UNB(CJUND

A Full CryptoCurrency
Custody Solution Based

on MPC and Threshold
ECDSA

Yehuda Lindell, Bar-llan University and Unbound Tech
Ariel Nof, Bar-llan University

Samuel Ranellucci, Unbound Tech

Motivation

June, 2011 - 25,000 BTC ($775k by a user known as “ALLINVAIN")
March, 2012 - 46,703 BTC ($6M on Bitcoinica)
September, 2012 - 24,000 BTC ($250k on Bitfloor)

Oklahoma Duo ArreSted for $1 4 M i"ion November ,2012 - 263,024 BTC ($3.42M on Bitcoin Saving & Trust)
Cryptocu rren cy Theft ::(\:n(:;nsb;; :no; :(3:05 :oi;.;sc; BTC ($1.46M on BIPS); 4,100 BTC ($5.6M on Inputs); $6,000

February, 2014 - 650,000 BTC ($368M on MT.GOX)

March, 2014 - 150 BTC ($101k on bitCoin); 896 BTC ($572k on Flexcoin)

July, 2014 - 3,700 BTC ($2M on Mintpal $2m); 5000 BTC ($1.8M on Bitpay)

January, 2015 - 7,170 BTC ($1.82M on BTer.com); 3,000 BTC ($777k on Kipcoin); 1,000
BTC ($230k on 796 Exchange); 18,866 BTC ($4.3M on BITSTAMP)

o L3 L3

$14 billion in cryptocurrency has March, 2015 - 150 BTC (53.2kon CONAPUAT)

° ° May, 2015 - 1,500 BTC ($350k on BITFINEX)
been stolen this year, and it was Octaber 2015 1DETC A Ko Pt

ry, 2016 - 13,000 BTC; 3,000,000 Litecoin ($5.8M on Cryptsy)
March, 2016 - 81 BTC ($33k on COINTRADER); 469 BTC, 5,800 ETH 1,900 Litecoins

apparently easy to do
May, 2016 - 250 BTC, 185,000 ETH, 1,900 Litecoin ($2.14M on gatecoin)
June, 2016 - 3,500,000 ETH ($53M on DAO)
July, 2016 - $85k on Steemit
August, 2016 - 119,756 BTC ($65M on Bitfinex)
October, 2016 - 2,300 BTC ($2.6M on Bitcurex)

February, 2017 - $444,000 on erocoin
July, 2017 - 153,037 ETH (Parity); 37,000 ETH ($7M on COINDASH); $1M on Bithumb;

BITCOIN

By BLOOMBERG September 20, 2018

« e s s s e .

Hackers stole $60 million of digital coins from a Japanese exchange, the latest
$8.5M on Veritaseum

in a string of thefts that have kept many institutional investors wary of putting « August, 2017 - 1,500 BTC ($500k on enigma)
their money in cryptocurrencies.

UNB(JUND 2
e

Custody and Protection

* Cryptocurrency protection needs

* Exchanges
* High turnover — need to speed up transactions
* Can take days to weeks today on exchanges
e Separation of vaults (large, medium, small)
* Higher protection on larger vaults

* Custody solutions (for banks/financial institutions)
e Small turnover — complex transactions acceptable (and desired)
* Very large amount of funds
e Offered to high-end customers

* Wallets
* For end users, small amounts of funds

UNBC(JUND 3
e

Solution Platform Requirements

* High security
e Protection against key theft and fraudulent key usage

* Backup and disaster recovery
* Flexibility

* Fine tune security vs usability (ease of transfer)
* Broad support
* Different coins/systems

 Different signing algorithms
 Standards (e.g., BIP032/BIP044)

UNBC(JUND 4
e

Cryptographic Core — Threshold Signhing

* Multiparty protocols with full threshold security for malicious adversaries
e Support ECDSA, EdDSA, Schnorr
e Supports distributed key generation
* Achieves proactive security (post-compromise security)

* Rich access structures supported for all
» Support AND/OR of sets of parties
 Different structures for different levels of sensitivity/security

* Two types of parties:

* Online signing parties: run actual MPC protocol (hold subset of shares)

e Offline authorization parties: approve operation and provide their shares to online parties to
carry out protocol

UNBC(JUND 6
e

Custody Setting

Sign crypto tfransaction

Customer Service
Provider

ﬂ

dOR
- (

UNBCJUND

A Protocol vs a Platform

* Threshold cryptographic core is central, but not enough

* Many other elements needed, and influence cryptographic core
e Secure backup and disaster recovery
e Support standard key derivation
e Proactive security (post-compromise security)
* Party administration (add/remove parties)

* The above all needs to work with the core threshold signing protocol

UNBC(JUND 8
e

Our Solution — Additional Components

* Publicly-verifiable backup with ZK proofs
e RSA (or any) public key provided (don’t need additively homomorphic)
* Each party encrypts its share of the key with RSA

* Each party proves in ZK that the encryption is correct
* For share x; all parties know Q; = x; - G, and so statement is well defined

» ZK proof idea
* Encryptr; and r; — x;, and publish R; = 1; - G
* Upon challenge to open one, let t; be decrypted value
* Ifopenr;, verifythatR; =t; - G
* Ifopenr; — x;, verifythat R; — Q; =t; - G
* Use Fiat-Shamir for public verifiability

