work will be done on the associated two-variable model.

Each of the two networks has NE excitatory (E) and NI inhibitory (I) neurons with NE = 4NI , as

is typical for cortical circuitry, coupled to produce oscillations near but below a Hopf bifurcation.

These two networks are further symmetrically coupled via long-range excitatory connections with

propagation delay as in Fig.4.1. The state variables are the mean activity of the neurons in each

population, i.e. Ei and Ii, i = 1, 2. The coefficients WEE , WII are respectively the recurrent exci-

tatory and inhibitory synaptic coupling, while WIE , WEI are, respectively, the feedback excitatory

and inhibitory synaptic coupling in each network. In addition, each population in each network

receives a constant external input (hE and hI , respectively). The long-range excitatory synaptic

coupling between the two E populations is LEE , and between the E population of one network and

the I population of the other network is LIE . The activity of a neuron in one network is felt by the

other network after a delay τ .

The model is schematized in Fig.4.1(a) and described by the stochastic Wilson-Cowan (SWC)

equations [220]:
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Ėi(t) = −αEEi(t) + (1− Ei(t))βEf(sEi(t)) + g1ξEi(t)

İi(t) = −αIIi(t) + (1− Ii(t))βIf(sIi(t)) + g2ξIi(t)

sEi(t) = WEEEi(t)−WEIIi(t) + hE + Li,jEEEj(t− τ)

sIi(t) = WIEEi(t)−WIIIi(t) + hiI + Li,jIEEj(t− τ) (4.1)

for identical and symmetrically coupled networks described in this section, Li,jEE = LEE , Li,jIE = LIE

and hiI with i, j = 1, 2 and i 6= j, sEi(t) and sIi(t), i = 1, 2, the total synaptic inputs to E and

I populations in each network, f(x) = 1/(1 + exp(−x)) the sigmoidal response of a neuron to its

total input, ξEi(t) and ξIi(t) independent Gaussian white noises, and g1 and g2 are population-size-

dependent multiplicative noise intensities,

g1(Ei, Ii) =

√
(1− Ei(t))βEf(sEi(t)) + αEEi(t)

NE

g2(Ei, Ii) =

√
(1− Ii(t))βIf(sIi(t)) + αIIi(t)

NI
. (4.2)

We define the noise intensities as:

σE ≡

〈(
g1(Ei, Ii)

)〉
σI ≡

〈(
g2(Ei, Ii)

)〉
,

where 〈〉 means the time average. Simulations reveal that the distributions of these multiplicative

noise intensities are very close to Gaussians, and the values of σE and σI are close to the means of

these distributions. We then defined the total noise as

σ ≡
√
σ2
E + σ2

I . (4.3)

Our results below also hold for constant functions g1(Ei, Ii) = σE and g2(Ei, Ii) = σI (additive

noise).
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The rightmost eigenvalues of the deterministic part of Eqs.(4.1) are complex conjugate with

negative real part (λ = −ν ± jω0, ν > 0), and imaginary part in the gamma band (30Hz <

ω0/(2π) < 100Hz). Without noise, activities converge to a fixed point (E10, I10, E20, I20). We

focus on fluctuations around this point: Ṽ iE(t) = cE(Ei(t) − Ei0) and Ṽ iI (t) = cI(Ii(t) − Ii0) where

cE =
√
NE and cI =

√
NI for the case of the multiplicative noise and cE = cI = 1 for additive noise.

Time series of these local field potentials (LFPs) are illustrated in Fig.4.1(b,c) with IP behaviour

for the smaller delay and OPL for the slightly larger one.

4.3 Envelope-phase decomposition

In contrast to the case ν < 0 where the limit cycle envelopes are almost constant (in the weak noise

limit), in the quasi-cycle regime the envelopes and phases (and therefore frequencies) fluctuate over a

larger range. We extend a recent single quasi-cycle analysis using the SAM approximation [187, 182]

to the coupled case of interest here, noting that the coupled system still has a deterministic fixed

point. A synchronization transition study for a population of coupled quasi-cycles was recently done

in this regime using a different method [103]. We write the E and I LFPs as

V 1
E(t) = Z1(t) cos(ω0t+ φ1(t)); V 1

I (t) = α1Z1(t) cos(ω0t+ φ1(t) + δ1)

V 2
E(t) = Z2(t) cos(ω0t+ φ2(t)); V 2

I (t) = α2Z2(t) cos(ω0t+ φ2(t) + δ2) . (4.4)

These trial solutions are motivated by our previous study [182] where the results using these

solutions yielded good agreement with simulations both near and far from the Hopf bifurcation,

and reproduced many features of the data (stochastic behavior with short and random epochs of

synchrony called gamma bursts, highly variable frequency ...[228]). In fact, this choice is an extension

to two networks of a previous model for one E-I network which was shown to reproduce the bursting

behavior of gamma rhythms in vivo [182]. The system to which this trial solution is applied to (see

Appendix, Eqs.4.14) is also linear and stochastic, and thus harmonic solutions are a good place to

start. An alternate form could be used if one wishes that a certain feature of the data needs to

be reflected in the model. Inserting these expressions in the dynamics of the LFPs sustained by
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noise and applying the stochastic Averaging Method (SAM) we obtain the following dynamics for

the amplitude and phase dynamics

dZ1(t) =

(
− λ1Z1(t) +

D1

2Z1(t)
+M1

1

[
φ1(t)− φ2(t− τ)

]
Z2(t− τ)

)
dt+

√
D1dWZ1(t)

dφ1(t) =

(
Ω1 +M2

1

[
φ1(t)− φ2(t− τ)

]Z2(t− τ)

Z1(t)

)
dt+

√
D1

Z1(t)
dWφ1(t) (4.5)

dZ2(t) =

(
− λ2Z2(t) +

D2

2Z2(t)
+M1

2

[
φ2(t)− φ1(t− τ)

]
Z1(t− τ)

)
dt+

√
D2dWZ2(t)

dφ2(t) =

(
Ω2 +M2

2

[
φ2(t)− φ1(t− τ)

]Z1(t− τ)

Z2(t)

)
dt+

√
D2

Z2(t)
dWφ2(t) ,

where the functions M1
1 , M2

1 , M1
2 and M2

2 are given by

M1
1 [x] = γ1

[
α1C

12
EE sin(x+ ω0τ + δ1)− C12

IE sin(x+ ω0τ)

]
; M2

1 [x] = γ1

[
α1C

12
EE cos(x+ ω0τ + δ1)− C12

IE cos(x+ ω0τ)

]
M1

2 [x] = γ2

[
α2C

21
EE sin(x+ ω0τ + δ2)− C21

IE sin(x+ ω0τ)

]
; M2

2 [x] = γ2

[
α2C

21
EE cos(x+ ω0τ + δ2)− C21

IE cos(x+ ω0τ)

]

with the coefficients

λ1 = −A
1
EE +A1

II

2
; λ2 = −A

2
EE +A2

II

2
; γ1 =

1

2α1 sin(δ1)
; γ2 =

1

2α2 sin(δ2)

and

D1 =
α2
1σ

2
E1

+ σ2
I1

2(α1 sin(δ1))2
; D2 =

α2
2σ

2
E2

+ σ2
I2

2(α2 sin(δ2))2
(4.6)

Ω1 = −ω0 + γ1
(
α1 cos(δ1)(A1

EE −A1
II) + α2

1A
1
EI −A1

IE

)
Ω2 = −ω0 + γ2

(
α2 cos(δ2)(A2

EE −A2
II) + α2

2A
2
EI −A2

IE

)
.

Here dWk, k = Z1,2, φ1,2 are independent Brownian motions, and the parameters λ1,2,Ω1,2, δ1,2, α1,2, C
12
EE , C

21
EE

and C12
IE , C

21
IE depend on the network parameters described above (see Appendix). Specifically, α1,2

and δ1,2 are the amplitude ratio and phase difference between the I and E populations in networks

1 and 2, respectively.
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The dependencies of the parameters of the envelope-phase equations on those in the original

SWC system are not trivial, as their definitions that follow Eqs.4.14 in the full derivation in the

Appendix reveal. And a number of parameters depend on the fixed point, which is a function of

all the parameters. For the symmetric case, we have: α1 = α2 = α; δ1 = δ2 = δ; λ1 = λ2;

Ω1 = Ω2 = Ω0; D1 = D2 = D; C12
EE = C21

EE = CEE ; C12
IE = C21

IE = CIE . The envelope-phase

dynamics therefore simplify to:

dZ1

dt
= −λ1Z1 +

D

2Z1
+M1

[
φ1 − φ2τ

]
Z2τ +

√
DξZ1

dφ1

dt
= Ω0 +M2

[
φ1 − φ2τ

]Z2τ

Z1
+

√
D

Z1
ξφ1 (4.7)

dZ2

dt
= −λ1Z2 +

D

2Z2
+M1

[
φ2 − φ1τ

]
Z1τ +

√
DξZ2

dφ2

dt
= Ω0 +M2

[
φ2 − φ1τ

]Z1τ

Z2
+

√
D

Z2
ξφ2

,

where φiτ ≡ φi(t− τ), Ziτ ≡ Zi(t− τ), and

M1 = 1
2α sin(δ)

[
αCEE sin(x+ ω0τ + δ)− CIE sin(x+ ω0τ)

]
M2 = 1

2α sin(δ)

[
αCEE cos(x+ ω0τ + δ)− CIE cos(x+ ω0τ)

]

Here again, λ1, D,Ω0, CEE and CIE depend on network parameters and are the same for both

networks, but ξk, k = {Z1,2, φ1,2} are again independent Gaussian white noises as in the general

case above.

The E envelopes and phases from Eqs.(4.7) are shown in Fig.4.2(a-d). In Fig.4.2(e,f), good

agreement is found between probability distributions of the envelopes and phases from simulations

of the SAM Eqs.(4.7) and of the SWC Eqs.(4.1). Agreement improves for weaker noise and closer

proximity to the Hopf bifurcation. The phase dynamics φi(t) here differs from that of the usual

Hilbert transform by the deterministic rotation ω0t. The phase difference ∆φ(t) = φ1(t) − φ2(t)

describes the same quantity than the difference of the phases extracted using the Hilbert transform.
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Figure 4.2: Coupled envelope and phase dynamics. Envelope time series for E1 (blue) and E2

(red) populations for coupling LEE = 2.0, LIE = 0.5 and delay (a) τ = 1ms and (c)
3.5ms. Corresponding phase dynamics are shown in (b) and (d). In-phase locking is
seen for τ = 1ms, and out-of-phase locking for τ = 3.5ms as in Fig.4.1-(b-c). Envelope
(e) and phase (f) probability distributions from simulations of the SWC model (Eqs.4.1,
solid lines) through the Hilbert transform and the SAM theory (Eqs.4.7, dashed), for
τ = 1ms (magenta) and τ = 3.5ms (black). Parameters are as in Fig.4.1.

4.4 Quasi-cycle Phase Synchronization

We first derive phase-locking dynamics from the envelope-phase system Eqs.4.7 using ∆φ(t) ≡

φ1(t)− φ2(t), θ(t) ≡ φ1(t) + φ2(t), X ≡ (θ(t)− θ(t− τ))/2, Y ≡ (∆φ(t) + ∆φ(t− τ))/2:

d∆φ(t) = −2M1[X(t)] sin[Y (t)] dt+

√
D

Z1(t)
dW1(t) (4.8)

dθ(t) = 2
(
Ω0 +M2[X(t)] cos[Y (t)] )dt+

√
D

Z1(t)
dW2(t)
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where we assumed Z1 ∼ Z2, W1 = Wφ1
−Wφ2

, and W2 = Wφ1
+Wφ2

. Following [140], we seek the

deterministic solutions of Eqs. (4.8) in the form (∆φ(t), θ(t)) = (∆φ∗,Ωt). Stability is governed by:

F (∆φ∗) = −2M1[Ωτ/2] sin(∆φ∗) (4.9)

where Ω is a solution to Ω = 2(Ω0 +M2[Ωτ
2 ] cos(∆φ∗)), CIE , CEE , ω0, τ ≥ 0 and δ ≤ 0. Either IP or

AP stable solutions exist, depending on CIE , CEE , ω0, τ and δ. The transition between IP and AP

occurs at a critical delay

τ∗ = (2/(2ω0 + Ω))atan

[(
−α sin(δ)CEE

αCEE cos(δ)− CIE

)]
.

This implies the necessary condition CEE > CIE/(α cos(δ)) for the existence of AP solutions. For

τ = 0, the deterministic stability function is reduced to

F (∆φ∗) = −
[
CEE

]
sin[∆φ∗].

The only stable solutions correspond to IP. The noise-free quasi-cycle phase dynamics converge to

a fixed point, and thus do not allow spontaneous symmetry breaking. SAM theory leads to the

stochastic stability function:

F̃ (∆φ) = M2

[
φ1 − φ2τ

]Z2τ

Z1
−M2

[
φ2 − φ1τ

]Z1τ

Z2
(4.10)

which can be evaluated from simulations. Figs.4.3 (d,e) reveal that for weak delay, the stochastic and

deterministic stability functions have the same stable fixed points, which correspond to IP states.

But for the larger delay in Fig.4.3 (f), F̃ exhibits two symmetric stable fixed points at locations

∆φ∗ = −β, β with 0 < |β| < π, corresponding to OPL states. Thus, for quasi-cycles, OPL relies on

both delay and noise.

4.5 Delay and noise induce Out of Phase Locking

4.5.1 Out of Phase Locking in E-I networks

Limit cycle regime. The delay and noise intensity are now varied to reveal their effect on phase-

locking. We first confirm previously published findings that OPL occurs via SSB in the limit cycle
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Figure 4.3: OPL for quasi-cycles. ( a-c) Phase difference probability distributions for τ = 0, 1, 3.5
ms from SAM theory (solid blue) and Hilbert transforms of simulations of SWC Eqs.4.1
(dashed red). For small τ (a-b), densities peak at ∆φ = 0 (IP), while for larger τ (c) OPL
is seen with two symmetric peaks away from zero (IP) and ±π (AP) (see vertical black
arrows). Good agreement is seen in all cases. d-f) Stability functions for, respectively,
panels (a-c). Deterministic stability functions Eq.(4.9) (solid blue) with stable fixed
points (black dots) located at zero for IP (d,e) and at ±π for AP (f). The stochastic
stability function Eq.(4.10) (dashed blue) evaluated from simulations with noise, followed
by smoothing with a third degree polynomial, show the same fixed points for (d,e), but
OPL instead of AP for (f) as in (c). Parameters are as in Fig.4.1, except that the time
step has been reduced to 0.01 ms for both the SAM and SWC simulations.
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regime [72, 14] in Fig.4.4(a). This is done by looking at the deterministic situation where each

network is in the limit-cycle regime prior to its coupling to the other network. The coupling induces

OPL at a critical value of the delay τcrit ≈ 1.6ms (Fig.4.4(a)-black dots). One network becomes the

leader and the other the laggard, the identity of which one depends on the initial conditions. There

is no need for noise to observe such OPL states, i.e. OPL is a deterministic nonlinear phenomenon

[14, 72].

However, there is no reversal of leadership unless there is an external intervention to induce

it [16, 72]. Such lack of leadership exchange is thought to be problematic for inter-areal brain

communication, since information is preferentially shared when one network leads the other, and

dynamic exchange of leadership is required for an efficient bidirectional communication between

areas [175]. The main effect of noise on the deterministic SSB property is to postpone the transition

between the IP and OPL regimes, in proportion to the noise intensity, as well as induce changes in

leadership. The initial condition will bias the solution towards one leader. At low noise, leadership

changes can occur but are increasingly rare as τ moves further beyond the deterministic bifurcation

point τcrit.

Quasi-cycle regime. The underlying deterministic dynamics of the quasi-cycles decay to the

fixed point in an underdamped manner, but a phase relationship between the two networks can

nevertheless be computed during such decays. Then, only IP and AP are seen, with a transition

from IP to AP at a critical delay τ = τ∗. This is shown in Fig.4.4(b) using linear stability analysis of

the SWC system (solid black dots), as well as the SAM-derived stability function F (∆φ∗) in Eq.(4.9)

(black circles). Noise then shifts the trivial IP and AP locations and induces OPL. The noise allows

the dynamics to sample both the IP and the neighbouring AP attractors, yielding on average two

OPL states. At τ∗, the noise samples each attractor similarly, with OPL around ±π/2. Below

τ∗, the IP attractor in the full SWC simulations appears destabilized by noise, but it is difficult to

resolve whether this also represents an advancement of the bifurcation. This is due to critical slowing

down near the bifurcation, which makes the simulations converge prohibitively slowly to pinpoint

the bifurcation exactly in the presence of noise. But clearly the situation differs qualitatively from

the postponement observed in Fig.4.4(a) for the limit cycles.

Beyond τ∗, the noise increasingly samples the AP attractor. The OPL asymptotically tends to
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the deterministic AP value ∆φ∗ = |π| in a time proportional to noise strength. The abrupt IP-AP

transition observed in the transient deterministic dynamics is smoothed by the noise and arises for

smaller delays. It is important to mention that when the delay is varied in Fig.4.4, the intrinsic

frequency of the networks remains almost constant. The main effect of the propagation delay is to

induce AP states which are smoothed by noise to give rise to OPL states.

Such OPL attractors reflect a noise-induced transition where the parameter range for OPL in-

creases with noise intensity. The networks also exchange leadership over time due to the noise,

without external pulses, yielding a ”dynamic OPL” for quasi-cycles. This suggests that coupled

quasi-cycles are good candidates for flexible inter-areal network communication. OPL states are

also excitation-dependent, since the aforementioned necessary condition implies that strong LEE

and weak LIE values promote OPL.

Additive rather than multiplicative noises in the model formulation lead to similar results (not

shown), as can be verified by replacing g1(Ei, Ii) and g2(Ei, Ii) by their respective numerically-

determined means σE and σI (these densities are approximately Gaussian).

The mechanism of OPL in the coupled quasi-cycle regime is thus different from the one in the

limit-cycle regime. The presence of noise is critical for OPL. The noise also allows a continual

random exchange of leadership between the two networks - in fact, since the noise is required for

sustained quasi-cycle behaviour, OPL is always present. As in the coupled limit cycle case, the

initial condition will bias the leadership towards one network, and subsequent leadership exchanges

are increasingly rare as the delay moves beyond the bifurcation point, or when the noise intensity

is small. But in principle, each network spends half the time being the leader, as could be verified

with long simulations (and perhaps unreasonably long when the noise is small or the delay is large).

This has already been observed in another purely computational study [175].

Figure 4.4(b) also shows that the SAM theory predicts OPL states in the quasi-cycle regime.

Further, it shows that the bifurcation is advanced to smaller and smaller delay values the stronger the

noise is; this contrasts with what is seen in the coupled limit cycle case. More extensive simulations

of the full network SWC equations are needed (i.e. more closed symbols closer to the zero axis need

to be computed from very long simulations in Fig.4.4(b)) to determine whether advancement occurs,

and if so, how well it agrees with the SAM theory. The advancement here also contrasts with other
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delay-differential equations where additive or multiplicative noise postpones a Hopf bifurcation [149].

The Dip test for bimodality was performed on the ∆φ(t) = φ1(t)− φ2(t) timeseries (Fig.4.5(a)).

It is a statistical test that measures the level of multimodality of the density of a given timeseries (see

Appendix). A value near zero indicates an unimodal timeseries, while increasing values of the Dip

statistic is associated with more than one mode in the density. We observe an increase of the Dip

values close to the deterministic transition between IP and AP locking. This shows the presence of

multimodality (bimodality in this specific case) in the distribution of phase-difference values in the

timeseries, and therefore the presence of OPL. In fact, it exposes a transition from zero to non-zero

Dip values very near the same points as in Fig.4.4, as well as in Fig.4.3,(c) with modes located at

0 < |β| < |π|. The Dip statistic thus corroborates the conclusion of bimodality, and therefore OPL.

We also computed the Phase locking value (PLV) to measure the synchronization strength ([152] -

see Appendix). Higher values of the PLV correspond to strong synchronization. The PLV is seen

to capture well the transition between IP and OPL. PLV analysis reveals that the synchronization

strength increases away from the IP-AP bifurcation in either direction (Fig.4.5(b)). The PLV is

non-zero, and shows a minimum near the same transition points as in Fig.4.4 (b). We also observe

a discrepancy between the SAM and the Hilbert transform at large noise intensity for both the Dip

value and the PLV.

We finally note that the coupling delay has little effect on the oscillation frequency of each

network. The frequency of the coupled-network is mainly determined by the parameters of each

network and the connection coefficients.

4.5.2 Effect of Asymmetric Coupling and Network Heterogeneity

The case we have considered so far involves two identical networks that are coupled reciprocally

using the same delays and coupling strengths. This is an oversimplification, as real neural networks

are never identical and the connectivity is rarely symmetric. Is the mechanism of delay and noise-

induced OPL still present when symmetry and homogeneity conditions are not present? Much work

is required to fully address these issues. Our immediate, more restricted goal here is to show a generic

effect of relaxing the requirement of symmetric coupling or network homogeneity. Specifically, we

first consider the case where identical networks are asymmetrically coupled. Afterwards, we look at
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Figure 4.4: Noise and delay-induced OPL. (a) Coupled limit cycles. In the deterministic case
(σ =

√
σ2
E + σ2

I = 0, solid black dots), a bifurcation occurs from IP to OPL via spon-
taneous symmetry breaking at a critical delay value. OPL is further delayed (and IP
stabilized) as σ increases (red: 0.0006, green: 0.0018, magenta: 0.0156). (b) Coupled
quasi-cycles. Only a bifurcation from IP to AP is seen for σ = 0 (black). OPL is observed
only in the noisy case. Phase differences are computed by applying Hilbert transforms to
simulations of the SWC system (Eqs.4.1) (solid dots in (a) and (b), except for the black
dots in (b)) and from the solutions of the SAM theory (open circles in (b)). Parameters
for (a) are LEE = 1;LIE = 0.5 and WEE = 30.4. In (b), we have LEE = 2,LIE = 0.5
and WEE = 27.4. Other parameters are as in Fig.4.1. Due to the transient synchrony
nature of the oscillations, phase differences were computed using the correlation function
in (b) and other bifurcation diagrams below.



