Extracting Relations from Unstructured Text

Ryan McDonald
Department of Computer and Information Science
University of Pennsylvania
Levine Hall, 3330 Walnut Street, Philadelphia, PA 19104

ryantm@cis.upenn.edu

Technical Report: MS-CIS-05-06
April 15, 2005

Contents

1

Introduction

1.1 Motivation e
1.2 Scope of Paper e
1.3 Some Notation e

Snowball: Agichtein and Gravano [5]

2.1 Background
2.1.1 Bootstrapping e
2.1.2 Selectivity vs. Coverage L e
2.1.3 DIPRE e

2.2 Snowball
2.2.1 Initialization e e e e
2.2.2 Training the Classifier o L
2.2.3 Labelingthe Data L o

2.3 DISCUSSION o e e e e e

Integrated Parsing: Miller et al. [7]

3.1 Background
3.1.1 Parse Trees e e

3.2 The Collins Parser

3.3 Annotating Relations in Parse Trees
3.3.1 Some Practical Details e

3.4 DISCUSSION o . e e e e e

Kernel Methods: Zelenko et al. [9]

4.1 Background e

4.2 Shallow Parsing and Example Creation

4.3 Kernel Methods e e
4.3.1 Classification e e e e e e

4.4 DISCUSSION . . . v v o v v e e e e e e e e e

Discussion and Future Directions

5.1 Quantitative Comparison?

5.2 Semi-supervised Methods L o

5.3 Supervised Methods

5.4 Semi-supervised vs. Supervised e

5.5 Non-sentential Relations

Acknowledgments
I would like to thank Mitch Marcus for chairing my WPEII committee,
as well as Mark Liberman and Fernando Pereira for sitting on the committee.
Thanks also go to Eugene Agichtein for promptly answering my queries about Snowball
and Nick Montfort for proof-reading a draft of this paper.

11
11
12
12
14
16
16

17
17
17
18
21
22

1 Introduction

1.1 Motivation

Structured text is all around us. Omne of the largest sources is the World Wide Web.
Google.com, for instance, is currently indexing over 4.5 billion web pages, which include
HTML, PowerPoint, PDF, and other forms of structured information. However, the struc-
ture of these pages is largely concerned with the visual formatting of data and not with
the data’s syntactic and semantic properties. Hence, within these structured pages exists
a vast amount of unstructured text ready to be mined and exploited in technologies like
web-searching, question answering and database generation.

Outside the World Wide Web are other large sources of unstructured electronic text
including newsgroups, newspaper corpora (Reuters, the Wall Street Journal, etc.), scientific
literature and conference proceedings, governmental transcripts such as parliamentary and
court proceedings, email communications, fiction and non-fiction books!, etc. The list is
gigantic.

How can computers help humans make sense of all this data? How can a computer make
sense of all this data? Ideally, every piece of information that would ever be needed to answer
queries or to sort and search data would be neatly marked in the text with some kind of
universally agreed upon standard, such as XML. However, in practice this is rarely the case
and most data remains a set of words strung together (albeit in a not so arbitrary way).

This ideal was recently popularized (at least for the world wide web) by Berners-Lee
et al. [1] in their description of the Semantic Web. In the Semantic Web, meaning and
language structure are marked up in addition to page format. The major problem facing the
Semantic Web is how to mark up billions and billions of pages. The sheer size of the data
makes human annotation infeasible. Furthermore, web designers rarely conform to W3C [2]
standards when creating pages. Expecting the designers of tomorrow to add an additional
layer of markup in future documents is unrealistic.

One course of action would be to have a computer annotate all this electronic data with
the structures that are of interest to humans. This, of course, is not trivial. How do we tell
or teach a computer to recognize that a piece of text has a semantic property of interest in
order for it to make correct annotations?

The focus of this paper will be how to teach computers to recognize relationships between
entities in unstructured text. An entity is commonly a physical thing such as a person, place,
organization, gene or chemical name, but can also be more abstract and encompass things
like prices, units, measurements, schedules and even philosophical beliefs. For our purposes
an entity is any concept that can be identified in text and related to other entities. In the
past decade, a large amount of work has been done on identifying entities from text [3, 4],
with current state-of-the-art systems approaching human capabilities 2.

