
A Full CryptoCurrency
Custody Solution Based
on MPC and Threshold
ECDSA
Yehuda Lindell, Bar-Ilan University and Unbound Tech
Ariel Nof, Bar-Ilan University
Samuel Ranellucci, Unbound Tech

2

Motivation

3

Custody and Protection
• Cryptocurrency protection needs

• Exchanges
• High turnover – need to speed up transactions

• Can take days to weeks today on exchanges
• Separation of vaults (large, medium, small)

• Higher protection on larger vaults

• Custody solutions (for banks/financial institutions)
• Small turnover – complex transactions acceptable (and desired)
• Very large amount of funds
• Offered to high-end customers

• Wallets
• For end users, small amounts of funds

4

Solution Platform Requirements
• High security

• Protection against key theft and fraudulent key usage

• Backup and disaster recovery
• Flexibility

• Fine tune security vs usability (ease of transfer)
• Broad support

• Different coins/systems
• Different signing algorithms
• Standards (e.g., BIP032/BIP044)

6

Cryptographic Core – Threshold Signing
• Multiparty protocols with full threshold security for malicious adversaries

• Support ECDSA, EdDSA, Schnorr
• Supports distributed key generation
• Achieves proactive security (post-compromise security)

• Rich access structures supported for all
• Support AND/OR of sets of parties
• Different structures for different levels of sensitivity/security

• Two types of parties:
• Online signing parties: run actual MPC protocol (hold subset of shares)
• Offline authorization parties: approve operation and provide their shares to online parties to

carry out protocol

7

Custody Setting

Sign crypto transaction

Service
Provider

Customer

8

A Protocol vs a Platform
• Threshold cryptographic core is central, but not enough

• Many other elements needed, and influence cryptographic core
• Secure backup and disaster recovery
• Support standard key derivation
• Proactive security (post-compromise security)
• Party administration (add/remove parties)

• The above all needs to work with the core threshold signing protocol

9

Our Solution – Additional Components
• Publicly-verifiable backup with ZK proofs

• RSA (or any) public key provided (don’t need additively homomorphic)
• Each party encrypts its share of the key with RSA
• Each party proves in ZK that the encryption is correct

• For share !" all parties know #" = !" ⋅ &, and so statement is well defined

• ZK proof idea
• Encrypt '" and '" − !", and publish)" = '" ⋅ &
• Upon challenge to open one, let *" be decrypted value

• If open '", verify that)" = *" ⋅ &
• If open '" − !", verify that)" − #" = *" ⋅ &

• Use Fiat-Shamir for public verifiability

10

Our Solution – Additional Components
• Support BIP032/044 key derivation in MPC

• Derive all keys from master key – enables backup only of master key

• BIP derivation in MPC
• Naïve: use garbled-circuit based MPC for SHA256/SHA512 derivation

• Cheating party can input different key share and render backup useless
• Verified:

• We define MPC protocol that verifies that correct shares are input (utilizing public
key)

• Uses cut-and-choose like method inside circuit itself

13

Our Solution – Additional Components
• Proactive (post compromise) security

• Refresh shares held by parties – breach of any subset of an authorized quorum
in a period reveals nothing

• Achieved by jointly generating and sharing a random polynomial with zero
constant-term, and adding to shares

• Party administration
• Re-share in order to replace parties
• Necessary for offline parties, as expected to be for employees

14

Threshold ECDSA
• Long-standing open problem to simultaneously achieve

• Full threshold (any number of corrupted parties), and
• Efficient key generation

• Two party:
• Based on Paillier additively-homomorphic encryption [MR04], [GGN16], [L17]
• Based on OT [DKLS18] (higher bandwidth, faster time)

• Multiparty:
• Honest majority [GJKR96]
• Any number of corrupted [GGN16]

• Key generation requires multiparty Paillier generation – impractical

15

New Threshold ECDSA Protocol
• We present a new protocol (CCS 2018)

• Relies on hardness of Paillier and DDH

• In parallel to this work [GG18] (also at CCS 2018)
• Similar performance (based on theoretical analysis)

16

ECDSA Signatures
• Let ! be a generator of an EC group of order "
• Let # be the message to be signed

• The signature is (%, ')

' = *+, ⋅ . # + % ⋅ 0 #12 "

0 is the secret key (shared among
the parties in threshold case)

3 = %4, %5 = * ⋅ !