4.5. DELAY AND NOISE INDUCE OUT OF PHASE LOCKING 141

Figure 4.5: Dip statistic and Phase-Locking-Value show signatures of OPL. (a) Dip statis-
tic versus lag assesses the presence of bimodality in the density of the time series, which
is agreement with the appearance of OPL in Figs.4.3 and 4.4. (b) Phase-Locking-Value
versus lag measures the degree of phase synchronization between two timeseries. The
PLV was computed from the phase timeseries φ1(t) and φ2(t) using both the Hilbert
transform (solid dots) and the SAM (circles). The PLV values are weaker at the tran-
sition between IP and AP locking, revealing the appearance of OPL states. All the
parameters are the same as in Fig.4.4 (b).
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the heterogeneous case when non-identical networks are symmetrically coupled.

The asymmetric case is set up by slightly decreasing the excitatory coupling from the first to

the second network (L21
EE = 1.5;L12

EE = 2). Figure 4.6(a) shows that the asymmetry induces a

small phase difference between the two networks even for the smallest delays, leading to a dominant

directionality. Nevertheless, the mechanism of delay- and noise-induced OPL is still present, although

with an intrinsic bias compared to the symmetric case. When the delay increases, a second branch

eventually appears, i.e. another OPL state is induced. As in all the bifurcation diagrams up to now

for stochastic dynamics, we plotted only the local extrema of the phase difference distribution. For

a given delay, the two states are not symmetric as in the former case, but rather, one state is more

stable than the other.

In the heterogeneous case in Fig.4.6(b), the external inhibitory input to the second network is

slightly increased, but the connectivity coefficients are symmetric, and all other parameters identical.

As in the asymmetric case, this also induces a phase difference between the networks. The mechanism

of noise and delay-induced OPL is still present, but again with a bias. The heterogeneous case is

qualitatively similar to the asymmetric case. All branches in(de)crease towards ±π when the delay

is large.

Hence, for both of these specific examples of asymmetry and heterogeneity, the mechanism of

delay and noise-induced occurs, along with dynamical changes in leadership. However, the amount

of time one network leads the other is not the same as in the homogeneous and symmetric case. In

fact one network leads the other one most of the time depending on the phase relation induced by

the asymmetry or the heterogeneity. This mechanism is observed and persists when the asymmetry

is weak and the heterogeneous networks are nearly identical. If the asymmetry is strong or the two

networks are too different, the phase relation will be imposed by such asymmetry or heterogeneity.

Then, one network will almost always be the leader, as the noise will rarely induce switches to

the less stable state. Dynamic OPL is revealed using numerical simulations of Eqs.4.1 followed by

Hilbert transforms, as well as the SAM Eqs.5 (for the heterogeneous and asymmetric case) and 7

(symmetric and homogeneous case).

Results from the Hilbert transform and the SAM are in good agreement for weak and intermediate

values of the noise intensity (see red, green solid dots and circles in Fig.4.6). From the large noise
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intensity, the results for the SAM and the Hilbert transform start to diverge as observed in the

magenta solid dots and circles in Fig.4.6. The dynamics derived from the SAM Eqs.5,7 provide

a good approximation for the envelope and phase of the LFPs derived in Eqs.4.1 for weak and

intermediate values of the noise for the E-I network. However, quasi-cycles are also present in

purely inhibitory networks. A natural question will be to understand the phase locking mechanism

of such quasi-cycles.

4.5.3 OPL in inhibitory networks.

We finally considered two coupled identical inhibitory (I-I) networks. Each isolated I-I population

with its all-to-all delayed inhibition can also exhibit either a noisy limit cycle or quasi-cycle [69, 141,

73, 132]. We coupled the two I-I populations with delayed long-range excitatory connections in the

quasi-cycle regime as for the E-I networks discussed until now. The dynamics of the model is given

by:

dI1(t)

dt
= −αII1(t) +

[
1− I1(t)

]
βIf(sI1(t)) + g1(I1)ξI1(t)

dI2(t)

dt
= −αII2(t) +

[
1− I2(t)

]
βIf(sI2(t)) + g2(I2)ξI2(t) (4.11)

sI1(t) = h1 −WI1(t− τ̂) + L1I2(t− τ)

sI2(t) = h2 −WI2(t− τ̂) + L2I1(t− τ)

g1(I1) =

√
αII1(t) +

[
1− I1(t)

]
βIf(sI1(t))

N

g2(I2) =

√
αII2(t) +

[
1− I2(t)

]
βIf(sI2(t))

N
. (4.12)

As in the case of the coupled E-I networks, we define the noise intensities for each network as:

σ1 =

〈(
g1(I1)

)〉
and σ2 =

〈(
g2(I2)

)〉
.

For this case, an envelope-phase decomposition using the SAM as in the case of the coupled

E-I networks is not yet available. We thus only consider numerical simulations and linear stability



4.5. DELAY AND NOISE INDUCE OUT OF PHASE LOCKING 144

Figure 4.6: Noise and delay-induced OPL in asymmetrically coupled, or heterogeneous
but symmetrically coupled E-I networks. (a) The asymmetric case where the
excitatory connectivity from the first to second network is slightly decreased compared
to the reverse excitatory connectivity (L21

EE = 1.5; L12
EE = 2). The other parameters are

identical for the two networks. (b) The heterogeneous case where the inhibitory input
to the second network is slightly increased compared to the same input applied in the
first network (h1

I = −8; h2
I = −7.85). Connectivities are kept symmetric as previously

in Fig.4.4. For all panels and figures, solid dots are phase locking states obtained using
the Hilbert transform, while circles are obtained through Stochastic Averaging Method
(SAM) Eqs 5. Red corresponds to weak, green intermediate and magenta strong values
of the noise intensity (values are as in Fig.4.4).
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Figure 4.7: Noise-induced Out of Phase locking in two purely inhibitory networks cou-
pled via long-range delayed excitatory connections (ING mechanism). For all
curves, red corresponds to weak, green to intermediate and magenta to strong noise. The
respective values of the noise intensities are specified in the legend of the left panel.(a)
The symmetric case with black dots correspond to the deterministic phase locking com-
puted through linear stability analysis. (b) The asymmetric case where the connectivity
is enhanced in one direction compared to the other. (c) The heterogeneous case where
the external current applied to the second network is slightly greater. We observe that
noise and delay induce out of phase locking, phase locking persist for the asymmetric
and heterogeneous cases. Simulations are performed using the phase signal extracted
through Hilbert transform. For the symmetric case, the parameters are chosen as fol-
lows: αI = 0.1, βI = 2, W = 30, τ̂ = 5.5ms, h1 = h2 = −2, L1 = L2 = 2. For the
asymmetric case, we have slightly decreased L2 to 1.5 and for the heterogeneous case we
have increased h2 to -7.85. The noise intensities are σ ≈ σ1 ≈ σ2.
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analysis. We define the local field potential (LFPs) as ṼI1(t) = c(I1(t)− I10) ṼI2(t) = c(I2(t)− I20)

where I10 and I20 are the stable fixed points of network 1 and 2, c =
√
N for the case of the

multiplicative noise and c = 1 for the additive noise. The phase difference is again ∆φ(t) = φ1(t)−

φ2(t), where φ1(t) is the phase of the signal ṼI1(t) and φ2(t) the one of ṼI2(t), both extracted through

the Hilbert transform. We perform the same analysis as in the case of the coupled E-I networks.

We first consider the symmetric case, choosing the delay as the bifurcation parameter for different

noise intensities σ. We observe in Fig.4.7 that the mechanism of delay and noise-induced OPL is

qualitatively the same to that observed in the case of coupled E-I networks. The noise smooths the

abrupt transition between the deterministic IP and AP locking states, and induces OPL states. We

also consider the symmetric and heterogeneous cases as previously described for the coupled E-I

networks. The mechanism of delay and noise induced OPL again survives these losses of symmetry,

but with a bias compared to the symmetric case. The presence of this mechanism in the case of

purely inhibitory networks suggests that it only depends on the dynamical regime of the oscillations

in each network, ie on their noise-induced nature. We then expect to observe similar delay and

noise-induced OPL more generally if the corresponding networks in isolation exhibit quasi-cycles.

4.6 Discussion

In summary, a robust noise-induced, delay-dependent OPL mechanism was revealed by an envelope-

phase decomposition of the coupled quasi-cycle dynamics. Although no spontaneous symmetry

breaking arises, the noise samples attractor dynamics corresponding to both IP and AP dynamics,

leading to OPL well before the deterministic bifurcation point. The lead-lag relationship displays

random reversals, an intrinsic property of the coupled system. This mechanism is observed in both

coupled PING and ING type systems. It persists but with a bias when the networks are weakly

asymmetrically coupled, or when they are heterogeneous but nearly identical.

The SAM used here requires underdamped oscillatory motion in each network prior to coupling.

It has been extended here to include delays. It allows an accurate description of the envelope

and phase dynamics of the nonlinear PING LFPs for weak and intermediate value of the noise.

It constitutes a new appropriate theoretical framework for the study of phase synchronization in

quasi-cycles. However, we found that for strong values of the noise intensity, the agreement with
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the Hilbert transform was not so good. There may be many reasons for discrepancy. Firstly, we

compare the SAM equations which are derived from the linear equations sustained by noise (see

Appendix, Eqs.4.14) with the full SWC which is a stochastic nonlinear model. Neglecting nonlinear

terms to calculate the SAM could lead to some discrepancy. In fact, for high values of the noise

intensity, the agreement between the network frequencies from the full nonlinear SWC model and the

LNA dynamics significantly worsens (not shown). Since the phase relation depends on the network

frequencies, the immediate consequence is a disagreement between the SAM and the full nonlinear

SWC model.

Secondly, we found that numerical simulations of the envelope-phase dynamics obtained via the

SAM can be problematic. The classical Euler-Maruyama iterative scheme was inaccurate in the

sense that the envelope process could be negative during the simulation process. To deal with this

pathological issue, we consider a very small time-step, and replace the envelope processes by their

absolute values at each simulation time-step. This allows the processes to remain positive. This

numerical scheme may cause convergence inaccuracies when the amplitude process is close to zero,

particularly for strong noise.

Despite these limitations, the SAM method remains a good theoretical framework for the study

of envelope and phase dynamics of isolated and coupled quasi-cycles. It exhibits all the qualitative

behavior of phase and amplitude dynamics present in the full nonlinear SWC model. The mecha-

nism of delay-dependent, noise-induced out of phase locking exposed here through the SAM and the

Hilbert transform of Eqs.4.1 is robust, flexible and general for rhythm-based communication pur-

poses. The potential ability to communicate under the realistic conditions reported here opens the

way for information transfer studies to obtain deeper insights into activity coordination in complex

networks. This would require extending the methods used here to dimensions greater than two and

with the necessary network topology. Also, the inclusion of more realistic external signals, such as

correlated noise or periodic inputs, promises to yield interesting phenomena.
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4.7 Appendix

4.7.1 Linear Noise approximation

We first consider the deterministic part of Eqs.4.1 (gi = 0, i=1,2). Their corresponding fixed points

(E10, I10, E20, I20) can be obtained as the solutions of the following system:

−αEE10 + (1− E10)βEf(sE10
) = 0

−αII10 + (1− I10)βIf(sI10) = 0 (4.13)

−αEE20 + (1− E20)βEf(sE20
) = 0

−αII20 + (1− I20)βIf(sI20) = 0

with

sE10
= WEEE10 −WEII10 + hE + L12

EEE20; sI10 = WIEE10 −WIII10 + h1
I + L12

IEE20

sE20
= WEEE20 −WEII20 + hE + L21

EEE10; sI20 = WIEE20 −WIII20 + h2
I + L21

IEE10 .

We are interested in the parameter regime where such a fixed point is a stable focus. The dynamics

therefore converge in a decaying oscillatory manner toward the fixed point in the absence of noise.

When noise is added, the dynamics are fluctuations around the fixed points. Following the system

size-expansion [217, 172, 28, 19], these fluctuations can be sought in the following form:

Ṽ iE =
√
NE
(
Ei − Ei0

)
, Ṽ iI =

√
NI
(
Ii − Ii0

)
, i = 1, 2 .

Plugging theses expressions into Eqs.4.1, and keeping terms of order O
(√

NE,I
)
, we obtain the

following dynamics for the local field potential (LFPs) fluctuations:

dṼ 1
E

dt
= A1

EE Ṽ
1
E(t) +A1

EI Ṽ
1
I (t) + C12

EE Ṽ
2
E(t− τ) + σE1

ξE1

dṼ 1
I

dt
= A1

IE Ṽ
1
E(t) +A1

II Ṽ
1
I (t) + C12

IE Ṽ
2
E(t− τ) + σI1ξI1 (4.14)
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dṼ 2
E

dt
= A2

EE Ṽ
2
E(t) +A2

EI Ṽ
2
I (t) + C21

EE Ṽ
1
E(t− τ) + σE2

ξE2

dṼ 2
I

dt
= A2

IE Ṽ
2
E(t) +A2

II Ṽ
2
I (t) + C21

IE Ṽ
1
E(t− τ) + σI2ξI2 ,

where the parameters of each network are given by:

A1
EE = −αE − βEf

(
sE10

)
+
(
1− E10

)
βEf

′(
sE10

)
WEE

A1
EI = −cEI

(
1− E10

)
βEf

′(
sE10

)
WEI ; A1

IE = cIE
(
1− I10

)
βIf

′(
sI10

)
WIE

A1
II = −αI − βIf

(
sI10

)
−
(
1− I10

)
βIf

′(
sI10

)
WII

A2
EE = −αE − βEf

(
sE20

)
+
(
1− E20

)
βEf

′(
sE20

)
WEE

A2
EI = −cEI

(
1− E20

)
βEf

′(
sE20

)
WEI ; A2

IE = cIE
(
1− I20

)
βIf

′(
sI20

)
WIE

A2
II = −αI − βIf

(
sI20

)
−
(
1− I20

)
βIf

′(
sI20

)
WII

and

σE1
=
√

2αEE10 σI1 =
√

2αII10 σE2
=
√

2αEE20 σI2 =
√

2αII20 cEI =
√
NE/NI cIE =

√
NI/NE .

The effective couplings are:

C12
EE =

(
1− E10

)
βEf

′(
sE10

)
L12
EE ; C12

IE = cIE
(
1− I10

)
βIf

′(
sI10

)
L12
IE

C21
EE =

(
1− E20

)
βEf

′(
sE20

)
L21
EE ; C21

IE = cIE
(
1− I20

)
βIf

′(
sI20

)
L21
IE .

This system of four linear equations sustained by noise is a good representation of the dynamics

of excitatory and inhibitory LFPs in the quasi-cycle regime. This can be seen as a system of two

connected networks of excitatory and inhibitory populations with effective intra-population connec-

tivity coefficients AiEE , A
i
EI , A

i
IE and AiII , i = 1, 2 . The noise intensities in the E and I populations

are, respectively, σEi and σIi , i = 1, 2. The effective long range excitatory connections from the

first network to the E and I populations of the second network are C21
EE and C21

IE , respectively,

while the effective long range excitatory connections from the second network to the excitatory and

inhibitory populations of the first network are respectively C12
EE and C12

IE . Following the expressions
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of the effective long range excitatory connections CijEE and CijIE , i 6= j = 1, 2, the two networks have

effective connectivities that are different from the anatomical connectivity since CijEE 6= LijEE and

CijIE 6= LijIE . Moreover, C12
EE 6= C21

EE and C12
IE 6= C21

EE for the asymmetric and heterogeneous cases.

4.7.2 Linear stability

In the quasi-cycle regime, the dynamics of the LFPs converge to zero in the absence of noise.

However we can still extract important properties from the deterministic decay dynamics. Here,

we investigate the properties of the decay dynamics in the absence of noise. The dynamics of such

decays are given by (σE1
= σE2

= σI1 = σI2 = 0):

dṼ 1
E(t)

dt
= A1

EE Ṽ
1
E(t) +A1

EI Ṽ
1
I (t) + C12

EE Ṽ
2
E(t− τ)

dṼ 1
I (t)

dt
= A1

IE Ṽ
1
E(t) +A1

II Ṽ
1
I (t) + C12

IE Ṽ
2
E(t− τ) (4.15)

dṼ 2
E(t)

dt
= A2

EE Ṽ
2
E(t) +A2

EI Ṽ
2
I (t) + C21

EE Ṽ
1
E(t− τ)

dṼ 2
I (t)

dt
= A2

IE Ṽ
2
E(t) +A2

II Ṽ
2
I (t) + C21

IE Ṽ
1
E(t− τ).

We look for solutions of these equations in the form of exponential decays:

Ṽ 1
E(t) = Ã1

E exp
(
λt
)
, Ṽ 1

I (t) = Ã1
I exp

(
λt
)

Ṽ 2
E(t) = Ã2

E exp
(
λt
)
, Ṽ 2

I (t) = Ã2
I exp

(
λt
)
.

Replacing these expressions into the noise-free dynamics Eqs.4.15 above yields the following rela-

tionships:

α̃1
IE =

Ã1
I

Ã1
E

=
A1
IEC

12
EE − C12

IE

(
A1
EE − λ

)
A1
EIC

12
IE − C12

EE

(
A1
II − λ

)
α̃21
E =

Ã2
E

Ã1
E

=

(
A1
EE − λ

)(
A1
II − λ

)
−A1

IEA
1
EI

A1
EIC

12
IE − C12

EE

(
A1
II − λ

) · exp(λτ)

α̃2
IE =

Ã2
I

Ã2
E

=
A2
IEC

21
EE − C21

IE

(
A2
EE − λ

)
A2
EIC

21
IE − C21

EE

(
A2
II − λ

)
α̃12
E =

Ã1
E

Ã2
E

=

(
A2
EE − λ

)(
A2
II − λ

)
−A2

IEA
2
EI

A2
EIC

21
IE − C21

EE

(
A2
II − λ

) · exp(λτ) .
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Using the relation α̃12
E = (α̃21

E )−1 we obtain the following characteristic equation:

[(
A2
II − λ

)(
A2
EE − λ

)
−A2

EIA
2
IE

][(
A1
II − λ

)(
A1
EE − λ

)
−A1

EIA
1
IE

]
=

e−2λτ

[
A1
EIC

12
IE − C12

EE

(
A1
II − λ

)][
A2
EIC

21
IE − C21

EE

(
A2
II − λ

)]
.

The value of the amplitude ratio can be obtained by first solving the characteristic equation. The

solution of interest is the eigenvalue with the largest real part (note that this real part should

be negative since we are in the quasi-cycle regime). Replacing this particular eigenvalue in the

expression of the amplitude ratio above allows us to obtain the right expression for these ratios.

Note that the ratios are complex quantities and can therefore be put in exponential form, with the

argument of the exponential being the phase difference and its modulus the real amplitude ratio. We

then obtain the amplitude ratio and phase difference between the inhibitory and excitatory LFPs in

each network as:

α1 = abs(α̃1
IE) α2 = abs(α̃2

IE) (4.16)

δ1 = arg(α̃1
IE) δ2 = arg(α̃2

IE) (4.17)

and the phase difference between excitatory populations of different networks ( 1 and 2 respectively)

as:

∆φ = arg
(
α̃12
E

)
. (4.18)

Similar analysis was done for the case of purely inhibitory populations (not shown here) to compute

the deterministic phase difference in solid black dots Fig.4.7-(a).