In its simplest form, a relationship is n-ary predicate:

rp(er,es, ... en)

Tt is now possible to search the text of books through Amazon.com.
%i.e., approaching inter-annotator agreement levels.

which represents that in document D, the entities, eq,..., e, are in relation r to each other.
Examples of some binary relations include location-of, e.g., lip(White House, Washing-
ton), lip(Microsoft, Redmond), and employee-of, e.g., eop(Dennis Ritchie, Lucent), eop(Dan
Rather, CBS).

It is also possible to define more complex relationships such as genomic variation in genes
causing malignancy: gvmp(gene, variation, malignancy). An even higher order relationship
might be one representing sports teams:

baseball-teamp(name, year, catcher, first-base, second-base, ..., left-field)

Such relations would help cancer researchers identify patterns in the behaviour of genes
associated with cancer as well as baseball enthusiasts wanting to know who played first base
for the Blue Jays in 1992. It seems clear that extracting such information could improve
many applications.

Presented here is a partial literature review of extracting relations from unstructured
text focusing on three particular papers.

Agichtein and Gravano [5] use a semi-supervised approach similar to the algorithm of
Yarowsky [6] for word-sense disambiguation. The algorithm primarily works by using a small
set of seed relations to extract meaningful relation contexts. This is then bootstrapped to
extract new relation instances and new relation contexts.

Miller et al. [7] use an integrated supervised parsing approach. The novelty of their system
is to re-annotate natural language parse trees to include relation information at each non-
terminal node. Using the re-annotated trees, it is then possible to train a parser (they use
the Collins parser [8]) to parse new sentences and extract relation information accordingly.

Zelenko et al. [9] also use a supervised learning setting. However, their approach differs
in many ways from Miller et al. [7]. The system is essentially two staged: the first stage runs
a shallow parser on each sentence; the second stage uses a classifier to make yes/no relation
decisions about each chunk of the sentence. Each chunk that is classified as having a relation
is then returned by the system. Their primary classification mechanism relies on a kernel
definition for the shallow parse regions. With this definition, they compare multiple kernel
based classifiers, including the voted perceptron [10] and support vector machines [11].

1.2 Scope of Paper

The primary purpose of this critical review is to compare and contrast automatic methods for
extracting relations between entities from text. This topic is quite broad and can arguably
be broken into three subtasks.

1. Identifying entities: As mentioned earlier, this is a well-studied area of research.
Extracting entities is not a focus of this paper, and will only be discussed as each
section merits.

2. Annotating relation structures in text: This is actually an understudied area
of research. Unlike entities, relations are often not contiguous and can span multiple
sentences or paragraphs within a document. Finding consistent annotation guidelines
for such structures can be very difficult. Again, this is not the focus of this paper and it

4

is assumed that all relations have a structure that is easy to annotate and manipulate.
This problem will not be completely ignored. In particular, it will come up in our
discussions of the work by Miller et al. [7], whose system relies heavily on how the
relations are annotated.

3. Identifying relations: This is the primary focus of this critical review. Given a set of
entities, a set of relations of interest and (possibly) some annotated training examples,
how can a computer automatically identify new instances of the sought after relations?

1.3 Some Notation

The standard method used in this paper to indicate a relation is the following:

(ela €2, ... em)

where e; indicates the it entity in the relationship. Often, binary relations will be referred
to as pairs. For instance, the (Dan Rather, CBS) pair represents the employee-of relation.
In the same example, the type of the relation (employee-of) is also left out. This is done
when it is clear what relation type is being referred to or if the type is not relevant.