UNBC(JUND 9
e

Our Solution — Additional Components

» Support BIP032/044 key derivation in MPC

» Derive all keys from master key — enables backup only of master key

e BIP derivation in MPC

* Naive: use garbled-circuit based MPC for SHA256/SHA512 derivation
* Cheating party can input different key share and render backup useless
 Verified:

* We define MPC protocol that verifies that correct shares are input (utilizing public
key)

e Uses cut-and-choose like method inside circuit itself

UNBC(JUND 10
e

Our Solution — Additional Components

* Proactive (post compromise) security
» Refresh shares held by parties — breach of any subset of an authorized quorum
in a period reveals nothing

* Achieved by jointly generating and sharing a random polynomial with zero
constant-term, and adding to shares

* Party administration
* Re-share in order to replace parties
* Necessary for offline parties, as expected to be for employees

UNBC(JUND 13
e

Threshold ECDSA

* Long-standing open problem to simultaneously achieve
e Full threshold (any number of corrupted parties), and
 Efficient key generation

* Two party:
e Based on Paillier additively-homomorphic encryption [MR04], [GGN16], [L17]
e Based on OT [DKLS18] (higher bandwidth, faster time)

* Multiparty:
* Honest majority [GJKR96]

 Any number of corrupted [GGN16]
* Key generation requires multiparty Paillier generation — impractical

UNBC(JUND 14
e

New Threshold ECDSA Protocol

* We present a new protocol (CCS 2018)

e Relies on hardness of Paillier and DDH

* In parallel to this work [GG18] (also at CCS 2018)

e Similar performance (based on theoretical analysis)

UNBC(JUND 15
e

ECDSA Signatures

* Let G be a generator of an EC group of order g

* Let m be the message to be signed

R=(rx,ry)=k-G

-

_

S

~

- (H(m) + @ mod q

k is a random value

* The signature is (7, s)

UNBCJUND

\ y

x is the secret key (shared among
the parties in threshold case)

Threshold ECDSA

* The main challenge: Compute k~! and R = k - G for a random shared
k in a secure distributed manner

* This is non-linear and not “MPC friendly”

UNBCJUND

Solution of [GGN16]

* Each party chooses two random shares: k;, p;
* Use additive sharing:k = k; +---+k, andp =p; + -+ pp,
* Each party sends k; - G and Encyy(p;) to all the other parties (+ ZK)
*R=k-G=k, - G++ky,-G
* Use additive homomorphism to get Enc,y(p) = X1 Encyi(p;)
* Each party sends Encyi (k; - p) = k; - Encyi(p) to others (+ZK)
* Use additive homomorphism to get Encyy (k - p) = X1 Encyi (ki - p)

* Run secure decryption to obtain k - p and locally compute p~1 - k1

* This is enough to generate an encrypted signature

UNBC(JUND 18
e

Instantiating the Additively Homomorphic Encryption

* In [GGN16], used Paillier

e Distributed key generation for more than 2 parties is impractical
e Complicated ZK proofs - working over 2 groups with different sizes...

UNBC(JUND 19
e

Instantiating the Additively Homomorphic Encryption

* Our solution: use additively-homomorphic EIGamal-in-exponent
 Encp(a) = (g",h" - g%) (in EC notation, Ency(a) = (r - G,v-h+ a - G))
* Homomorphism:

* Given (u,v) = (g",h" - g%) and (x,y) = (g5, h° - gP) it holds that

(u CX, U y) — (gr+s’ hrts . ga+b)

* Given (u,v) = (g",h" - g%) and c, have (u¢,v°) = (g" ¢, h" ¢ g%°)
* Advantages

* Encryption is in same group of the signature (no leakage)

* Highly efficient ZK proofs

* Highly efficient threshold key generation and decryption
* Problem:

 Cannot actually decrypt: “decryption” only reveals g (in EC: a - G)

UNBC(JUND 20
e

Decryption

* In parallel to working in El Gamal
e Parties hold additive shares of values
* Addition: locally add, and add El Gamal ciphertexts

* Multiplication by scalar: run protocol to get additive shares of product, and
multiply El Gamal in exponent

* The multiplication protocol only needs to be private
* Given shares of a and value (g",h" - g%), verify and reveal

* Private multiplication instantiations

* Based on oblivious transfer: very fast but very high bandwidth
* Based on Paillier: low bandwidth, but more expensive
* Paillier keys are local to each party (no distributed generation)

UNBC(JUND 21
e

Experimental Results

* Experiments on AWS with 2.40GHz CPU, 1GB RAM, 1Gbps network
* Single thread only

 Number of parties: 2 to 20 (all in the same region)

* Paillier-based private multiplication
* OT much faster (order of magnitude)

* Open conjectures on Paillier
20000

15000
S000
W
p -

2 3 4 56 7 & %91011121314151617 1819 0

UNBCJUND 22

Summary

* We present a new threshold ECDSA protocol
e Supports practical key generation, signing, and proactive security
e Uses new paradigm for additively homomorphic encryption in MPC

* Full platform with support for cryptocurrency protection

e Suitable for entire spectrum: wallet, exchange, custodian
* Suitable also for other scenarios like CA signing
* Includes verifiable backup, key derivation, online/offline parties

* High security based on model of separation

UNBC(JUND 23
e

UNB(CJUND

Thank You

Two-party solution (for wallets) with ZK backup, verified BIP derivation, distributed key
generation, refresh, and signing has been released as open source:

https://github.com/unbound-tech/blockchain-crypto-mpc

https://github.com/unbound-tech/blockchain-crypto-mpc