4.7.3 Stochastic Averaging Method (SAM) and Envelope-Phase Decomposition

We are interested in the fluctuations from the baseline activities (LNA): Ṽ iE(t) = cE
(
Ei(t) −

Ei0
)
; Ṽ iI (t) = cI

(
Ii(t)− Ii0

)
where E0i and I0i are the deterministic fixed point activities. We are

further interested in the slow envelope and phase dynamics of the fluctuations. For that, we seek

solutions in the form of Eqs.4.4 and plug these expressions in the equations for the LFPs, Eqs.4.14.
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This yields a system of differential equations in terms of Z1, Z2, φ1 and φ2 as follows:

Ż1(t) = F 1
1 (Z1,2, φ1,2) +G1

1

(
Z1,2, φ1,2, ξE1,2

, ξI1,2
)

φ̇1(t) = F 1
2 (Z1,2, φ1,2) +G1

2

(
Z1,2, φ1,2, ξE1,2

, ξI1,2
)

(4.19)

Ż2(t) = F 2
1 (Z1,2, φ1,2) +G2

1

(
Z1,2, φ1,2, ξE1,2

, ξI1,2
)

φ̇2(t) = F 2
2 (Z1,2, φ1,2) +G2

2

(
Z1,2, φ1,2, ξE1,2 , ξI1,2

)

where

F 1
1

(
Z1,2, φ1,2

)
=

1

α1 sin(δ1)

[
α1f

1
1

(
Z1,2, φ1,2

)
sin(ω0t+ φ1(t) + δ1)− f1

2

(
Z1,2, φ1,2

)
sin(ω0t+ φ1(t))

]
F 1
2

(
Z1,2, φ1,2

)
=

1

α1Z1 sin(δ1)

[
α1f

1
1

(
Z1,2, φ1,2

)
cos(ω0t+ φ1(t) + δ1)− f1

2

(
Z1,2, φ1,2

)
cos(ω0t+ φ1(t))

]
F 2
1

(
Z1,2, φ1,2

)
=

1

α2 sin(δ2)

[
α2f

2
1

(
Z1,2, φ1,2

)
sin(ω0t+ φ2(t) + δ2)− f2

2

(
Z1,2, φ1,2

)
sin(ω0t+ φ2(t))

]
F 2
2

(
Z1,2, φ1,2

)
=

1

α2Z2 sin(δ2)

[
α2f

2
1

(
Z1,2, φ1,2

)
cos(ω0t+ φ2(t) + δ2)− f2

2

(
Z1,2, φ1,2

)
cos(ω0t+ φ2(t))

]
G1

1

(
Z1,2, φ1,2, ξE,I1,2

)
=

1

α1 sin(δ1)

[
α1g

1
1

(
Z1,2, φ1,2, ξE,I1,2

)
sin(ω0t+ φ1(t) + δ1)− g12

(
Z1,2, φ1,2, ξE,I1,2

)
sin(ω0t+ φ1(t))

]
G1

2

(
Z1,2, φ1,2, ξE,I1,2

)
=

1

α1Z1 sin(δ1)

[
α1g

1
1

(
Z1,2, φ1,2, ξE,I1,2

)
cos(ω0t+ φ1(t) + δ1)− g12

(
Z1,2, φ1,2, ξE,I1,2

)
cos(ω0t+ φ1(t))

]
G2

1

(
Z1,2, φ1,2, ξE,I1,2

)
=

1

α2 sin(δ2)

[
α2g

2
1

(
Z1,2, φ1,2, ξE,I1,2

)
sin(ω0t+ φ2(t) + δ2)− g22

(
Z1,2, φ1,2, ξE,I1,2

)
sin(ω0t+ φ2(t))

]
G2

2

(
Z1,2, φ1,2, ξE,I1,2

)
=

1

α2Z2 sin(δ2)

[
α2g

2
1

(
Z1,2, φ1,2, ξE,I1,2

)
cos(ω0t+ φ2(t) + δ2)− g22

(
Z1,2, φ1,2, ξE,I1,2

)
cos(ω0t+ φ2(t))

]
f1
1

(
Z1,2, φ1,2

)
= ω0Z1(t) sin(ω0t+ φ1(t)) +A1

EEZ1 cos(ω0t+ φ1(t)) +A1
EIα1Z1 cos(ω0t+ φ1(t) + δ1)

+ C12
EEZ2(t− τ) cos(ω0t− ω0τ + φ2(t− τ))

f1
2

(
Z1,2, φ1,2

)
= α1ω0Z1(t) sin(ω0t+ φ1(t) + δ1) +A1

IEZ1 cos(ω0t+ φ1(t)) +A1
IIα1Z1 cos(ω0t+ φ1(t) + δ1)

+ C12
IEZ2(t− τ) cos(ω0t− ω0τ + φ2(t− τ))

f2
1

(
Z1,2, φ1,2

)
= ω0Z2(t) sin(ω0t+ φ2(t)) +A2

EEZ2 cos(ω0t+ φ2(t)) +A2
EIα2Z2 cos(ω0t+ φ2(t) + δ2)

+ C21
EEZ1(t− τ) cos(ω0t− ω0τ + φ1(t− τ))

f2
2

(
Z1,2, φ1,2

)
= α2ω0Z2(t) sin(ω0t+ φ2(t) + δ2) +A2

IEZ2 cos(ω0t+ φ2(t)) +A2
IIα2Z2 cos(ω0t+ φ2(t) + δ2)

+ C21
IEZ1(t− τ) cos(ω0t− ω0τ + φ1(t− τ))

g11
(
Z1,2, φ1,2, ξE1,2 , ξI1,2

)
= σE1ξE1(t); g12

(
Z1,2, φ1,2, ξE1,2 , ξI1,2

)
= σI1ξI1(t);

g21
(
Z1,2, φ1,2, ξE1,2 , ξI1,2

)
= σE2ξE2(t); g22

(
Z1,2, φ1,2, ξE1,2 , ξI1,2

)
= σI2ξI2(t).
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The envelope and phase dynamics described by Eqs.4.19 are hard to visualize and analyze. To

simplify their dynamics, we apply the Stochastic Averaging Method (SAM). The SAM states that,

under certain conditions (usually met for regular functions like F i1, F
i
2 and Gi1, G

i
2, i=1,2), the above

system of four stochastic differential equations can be approximated by the following 4-dimensional

Markov process [187, 6]:

dX(t) = m(X)dt+ h(X)dW (t) , (4.20)

where X(t) =

[
Z1(t);φ1(t);Z2(t);φ2(t)

]′
, m is a 4x1 matrix, h is a 4x4 matrix and W (t) denotes

a 4-dimensional vector of independent Wiener processes with unit variance. Also, m and h are

respectively O(ε2) and O(ε) functions defined as:

m = T av
(
E
{
F
}

+

∫ 0

−∞
E

{(
∂G

∂X

)
t

(
G
)
t+z

}
dz

)

hh
′

= T av
(∫ ∞
−∞

E
{

(G)t(G
′
)t+z

}
dz

)
where ε is a small parameter which can be assumed proportional to the real part of the most unstable

eigenvalue. Here (′) denotes transposition, and

(
∂G

∂X

)
t

is a 4x4 Jacobian matrix. Moreover, E.

denotes the expectation operator and T av is the time averaging operator defined by

T av
(
.
)

=
1

T0

∫ t0+T0

t0

(
.
)
dt

where T0 = 2π
ω0

is the period of an oscillation cycle. When evaluating the expectations in the stochas-

tic averages formula, the elements of X are treated as constants. The result of these calculations

leads to the coupled envelope-phase dynamics Eqs.5.

4.7.4 Dip Statistic and Phase-Locking-Value

The Dip value is a measure of multimodality of a given timeseries. It computes the maximum

difference, over all points of the timeseries, between the empirical distribution and the unimodal

distribution that minimizes that maximum difference. The uniform distribution is chosen as the uni-

modal distribution when performing the dip test for multimodality [107]. The dip value approaches
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asymptotically zero for an unimodal distribution and a positive constant for a multimodal distri-

bution. We used a Matlab version of the program already written by the authors [108] to produce

Fig.4.5(a). The increase of the Dip value as the delay increases is a signature of the multimodality of

the phase difference timeseries. In our case, this multimodality is a bimodality corresponding to the

two symmetric out of phase states present. The Dip test therefore confirms the presence of OPL.

To measure the strength of phase synchronization between the two networks, we also computed

the Phase-Locking-Value (PLV) [219, 152] as the delay varies. The PLV is a quantity to measure

the strength of the phase-synchronization and is defined as

PLV =
1

n

∣∣∣∣ n∑
k=1

e−j∆φk
∣∣∣∣ (4.21)

where j =
√
−1, n the total number of points and ∆φk = ∆φ(tk) = φ1(tk) − φ2(tk). The PLV is

computed in Fig.4.5(b) and captures well the transition between unimodal and bimodal behaviour

in the phase difference.
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Chapter 5

Amplitude-Phase Description of Stochastic Neural

Oscillators Across the Hopf Bifurcation

Abstract

We derive a unified amplitude-phase decomposition for both noisy limit cycles and quasi-cycles;

in the latter case, the oscillatory motion has no deterministic counterpart. We extend a previous

amplitude-phase decomposition approach using the stochastic averaging method (SAM) for quasi-

cycles by taking into account nonlinear terms up to order 3. We further take into account the case

of coupled networks where each isolated network can be in a quasi- or noisy limit cycle regime. The

method is illustrated on two models which exhibit a deterministic supercritical Hopf bifurcation:

the Stochastic Wilson-Cowan model of neural rhythms, and the Stochastic Stuart-Landau model

in physics. At the level of a single oscillatory network, the amplitude process of each of these

models decouples from the phase process to the lowest order, allowing a Fokker-Planck estimate of

the amplitude probability density. The peak of this density captures well the transition between

the two regimes. The model describes accurately the effect of Gaussian white noise as well as of

correlated noise. Bursting epochs in the limit cycle regime are in fact favoured by noise with shorter

correlation time or stronger intensity. Quasi-cycle and noisy limit-cycle dynamics are associated with,

respectively, Rayleigh-type and Gaussian-like amplitude densities. This may provide an additional

tool to distinguish quasi-cycle from limit-cycle origins of bursty rhythms. The case of multiple

oscillatory networks with excitatory all-to-all delayed coupling results in a system of stochastic

coupled amplitude-phase equations that keeps all the biological or physical parameters of the initial
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networks and again works across the Hopf bifurcation. The theory is illustrated for a small number of

heterogeneous coupled networks. Numerical simulations of the amplitude-phase dynamics obtained

through the SAM are in good agreement with those of the original oscillatory networks. In the

deterministic and nearly identical oscillators limits, the Stochastic Stuart-Landau model leads to

the Kuramoto model of interacting phases. The approach can be tailored to networks with different

frequency, topology, and stochastic inputs, thus providing a general and flexible framework to analyze

noisy oscillations continuously across the underlying deterministic bifurcation.

5.1 Introduction

Limit cycle oscillations have been studied in many areas ranging from biology [145, 151, 152],

ecology[157, 109] and laser physics [137]. Biological limit cycles in particular have been the subject of

numerous papers over the past decades in the context of biochemical oscillations [96, 97, 98, 160, 171],

circadian rhythms [10, 18], genetic oscillations [59, 214, 204, 68, 165], cardiac rhythms [95, 105], cal-

cium oscillations[70, 199], epidemic and ecological oscillations [5, 189, 164, 161], neural rhythms

[41, 42, 11, 125, 220] and hair cell motion [191, 77]. These rhythms often display strong fluctu-

ations, or are seen during brief, randomly recurring epochs. In certain systems such as circadian

rhythms, the oscillations are known to be an essential part of their function. In neural systems, slow

(delta,alpha)[176, 57] and fast (beta, gamma)[79, 42, 135] rhythms are believed to support cogni-

tive processes such as perception [143], attention [25], cognition [83], working memory [231, 154],

or communication between brain areas [85, 175]. Abnormal or dysfunctional rhythms have been

linked to neurological disorders like epilepsy, Alzheimer Disease (AD), and Parkinson’s disease (PD)

[32, 106, 113] just to mention a few.

Amplitude-phase descriptions of limit cycle oscillations have been investigated using a variety of

techniques [221, 8, 198, 156, 21, 23, 22] following early studies of noise-induced and noise-perturbed

oscillations [75, 88, 128]. The focus has been mainly on the phase, as studies often assume weak noise

which leads to small amplitude variations. Thus, the amplitude-phase description is often reduced to

a simple phase description of the noisy limit cycle oscillations [31]. Recently, descriptions in terms

of the slow amplitude fluctuations and phase, referred henceforth as amplitude-phase, have been

applied to the quasi-cycle regime and their random bursts [102, 182]. Bursts correspond to epochs
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of higher amplitude values. In this regime, a simple phase description of the oscillation is unable

to capture the bursting features, and thus taking the amplitude into account is necessary. Our goal

is to provide a framework for computing amplitude-phase equations across the Hopf bifurcation for

single oscillatory modules, driven by white or colored noise processes, and to generalize this approach

to networks of delay-coupled modules. This will pave the way to understand communication with

bursts across brain areas.

There is increasing evidence that fast rhythms in certain neural systems are induced rather

than perturbed by noise [228, 170, 38, 182]. Similar observations have been made for predator-prey

ecological systems, whose overall cyclical activity has been suggested to require demographic noise

[161]. The vicinity of the transition between noisy limit cycles and noise-induced limit cycles known

as ”quasi-cycles” is thus worthy of attention as systems may drift over this boundary.

The modelling of stochastic oscillations thus involves the distinction between noisy limit cycles

and quasi-cycles, depending on weather one suspects the deterministic dynamics to lie below or be-

yond a bifurcation from a fixed point to a limit cycle. Noisy limit cycles are self-sustained oscillations

which exist independently of their noisy environment, i.e. are a manifestation of operation beyond

the bifurcation. They are modelled as single or coupled oscillators. Quasi-cycles on the other hand

are induced and sustained by their stochastic surroundings, in the absence of which trajectories

decay to a fixed point. Models for quasi-cycles assume stable complex eigenvalues around this fixed

point [102].

A unified framework which smoothly meshes together these two classes of stochastic models

at the level of single as well as coupled networks is of interest, in particular when the focus is a

decomposition into their time-dependent amplitude and phase. Previous studies have described the

normal form dynamics of the Hopf bifurcation with additive and multiplicative noise [144, 128],

including the multi-scale behaviour known to occur in the vicinity of the bifurcation [233]. The

seminal study in [54] does perform a transformation of a system of arbitrary dimension near a

Hopf bifurcation into a set of dynamical equations for the complex mode amplitudes; further work

would then be required to convert such a system into an amplitude-phase description as is our end

goal here. It also does not produce a slower amplitude dynamics which is of interest to eventually

characterize bursting. Our work below starts instead with additive colored noise and different noise
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on the components, and derives slow amplitude dynamics. Further it goes beyond considering a

single oscillatory system; although each system is in 2D, we develop the theory for several delay-

coupled 2D systems. In contrast, in the context of neural rhythms, current models that describe

quasi-cycles and their coupled counterparts are based simply on linear equations driven by noise and

are confined below the Hopf bifurcation [102, 182, 184, 103, 183]. Thus, we are not aware of any

method that directly yields an amplitude-phase representation of coupled neural networks that is

accurate across the Hopf bifurcation, let alone one that can handle colored noise and delay coupling.

Our study derives a decomposition that bridges the gap across this boundary, i.e. across the Hopf

bifurcation for both single and coupled networks. The slow amplitude that emerges from our analysis

quantifies the temporal evolution of the cycle to cycle amplitude of the rhythm, while the phase

contains information about its regularity. This is done by extending a previous amplitude-phase

decomposition of quasi-cycles oscillation to noisy limit cycles by considering nonlinear terms up to

order three in the fast dynamics. This involves lengthier calculations using the stochastic averaging

method (SAM) [187]. While the Taylor expansion of sigmoidal nonlinearities like those of the neural

response functions converge slowly, our immediate goal is only to obtain the next order corrections

to our previous nonlinear amplitude-phase equations derived from linear dynamics. Our method can

accurately describe noisy oscillations over a range of frequencies. It can also accommodate different

types of noise across a range of intensities. In fact the general theory in our work also considers

quasi-cycle and limit cycle dynamics driven by Ornstein-Uhlenbeck (OU) noise.

We develop our theory using two models of rhythm generation, namely, the Stochastic Wil-

son Cowan model (SWC) of neural rhythms [224, 220], and the Stochastic Stuart Landau model

(SSL) used to describe oscillations in various areas including physics and neuroscience. Each two-

dimensional model system describes the interaction of a first variable (E or x) with a second variable

(I or y). Multiple such systems have been used to study the emergence and coupling of rhythms

across brain areas [48]. The results of such analyses have even been shown to account for features

of real data [62, 64, 126]. Both models exhibit a supercritical Hopf bifurcation; in fact the Stuart

Landau model in polar coordinates is the normal form for this bifurcation [206]. Thus our illustrative

examples are taken from the field of neural rhythms and physics, but are more generally applicable.

We further generalize our results for a two-population E-I network model to super-networks
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whose unit building blocks are such E-I modules, each of which can oscillate on its own in either

the quasi or limit cycle regime. Our amplitude-phase model goes beyond purely phase-coupled

oscillator models to describe both the quasi-cycle and noisy limit cycle dynamics with a higher level

of biophysical realism. It also allows moderate noise and coupling strength. The model is adaptable

to different frequency bands, and can be simplified to obtain a representation in terms of coupled

Kuramoto oscillators.

We focus our work on the amplitude dynamics, showing good agreement with the original non-

linear model in both the quasi- and limit cycles regimes. Coupled rhythm-generating networks have

been considered in the context of the activity arising from the brain connectome [64], as well as

genetic and biochemical networks [96]. The modelling of such networks has mostly been limit cycle-

based in the deterministic or weak noise limit, and assumed weakly coupled and nearly identical

oscillators. In such limits, the influence of the amplitudes of the oscillators is usually neglected and

the only important variables are the phases of the oscillatory units. Such interacting phase models

do not describe coupled quasi-cycles whose behaviour is strongly amplitude-dependent. We note

however a recent study of coupled quasi-cycles that involves amplitude-phase coupling [103]. In

contrast, our study of super-networks in the last part of our paper involves quasi-cycle dynamics

and noisy limit-cycles.

We first present the nonlinear version of the stochastic Wilson-Cowan model, and derive the

amplitude-phase approximation that agrees well with the numerics of the original model across the

Hopf bifurcation. We then perform a similar calculation for the stochastic Stuart-Landau model.

Finally, super-networks of such models are considered. Our theory is developed assuming that these

systems are driven by OU noise. For simplicity, most of our simulations are compared with the

theory for the white noise case; the exceptions are Figures (5.10) and (5.11) where the effect of the

noise correlation time on amplitudes densities is highlighted.

5.2 Stochastic Wilson-Cowan Model

We consider a stochastic version [220] of the seminal Wilson-Cowan model [224] for oscillation

generation. The two-dimensional model with additive noise mimics a population of excitatory (E)

and of inhibitory (I) cells. The mean synaptic coupling from E cells to themselves, and from E cells
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to I cells, are given respectively by WEE and WIE . Similarly, the mean synaptic coupling from I

cells to themselves and from I cells to E cells are WII and WEI . The E cell population receives a

constant external stimulus hE , while the I cell population is driven by the constant external current

hI . Additive noise is assumed to arise mainly from random synaptic events. Defining the fraction

of excitatory cells that are firing at a given time by E(t), and of inhibitory cells I(t), yields the

stochastic WC model (SWC):

dE(t)

dt
= −αEE(t) +

(
1− E(t)

)
βEf(sE(t)) + ηE(t) (5.1)

dI(t)

dt
= −αII(t) +

(
1− I(t)

)
βIf(sI(t)) + ηI(t) . (5.2)

The sigmoid function is f(x) = (1 + e−x)−1 and the total excitatory sE(t) and inhibitory sI(t)

synaptic inputs to a neuron are given respectively by

sE(t) = WEEE(t)−WEII(t) + hE (5.3)

sI(t) = WIEE(t)−WIII(t) + hI . (5.4)

We choose ηE,I(t) as two independent Ornstein-Uhlenbeck (OU) [90] processes given by:

dηE(t)

dt
= −ηE(t)

τE
+

√
2σ2

E

τE
ξE(t) (5.5)

dηI(t)

dt
= −ηI(t)

τI
+

√
2σ2

I

τI
ξI(t) (5.6)

where ξE,I are two independent Gaussian white noises with the following properties:

< ξE,I(t) > = 0, < ξE(t)ξI(t) >= 0

< ξE(t
′
)ξE(t) > =< ξI(t

′
)ξI(t) >= δ(t− t

′
) .
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The variances of these OU processes are σ2
E,I , their autocorrelations are given by:

〈ηE(t)ηE(s)〉 = σ2
E exp(−|t− s|/τE) (5.7)

〈ηI(t)ηI(s)〉 = σ2
I exp(−|t− s|/τI) , (5.8)

and their intensities (integrals of the autocorrelation functions) are QE,I = τE,Iσ
2
E,I . Further in our

work, we will investigate the effect of the noise correlation time on the dynamics, while maintaining

the noise intensity fixed. In other words, we will fix QE,I , and vary τE,I while changing σ2
E,I [115].

However, for the stochastic Wilson Cowan model in the first part of our paper, we will consider

stochastic forcing by Gaussian white noises.

The noise-free (σE = σI = 0) dynamics has a fixed point (E0, I0) (for the parameter values

chosen in our work) which can be a stable or an unstable focus. If the fixed point is a stable

focus, deviations from the fixed point converge to zero. The noise slowly erases the memory of

the initial conditions, and induces deviations from the fixed point that relax in a noisy oscillatory

manner [102, 182]. Adding noise to this regime leads to noise-induced oscillations or quasi-cycles.

If the system undergoes a Hopf bifurcation to a stable limit cycle, then the fixed point becomes an

unstable focus. The noise then yields a stochastic limit cycle [58, 196] by perturbing the amplitude,

frequency and phase of the deterministic oscillation.

5.2.1 Dynamics of the fluctuations

We wish to characterize the fast and slow features of the deviations from the fixed point and the limit

cycle with a unique dynamical description no matter if their corresponding dynamics is a quasi-cycle

or a noisy limit cycle. We look for solutions of Eqs.(5.1-5.2) in the form:

E(t) = E0 + VE(t) I(t) = I0 + VI(t) (5.9)
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where the fixed points E0 and I0 solve the deterministic equations:

−αEE0 +
(
1− E0

)
βEf(sE0

) = 0

−αII0 +
(
1− I0

)
βIf(sI0) = 0 , (5.10)

with the definitions

sE0
= WEEE0 −WEII0 + hE and sI0 = WIEE0 −WIII0 + hI .

Note that we have restricted our analysis to the parameter regime most relevant to brain rhythms,

namely the one where the system has only one deterministic fixed point. We inserted Eqs. (5.9)

into Eqs. (5.1-5.2) and used the following Taylor expansion of the sigmoid function:

f(sE(t)) = f(sE0
+ δsE(t))

= f(sE0) + δsE(t)f
′
(sE0) +

1

2
(δsE(t))2f

′′
(sE0)

f(sI(t)) = f(sI0 + δsI(t)) (5.11)

= f(sI0) + δsI(t)f
′
(sI0) +

1

2
(δsI(t))

2f
′′
(sI0)

where

δsE(t) = WEEVE(t)−WEIVI(t); δsI(t) = WIEVE(t)−WIIVI(t). (5.12)

We note that the Taylor expansion made above in Eqs. (5.11) is accurate for small deviations in

Eqs. (5.12). If these quantities become too large, this approximation converges poorly which may

lead to incorrect results.