* is a random value

17

Threshold ECDSA
• The main challenge: Compute !"# and $ = ! ⋅ ' for a random shared
! in a secure distributed manner
• This is non-linear and not “MPC friendly”

(= !"# ⋅) * + , ⋅ - *./ 0

$ = ,1, ,3 = ! ⋅ '

18

Solution of [GGN16]
• Each party chooses two random shares: !", $"

• Use additive sharing: ! = !& + ⋯+ !) and $ = $& + ⋯+ $)
• Each party sends !" ⋅ + and ,-./0 $" to all the other parties (+ ZK)

• 1 = ! ⋅ + = !& ⋅ + + ⋯+ !) ⋅ +
• Use additive homomorphism to get ,-./0 $ = ∑"3&) ,-./0($")

• Each party sends ,-./0 !" ⋅ $ = !" ⋅ ,-./0($) to others (+ZK)
• Use additive homomorphism to get ,-./0 ! ⋅ $ = ∑"3&) ,-./0(!" ⋅ $)
• Run secure decryption to obtain ! ⋅ $ and locally compute $6& ⋅ !6&

• This is enough to generate an encrypted signature

19

Instantiating the Additively Homomorphic Encryption

• In [GGN16], used Paillier
• Distributed key generation for more than 2 parties is impractical
• Complicated ZK proofs - working over 2 groups with different sizes…

20

Instantiating the Additively Homomorphic Encryption

• Our solution: use additively-homomorphic ElGamal-in-exponent
• !"#ℎ % = ((), ℎ) ⋅ (%) (in EC notation, !"#ℎ % = () ⋅ -,) ⋅ ℎ + % ⋅ -))
• Homomorphism:

• Given /, 0 = ((1, ℎ1 ⋅ (2) and 3, 4 = ((5, ℎ5 ⋅ (6) it holds that
/ ⋅ 3, 0 ⋅ 4 = (178, ℎ178 ⋅ (276

• Given /, 0 = ((1, ℎ1 ⋅ (2) and #, have /9, 09 = (1⋅9, ℎ1⋅9 ⋅ (2⋅9
• Advantages

• Encryption is in same group of the signature (no leakage)
• Highly efficient ZK proofs
• Highly efficient threshold key generation and decryption

• Problem:
• Cannot actually decrypt: “decryption” only reveals (% (in EC: % ⋅ -)

21

Decryption
• In parallel to working in El Gamal

• Parties hold additive shares of values
• Addition: locally add, and add El Gamal ciphertexts
• Multiplication by scalar: run protocol to get additive shares of product, and

multiply El Gamal in exponent
• The multiplication protocol only needs to be private

• Given shares of ! and value (#$, ℎ$ ⋅ #(), verify and reveal
• Private multiplication instantiations

• Based on oblivious transfer: very fast but very high bandwidth
• Based on Paillier: low bandwidth, but more expensive

• Paillier keys are local to each party (no distributed generation)

22

Experimental Results
• Experiments on AWS with 2.40GHz CPU, 1GB RAM, 1Gbps network

• Single thread only

• Number of parties: 2 to 20 (all in the same region)

• Paillier-based private multiplication
• OT much faster (order of magnitude)
• Open conjectures on Paillier

304
5194

23

Summary
• We present a new threshold ECDSA protocol

• Supports practical key generation, signing, and proactive security
• Uses new paradigm for additively homomorphic encryption in MPC

• Full platform with support for cryptocurrency protection
• Suitable for entire spectrum: wallet, exchange, custodian

• Suitable also for other scenarios like CA signing
• Includes verifiable backup, key derivation, online/offline parties

• High security based on model of separation

Two-party solution (for wallets) with ZK backup, verified BIP derivation, distributed key
generation, refresh, and signing has been released as open source:

https://github.com/unbound-tech/blockchain-crypto-mpc

Thank You

https://github.com/unbound-tech/blockchain-crypto-mpc