The fluctuations VE(t) and VI(t) are considered as local field potentials (LFP) in the context of

brain dynamics [102, 182]. These LFPs are dimensionless in the Wilson-Cowan modeling framework

since they are simply deviations from the steady state fractions E0 and I0; they are nevertheless
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interpreted as potentials [228]. They are approximately governed by:

dVE(t)

dt
= AEEVE(t) +AEIVI(t) + LEEV

2
E(t) + LEIVE(t)VI(t) +MEIV

2
I (t) +B1EV

3
E(t) (5.13)

+B2EVEV
2
I (t) +B3EVIV

2
E(t) +B4EV

3
I (t) + ηE(t)

dVI(t)

dt
= AIEVE(t) +AIIVI(t) + LIIV

2
I (t) + LIEVE(t)VI(t) +MIEV

2
E(t) +B1IV

3
I (t) (5.14)

+B2IVEV
2
I (t) +B3IVIV

2
E(t) +B4IV

3
E(t) + ηI(t) ,

with the following parameter definitions:

AEE = −
[
αE + βEf(sE0

)− (1− E0)βEf
′
(sE0

)WEE

]
AII = −

[
αI + βIf(sI0) + (1− I0)βIf

′
(sI0)WII

]
AEI = −(1− E0)βEf

′
(sE0

)WEI , AIE = (1− I0)βIf
′
(sI0)WIE

LEE = −βEf
′
(sE0

)WEE , LEI = βEf
′
(sE0

)WEI

LIE = −βIf
′
(sI0)WIE , LII = βIf

′
(sI0)WII

MEI = 0, MIE = 0, B4E = 0, B4I = 0.

B1E = −1

2
βEf

′′
(sE0)W 2

EE , B2E = −1

2
βEf

′′
(sE0)W 2

EI

B3E = βEf
′′
(sE0

)WEEWEI , B1I = −1

2
βIf

′′
(sI0)W 2

II

B2I =βIf
′′
(sI0)WIEWII , B3I = −1

2
βIf

′′
(sI0)W 2

IE .

Note that to obtain Eqs. (5.13-5.14) we have used the fixed point condition Eqs.5.10. The Taylor

expansion for this stochastic WC model leads to the four parameters MEI = MIE = 0 and B4E =

B4I = 0. The values of the first parameters (MEI = MIE = 0) is a consequence of a specific choice

of some terms which leads to a better convergence to the former Wilson-Cowan dynamics as we show

in the Appendix Fig.5.14. The second relation B4E = B4I = 0 follows because the Taylor expansion

of the sigmoid function was truncated at the second order (see Appendix). These terms could be

different from zero for a different choice of parameters or in other models. For our analytic work,

we will use Eqs. (5.13-5.14) instead of Eqs. (5.1-5.2). Equations (5.13-5.14) are the approximate

fluctuation dynamics to order O(3) of the stochastic Wilson-Cowan model, denoted henceforth as
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SWC3 (see further below in Fig. (5.3) for time series from this model). We focus on this system

and investigate its ability to generate oscillations and amplitude-phase dynamics across the Hopf

boundary in the presence of noise.

Nonlinear Fluctuation Dynamics: Numerical Analysis

We first simulate Eqs. (5.13-5.14) without stochastic inputs (σE = 0 and σI = 0). Then we use

Eqs. 5.9 to compute the synchronization level of any existing long-life oscillations of the excitatory

activity E(t). The synchronization level was defined as the mean of the amplitude between each

trough and the successive peak, computed using a very long simulation time. It can also be seen as

the mean of the cycle-to-cycle amplitudes of the oscillatory process after transients have decayed.

We plotted this synchronization level in the (WEE ,WII) parameter space in Fig. 5.1(a), which

reveals the emergence of oscillations after a Hopf bifurcation. The level of synchronization increases

smoothly for parameters deeper into the limit cycle regime. Accordingly, the mean amplitude of the

limit cycle increases with the real part of the complex conjugate eigenvalues at that fixed point.

We now take stochastic inputs into account. We first consider only white noises ηE,I(t) =

σE,IξE,I(t) and define the total noise strength as:

σ =
√
σ2
E + σ2

I . (5.15)

For weak noise, quasi-cycle oscillations emerge (Fig. 5.1(b)). In the limit cycle regime, the oscilla-

tion amplitude is larger at higher noise (Fig.5.1(c)) compared to the lower noise (Figs.5.1(b)) and

deterministic (Figs.5.1(a)) cases. At the higher noise strength in Fig 5.1(c), the oscillations are in

fact more prominent in both the quasi-cycle and limit cycle regimes.

The oscillation frequency for weak noise strength is also shown in Fig.5.1(d), where it is apparent

that it varies smoothly across the Hopf boundary. The frequency content of the quasi-cycle oscil-

lations can be seen in the spectrogram (Fig.5.1(e)). Oscillations are quite irregular, with epochs

of high and low amplitude values. The epochs of high amplitude values are ”bursts”; the mean

frequency of such bursts is also a random variable. In contrast, in the limit cycle regime (black dot

in Fig.5.1(b)) oscillations are more regular, with small fluctuations in amplitude and peak frequency

as seen in the corresponding spectrogram (Fig.5.1(f)).
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Figure 5.1: Oscillations in the Stochastic Wilson-Cowan truncated to O(3), i.e. in the
SWC3 model.Top panels: synchronization level of the E cells in the subspace of self-
connectivity parameters. The synchronization is measured from numerical simulations
of the activities Eqs.5.13 as the average difference between each trough and its succes-
sive peak. Specifically, we used a Gaussian filter and the Matlab function ”findpeaks”
to filter and extract the peaks and troughs of the E activity (Eq.5.9). The curve in
magenta represents the Hopf bifurcation boundary computed by setting the real part
−ν of the complex conjugate eigenvalues to zero. The two black dots lie on either side
of the Hopf boundary at WII = 1.3 and WEE = 27.4 (quasi-cycle) or WEE = 30.4
(noisy limit cycle). (a) No noise: synchronization increases from zero beyond the Hopf
bifurcation. (b) Weak noise (σE = 0.0015ms−1, σI = 0.005ms−1/2, σ = 0.005ms−1/2)
causes ”quasi-cycle” oscillations even below the Hopf bifurcation. (c) For stronger noise
(σE = 0.004ms−1/2, σI = 0.015ms−1/2, σ = 0.0155ms−1/2), noise-induced oscillations
are more prominent. (d) Frequency of the oscillations generated in (b). (e) Spec-
trogram corresponding to the black dot in the quasi-cycle regime in (b). Oscillations
appear as discrete (short) epochs of synchrony called ”bursts”; the frequency content
also fluctuates from burst to burst. (f) Spectrogram for the black dot in the noisy
limit-cycle regime in panel (b). Oscillations are now highly coherent with peak power
around f = 88Hz. Parameters are WEI = 26.3,WIE = 32, hE = −3.8, hI = −8, αE =
0.1ms−1, αI = 0.2ms−1, βE = 1, βI = 2. Panels (d-f) use the noise intensities in panel
(b). The parameters here are also used in Figs.5.2 to 5.7, unless otherwise stated.
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Linear Analysis

Recent studies showed that noise-induced oscillations could be described by linear equations sus-

tained by noise [102, 182]. More interestingly, it was found that the amplitude ratio and the phase

difference between inhibitory and excitatory fluctuations were constant in the deterministic limit

[102, 182]. In the most general case considered here, the dynamics of excitatory and inhibitory

fluctuations are described by nonlinear equations which are sustained by noise when the real part

of the eigenvalues is negative and self-sustained when it is positive. We therefore checked whether

these properties of the E and I amplitudes and phases are conserved in the regime of self-sustained

oscillations. For that, we perform the linear analysis of Eqs. (5.13-5.14). The associated noise-free

linear system of Eqs. (5.13-5.14) can be written in the following matrix form:

dV 0(t)

dt
= AV 0(t)

where

V 0(t) =

V 0
E(t)

V 0
I (t)

 and A =

AEE AEI

AIE AII

 .

We look for a trial solution in the form:V 0
E(t)

V 0
I (t)

 =

B̃E
B̃I

 eλt
where B̃E = BEe

jθE and B̃I = BIe
jθI . The eigenvalue λ of the associated matrix A is found by

substituting the trial solution into the linear system, yielding

B̃I

B̃E
=
AEE − λ
−AEI

= − AIE
AII − λ

.

The second equality leads to

λ =
1

2
(AEE +AII)±

j

2

√
−(AEE −AII)2 − 4AEIAIE .

We rewrite the eigenvalue in the compact form

λ = −ν ± jω0

with
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ν = −AEE +AII
2

; ω0 =
1

2

√
−(AEE −AII)2 − 4AEIAIE .

This leads to the exact expression of the amplitude ratio between the I and E fluctuations for the

linearized SWC3 system:

α =

∣∣∣∣ B̃IB̃E
∣∣∣∣ =

BI
BE

=

√
AIE
−AEI

(5.16)

Similarly, the phase difference δ can be obtained from the relation

δ = θI − θE = Arg

(
B̃I

B̃E

)
. (5.17)

For the parameters used here, we found

δ = θI − θE = arctan

(
−2ω0

AEE −AII

)
. (5.18)

In Eqs. 5.16-5.17, || and Arg are respectively the modulus and the argument of the complex number

B̃I
B̃E

. In the presence of noise, one can compute amplitudes and phases of the E and I fluctuations

from simulated time series using the analytic signal technique. The amplitude ratio and the phase

difference are obtained by the following approximations:

α =
BI
BE
≈

〈
Env

[
VI(t)

]
Env

[
VE(t)

]〉

and

δ = θI − θE ≈

〈
Arg

[
VI(t)

]
−Arg

[
VE(t)

]〉
.

Here
〈
.
〉

can be considered a time average of the stochastic process in Eqs. (5.13-5.14). Env is

defined as the amplitude of the analytic signal associated with the LFP. For example, the analytic

signal corresponding to VE(t) is VE(t) + jH
[
VE(t)

]
, with the Hilbert transform H defined as

H[x] =
1

π
P

∫ ∞
−∞

x(τ)

t− τ
dτ ,

where P signifies the Cauchy principal value. The amplitude of the stochastic signal is then

Env[VE ] =
√
V 2
E +H2[VE ]. Likewise, the phase angle of the analytic signal is defined as Arg[VE ] =
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arctan
[
H[VE ]/VE

]
. The transition between noise-induced and self-sustained oscillations happens

when the real part of the eigenvalue is zero. This condition is expressed as

− αE
1− E0

+ αEE0

[
1− αEE0

(1− E0)βE

]
WEE −

αI
1− I0

− αII0
[
1− αII0

(1− I0)βI

]
WII = 0 . (5.19)

Note that to obtain this equation we have used the expressions of f(sE0) and f(sI0) obtained from

the fixed points condition Eqs.5.10 and replaced them in the expressions of coefficients AEE and AII .

We also used the relation between f and its derivative: f
′

= f(1 − f). This analytical expression

of the Hopf bifurcation (Eq.5.19) is in good agreement with numerical simulations (Fig. 5.1(a)).

The stability boundary is shown as dots in magenta, and is reproduced in Figs. 5.1(b-d). We also

computed the amplitude ratio, phase difference and excitatory and inhibitory frequency distributions

from the simulated nonlinear Eqs. (5.13-5.14). The results show approximate Gaussian distributions

around the mean values provided by the linear stability analysis in Eqs. (5.16-5.18) (see Figs. 5.2),

in spite of the nonlinearities in Eqs. (5.13-5.14). The noise basically spreads the delta distributions

of the deterministic case to yield approximately Gaussian distributions. The standard deviations of

the distributions increase with noise. Similar results have been previously obtained in the quasi-cycle

regime [182]. Numerically computed means of the frequency content are close to the imaginary part

of the complex conjugate eigenvalues since the system is close to the Hopf bifurcation (black dot

in Figs.5.1). Moving away from this boundary slowly diminishes the agreement as the frequency

depends on the amplitude.

5.2.2 Amplitude-phase decomposition of SWC3

Our goal now is to derive an amplitude-phase dynamics that carries over from the quasi-cycle to

the limit cycle regime, rather than having two separate dynamics. Our hope is that it will account

for phase-amplitude coupling over a range of noise strengths including the high noise-induced bursts

in the limit cycle regime. We first seek analytical expressions of the E and I fluctuations in the

following forms [182]:

VE = ZE cos
(
ω0t+ φE

)
; VI = αZE cos

(
ω0t+ φE + δ

)
(5.20)
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Figure 5.2: I/E amplitude ratio, I-E phase difference and peak frequencies in the noisy
limit cycle regime. (a) Probability distribution of the amplitude ratio between in-
hibitory and excitatory fluctuations from Eq.5.16. (b) Probability distribution of the
phase difference between inhibitory and excitatory fluctuations from Eq.5.18. (c) Ex-
citatory frequency probability distribution. (d) Inhibitory frequency probability dis-
tribution. For all the figures, (blue) curves correspond to the probability distribu-
tions computed numerically; the corresponding vertical lines are computed analytically
from linear stability analysis Eqs. (5.16-5.18). The red curves are Gaussian fits to
the blue curves, while the vertical red lines are the means of the red Gaussian dis-
tributions. Parameters are as in Fig.5.1 with WEE = 30.4. Noise intensities are
σE = 0.0002ms−1/2, σI = 0.0006ms−1/2, σ = 0.0007ms−1/2. Other parameters are
as in Fig.5.1.
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where ZE and φE represent the stochastic amplitude and phase of the E fluctuations. The idea is

to compute the dynamics of the slow amplitude fluctuations of the cycle to cycle amplitude, ZE ,

and the phase φE of the E fluctuations. The parameters α, δ and ω0 are the amplitude ratio, phase

difference and frequency computed from the linear stability analysis Eqs. (5.16-5.18) (see Fig. 5.2).

We then insert these expressions into Eqs. (5.13-5.14) and obtain:

dZE
dt

= F1

(
ZE , φE

)
+G1

(
ZE , φE , ηE , ηI

)
(5.21)

dφE
dt

= F2

(
ZE , φE

)
+G2

(
ZE , φE , ηE , ηI

)
(5.22)

with the following functions:

F1

(
ZE , φE

)
=

1

α sin(δ)

[
αf1

(
ZE , φE

)
sin(ω0t+ φE + δ)− f2

(
ZE , φE

)
sin(ω0t+ φE)

]
F2

(
ZE , φE

)
=

1

αZE sin(δ)

[
αf1

(
ZE , φE

)
cos(ω0t+ φE + δ)− f2

(
ZE , φE

)
cos(ω0t+ φE)

]
G1

(
ZE , φE , ηE , ηI

)
=

1

α sin(δ)

[
αg1

(
ZE , φE , ηE , ηI

)
sin(ω0t+ φE + δ)− g2

(
ZE , φE , ηE , ηI

)
sin(ω0t+ φE)

]
G2

(
ZE , φE , ηE , ηI

)
=

1

αZE sin(δ)

[
αg1

(
ZE , φE , ηE , ηI

)
cos(ω0t+ φE + δ)− g2

(
ZE , φE , ηE , ηI

)
cos(ω0t+ φE)

]
f1

(
ZE , φE

)
= ω0ZE sin(ω0t+ φE) +AEEZE cos(ω0t+ φE) +AEIαZE cos(ω0t+ φE + δ) + LEEZ

2
E×

cos2(ω0t+ φE) + LEIαZ
2
E cos(ω0t+ φE) cos(ω0t+ φE + δ) +MEIα

2Z2
E cos(ω0t+ φE + δ)

+B1EZ
3
E cos3(ω0t+ φE) +B2Eα

2Z3
E cos(ω0t+ φE) cos2(ω0t+ φE + δ) +B3EαZ

3
E×

cos2(ω0t+ φE) cos(ω0t+ φE + δ) +B4Eα
3Z3

E cos3(ω0t+ φE + δ)

f2

(
ZE , φE

)
= αω0ZE sin(ω0t+ φE + δ) +AIEZE cos(ω0t+ φE) +AIIαZE cos(ω0t+ φE + δ) + LIIα

2Z2
E×

cos2(ω0t+ φE + δ) + LIEαZ
2
E cos(ω0t+ φE) cos(ω0t+ φE + δ) +MIEZ

2
E cos2(ω0t+ φE)+

B1Iα
3Z3

E cos3(ω0t+ φE + δ) +B2Iα
2Z3

E cos(ω0t+ φE) cos2(ω0t+ φE + δ)+

B3IαZ
3
E cos(ω0t+ φE + δ) cos2(ω0t+ φE) +B4IZ

3
E cos3(ω0t+ φE) +B2Iα

2Z3
E cos(ω0t+ φE) cos2(ω0t+ φE + δ) +B3IαZ

3
E cos2(ω0t+ φE) cos(ω0t+ φE + δ)

g1

(
ZE , φE , ηE , ηI

)
= ηE(t)

g2

(
ZE , φE , ηE , ηI

)
= ηI(t).
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However, such equations are cumbersome and difficult to analyze since the amplitude and phase are

coupled in a complicated manner. We need simpler equations for a suitable analysis of amplitude

dynamics, which we now determine.

Stochastic Averaging Method (SAM)

To simplify the amplitude-phase dynamics in Eqs. 5.21 and 5.22, we make use of the Stochastic

Averaging Method (SAM) [187, 6], which stipulates that the system can be approximated by a

two-dimensional Markov process given by:

d

ZE(t)

φE(t)

 =

m1(t)

m2(t)

 dt+

h11(t) h12(t)

h21(t) h22(t)


dW1(t)

dW2(t)



m = T av
(
E
{
F
}

+

∫ 0

−∞
E

{(
∂G

∂X

)
t

(
G
)
t+τ

}
dτ

)

hh
′

= T av
(∫ ∞
−∞

E
{

(G)t(G
′
)t+τ

}
dτ

)
.

Here m =

m1(t)

m2(t)

, F =

F1(t)

F2(t)

, G =

G1(t)

G2(t)

 h is the matrix made up of the elements hij ,

(hh′) is the product of h and its transpose, and

(
∂G

∂X

)
t

≡


∂G1

∂ZE
∂G1

∂φE

∂G2

∂ZE
∂G2

∂φE


is a 2x2 Jacobian matrix. Moreover, E. denotes the expectation operator (i.e. average over realiza-

tions), and T av is the time averaging operator defined by

T av
(
.
)

=
1

T0

∫ t0+T0

t0

(
.
)
dt .

The subscript t and t + τ mean that the elements of the corresponding vectors and matrix are

evaluated at these times. The SAM further assumes that the 2-dimensional functions F (ZE , φE)
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and G(ZE , φE , ξE , ξI) are respectively of order O(ε) and O(ε2), where ε is a small parameter. The

averaging in the SAM procedure assumes that the functions ZE(t) and φE(t) are constant dur-

ing the period T0 = 2π/ω0 of the underlying deterministic oscillation (ω0 also varies with system

parameters). After some calculations, we end up with the following amplitude-phase dynamics:

dZE =

[
− νZE +B1Z

3
E +

D

2ZE

]
dt+

√
DdW1 (5.23)

dφE = B2Z
2
E dt+

√
D

ZE
dW2 (5.24)

If we further make the change of variable θE(t) = ω0t + φE(t), the dynamics of the fast phase

θE(t) is obtained from Eq. 5.24 as

dθE =

[
ω0 +B2Z

2
E

]
dt+

√
D

ZE
dW2 (5.25)

with the following expressions:

B1 =
1

8

[
3B1E +B3I + α2(B2E + 3B1I) + 2α cos(δ)(B3E +B2I)

]
B2 =

1

8 sin(δ)

[
2α(B3E −B2I) + 3(B1E −B3I) cos(δ) + 3α2(B2E −B1I) cos(δ) + α(B3E −B2I) cos(2δ)+

3

α

(
α4B4E −B4I

)]
D =

1

2α2 sin2(δ)

[
2τE(ασE)2

1 + (ω0τE)2
+

2τI(σI)
2

1 + (ω0τI)2

]
. (5.26)

Here W1(t) and W2(t) are two independent Wiener processes. We found that the coefficient B1 is

negative, which implies that the amplitude ZE remains finite, i.e. deviations from the fixed point

remain bounded. Taking into account the power spectra at ω0,

SηE,I (ω0) =
2τE,I(σE,I)

2

2π
[
1 + (ω0τE,I)2

] ,
of the OU processes ηE(t) and ηI(t) applied respectively on the E and I dynamics, we find that

the effective noise strength D of the amplitude-phase dynamics is a weighted sum of these power
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spectra:

D =
π

α2 sin2(δ)

[
α2SηE (ω0) + SηI (ω0)

]
. (5.27)

Different noise processes can be handled by substituting the proper power spectra in this expression

for D.

Most of our simulations in this work consider additive Gaussian white noise on the SWC3 model

Eqs. (5.13-5.14) and further below on the SSL model, although we do later explore the effect of the

noise correlation time in the SSL model in Figs. (5.10-5.11). For the white noise case ηE,I(t) =

σE,IξE,I(t), the above amplitude-phase dynamics apply with the definition of D based on the white

noise power spectra S(ω0) =
σ2
E,I

2π that is,

D =
(σI)

2 + (ασE)2

2α2 sin2(δ)
. (5.28)

Further, since the noise is only additive, there is no need to distinguish between Itô and Stratonovich

calculus; the SAM method itself was developed using Itô calculus [187].

As for the case of the quasi-cycle oscillations [182], the amplitude dynamics is uncoupled from

the phase dynamics. In contrast however, a new term B1Z
3
E appears in the amplitude dynamics.

This term is at the origin of the stabilization of the growth of the amplitude when the real part of the

complex conjugate eigenvalues becomes positive beyond the Hopf bifurcation. The phase dynamics

also has a new deterministic term B2Z
2
E . This causes the deterministic frequency to depend on

the amplitude magnitude. This contrasts with the quasi-cycle regime obtained with the linear WC

system, where the term B2 was absent.

Next, we compute spectrograms and time-series of the fluctuations VE,I(t), their amplitudes

ZE,I(t) and their phases φE,I(t) both for the quasi-cycle and noisy limit-cycle regimes (Fig. 5.3). We

observe that our amplitude-phase representation describes well the dynamics of E and I fluctuations

for both quasi-cycles (left panels) and noisy limit cycles (right panels). Our model can thus account

for both noise-induced oscillations and noise-perturbed oscillations. It produces bursting epochs for

quasi-cycles and self-sustained oscillations of long duration for the noisy limit cycles.
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Figure 5.3: Quasi-cycle and noisy limit cycle properties using the SAM approxima-
tion. From top to bottom: Spectrogram, activity timeseries, amplitudes and phases
of the excitatory (blue) and inhibitory (blue) populations simulated using the dynam-
ics Eqs. (5.23-5.24) computed using the SAM analysis. Left: quasi-cycle regime
with its characteristic bursting structure. Fluctuations, amplitudes and phases re-
semble dynamics obtained with linear equations driven by noise [102, 182]. Right:
self-sustained oscillations perturbed by noise, with almost constant envelope, phase
and frequency characteristic of noisy limit cycles. Quasi-cycle parameters are as for
the left black dot in Fig.5.1(b), i.e. WEE = 27.4. Limit cycle parameters are as
for the right black dot in Fig.5.1(b), i.e. WEE = 30.4. The noise strengths are
σE = 0.0015ms−1/2, σI = 0.005ms−1/2, σ = 0.005ms−1/2. Other parameters are as
in Fig.5.1(e,f).



5.2. STOCHASTIC WILSON-COWAN MODEL 175

Deterministic analysis of the amplitude dynamics

We focus on the deterministic case D = 0, for which the amplitude dynamics are:

dZ0
E

dt
= −νZ0

E +B1(Z0
E)3 . (5.29)

Let us define F0(ZE) ≡ −νZE+B1(ZE)3 and its derivative F
′

0(ZE) = −ν+3B1(ZE)2. The solutions

of F (Z0
E) = 0 are the fixed points of the deterministic amplitude dynamics Eq. (5.29). Their stability

is given by the sign of the corresponding value of F ′(Z0
E). The existence and the number of the

solutions of F (Z0
E) = 0 depend on whether the system lies below or above the Hopf bifurcation.

• Stable focus (ν > 0): The only fixed point is Z0
E = 0. This fixed point is stable since

F
′
(0) = −ν < 0. This is in agreement with previous results, since in the deterministic limit

and below the Hopf bifurcation, the amplitude of a perturbation from the fixed point converges

to zero.

• Limit-cycle (ν < 0): We have two fixed points Z0
E = 0 and Z0

E =
√

ν
B1

. But the only stable

fixed point is Z0
E =

√
ν
B1

since F
′
(0) = −ν > 0 and F

′
(√

ν
B1

)
= 2ν < 0. The value of this

fixed point represents the amplitude of the oscillation. The size of the limit cycle thus varies

as
√
ν as expected from the normal form of the supercritical Hopf bifurcation [206].

Now, we turn to the effect of the noise on this deterministic picture.

Stochastic analysis of the amplitude dynamics (D > 0)

To perform the stochastic analysis of the amplitude process, we consider the corresponding stationary

Fokker-Planck equation of (5.23) [90]:

− d

dZE

[(
− νZE +

D

2ZE
+B1Z

3
E

)
PE

]
+
D

2

d2PE
dZ2

E

= 0 (5.30)
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where PE
(
ZE
)

represents the stationary probability density function of the amplitude process ZE(t).

The normalized solution

(∫∞
0
PE(ZE) = 1

)
of this second order differential equation is given by

PE(ZE) =
4a√

πerfc(ba)
ZE exp

[
− a2(Z2

E + b)2

]
. (5.31)

By using the relation between the amplitude of excitatory and inhibitory LFPs (ZI = αZE), we

obtain the stationary probability density function for the inhibitory amplitude process:

PI(ZI) =
4a

α2
√
πerfc(ba)

ZI exp

[
− (a/α)2(Z2

I + α2b)2

]
(5.32)

where the parameters a and b are defined as

a =
√
−B1

2D and b =
−ν
B1

and ercf denotes the complementary error function defined as: erfc(x) = 2√
π

∫∞
x
e−t

2

dt. The peak

of the stationary density, which represents the most probable value taken by the stochastic amplitude

process, is given by

dPE(ZE)

dZE
= 0 .

This relation leads to the following equation

1− 4a2bZ2
E − 4a2Z4

E = 0 . (5.33)

The solution of this equation can be obtained for the two distinct regimes:

• Quasi-cycle regime (ν > 0, b > 0):

The solution is given by

Z2
E = − b

2
+
b

2

(
1 +

1

(ab)2

)1/2

. (5.34)

The approximate expressions for the location of the peaks of the E and I amplitude probability

densities are then:

Z∗E ≈
√
D

2ν
and Z∗I ≈ α

√
D

2ν
. (5.35)
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We observe that the peak values of the stationary probability densities are in agreement with

the previous results reported for the linearized Wilson-Cowan equations driven by additive

noise [182]. Moreover, in the limit B1 = 0 using b → ∞, a → 0, ab → ∞, the E stationary

probability density can be written as (we drop the subscript E for the sake of readability):

PE(Z) =
4a

ercf(ba)
√
π
Z exp

[
− a2(Z2 + b)2

]
=

4a√
π

(1− erf(ba))−1Ze−(ab)2e−a
2Z4

e−2ba2Z2

≈ 4a√
π

(1− erf(ba))−1Ze−(ab)2e−2ba2Z2

.

Expanding the error function as

erf(ab) ≈ 1− e−(ab)2 .
1√
π

(
1

ab
− 1

2(ab)3
+ ...

)
(5.36)

we then obtain

PE(Z) ≈ 4a√
π

(
e−(ab)2 .

1√
π

1

ab

)−1

Ze−(ab)2e−2ba2Z2

≈ 4a2bZ exp

(
− ν
D
Z2

)
.

We thus recover the expressions of the probability densities obtained in the case of linear

equations driven by additive noise [182], namely

PE(ZE) = 2ν
D ZE exp

(
− ν

DZ
2
E

)
for the excitatory amplitude process and

PI(ZI) = 2αν
D ZI exp

(
− α2ν

D Z2
I

)
for the inhibitory amplitude process.

• Noisy limit-cycle regime (ν < 0, b < 0):

The solution is given by:

Z2
E = − b

2
− b

2

(
1 +

1

(ab)2

)1/2

. (5.37)



5.2. STOCHASTIC WILSON-COWAN MODEL 178

This leads to the following approximate expressions obtained in weak noise limit:

Z∗E ≈

√
ν

B1
+

D

2(−ν)
and Z∗I ≈ α

√
ν

B1
+

D

2(−ν)
. (5.38)

We should mention that the approximations in Eq. (5.35) and Eq. (5.38) are valid for weak

noise and away from the Hopf bifurcation. They were derived to get an idea of the role of noise on

the limit cycle dynamics. The accurate expression for the peak of the amplitude probability density

is determined by Eq. (5.33).

We see that for D = 0, we recover the result previously obtained in the deterministic analysis.

Importantly, for D > 0 the most probable amplitude value for the noisy limit cycle is greater than

that for the deterministic case. There is an additional term which is proportional to the strength of

the noise D and inversely proportional to the real part of the eigenvalues. This is a noise-induced

term which shows how noise shapes the amplitude of the limit cycle by increasing its magnitude.

We plot the densities of the E and I amplitude processes for the quasi-cycles and noisy limit

cycles in Fig. 5.4(a,c) and Fig. 5.4(b,d), respectively. We find an excellent match between analytical

expressions from Eqs. (5.31 and 5.32) (black curves) and numerical simulations of Eqs. (5.13-5.14)

(magenta curves). Also we found excellent agreement with the values of the means (vertical blue

lines) computed from the stochastic analysis Eqs. (5.38) in the limit cycle regime.

In the following, we mostly focus on the dynamics of the noisy limit cycle since the case of the

quasi-cycle has already been investigated in a previous study [182], and the results here with the

extra nonlinearity are qualitatively the same. Can strong noise induce bursting structures in the

limit cycle regime like those seen for quasi-cycles? If so, how can we discriminate between these two

dynamical origins for the burst epochs?

Dynamics of the noisy limit cycle

We investigate the effect that different noise strengths can have on the amplitudes of limit cycle

oscillations. We consider the limit cycle regime close to the supercritical Hopf bifurcation (black

dot, figures 5.1), where the system is weakly nonlinear and the amplitude of the deterministic limit

cycle is small. The amplitude density shows little variation with noise strength in the weak noise
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Figure 5.4: Probability densities of excitatory and inhibitory amplitude processes. Left
panels: Probability densities of excitatory (top) and inhibitory (bottom) amplitude
processes in the quasi-cycle regime. Right panels: Probability densities of excitatory
(top) and inhibitory (bottom) amplitude processes in the noisy limit cycle regime. The
black curves correspond to analytical results (equations 5.31 and 5.32) and the magenta
curves are from numerical simulations of Eqs. (5.13-5.14). The vertical blue lines are
analytical values of the probability density peak locations computed from Eq. (5.35) for
the quasi-cycle (left panels) and from Eq. (5.38) for the limit cycle regimes (right panels).
Theory matches up very well with numerical simulations. We also note a transition of
the density shape from Rayleigh in the quasi-cycle case to approximately Gaussian in
the noisy limit cycle case. Quasi-cycles (a,c): WEE = 27.4. Noisy limit cycles (b,d):
WEE = 30.4. Noise strengths are σE = 0.0015, σI = 0.005, σ = 0.005 in ms−1/2, and
other parameters are as in Fig.5.1.
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limit. The corresponding probability densities in Fig. 5.5(a,b), red curves) are close to Gaussian

with small variance; their means can be predicted from the theoretical expressions in Eqs. (5.38).

The small variance causes long segments of uninterrupted strong oscillations, i.e. minimal burst-

ing, in contrast to what is observed for the quasi-cycles. As we further increase the noise strength,

the mean and variance of the amplitude values increase. For strong noise (Figs. 5.5(a,b), blues

curves) the mean amplitude values are high with corresponding large variance. The fact that ampli-

tude values near zero are now more probable compared to the weak noise limit suggests that bursts

are favoured under these conditions. To unveil the interplay between the noise and the size of the

limit cycle, we now increase the size of the limit cycle using larger recurrent excitation strengths

WEE as suggested by Fig. (5.1), as well as vary the noise strength.

For weak noise in Fig.5.6(a,b), increasing WEE increases the mean value of the oscillation am-

plitude and decreases its variance. This suggests that bursting decreases moving further beyond the

bifurcation. Intermediate noise in Fig.5.6(c,d) increases the variance, thus causing bursts, as is seen

for all limit cycle sizes over this range of WEE . The effect of noise on the mean amplitude is more

significant close to the Hopf bifurcation. Strong noise in Fig. 5.6(e,f) increases variance for all limit

cycle sizes, but increases the mean mostly near the Hopf bifurcation. This can be understood from

Eqs. (5.38). Close to the Hopf bifurcation, |ν| is small and the effect of the term D
2(−ν) dominates.

Far from the bifurcation however, |ν| is larger and D
2(−ν) is now less important. The mean amplitude

thus depends less on D and instead varies mostly as ν
B1

.

We next directly characterize the effect of noise on the peak of the probability density given by

the solution of Eq. (5.33). This can now be done for both the quasi- and limit cycle regimes. Figure

(5.7) shows that increasing noise strength produces more smoothing of the bifurcation and higher

most probable values. The results computed by the SAM are in good agreement with numerical

simulations obtained through the Hilbert transform performed on the SWC3 dynamics. This speaks

to the predictive power of the SAM technique in this system, as it provides a theoretical handle on

amplitude strength as a function of the intrinsic network parameters and the external noise. The

most probable amplitude value is also an indirect measure of level of network synchronization, and

can be seen as an order parameter for the stochastic bifurcation as Fig. (5.7) reveals.
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Figure 5.5: Effect of noise on the limit cycle oscillations. We consider the limit cycle regime
just beyond the Hopf bifurcation (see Fig. 5.1) and look at the effect of the noise strength
on the dynamics of the E (a) and I (b) amplitudes. High noise increases the overall
amplitude values but also increases their variability, enabling oscillatory bursts. Black
curves correspond to theory while other colours correspond to numerical simulations at
different noise strengths as specified in the legend to panel (b). In detail, blue: σE =
0.004ms−1/2, σI = 0.015ms−1/2, σ = 0.0154ms−1/2; cyan: σE = 0.0015ms−1/2, σI =
0.005ms−1/2, σ = 0.005; green: σE = 0.0006, σI = 0.002, σ = 0.0022; magenta: σE =
0.00045, σI = 0.0015, σ = 0.0015; red: σE = 0.0002, σI = 0.0006, σ = 0.0007. The units
of the noise intensities are ms−1/2. In all cases, there is good agreement between theory
and numerics.
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Figure 5.6: Interplay between noise and limit cycle amplitude density. For weak noise (a-b),
moving beyond the Hopf bifurcation by increasing WEE leads to an increase in the mean
amplitude and a reduction of its variability. For intermediate noise (c-d), an increase in
variability is visible for all values of WEE . The effect of noise strength on increasing the
mean amplitude of the oscillations is prominent near the Hopf bifurcation (weak values
of WEE), but very weak far from it. For strong noise (e-f), the amplitude mean and
variability increase again for all WEE . The units of the noise intensities in the figures
are ms−1/2.Other parameters are as in Fig.5.1.
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Figure 5.7: Bifurcation diagram of the SWC3 model. Peaks of the probability densities of
the E (a) and I (b) amplitude fluctuations as a function of the recurrent excitatory
coupling. Noise smoothes the sharp Hopf bifurcation and increases the mean amplitude,
i.e. it induces the quasi-cycles. However, these densities does not reveal the regularity
or coherence of the oscillation. For all the curves, the solid lines correspond to the
theoretical expression of the peak amplitude, while the dots are the result of numerical
simulation which are in good agreement with the SAM theory. Other parameters are as
in Fig.5.1.

Our analysis also shows that noise shapes the mean and burstiness of the limit cycle amplitude.

In particular, strong noise can create bursts even in the limit cycle regime. Quasi-cycle bursts are a

signature of an induced oscillation, but in the limit cycle regime, they are a sign of strong noise. It

is difficult to differentiate between these two cases just by looking at the spectrograms. But this can

be helped by also considering the envelope probability densities. If the density is closer to Rayleigh

than Gaussian, the spectrogram is likely the result of quasi-cycle dynamics; a better fit to a Gaussian

points instead to a noisy limit cycle.
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Figure 5.8: Spectrogram, x and y fluctuations, amplitudes and phases computed from
the SAM and from the SSL using the Hilbert transform. From top to bot-
tom: Spectrogram, x and y fluctuations, amplitudes and phases of the x (blue) and y
(red) populations computed from the SAM analysis (left panels) and from the Hilbert
transform (right panels) performed on numerical solutions of the SSL model. The SAM
results match well with the numerical results obtained through the Hilbert transform.
Parameters are a0 = 0.01ms−1, ω0 = 0.150ms−1, σx = σy = σ = 0.002ms−1/2. We have
consider a Gaussian white noises applied on x and y variables.
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Figure 5.9: Amplitude ratio, phase difference between y and x fluctuations, along with
their frequency, in the noisy limit cycle regime. As for the SWC3 case, the ampli-
tude ratio is plotted (red curve-(a)) along with the corresponding Gaussian distribution
(blue curve-(a)). The vertical red line is the result of the linear stability, while the verti-
cal blue line corresponds to the mean of the Gaussian distribution. Similar results hold
for panels (b-d). The probability distributions of the fixed ratio and phase difference are
Gaussian distributed. The x and y frequencies are also Gaussian distributed with their
mean value at ω0. The values of ω0 were converted to be in the beta range. Parameters
are as in Fig.5.8.
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5.3 Stochastic Stuart-Landau Model

To assess the generality of our amplitude-phase decomposition across the bifurcation, we now turn

to the stochastic Stuart-Landau (SSL) model [206]. Its deterministic dynamics is the canonical

form of the supercritical Hopf bifurcation. We perform an amplitude-phase decomposition and pay

particular attention to the noisy limit cycle regime and the effect of correlated noise. The dynamics

is given as:

ẋ(t) = a0x(t)− ω0y(t)− x(t)
[
x2(t) + y2(t)

]
+ ηx(t) (5.39)

ẏ(t) = ω0x(t) + a0y(t)− y(t)
[
x2(t) + y2(t)

]
+ ηy(t) . (5.40)

The eigenvalues around the origin are given by λ = a0 ± jω0, and the supercritical Hopf bifurcation

happens at a0 = 0. Quasi-cycles exist in the region (a0 < 0;ω0 > 0) and noisy limit cycles are defined

in the region (a0 > 0;ω0 > 0). We proceed as in the case of SWC3 equations. We first separate the

dynamics of the model into its fixed point and the corresponding fluctuations as x(t) = x0+Vx(t) and

y(t) = y0 +Vy(t). Note that for the Stuart-Landau model, the fixed point is the origin (x0 = y0 = 0).

However, we will keep the notations x0 and y0 to easily make the connection with the analysis done

in the SWC3 model. By identification with the analysis done in the case of the SWC3 system in Eqs.

(5.13-5.14), we obtain the following coefficients for the dynamics of the fluctuations (with subscripts

E and I replaced by x and y respectively):

Axx = a0 −
(
3x2

0 + y2
0

)
; Ayy = a0 −

(
x2

0 + 3y2
0

)
,

Axy = −
(
ω0 + 2x0y0

)
; Ayx = ω0 − 2x0y0,

Lxx = −3x0; Lxy = −2y0; Lyx = −2x0; Lyy = −3y0,

Mxy = −x0; Myx = −y0; B1x = −1; B2x = −1,

B3x = 0; B1y = −1; B2y = 0; B3y = −1; B4x = 0; B4y = 0.

The fixed amplitude ratio and phase difference between x and y components are also obtained

similarly, with ωo again considered as the oscillation frequency. However, in the case of the SSL

model, the amplitude ratio computed through linear stability analysis is α = 1 (Fig. 5.9(a)) and the
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phase difference is δ = −π2 (Fig. 5.9(b)). Therefore the solution can be sought in the form:

Vx = Z(t) cos(ω0t+ φ(t)); Vy = Z(t) sin(ω0t+ φ(t)) . (5.41)

We have assumed Zx = Z for readability. We then applied the SAM using the above expressions

and obtained:

dZ(t) =

[
a0Z(t)− Z3(t) +

D

2Z(t)

]
dt+

√
DdW1(t) (5.42)

dφ(t) = B2Z
2(t)dt+

√
D

Z(t)
dW2(t) . (5.43)

For the case of the SSL model, the coefficient B1 = −1 and B2 = 0. We choose to replace B1 by

its value to show the specificity of the SSL model, and to keep B2 to show the general dependence

of the phase on the envelope amplitude for noisy limit cycles; the fact that B2 = 0 is just a specific

property of the SSL model. We focus on the noisy limit cycle regime, comparing our amplitude-phase

dynamics with the SAM to those extracted using the Hilbert transform. Figure (5.8) shows good

agreement between the two. Note that we have chosen parameters such that the peak frequency is

lower than for the SWC3 model, placing it more in the beta range in the context of brain rhythms.

Similar analyses can be performed at higher (gamma) or lower frequencies such as in the delta and

theta ranges.

Unlike the SWC3 case, here we have independent correlated OU noise inputs to the x and y

components. We computed the density P (Z) for different correlation times τ = τx = τy (varied while

keeping the noise intensity fixed pour both inputs), and this was repeated for four noise intensities.

Figure (5.10) shows that shorter noise correlation time and larger intensity, and especially their

combination, cause significant probability at small amplitudes, which is a sign of bursting. For small

τ , the inputs approach white noise, and the behavior of the amplitude can be understood from the

analysis of the SWC3 above. We also observed a good match between the SAM theory and numerical

simulations for all correlation times.

As for the SWC3 model, we computed the peak of the probability density of the amplitude process

for different τ values at a low and a high noise strength (Figs.5.11). Like previously observed,

the noise and correlation strength increase the overall amplitude mean as they smoothe out (i.e.
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Figure 5.10: Effect of noise correlation time and intensity on the SSL amplitude-phase
dynamics. The probability densities of the amplitudes of the SSL for correlation times
τ = τx = τy of the OU processes were computed for (a) weak noise, (b-c) intermediate
noise and (d) strong noise intensity. We observe that for all intensities and correla-
tion times, the density for the amplitude processes computed numerically through the
Hilbert transform (colored curves) match with those calculated theoretically (black
curves) using Eqs. 5.31 and 5.26, with σE = σx = σ;σI = σy = σ and Q = τσ2

. For weak values of τ and large intensities, the corresponding densities are broader.
For large intensities, the densities have higher mean amplitude; weak values of τ also
increase the mean amplitude. Parameters are as in Fig.5.9 unless otherwise specified
here.
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Figure 5.11: Bifurcation diagram of the SSL model. The peak of the amplitude probability
density is plotted as a function of the bifurcation parameter a. The noise is the OU
process with different τ = τx = τy. The noise strength is Q = τσ2 = 10−6 in (a) and
Q = τσ2 = 10−4 (b). Increasing Q and τ increases the peak amplitude value. Solid
curves correspond to SAM theory while dots are from numerical simulations. For all
cases, a good match between theory and numerical results is seen. Parameters are as
in Fig.5.9 unless otherwise specified.
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linearize) the supercritical Hopf bifurcation. The SAM approximation continues to work well even

for the stronger correlation case.

Next we compare our amplitude-phase decomposition with previous decomposition of the SSL

model using the change of variable θ(t) = ω0t+ φ(t), leading to:

dθ(t) = ω0 dt+

√
D

Z(t)
dW2(t) . (5.44)

In the deterministic limit D = 0, Eqs. (5.42) and 5.44 correspond to the polar normal form of the

supercritical Hopf bifurcation [206]. In the stochastic case however, the noise appears in a non-

trivial manner in both the Z and φ (or θ) equations, and is a general amplitude-phase description

of noisy oscillators around a supercritical Hopf bifurcation. By taking into account the amplitude

ratio and phase difference between the two components, it provides a good description of the quasi-

ellipsoid form of the quasi-cycle or of the stochastic noisy limit cycle (the deterministic limit cycle is

a quasi-ellipsoid for the WC model); its complements other averaging approaches that consider the

component amplitudes to be the same [58, 178].

5.4 Amplitude-Phase Decomposition for Networks

Finally we extend our theory to interconnected networks of E-I units described by the SWC3 or SSL

nonlinear rate models. One application of such amplitude-phase decomposition may be the study

of the functional connectivity between brain areas [64, 58, 62]. We only consider the case where

the network frequencies belong to the same band and therefore avoid the case of cross-frequency

coupling where faster rhythms are coupled with slower ones [122].

5.4.1 Network of Stochastic Wilson-Cowan units

We consider a network of SWC3 units coupled through long-range excitatory connections:

dEk(t)

dt
= −αEEk +

(
1− Ek

)
βEf(sEk) + ηEk (5.45)

dIk(t)

dt
= −αIIk +

(
1− Ik

)
βIf(sIk) + ηIk (5.46)
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The total excitatory sEk(t) and inhibitory sIk(t) synaptic inputs to a neuron population are given

by

sEk(t) = W k
EEEk −W k

EIIk + hkE +

N∑
l=1,l 6=k

SklEEEl(t− τkl) (5.47)

sIk(t) = W k
IEEk −W k

IIIk + hkI +

N∑
l=1,l 6=k

SklIEEl(t− τkl) . (5.48)

The coefficient SklEE denotes the long-range excitatory weight from excitatory population l to exci-

tatory population k, while SklIE accounts for the weight from excitatory population l to inhibitory

population k. As for the case of the single E-I units, we look at the fluctuations of each unit as

follows:

Ek(t) = Ek0 + VEk(t) and Ik(t) = Ik0 + VIk(t) . (5.49)

Each basic E-I units behaves as above, but for simplicity, we keep only the linear coupling terms

because we consider weak coupling coefficients SklEE and SklIE . In this limit, keeping only linear terms

is a reasonable approximation since nonlinear terms will be small and contribute little compared

to the linear terms. Also, this simplifies the analytical treatment. Therefore, the only difference is

the fact that the coefficients of the single unit analysis now have the index k which characterizes

the heterogeneity of each network. But the form of the coefficients of the deviations dynamics are

similar. Specifically, the fixed points (Ek0 , I
k
0 ) now depend on the coupling terms. The fluctuation

dynamics are given by the 2N -dimensional system:

dVEk
dt

= AkEEVEk +AkEIVIk + LkEEV
2
Ek

+ LkEIVEk(t)VIk +Mk
EIV

2
Ik

+Bk1EV
3
Ek

(5.50)

+Bk2EVEkV
2
Ik

+Bk3EVIkV
2
Ek

+Bk4EV
3
Ik

+

N∑
l=1,l 6=k

CklEEVEl(t− τkl) + ηEk

dVIk
dt

= AkIEVEk +AkIIVIk + LkIIV
2
Ik

+ LkIEVEkVIk +Mk
IEV

2
Ek

+Bk1IV
3
Ik

(5.51)

+Bk2IVEkV
2
Ik

+Bk3IVIkV
2
Ek

+Bk4IV
3
Ek

+

N∑
l=1,l 6=k

CklIEVEl(t− τkl) + ηIk .
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The effective coupling coefficients CklEE and CklEE are:

CklEE = (1− Ek0 )βEf
′
(sEk0 )SklEE and CklIE = (1− Ik0 )βIf

′
(sIk0 )SklIE (5.52)

with the following expressions for the inputs to each population of the k-th unit:

sEk0 = W k
EEE

k
0 −W k

EII
k
0 + hkE +

N∑
l=1,l 6=k

SklEEE
l
0

sIk0 = W k
IEE

k
0 −W k

III
k
0 + hkI +

N∑
l=1,l 6=k

SklIEE
l
0 .

Here (Ek0 , I
k
0 ), k = 1...N are the fixed points of the stationary noise-free Eqs. (5.45-5.46). The

coefficients of Eqs. (5.50-5.51) have the same form as in the single unit case; however the expressions

for (sE0
, sI0) are now replaced by (sEk0 , sIk0 , k = 1...N). Similarly, (E0, I0) is replaced by (Ek0 , I

k
0 , k =

1...N).

As in the case of the single unit, linear stability analysis suggests a fixed amplitude ratio and

phase difference between the E and I components of each unit. However, the determination of these

quantities is different from the single unit case. To find the frequency, amplitude ratio and phase

difference, these steps are followed:

• From the linear stability analysis, compute the eigenvalues of the corresponding 2N -dimensional

linear system associated with Eqs. (5.50-5.51). The number of eigenvalues is infinite when the

propagation delay is considered, and is equal to 2N otherwise. The imaginary part ω0 of the

eigenvalue with the largest real part is considered as the mean frequency of the system.

• Consider the eigenvalue with the largest real part (λ = νmax + jω0) and solve the following

N ×N system of equations for the amplitude ratios derived from the linear stability analysis:

AkEI α̃kk +

N∑
l=1,l 6=k

CklEE exp(−λτkl)α̃kl = λ−AkEE

N∑
l=1,l 6=k

CklIE exp(−λτkl)α̃kl + (AkII − λ)α̃kk = −AkIE

α̃kl =
(
α̃lk
)−1

, k, 6= l = 1, ..., N
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where

α̃kk =
B̃Ik
B̃Ek

, α̃kl =
B̃El
B̃Ek

, k, 6= l = 1, ..., N . (5.53)

• The amplitude ratio and phase difference between inhibitory and excitatory fluctuations are

therefore given by:

αk =
∣∣α̃kk∣∣ ; δk = Arg

(
α̃kk
)
, k = 1, ..., N

where || and Arg are respectively the modulus and the argument of a complex number.

As in the case of single unit, we can look for solutions of excitatory and inhibitory fluctuation

dynamics for each population in each unit in the form:

VEk(t) = Zk(t) cos
(
ω0t+ φk(t)

)
and VIk(t) = αkZk(t) cos

(
ω0t+ φk(t) + δk

)
. (5.54)

We have dropped the subscript E for the variables Z and φ for the sake of readability. We then

plugged these expressions in the system of 2N -dimensional Eqs. (5.50-5.51) and obtained the final

system of 2N -dimensional equations for the amplitudes Zk and phases φk:

dZk
dt

= F k1
(
Zk, φk

)
+Gk1

(
Zk, φk, ηEk , ηIk

)
(5.55)

dφk
dt

= F k2
(
Zk, φk

)
+Gk2

(
Zk, φk, ηEk , ηIk

)
(5.56)
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with the following functions:

F k1
(
Zk, φk

)
=

1

αk sin(δk)

[
αkf

k
1

(
Zk, φk

)
sin(ω0t+ φk + δk)− fk2

(
Zk, φk

)
sin(ω0t+ φk)

]
F k2
(
Zk, φk

)
=

1

αkZk sin(δk)

[
αkf

k
1

(
Zk, φk

)
cos(ω0t+ φk + δk)− fk2

(
Zk, φk

)
cos(ω0t+ φk)

]
Gk1
(
Zk, φk, ηEk , ηIk

)
=

1

αk sin(δk)

[
αkg

k
1

(
Zk, φk, ηEk , ηIk

)
sin(ω0t+ φk + δk)− gk2

(
Zk, φk, ηEk , ηIk

)
sin(ω0t+ φk)

]
Gk2
(
Zk, φk, ηEk , ηIk

)
=

1

αkZk sin(δk)

[
αkg

k
1

(
Zk, φk, ηEk , ηIk

)
cos(ω0t+ φk + δk)− gk2

(
Zk, φk, ηEk , ηIk

)
cos(ω0t+ φk)

]
fk1
(
Zk, φk

)
= ω0Zk sin(ω0t+ φk) +AkEEZk cos(ω0t+ φk) +AkEIαkZk cos(ω0t+ φk + δk) + LkEEZ

2
k×

cos2(ω0t+ φk) + LkEIαkZ
2
k cos(ω0t+ φk) cos(ω0t+ φk + δk) +Mk

EIα
2
kZ

2
k cos2(ω0t+ φk + δ)+

Bk1EZ
3
k cos3(ω0t+ φk) +Bk2Eα

2
kZ

3
k cos(ω0t+ φk) cos2(ω0t+ φk + δk) +Bk3EαkZ

3
k×

cos2(ω0t+ φk) cos(ω0t+ φk + δk) +Bk4Eα
3
kZ

3
k cos3(ω0t+ φk + δk)

+

N∑
l=1,l 6=k

CklEEZl(t− τkl) cos[ω0t− ω0τkl + φl(t− τkl)],

fk2
(
Zk, φk

)
= αkω0Zk sin(ω0t+ φk + δk) +AkIEZk cos(ω0t+ φk) +AkIIαkZk cos(ω0t+ φk + δk)

+ LkIIα
2
kZ

2
k cos2(ω0t+ φk + δk) + LkIEαkZ

2
k cos(ω0t+ φk) cos(ω0t+ φk + δk)

+Mk
IEZ

2
k cos2(ω0t+ φk) +Bk1Iα

3
kZ

3
k cos3(ω0t+ φk + δk) +Bk2Iα

2
kZ

3
k cos(ω0t+ φk)×

cos2(ω0t+ φk + δk) +Bk3IαkZ
3
k cos2(ω0t+ φk) cos(ω0t+ φk + δk) +Bk4IZ

3
k cos3(ω0t+ φk)

+

N∑
l=1,l 6=k

CklIEZl(t− τkl) cos[ω0t− ω0τkl + φl(t− τkl)],

gk1
(
Zk, φk, ξEk , ξIk

)
= ηEk(t); gk2

(
Zk, φk, ξEk , ξIk

)
= ηIk(t).

Applying the SAM method to the 2N -dimensional system (Eqs. 5.55-5.56) leads to the following

amplitude-phase equations for the networks of SWC3 units:
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dZk(t) =

{
− λkZk(t) +Bk1Z

3
k(t) +

Dk

2Zk(t)
+

1

2αk sin(δk)

N∑
l=1,l 6=k

[
αkC

kl
EE sin

(
φk(t)− φl(t− τkl) + ω0τkl + δk

)
−

CklIE sin
(
φk(t)− φl(t− τkl) + ω0τkl

)]
Zl(t− τkl)

}
dt+

√
Dk dW

k
1 (t) (5.57)

dφk(t) =

{
Ωk +Bk2Z

2
k(t) +

1

2αk sin(δk)

N∑
l=1,l 6=k

[
αkC

kl
EE cos

(
φk(t)− φl(t− τkl) + ω0τkl + δk

)
−

CklIE cos
(
φk(t)− φl(t− τkl) + ω0τkl

)]Zl(t− τkl)
Zk(t)

}
dt+

√
Dk

Zk(t)
dW k

2 (t) . (5.58)

The coefficients in these expressions are defined by:

Bk1 =
1

8

[
3Bk1E +Bk3I + α2

k(Bk2E + 3Bk1I) + 2αk cos(δk)(Bk3E +Bk2I)

]
(5.59)

as well as

Bk2 =
1

8 sin(δk)

[
2αk(Bk3E −Bk2I) + 3(Bk1E −Bk3I) cos(δk) + 3α2

k(Bk2E −Bk1I) cos(δk) + αk(Bk3E −Bk2I) cos(2δk) +

3

αk

(
α4
kB

k
4E −Bk4I

)]
(5.60)

with the definitions

λk = −A
k
EE +AkII

2

Ωk = −ω0 +
αk cos(δk)(AkEE −AkII) + α2

kA
k
EI −AkIE

2αk sin(δk)

Dk =
1

2α2
k sin2(δk)

[
2τEk(αkσEk)2

1 + (ω0τEk)2
+

2τIk(σIk)2

1 + (ω0τIk)2

]
=

π

α2
k sin2(δk)

[
α2
kSξEk (ω0) + SξIk (ω0)

]
.

We have thus derived an amplitude-phase decomposition of connected SWC3 E-I units through

the SAM by extending the technique used for an isolated E-I network. The result is a set of

2×N stochastic differential equations for the amplitudes and phases of each unit. The connectivity

between the amplitude and phase are made through sinusoidal coupling functions. Unfortunately,
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the amplitude equation is not uncoupled from that for the phase as was the case for a single unit.

A Fokker-Planck analysis is therefore difficult to conduct.

However, we performed numerical simulations of this network of amplitude-phase dynamics (Eqs.

5.57-5.58 ) and their original fluctuations variables (Eqs. 5.50-5.51) and found good agreement

between the two. This was done for the quasi-cycle regimes as well as for the noisy limit cycle

regime in Figs.(5.12a,b). For each regime, we made sure that a single isolated E-I unit was in the

regime of interest (quasi- or limit cycle), and that the connectivity between units kept the network

in the same regime of each isolated unit. In other words, the connectivity does not induce a change

of regime.

We represented the probability densities of the amplitude Zk, k = 1, 2, 3 for three selected units

in a minimal heterogeneous network of 5 units and the corresponding excitatory amplitudes ex-

tracted using the Hilbert transform for Eqs. (5.50-5.51) and found good agreement between the two

methods. In Figs. (5.12a,b), the black curves are the result of the SAM approximation, while the

coloured curves correspond to the Hilbert transform computation. Our amplitude-phase approach

across the Hopf bifurcation is therefore generally applicable to both single units and heterogeneous

networks of units in both the quasi- and limit cycle regimes.

To recover the common fast phase variable usually used and associated to the Hilbert transform,

it suffices to consider the change of variable θk(t) = ω0t + φk(t). This leads to the following

amplitude-phase dynamics

dZk(t) =

{
− λkZk(t) +Bk1Z

3
k(t) +

Dk

2Zk(t)
+

1

2αk sin(δk)

N∑
l=1,l 6=k

[
αkC

kl
EE sin

(
θk(t)− θl(t− τkl) + δk

)
−

CklIE sin
(
θk(t)− θl(t− τkl)

)]
Zl(t− τkl)

}
dt+

√
Dk dW

k
1 (t) (5.61)

dθk(t) =

{
ωk +Bk2Z

2
k(t) +

1

2αk sin(δk)

N∑
l=1,l 6=k

[
αkC

kl
EE cos

(
θk(t)− θl(t− τkl) + δk

)
−

CklIE cos
(
θk(t)− θl(t− τkl)

)]Zl(t− τkl)
Zk(t)

}
dt+

√
Dk

Zk(t)
dW k

2 (t) . (5.62)

The new parameter ωk is related to Ωk and depends on the intrinsic parameter of each network,
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as following

ωk = Ωk + ω0 =
αk cos(δk)(AkEE −AkII) + α2

kA
k
EI −AkIE

2αk sin(δk)
.

It is related to the deterministic frequency of the oscillator k and coincides with the imaginary part

of the complex conjugate eigenvalues ω0 for a single oscillator. However, we found that the com-

plete deterministic frequency is generally amplitude-dependent as shown by the two first terms in

right side of the equality of Eq. 5.62. The new dynamics Eqs.(5.61-5.62) represent a general model

for the interaction of oscillators in the slow Zk(t) and fast θk(t) variables framework. The major

difference with the previous amplitude-phase dynamics Eqs. (5.57-5.58) is the timescale of the new

phase variable θk(t) which now evolves on a faster time scale compared to the amplitude Zk(t) which

remain in a slow timescale. This new framework is usually adopted when defining the interaction of

oscillators in the amplitude-phase representation.

5.4.2 Networks of Stochastic Stuart-Landau units

General Case

We now consider a network of coupled SSL units. The coupling is a linear coupling, the model is

described as:

ẋk(t) = akxk(t)− ωk0yk(t)− xk(t)
[
x2
k(t) + y2

k(t)
]

+

N∑
l=1,l 6=k

Ckl
[
xl(t− τkl)− xk(t)

]
+ ηkx(t) (5.63)

ẏk(t) = ωk0xk(t) + akyk(t)− yk(t)
[
x2
k(t) + y2

k(t)
]

+

N∑
l=1,l 6=k

Ckl
[
yl(t− τkl)− yk(t)

]
+ ηky (t) . (5.64)

We perform the same analysis as for the case of the network of SWC3 units. The fluctuations from

the fixed points are therefore sought in the form:

V kx (t) = Zk(t) cos
[
ω0t+ φk(t)

]
and V ky (t) = αkZk(t) cos

[
ω0t+ φk(t) + δk

]
. (5.65)

The same steps as for the SWC3 units lead to amplitude-phase equations for the network of coupled

SSL units:
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dZk =

{
− λkZk(t) +Bk1Z

3
k(t) +

Dk

2Zk(t)
+

1

2αk sin(δk)

N∑
l=1,l 6=k

Ckl

[
αk
(
Zl(t− τkl)×

sin
(
φk(t)− φl(t− τkl) + ω0τkl + δk

)
− Zk(t) sin(δk)

)
(5.66)

+
(
αlZl(t− τkl) sin

(
φl(t− τkl)− ω0τkl − φk(t) + δl

)
− αkZk(t) sin(δk)

)]}
dt+

√
DkdW

k
1 (t)

dφk =

{
Ωk +Bk2Z

2
k(t) +

1

2αk sin(δk)

N∑
l=1,l 6=k

Ckl

[
αk cos

(
φk(t)− φl(t− τkl) + ω0τkl + δk

)
−

αl cos
(
φl(t− τkl)− ω0τkl − φk(t) + δl

)]Zl(t− τkl)
Zk(t)

}
dt+

√
Dk

Zk(t)
dW k

2 (t) . (5.67)

The amplitude equations are now coupled with the phase equations, making it now difficult to per-

form a Fokker-Planck analysis in contrast to the case of the isolated unit. Figure 5.13 shows results

from numerical simulations of the amplitude-phase equations for a small all-to-all connected hetero-

geneous network of five units. Only the parameters ak differ amongst the units. The parameters

ak are such that each isolated unit is in the quasi-cycle regime. The connectivity coefficient is then

chosen to ensure that the connected network remains in the quasi-cycle regime. The same approach

is used for the limit cycle regime. The results of numerical simulations in Figs. (5.13) show good

agreement between the envelopes computed on the original SSL model using the Hilbert transform

(colored curves) and those simulated from the SAM dynamics (black curves). Our analysis thus

works well for a single unit for a different model than SWC3, for different types of stochastic input,

for low and high frequency bands, and for networks of several units. As for the case of the SWC3, we

can rewritte the dynamics Eqs. (5.66-5.67) in the framework of the slow amplitude and fast phase

by using the change of variable θk(t) = ω0t+ φk(t),
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Figure 5.12: Envelope probability densities of 3 selected units in a heterogeneous network
of 5 SWC3 units. Numerical simulations of the SWC3 network of units (Eqs. 5.50-
5.51) followed by Hilbert transforms to obtain the amplitude density, along with numer-
ical simulations of the corresponding amplitude-phase decomposition obtained through
the SAM (Eqs. 5.57-5.58). (a) Quasi-cycle regime. Each unit is in this regime when
isolated or coupled. Parameters are W k

EE = 27.8, 28, 28.2, 27.6, 28.4, k = 1, ..., 5. The
network is all-to-all connected with CklIE = CIE = 0, τkl = 0 and CklEE = CEE = 2/5.
(b) Noisy limit cycle regime. Each isolated network is in the limit cycle regime and re-
mains so when connected. Parameters are W k

EE = 30.4, 30, 30.8, 30.6, 30.4, k = 1, ..., 5.
The connectivity is all-to-all with CklIE = CIE = 0, τkl = 0 and CklEE = CEE = 1/5.
Black curves correspond to the SAM approximation Eqs. (5.57-5.58); colored curves
correspond to the approximate SWC3. An excellent match is seen between the ampli-
tude densities computed from the SAM and the original model for both regimes. Noise
parameters for each unit are: σE = 0.0014, σI = 0.0048, σ ≈ 0.005 in ms−1/2. Other
parameters are specified in Fig.5.1. All the equations involving the stochastic Wilson-
Cowan model and its truncated version (SWC3) were integrated using the stochastic
version of the fourth order Runge-Kutta algorithm [131] with a time-step dt= 0.025
ms.
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dZk(t) =

{
− λkZk(t) +Bk1Z

3
k(t) +

Dk

2Zk(t)
+

1

2αk sin(δk)

N∑
l=1,l 6=k

Ckl

[
αk
(
Zl(t− τkl) sin

(
θk(t)− θl(t− τkl) + δk

)
− Zk(t) sin(δk)

)
+
(
αlZl(t− τkl) sin

(
θl(t− τkl)− θk(t) + δl

)
− αkZk(t) sin(δk)

)]}
dt+

√
DkdW

k
1 (t)

(5.68)

dθk(t) =

{
ωk +Bk2Z

2
k(t) +

1

2αk sin(δk)

N∑
l=1,l 6=k

Ckl

[
αk cos

(
θk(t)− θl(t− τkl) + δk

)
−

αl cos
(
θl(t− τkl)− θk(t) + δl

)]Zl(t− τkl)
Zk(t)

}
dt+

√
Dk

Zk(t)
dW k

2 (t) . (5.69)

Near identical, weakly coupled limit cycles with low noise

Let us consider the fast phase dynamics of the network of SSL units extracted used the SAM and

the change of variable θk(t) = ω0t + φk(t) in Eq. (5.69). If the units are nearly identical, weakly

coupled and subject to small noise (Dk << 1), we can make the following approximations:

• αk ∼ αl; δk ∼ δl

• Zk(t) ∼ Zl(t) ∼ Zl(t− τkl) ∼
〈
Zk(t)

〉
= c0

where c0 is a constant. The first approximation comes from the fact that the networks are nearly iden-

tical. It reduces the coupling function of the fast phase dynamics Eq. (5.69) to Ckl
Zl(t−τkl)
Zk(t) sin[θl(t−

τkl)− θk(t)]. The second approximation can be made because the units are nearly identical, weakly

coupled and the noise is small. The amplitudes then vary slightly over time and we can replace

them by a constant. We choose this constant here to be the mean amplitude over the period of a

unit and is thus the same for every unit. Such an approximation further reduces the coupling to

Ckl sin[θl(t− τkl)− θk(t)], and the stochastic terms to
√
D0
k =
√
Dk/c0. We recall that for the case

of the SL model the coefficients of the squared amplitude in the phase dynamics are always zero

(Bk2 = 0). This leads to the following equation for the phase dynamics:

dθk
dt

= ωk +

N∑
l=1,l 6=k

Ckl sin
(
θl(t− τkl)− θk(t)

)
+
√
D0
kξ
k
2 (5.70)

where
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Figure 5.13: Amplitude probability densities of 3 selected units in a network of 5 SSL
units. Numerical simulations of the amplitude equations obtained from the SAM
Eqs.5.66-5.67 and of the Hilbert transform extracted from simulations of the SSL model.
(a) Quasi-cycle regime. Each unit is in this regime when isolated or coupled. Pa-
rameters are ak = −0.01,−0.025,−0.015,−0.01,−0.01, k = 1, ..., 5. The network is
all-to-all connected with Ckl = K/N = 0.01/5 and τkl = 0. (b) Noisy limit cycle
regime. Each isolated or coupled network is in the limit cycle regime. Parameters
are ak = 0.010, 0.015, 0.015, 0.01, 0.01, k = 1, ..., 5. The connectivity is all-to-all with
Ckl = K/N = 0.01/5 and τkl = 0. Black curves correspond to the SAM Eqs. (5.66-
5.67) and colored curves to the original SSL dynamics. An excellent match is again
seen between the two envelope dynamics in both regimes. Noise parameters for each
unit are: σx = σy = σ = 0.01 and the parameter b0 is set to 0.15. For the two regimes,
the coupling Ckl is applied only on the x variable for simplicity. Other parameters are
specified in Fig.5.8. All the equations involving the stochastic Stuart-Landau model
were integrated using the Euler-Maruyama algorithm with a time-step dt= 0.025 ms.
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ωk = ω0 + Ωk =
αk cos(δk)(Akxx −Akyy) + α2

kA
k
xy −Akyx

2αk sin(δk)
.

For the SSL model, it is found that the value of the frequency ωk coincides with the frequency ω0
k

of each isolated unit. Equation (5.70) is the delayed [195] and stochastic [169, 168] version of the

Kuramoto phase model.

No propagation delay: The Kuramoto model

If we further neglect the propagation delays (τkl = 0) and the noise Dk = 0, we recover the Kuramoto

phase model of coupled phase oscillators [139, 2]:

dθk(t)

dt
= ωk +

N∑
l=1

Ckl sin
(
θl(t)− θk(t)

)
. (5.71)

Note that our amplitude-phase model derived above also displays interesting phase synchronization

properties that will be studied elsewhere, since our focus here has been on illustrating the amplitude

dynamics. The generality of our model is highlighted by this relation to the well-known deterministic

Kuramoto model in specific limits.

5.5 Discussion

In this work, we have addressed the problem of amplitude-phase decomposition of noisy oscillations.

The quantities of interest are the fluctuations from the fixed points. Our approach consists in first

performing a linear stability analysis to extract the amplitude ratio, phase difference and mean

frequency. Second, solutions in a sinusoidal form are sought that take into account these properties.

And finally the Stochastic Averaging Method (SAM) is applied to obtain the dynamics of the

amplitude and phase processes. The method was shown to work well on two different models that

span the Hopf bifurcation from the quasi-cycle to the limit cycle regimes, as well as for colored noise

or Gaussian white noise. It complements previous approaches that treat these two regimes with

separate models by providing a unified approach across regimes, and further extends the method to

several delay-coupled oscillatory networks.

We first considered a single E-I network in the SWC model case, or a single Hopf oscillator

in the SSL case. The amplitude dynamics is then uncoupled from the phase dynamics. We then
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applied a Fokker-Planck analysis to compute the stationary probability densities of the amplitude

variables. The peak of the probability densities can be extracted and used as bifurcation parameter.

The bifurcation diagram computed with the peak probability density captures the transition from

quasi- to limit cycle oscillations. It shows how noise properties (strength, correlation time) shape

the behaviour of the oscillations.

Larger noise intensities and shorter noise correlation times increase the mean of the amplitude

of the fast oscillation. In the limit cycle case, the variance of the envelope process also increases,

making bursting epochs - i.e. segments where the amplitude process is large - more prominent. This

novel result highlights a benefit of considering the amplitude process rather than just the phase when

modelling limit cycle oscillations. The phase dynamics is coupled to the amplitude dynamics. The

strength of the noise perturbation on the phase process depends on the amplitude process. Hence

during such bursts, the effect of noise weakens (due to the 1/Z(t) dependence). However, during

epochs of low amplitude between bursts, the phase fluctuates more strongly. The amplitude process

therefore plays an important role in the phase dynamics, especially for moderate to strong noise.

We extended our method to several coupled units of the Stochastic Wilson Cowan (SWC) and

the Stochastic Stuart Landau (SSL) models. Such super-networks of units have been invoked to

model brain connectivity [58, 64]. Our analysis allowed us to also derive an amplitude-phase model

for coupled units. Unlike the single unit network, the amplitude processes are now reciprocally

connected with the phase processes of the units. A Fokker-Planck analysis of the system of coupled

units is beyond the scope of our study and poses serious challenges. We are not aware of any ana-

lytical method able to provide exact quantities like the probability density functions of the envelope

processes. We therefore presented only numerical simulations. But nevertheless the amplitude-phase

dynamics provide a new tool to understand amplitude-phase coupling of rhythms that are either

autonomous or owe their existence to noise.

As for the case of a single oscillating unit, the SAM method applied to these networks of units

of nonlinear oscillators is accurate across the Hopf bifurcation. Future work could investigate the

case of a mixture of quasi-cycle and limit cycle units and the one where the coupling actually alters

the dynamical regime seen in the isolated units. Also, we mostly focused on the dynamics of the

amplitude process of an isolated unit since we were mostly interested in the ability of noise in creating
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bursts. But for the coupled network of oscillators, phase synchronization is also of interest. This

behavior is present in our coupled models. It is likely that other exciting phenomena such as chimera

will be revealed in these networks, even in the quasi-cycle regime.

Note that in the WC framework, the amplitude of the oscillation is a reasonable proxy for the

synchronization of an actual network consisting of many noisy excitatory and inhibitory neurons,

as established in [220]. This correspondence will nevertheless miss out on effects such as synchrony

without oscillation or strongly synchronous oscillations at low firing rate in deterministic networks

[44], a direction we leave for future study.

Although we developed our theory of networks of coupled units with delays using the SAM

approach, we have illustrated our results only for zero delays due to space limitations. Recent work

shows that interesting phenomena in two coupled quasi-cycles relate to these delays, such as states

of phase locking with phase difference between −π and π and random changes in the identity of

the quasi-cycle that leads the other [183]. Thus an extension to explore the effects of propagation

delays is warranted, which will provide a closer match to the biophysical situation. Our formalism

also enables the inclusion of external periodic inputs, which will also be the focus of future work.

Our results point to a possible discrimination between bursting behaviors from two dynamical

origins: in quasi-cycles at low to moderate noise, and in limit cycles at stronger noise. While the

spectrograms may be similar, the different shapes of the amplitude density - Rayleigh in the former

case and almost Gaussian in the latter - can help distinguish between these two cases. It is possible

that further differentiation can be made upon substituting colored noise in the place of Gaussian

white noise. The SAM requires the noise to be broadband in order for it to work accurately; Ornstein-

Uhlenbeck noise for example would have to be sufficiently broadband. We have also investigated this

question over a limited volume of the whole parameter space. It may be easier to discriminate the

two kinds of burst dynamics in the neural context of amplitudes of lower frequency rhythms such as

in the beta band (13-30Hz), in contrast to our focus on the gamma band. Other model topologies

than the generic E-I one considered here may also be better suited to such rhythms.

Moreover, the discrimination between data from quasi-cycle and noisy limit cycle origins is a

fundamental question for modeling purposes. If the data have a quasi-cycle origin, the modeling

could be simplified by avoiding the nonlinearities in the envelope-phase dynamics [182]. If instead
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the data have a limit cycle origin, nonlinearities have to be included in the model (Eqs.5.23-5.24).

The knowledge of the proper dynamical regime could also be important for therapeutic goals. In

fact, if the data recorded from a specific region of the brain are pathological with exaggerated bursts

[182], they might also have a limit cycle origin. Stimulation techniques should therefore have the

goal to first identify the location of the Hopf bifurcation and to shift the system (e.g the part of

the brain where the data are recorded) from a limit cycle to a quasi-cycle with healthy bursts.

The investigation of the amplitude-phase dynamics of such models across the Hopf bifurcation with

different types of noises, following the methods described here, is certainly an interesting direction

to pursue.

5.6 Appendix

5.6.1 Derivation of the SWC3 model

We consider the Wilson Cowan equations Eqs.5.1-5.2 in the deterministic limit:

dE(t)

dt
= −αEE(t) +

(
1− E(t)

)
βEf(sE(t)) (5.72)

dI(t)

dt
= −αII(t) +

(
1− I(t)

)
βIf(sI(t)) . (5.73)

The synaptic inputs sE(t) and sI(t) are given by Eqs. 5.3-5.4 respectively. We are interested in

the dynamics of the deviations VE(t) and VI(t) when one takes higher order approximations of the

sigmoidal firing function. For that, we insert Eqs.5.9 in Eqs.5.72-5.73, which leads to

d(E0 + VE)

dt
= −αE(E0 + VE) +

(
1− (E0 + VE)

)
βEf(sE)

= −αEE0 − αEVE + (1− E0)βEf(sE)− VEβEf(sE)

d(I0 + VI)

dt
= −αI(I0 + VI) +

(
1− (I0 + VI)

)
βIf(sI)

= −αII0 − αIVI + (1− I0)βIf(sI)− VIβIf(sI).

We now replace f(sE) and f(sI) by their Taylor expansion at the second order given in Eqs.5.11,
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d(E0 + VE)

dt
= −αE(E0 + VE) +

(
1− (E0 + VE)

)
βEf(sE)

= −αEE0 − αEVE + (1− E0)βEf(sE)− VEβEf(sE)

= −αEE0 − αEVE + (1− E0)βE

(
f(sE0

) + δsEf
′
(sE0

) +
1

2
(δsE)2f

′′
(sE0

)

)
...

− VEβE
(
f(sE0) + δsEf

′
(sE0) +

1

2
(δsE)2f

′′
(sE0)

)
d(I0 + VI)

dt
= −αI(I0 + VI) +

(
1− (I0 + VI)

)
βIf(sI)

= −αII0 − αIVI + (1− I0)βIf(sI)− VIβEf(sI)

= −αII0 − αIVI + (1− I0)βI

(
f(sI0) + δsIf

′
(sI0) +

1

2
(δsI)

2f
′′
(sI0)

)
...

− VIβI
(
f(sI0) + δsIf

′
(sI0) +

1

2
(δsI)

2f
′′
(sI0)

)
.

Taking into account the fixed points solutions Eq.5.10, the equations above are reduced to

dVE
dt

= −αEVE + (1− E0)βE

(
δsEf

′
(sE0

) +
1

2
(δsE)2f

′′
(sE0

)

)
− VEβE

(
f(sE0

) + δsEf
′
(sE0

) +
1

2
(δsE)2f

′′
(sE0

)

)
dVI
dt

= −αIVI + (1− I0)βI

(
δsIf

′
(sI0) +

1

2
(δsI)

2f
′′
(sI0)

)
− VIβI

(
f(sI0) + δsIf

′
(sI0) +

1

2
(δsI)

2f
′′
(sI0)

)
.

We now group the terms of the equations according to different orders:

dVE
dt

= −αEVE + (1− E0)βEf
′
(sE0

)δsE − βEf(sE0
)VE + (1− E0)βE

(
1

2
(δsE)2f

′′
(sE0

)

)
− βEVE

(
δsEf

′
(sE0

)

)
− βEVE

(
1

2
(δsE)2f

′′
(sE0)

)
dVI
dt

= −αIVI + (1− I0)βIf
′
(sI0)δsI − βIf(sI0)VI + (1− I0)βI

(
1

2
(δsI)

2f
′′
(sI0)

)
− βIVI

(
δsIf

′
(sI0)

)
− βIVI

(
1

2
(δsI)

2f
′′
(sI0)

)
.
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We replace δsE and δsI by their expressions

dVE
dt

= −αEVE + (1− E0)βEf
′
(sE0

)
(
WEEVE −WEIVI

)
− βEf(sE0

)VE − βEf
′
(sE0

)VE

(
WEEVE −WEIVI

)
+

1

2
(1− E0)βEf

′′
(sE0)

(
W 2
EEV

2
E +W 2

EIV
2
I − 2WEEWEIVEVI

)
− 1

2
βEf

′′
(sE0

)VE

(
W 2
EEV

2
E +W 2

EIV
2
I − 2WEEWEIVEVI

)
(5.74)

dVI
dt

= −αIVI + (1− I0)βIf
′
(sI0)

(
WIEVE −WIIVI

)
− βIf(sI0)VI − βIf

′
(sI0)VI

(
WIEVE −WIIVI)

)
+

1

2
(1− I0)βIf

′′
(sI0)

(
W 2
IEV

2
E +W 2

IIV
2
I − 2WIEWIIVEVI

)
− 1

2
βIf

′′
(sI0)VI

(
W 2
IEV

2
E +W 2

IIV
2
I − 2WIEWIIVEVI

)
. (5.75)

The dynamics of the deviation from the fixed point (E0, I0) are composed of terms of three orders.

We have terms of order 1 or linear, those of order 2 or quadratic terms and finally terms of order

3 or cubic terms. We are particularly interested in quadratic and cubic terms, since the effect of

linear terms have been studied previously. Note that quadratic terms have two origins: some come

from the product of two linear terms (Eqs.5.74-5.75,terms in blue) and others from the square of

the linear terms δsE and δsI (Eqs.5.74-5.75,terms in green). We are looking for a dynamics which

approximate the full deterministic Wilson Cowan model (with the sigmoid function) particularly

at the vicinity of the Hopf bifurcation. The selected approximation will then be investigated with

noise. We compare the bifurcation diagrams of the approximate model Eqs.5.74-5.75 (called the

full WC3) derived above and the full Wilson Cowan model Eqs.5.72-5.73 (full WC). We find that

the approximate model (Eqs.5.74-5.75 ) above (green curve, Fig.5.14) does not describe well the full

Wilson Cowan (red curve, Fig.5.14) even close to the Hopf bifurcation. We then discard quadratic

terms coming from the square of the terms δsE and δsI . The new dynamics (Eqs.5.76-5.77, called

the WC3 ) without these terms (blue curve, Fig.5.14) now approximate well the full Wilson Cowan

(red curve, Fig.5.14) particularly in the vicinity of the Hopf bifurcation. In this work, we use these

new dynamics Eqs.5.76-5.77 since they are a better approximation of the Wilson Cowan for the

range of parameters used. To obtain its stochastic version named the SWC3, we add the noise terms

ηE and ηI . The resulting dynamics are given by Eqs.5.13-5.14.
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Figure 5.14: Bifurcation diagram of the full Wilson-Cowan model and its approximate
versions obtained after a Taylor expansion of the sigmoid function. The red
curve represents the full (i.e with the sigmoid function) deterministic Wilson Cowan
(WC) dynamics (Eqs.5.72-5.73). The green curve is the bifurcation diagram of the
approximate Wilson Cowan with the Taylor expansion of the sigmoid function at order
2 (full WC3), Eqs.5.74-5.75. this approximation is already not accurate. Finally, the
blue curve is obtained from the full WC3 after discarding the quadratic terms coming
from the square of the quantities δsE and δsI . (see Eqs.5.76-5.77). This approximation
provided a good agreement with the full W.C model over the range of parameters of
interest, and was therefore adopted for the stochastic problem. All the curves were
obtained using a fourth order Runge-Kutta iterative scheme with timestep dt=0.025
ms.
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dVE
dt

= −αEVE + (1− E0)βEf
′
(sE0

)
(
WEEVE −WEIVI

)
− βEf(sE0

)VE − βEf
′
(sE0

)VE

(
WEEVE −WEIVI

)
− 1

2
βEf

′′
(sE0)VE

(
W 2
EEV

2
E +W 2

EIV
2
I − 2WEEWEIVEVI

)
(5.76)

dVI
dt

= −αIVI + (1− I0)βIf
′
(sI0)

(
WIEVE −WIIVI

)
− βIf(sI0)VI − βIf

′
(sI0)VI

(
WIEVE −WIIVI)

)
− 1

2
βIf

′′
(sI0)VI

(
W 2
IEV

2
E +W 2

IIV
2
I − 2WIEWIIVEVI

)
. (5.77)

5.6.2 Expansion of the Stochastic Averaging Method (SAM)

The drift two-dimensional function m =

m1(t)

m2(t)

, obtained from the Stochastic Averaging Method

(SAM) can be expanded as follows:

m1(t) = T av
(
E
{
F1(t)

}
+

∫ 0

−∞
E

{
∂G1(t)

∂ZE
G1(t+ τ)

}
dτ +

∫ 0

−∞
E

{
∂G1(t)

∂φE
G2(t+ τ)

}
dτ

)
,

m2(t) = T av
(
E
{
F2(t)

}
+

∫ 0

−∞
E

{
∂G2(t)

∂ZE
G1(t+ τ)

}
dτ +

∫ 0

−∞
E

{
∂G2(t)

∂φE
G2(t+ τ)

}
dτ

)
.

The coefficients hij of the diffusion matrix h can also be obtained as

h2
11 + h2

12 = T av
(∫ ∞
−∞

E
{
G1(t)G1(t+ τ)

}
dτ

)
h11h21 + h12h22 = T av

(∫ ∞
−∞

E
{
G1(t)G2(t+ τ)

}
dτ

)
h11h21 + h12h22 = T av

(∫ ∞
−∞

E
{
G2(t)G1(t+ τ)

}
dτ

)
h2

21 + h2
22 = T av

(∫ ∞
−∞

E
{
G2(t)G2(t+ τ)

}
dτ

)
.
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When the noises acting on the two variables are uncorrelated and only additive, an easy choice for

the non-diagonal components of the matrix h can be made ( h12 = h21 = 0). This leads to

h2
11 = T av

(∫ ∞
−∞

E
{
G1(t)G1(t+ τ)

}
dτ

)
,

h12 = 0,

h21 = 0,

h2
22 = T av

(∫ ∞
−∞

E
{
G2(t)G2(t+ τ)

}
dτ

)
.

If instead the noises are correlated or multiplicative, such an easy choice could not be made. This

will lead to the following system

dZE(t) = m1(t)dt+ h11dW1(t) + h12dW2(t)

dφE(t) = m2(t)dt+ h12dW1(t) + h22dW2(t).

This system of coupled equations can be approximated as follows

dZE(t) = m1(t)dt+
√
h2

11 + h2
12dW3(t)

dφE(t) = m2(t)dt+
√
h2

12 + h2
22dW4(t).

The noises terms h11dW1(t)+h12dW2(t) and h12dW1(t)+h22dW2(t) are replaced by
√
h2

11 + h2
12dW3(t)

and
√
h2

12 + h2
22dW4(t) respectively, where W3(t) and W4(t) are two independent Wiener processes.

The new noise coefficients depend only on the diagonal elements of the matrix GtG
′

t+τ . This avoids

solving the nonlinear 4-dimensional equations in hij and allows an easy derivation of the envelope

and phase dynamics. The functions F =

F1(t)

F2(t)

 and G =

G1(t)

G2(t)

 are defined in Eqs.5.21-5.22.

The functions F and G are replaced by F k and Gk defined in Eqs.5.55-5.56 for the case of networks.

We recall that T av is the time averaging operator defined as

T av
(
.
)

=
1

T0

∫ t0+T0

t0

(
.
)
dt
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and E. denotes the expectation operator (i.e. average over realizations).

5.6.3 Accuracy of the amplitude-phase equations obtained from the Stochastic Aver-

aging Method (SAM)

The Stochastic Averaging Method (SAM) can be interpreted as a proper stochastic averaging op-

eration through the operator E and a deterministic averaging through the operator T av. In this

work, the deterministic averaging operation is an averaging throughout an oscillation. The re-

sult of such operation depends on the trial solutions which we have chosen to be sinusoidal (Eqs.

5.20,5.41,5.54,5.65). In the quasi-cycle regime, the envelope and phase dynamics obtained describe

very well those of the former dynamics (linear equations sustained by noise). In the limit cycle

regime, however, the results may depend on the specificity of each system. In fact we found that the

quadratic terms in the nonlinear deviation dynamics (Eqs.5.13-5.14; Eqs.5.50-5.51) are not present

in the corresponding envelope-phase dynamics (Eqs.5.23-5.24; Eqs.5.57-5.58) obtained through the

SAM. This means that including them would not have chnaged the envelope-phase description ob-

tained via the SAM. This could lead to important differences between the SAM envelope-phase

dynamics and their former counterparts (directly extracted through the Hilbert transform) particu-

larly if the quadratic nonlinearity is strong. We also found that all the cubic terms are not present in

the saturation parameter B1(Bk1 ) of the envelope dynamics obtained through the SAM. The absence

of the quadratic and some cubic terms may be seen as the consequence of the choice of trial solutions

in a sinusoidal form and may cause divergence of the SAM envelope from the Hilbert envelope.

Another limitation of the SAM exposed here is the fact that it only takes into account the primary

frequency of the system. Therefore,it does not take into account higher-order harmonics which may

be present in the system because of the nonlinearity and the delay. This is due to the deterministic

periodic averaging procedure (T av(.)) over the faster primary frequency (ω0) of the system. To take

into account higher-order harmonics, a trial solution in the form of a truncated Fourier series that

includes higher harmonics could be a better choice. Such an approach may be more complex than

what we have done in this thesis, but, it will be a more general solution.

Concerning numerical simulations, we found that the envelope process was pathological. In fact,

numerical simulations of the envelope process (which is a positive quantity) gave negative values
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because of the term 1
Z(t) . In chapter 2 (see Methods), we used the fact that the envelope process

was equal to the square-root of two standard independent Ornstein-Uhlenbeck (OU) processes to

obtain a positive envelope process. For other chapters (3,4 and 5) where such equality can not be

made, we maintain the envelope process positive by taking its absolute value at each time-step of

the simulation. This allows the envelope process to remain positive and gives good results since

excellent agreement was found with the corresponding theory.
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Chapter 6

Summary and Conclusion

In this thesis, we considered dynamical and functional properties of fast brain oscillations known as

gamma and beta rhythms. We derived dynamical models of stochastic brain oscillations in terms of

slow envelope and phase which reproduce the transient nature of in vivo data. Oscillations can be

generated by two distinct mechanisms. The first, which is the most common assumes a deterministic

stable limit cycle attractor. Noise has a weak effect on the envelope and phase dynamics of stochastic

oscillations in this regime unless its intensity is strong. This produces noisy limit cycle oscillations.

The second mechanism is stochastic and does not have a deterministic analog. Oscillations in

this regime are known as noise-induced or quasi-cycle oscillations. The envelope and phase vary

strongly depending on the noise intensity. The work in this thesis has focused mainly on this latter

model of stochastic oscillations which are studied in chapters 2, 3, and 4. We used the envelope-

phase representation to investigate the ability of such models to communicate with one another by

studying their phase-locking properties. Finally, we extended the modeling to produce a unified

model that spans both regimes and to go from an isolated stochastic oscillatory network to several

networks coupled via long-range excitatory connections.

6.0.1 Summary

The main focus of this thesis has been the origin and the properties of the bursts of high amplitude

activity brain rhythms. In the second chapter, we considered a network of reciprocally coupled exci-

tatory and inhibitory neurons subject to fluctuations caused by the finite-size effect of the network.

The model is a stochastic version of the well-known Wilson-Cowan model where the intensities of
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the noises are related to the size of the excitatory and inhibitory populations. We focused on the

limit where oscillations are induced by noise known as the quasi-cycle regime. Without noise, only

decaying oscillations towards a fixed point are seen. We used the linear noise approximation to

obtain linear equations driven by additive noise. This equations act like as Local field Potentials

(LFPs). Their dynamics show transient epochs of the sustained activity known as gamma bursts as

often observed in vivo. The Stochastic Averaging Method (SAM) was used to derive dynamics for

the slow envelope and phase of the stochastic LFP equations. This adds to previous work, based

on a different method [102], by providing a full parametrization of these dynamics in terms of the

quantities in the detailed Wilson-Cowan model. The SAM was adapted to take into account the

amplitude ratio and phase difference between inhibitory and excitatory LFPs. In the envelope-phase

framework, a burst is defined as the epoch where the envelope is sustained above a given threshold.

We find that the whole problem of burst dynamics is governed by two meta-parameters.

Since the envelope equation obtained is uncoupled from the phase equation, it is easy to derive

the stationary probability density of the envelope from Fokker-Planck analysis. Moreover, we were

able to obtain a theoretical expression of the mean burst duration by conducting a First passage

time analysis. Analyzing the envelope dynamics in the parameter space allows us to uncover an

optimal region where the dynamics and statistics (mean burst duration, burst-peak-frequency) of

the envelope-phase model match with in vivo recordings. Deviation from this optimal range can be

associated with pathologies as epilepsy and Alzheimer’s diseases.

In Chapter 3, we considered the same Wilson-Cowan system as in Chapter 2, but with alter-

native modeling where noise in the system comes from the constant synaptic bombardment from

surrounding neurons rather than from finite-size effects. This amounts to include noisy inputs inside

the response function of a single neuron. Taylor’s expansion of the sigmoid response function leads

to an effective Wilson-Cowan model driven by both additive and multiplicative noises. As in the

previous chapter, we then focused on the quasi-cycle regime, where oscillations are induced by the

noise. The dynamics of the excitatory and inhibitory LFPs are again linear equations, but now

driven by both additive and multiplicative noises. We further calibrated the model such that the

mean frequency of the oscillations falls inside the lower beta range. To investigate the bursting

dynamics of the LFPs and the effect of the multiplicative noise, the envelope-phase decomposition



215

was performed using the SAM.

The corresponding envelope dynamics is again uncoupled from the phase as in Chapter 2, how-

ever, the multiplicative noise terms give rise to two additional parameters compared to the case with

only additive noise in Chapter 2. The first is a positive coefficient which appears in the drift func-

tion and results in a greater effective real part of the complex conjugate eigenvalues. This induces

a stronger mean oscillation amplitude than in the case with only additive noise. Furthermore, for

sufficiently strong multiplicative noise intensity , the system can virtually behave as a noisy limit

cycle even if its deterministic parameters describe a quasi-cycle. The second parameter appears

in the diffusion function of the envelope process and has a diffusive role. In the phase dynamics,

multiplicative noise also induces additional terms in the drift and diffusion function. This makes the

mean frequency depend on the size of the multiplicative noise. However such coefficients are small

and do not induce significant changes in the phase dynamics compare to the case with only additive

noise. The main effect of the multiplicative noise is therefore to induce a stronger rhythm. This may

explain a component of the excess synchronization observed in pathologies like Parkinson’s disease.

Chapters 2 and 3 are about the modeling of stochastic oscillations with bursting behavior in terms

of an envelope-phase representation. The focus is on the dynamics and statistics of the envelope

process since it is directly related to the notion of a burst. In Chapter 4, we investigated the capability

of this class of noise-induced oscillations (quasi-cycle oscillations) to sustain robust out-of-phase

locking. This is an essential functional property directly linked to inter-areal brain communication.

We extended the analysis to two identical connected Stochastic Wilson-Cowan networks driven

by finite-size noise as in Chapter 2. The connection is made with long-range excitatory projections

involving a propagation delay. Restricting the study to a noise-induced regime and applying a Linear

noise approximation leads to delayed-stochastic linear equations driven by additive noise. We then

applied the SAM to these dynamics and obtained novel delayed envelope-phase dynamics. This is

an extension to two delayed coupled networks of the single envelope-phase description performed in

Chapter 2.

The dynamics of the envelope and phase are now mutually coupled, making hard a Fokker-

Planck analysis as in Chapters 2 and 3. We focused on the phase dynamics and more precisely on

the dynamics of the phase difference. Making some approximations, we found that the vanishing
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of the deterministic dynamics towards the stable fixed point only admits In-phase and anti-phase

locking behavior. The transition between In-phase and anti-phase locking happens for a critical

value of the propagation delay. Without propagation delay, the only phase-locking happens when

the phase difference is zero, representing a trivial In-phase locking. This shows the importance of

the propagation delay for the appearance of both In and Anti-phase locking states.

Then performing numerical simulations of the noisy envelope-phase dynamics obtained through

the SAM as well as of the original Stochastic Wilson-Cowan equations reveals that symmetric out-

phase-locking behavior can be observed. This happens around the deterministic transition between

In-phase and Anti-phase locking states. The noise smoothes the abrupt deterministic transition be-

tween In-phase and Anti-phase locking states and therefore creates symmetric out-of-phase locking

states, where one network leads the other during an epoch of time and then loses the leadership

in favor of the other and so on. In contrast, to the limit cycle regime where out-of-phase lock-

ing states are the consequence of spontaneous symmetry breaking due to the nonlinearity, in the

quasi-cycle regime such states are purely induced by noise. Their precise phase difference values

and their robustness depend on the intensity of noise. The leadership between the two networks

is exchanged dynamically by the noise, but each of the two networks leads the other fifty percent

of the time for a sufficiently long simulation time. The mechanism persists even for identical and

asymmetrically coupled networks, and heterogeneous symmetrically coupled networks, but with a

bias towards one of the two networks. The same mechanism is further observed in delay-coupled

networks of purely inhibitory neurons, in the perfectly identical symmetrically coupled, identical

asymmetrically coupled, and heterogeneous symmetrically coupled cases. This attests to the gen-

erality of the mechanism where coupling-delay and noise induce episodes of robust out-of-phase

locking in coupled quasi-cycles. Information can be shared from one network to the other during an

episode of out-of-phase locking. It is believed that information is shared from leader to the laggard

[134, 175]. Then, the results obtained in this chapter suggest that oscillations in the noise-induced

regime are good candidates for inter-areal brain oscillations. Brain oscillations by quasi-cycle os-

cillations, rather than the usual noisy limit cycle oscillations should thus be considered a serious

mechanism for phase locking and coherence-based communication brain areas.

Finally, in Chapter 5, we extended the SAM to include nonlinear terms to obtain a unified
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description of the envelope-phase dynamics in both regimes. First, we considered the case of an

isolated Stochastic Wilson Cowan model subject to additive white or temporally correlated noises.

The resulting envelope dynamics is uncoupled from the phase dynamics and possesses an additional

nonlinear term compared to the linear dynamics in Chapter 2. This allowed a description of stochas-

tic oscillations across the Hopf bifurcation from quasi-cycles to noisy limit cycles oscillations, thereby

providing a theory that encompasses both regimes that may exist in real brain. The Fokker-Planck

analysis was conducted on the envelope dynamics and allowed the derivation of its stationary prob-

ability density. The theory uses more general correlated noise of Ornstein-Uhlenbeck (OU) type,

but numerics are performed using only Gaussian white noises. Good agreement was found between

the probability densities obtained from the SAM and those computed numerically from the original

Stochastic Wilson Cowan model for both quasi-cycle and noisy limit cycle regimes.

The same analysis was applied to another model, namely the Stochastic Stuart Landau system,

but this time we also considered correlated Ornstein-Uhlenbeck (OU) noise for numerical simulations.

The results of the SAM theory match well with numerical simulations for different values of the noise

correlation times. This makes the SAM flexible also for different types of noise. In the quasi-cycle

regime, the probability density of the envelope process is close to a Rayleigh distribution, while in

the noisy limit cycle regime it was better described by a Gaussian distribution. This difference may

allow pinpointing the regime responsible for noisy oscillations recorded in vivo.

We further extended the SAM to several networks connected through delayed long-range excita-

tory connections. This results in a set of delayed envelope-phase equations representing the envelope

and phase dynamics of coupled oscillatory networks across the Hopf Bifurcation. The extension was

considered for both the Stochastic Wilson and the Stochastic Stuart landau models. For limit cycle

oscillators, in the deterministic and nearly identical oscillator limit, the Stuart-Landau model leads

to the well-known Kuramoto model of interacting phase oscillators. The approach can be applied

to other types of networks with different topologies and various stochastic inputs. This shows the

generality and the flexibility of the SAM in extracting the envelope and phase processes of a large

class of stochastic oscillatory processes.
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6.0.2 Future Work

The investigations concerning the modeling of stochastic oscillations in the gamma and other fre-

quency bands presented in this thesis are certainly of great interest, but more work needs to be done

to better understand fast brain oscillations and their functions.

When modeling gamma oscillations in Chapter 2, we have investigated how the envelope dynamics

and related bursts change in the parameter space. However, we have only investigated the change of

a single parameter, namely the recurrent excitation of the E-I network. Specifically, when the result

is an increase of the real part of the complex conjugate eigenvalues. This leads to a correlated change

of the burst duration and amplitude. When the recurrent excitation is changed, the duration of the

bursts and their amplitude change simultaneously in the same direction. This is known as normal

amplification [213, 111]. It can also be achieved through other parameter changes with qualitatively

similar results. Future work should therefore focus on an alternative amplification which changes

the amplitude of bursts without changing their duration. This latter amplification is called non-

normal amplification [213, 111] and could be another relevant mechanism by which healthy bursts

are generated in the brain. The possibly different characteristics of bursts should then be explored.

We have also suggested that there exists an optimal region in the parameter space which generates

burst dynamics similar to what has been observed in monkeys data and healthy patients. However, it

not clear what is the meaning of such an optimal region. Is this region related to the critical dynamics

of the brain? This idea has to be investigated using a statistical analysis of the envelope processes

both for single and coupled oscillatory networks derived in Chapters 2 and 5. Such an analysis could

be done to investigate the presence of long-range power-law correlations in the envelope process,

their avalanche behavior, and related behavior corresponding to criticality.

Another key result of the Thesis was the theoretical expression for the mean burst duration

in Chapter 2 as function of all system parameters contained in the meta-parameters that we have

uncovered. However, this theoretical expression has been obtained using several approximations

concerning the beginning, the maximum amplitude, and the end of a burst. A recent publication

[7] has proposed a framework for first passage time calculation from a threshold back to the same

threshold. The mean burst duration may then be calculated without any approximations. It will

be a promising avenue to continue the investigation of burst duration by computing its closed form.
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This may also be done using the envelope dynamics obtained in Chapter 5.

Very long burst durations have been associated with neurological dysfunction like epilepsy, and

short burst durations with Alzheimer’s disease. For the case of very long burst durations, therapeu-

tical techniques should be able to desynchronize the corresponding oscillatory neural activity and

therefore reduce the lengths of the bursts such that their mean value falls inside the healthy range

of [65 150 ms] [228, 80]. The therapy could be reversed for short burst durations. The goal should

be to synchronize the oscillatory neural activity such that the duration of the bursts is sufficiently

increased and their mean falls inside the healthy range. A common way to achieve these two thera-

peutical goals is to target the associated neural activity with periodic stimulation. The amplitude,

frequency and shape of the external periodic stimulus need to be adapted depending on these two

scenarios. The SAM presented here could therefore be adapted to take into account external periodic

inputs. Analytical results from the SAM could allow inferring optimal parameters of the external

periodic input which can induce or suppress bursts. This may have a significant impact on the

treatment of people suffering from these pathologies and other such as Parkinson. External periodic

input to shape bursts in the brain is already used in the beta frequency band which is relevant to

the treatment of Parkinson’s disease. This deep brain stimulation technique, where a fast frequency

external periodic input is used to target slower beta rhythm and reduce their burstiness, stands to

benefit from the expansion of our work to a stimulation context.

But before any external intervention, a data-driven analysis could be done to extract the meta-

parameters related to our envelope-phase dynamics. The knowledge of these parameters from real

data recorded from human brains along with proper modifications to the model to account for the

structures involved, will allow identifying the proper envelope-phase dynamics corresponding to the

brain state under consideration. For the gamma-band, the data-driven analysis could be limited

to the envelope-phase dynamics in chapter 2, since sufficient experimental evidence is showing that

LFPs in this frequency band are well described by linear equations driven by additive noise. However,

gamma-band oscillations could be generated by a network of purely inhibitory neurons, known as the

ING mechanism. For this case, envelope-phase dynamics is not available yet. Then it is important

to adapt the SAM or any other methods with the ambition of extracting similar envelope-phase

dynamics for the ING case as done here for the PING case of E-I networks. This will complement
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the repertoire of envelope-phase dynamics for fast gamma-band neural oscillations.

Concerning phase synchronization studied in Chapter 4, the next steps should be to investigate

information sharing between connected networks depending on the underlying phase relation, and

to document how external inputs are routed given the local relationship between the networks [175].

Such studies are of great interest to elucidate the problem of information propagation in the brain.

Along the same line, the set of envelope-phase dynamics obtained in Chapter 5 could be adapted

from real data to mimic known brain architecture.

In fact, the study of the whole brain connectivity is a fundamental step to understand the brain

functioning. The investigation of the brain connectivity has gained much more attention these last

years because of the publicly available large amount of data from the brain of many species at

rest or performing some cognitive tasks. An important step is to be able to close the gap between

theoretical models and existing data. This could be done by building data-constrained models of

the whole brain connectivity. Such an approach has been adopted recently with success in several

works[138, 64, 62, 66].

However, the model used to mimic the brain activity is the Stuart-Landau (Chapter 5), which

is a canonical model of the Hopf bifurcation and does not contain biophysical parameters as the

Wilson-Cowan model does. The use of the Stuart-Landau model is motivated by the fact that it

has few parameters (two for a single network) and is therefore more appropriate for data-driven

analysis. Here, our envelope-phase decomposition allows to reduce a large amount of parameters to

only two meta-parameters for a single network. Like the Stuart-landau, our dynamics thus become

suitable for data-driven analysis and in addition, it can be related to biophysical parameters. Our

modelling approach of the brain connectivity through the SAM could thus be more appropriate for

data modelling of the complete brain structure from a biophysical point.

In fact, the parameters such as the local bifurcation parameter λk and the mean-frequency ωk of

each brain area could be extracted from the data as in previous studies [64, 62, 66]. The connectivity

matrix Ckl could also be extracted from neuroimaging data as well as the conduction delays τkl.

This makes our modelling suitable to incorporate brain connectivity. The question of information

propagation in the brain may be therefore investigated from a biophysical informed models (Wilson-

Cowan network) following our approach (envelope-phase modelling of the complete brain structure
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through the SAM) rather than the canonical normal-form of the Hopf bifurcation [66].
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[2] Juan A Acebrón, Luis L Bonilla, Conrad J Pérez Vicente, Félix Ritort, and Renato Spigler.

The kuramoto model: A simple paradigm for synchronization phenomena. Reviews of modern

physics, 77(1):137, 2005.

[3] Peyman Adjamian, Ian E Holliday, Gareth R Barnes, Arjan Hillebrand, Avgis Hadjipapas,

and Krish D Singh. Induced visual illusions and gamma oscillations in human primary visual

cortex. European Journal of Neuroscience, 20(2):587–592, 2004.

[4] Gonzalo Alarcon, CD Binnie, RDC Elwes, and CE Polkey. Power spectrum and intracranial

eeg patterns at seizure onset in partial epilepsy. Electroencephalography and clinical neuro-

physiology, 94(5):326–337, 1995.

[5] Juan Pablo Aparicio and Hernán Gustavo Solari. Sustained oscillations in stochastic systems.

Mathematical biosciences, 169(1):15–25, 2001.

[6] ST Ariaratnam and TK Srikantaiah. Parametric instabilities in elastic structures under

stochastic loading. Journal of Structural Mechanics, 6(4):349–365, 1978.
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[77] Vı́ctor M Egúıluz, Mark Ospeck, Y Choe, AJ Hudspeth, and Marcelo O Magnasco. Essential

nonlinearities in hearing. Physical review letters, 84(22):5232, 2000.

[78] A Einstein. On the movement of small particles suspended in stationary liquids required by

the molecularkinetic theory of heat. Ann. d. Phys, 17(549-560):1, 1905.

[79] Andreas K Engel and Pascal Fries. Beta-band oscillations—signalling the status quo? Current

opinion in neurobiology, 20(2):156–165, 2010.



BIBLIOGRAPHY 230

[80] Joseph Feingold, Daniel J Gibson, Brian DePasquale, and Ann M Graybiel. Bursts of beta

oscillation differentiate postperformance activity in the striatum and motor cortex of monkeys

performing movement tasks. Proceedings of the National Academy of Sciences, 112(44):13687–

13692, 2015.

[81] Andre Fisahn, Fenella G Pike, Eberhard H Buhl, and Ole Paulsen. Cholinergic induction of

network oscillations at 40 hz in the hippocampus in vitro. Nature, 394(6689):186, 1998.

[82] Robert S Fisher, WR Webber, Ronald P Lesser, Santiago Arroyo, and Sumio Uematsu. High-

frequency eeg activity at the start of seizures. Journal of clinical neurophysiology: official

publication of the American Electroencephalographic Society, 9(3):441–448, 1992.

[83] Pascal Fries. A mechanism for cognitive dynamics: neuronal communication through neuronal

coherence. Trends in cognitive sciences, 9(10):474–480, 2005.

[84] Pascal Fries. A mechanism for cognitive dynamics: neuronal communication through neuronal

coherence. Trends in Cognitive Sciences, 9(10):474 – 480, 2005.

[85] Pascal Fries. Rhythms for cognition: communication through coherence. Neuron, 88(1):220–

235, 2015.

[86] Pascal Fries. Rhythms for cognition: Communication through coherence. Neuron, 88(1):220

– 235, 2015.
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[132] Stephen Keeley, André A. Fenton, and John Rinzel. Modeling fast and slow gamma oscillations

with interneurons of different subtype. J. Neurophysiol., 117(0):950–965, 2017.

[133] Rafail Z Khas’ minskii. A limit theorem for the solutions of differential equations with random

right-hand sides. Theory of Probability & Its Applications, 11(3):390–406, 1966.



BIBLIOGRAPHY 235

[134] Christoph Kirst, Marc Timme, and Demian Battaglia. Dynamic information routing in com-

plex networks. Nature communications, 7:11061, 2016.

[135] N Kopell, GB Ermentrout, MA Whittington, and RD Traub. Gamma rhythms and beta

rhythms have different synchronization properties. Proceedings of the National Academy of

Sciences, 97(4):1867–1872, 2000.

[136] Andreas K Kreiter and Wolf Singer. Stimulus-dependent synchronization of neuronal responses

in the visual cortex of the awake macaque monkey. Journal of neuroscience, 16(7):2381–2396,

1996.

[137] Henry Kressel. Semiconductor Lasers and Herterojunction LEDs. Elsevier, 2012.

[138] Morten L Kringelbach, Anthony R McIntosh, Petra Ritter, Viktor K Jirsa, and Gustavo Deco.

The rediscovery of slowness: exploring the timing of cognition. Trends in cognitive sciences,

19(10):616–628, 2015.

[139] Yoshiki Kuramoto. Chemical oscillations, waves, and turbulence. Courier Corporation, 2003.
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and Kenneth D Harris. The asynchronous state in cortical circuits. science, 327(5965):587–590,

2010.



BIBLIOGRAPHY 240

[187] JB Roberts and PD Spanos. Stochastic averaging: an approximate method of solving random

vibration problems. International Journal of Non-Linear Mechanics, 21(2):111–134, 1986.

[188] Francisco A Rodrigues, Thomas K DM Peron, Peng Ji, and Jürgen Kurths. The kuramoto

model in complex networks. Physics Reports, 610:1–98, 2016.

[189] Ganna Rozhnova and Ana Nunes. Fluctuations and oscillations in a simple epidemic model.

Physical Review E, 79(4):041922, 2009.

[190] Jonathan E Rubin. Computational models of basal ganglia dysfunction: the dynamics is in

the details. Current opinion in neurobiology, 46:127–135, 2017.
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