2 Snowball: Agichtein and Gravano [5]

2.1 Background
2.1.1 Bootstrapping

Bootstrapping is a general class of semi-supervised learning algorithms. There are two
forms of bootstrapping that garner the most attention in the natural language processing
community. Blum and Mitchell’s co-training algorithm [12] and the Yarowsky algorithm [6].
At the heart of both algorithms is the notion of a weak learner (or learners) and a large set
of unlabeled examples. The algorithm is iterative, using the output of the learner as training
data for the next iteration. Ideally, this process will improve performance. Co-training uses
two or more learners, each with a separate view of the unlabeled data. The output of one is
then used as the input for others during the next iteration of training. Yarowsky’s algorithm
uses just one trainer, taking the highest confidence examples on each iteration as training
for the next iteration. Both merit discussion, however the focus here will be on Yarowsky’s
algorithm as it is the framework primarily deployed by Agichtein and Gravano [5] and other
semi-supervised relation extraction approaches.

The basic Yarowsky algorithm is outlined in Figure 1. This definition is very general and
does not specify many things, including what classifier to use, how to measure confidence
of a labeling or what the convergence criteria is. Yarowsky does provide the details for the
problem of word-sense disambiguation, but the framework is general enough so that each
problem and data set being studied will warrant their own considerations.

Abney [13] provides a theoretical justification for the Yarowsky algorithm. In particular,
he shows that some forms of the algorithm can maximize the likelihood of the unlabeled data.
However, the constraints he places on the algorithm are too strong to include Yarowsky’s
original formulation.

Figure 1: Bootstrapping with the Yarowsky Algorithm. Conf(D) is the set of labellings of
data D with confidence greater than some threshold.

Input: A set of seed examples S and a set of unlabeled data D
Algorithm:
1. T =S5
Train a classifier C on T
Label D using C
T=Conf(D)US
Repeat 2-5 until convergence
Label D using C

D O W N

2.1.2 Selectivity vs. Coverage

The two primary considerations a system design must take into account when using the
Yarowsky algorithm are selectivity and coverage. Selectivity refers to our confidence in the
classifiers ability to generate precise training examples for future iterations. If the classifier
routinely generates false positives, then its accuracy will decrease every iteration, until it
becomes of no use whatsoever. This is easily managed by manipulating the classifier to only
output positives with extremely high confidence.

However, selectivity must be balanced with coverage. Coverage is the system’s ability to
generate new (or all) labeled examples. A classifier that is overly selective will not introduce
any new examples and the system will terminate without significantly expanding its seed
set. Both these issues play a central role in the considerations of Agichtein and Gravano [5].

2.1.3 DIPRE

Before getting into the details of Agichtein and Gravano’s Snowball system [5], the system
of Brin [14] called DIPRE (Dual Iterative Pattern Relation Extraction) will be discussed.
Snowball [5] is essentially an improved version DIPRE and shares much of DIPRE’s archi-
tecture.

The relation of interest to DIPRE is the (author, book) relation. However, the system
can generalize to any binary relation and with some minor reworking any n-ary relation.

DIPRE starts with a small set of (author, book) pairs. The system then extracts a tuple
for every instance of a (author, book) seed pair in relative proximity:?

lauthor, book, order, left, middle, right]

where, order is 1 if the author string occurs before the book string and 0 otherwise, left/right
are strings containing the 10 characters occurring to the left /right of the match and middle
the string occurring between the author and book. For example, the tuple extracted for

3DIPRE also uses URL information, but it is omitted here since it is not relevant to the discussion.

(Shakespeare, King Lear) for the string, “Consider Shakespeare’s play King Lear, which tells
the tale ...” would be:

)

[Shakespeare, King Lear, 1, ‘Consider ’, “’s play ’, ¢ which tel’]

Each tuple extracted is then grouped by matching order and middle. For each group of
tuples, the longest common suffix of the left field and the longest common prefix of the right
field is extracted. Hence, each group induces a pattern:

long-comm-suff(left). AUTHOR.middle. BOOK long-comm-pref(right)

The above example is for the case when order dictates author before title. Using such
a pattern allows the system to extract new examples of (author, book) pairs. In turn these
pairs can generate new patterns.

The primary problem is that some patterns are too easily matched and lead to many
false positives. To combat this, DIPRE scores each pattern by |prefix||middle||suffix|, where
|s| is the length of string s. Intuitively larger strings are harder to match as they are less
common, making these matches more significant. In order to reduce false positives, DIPRE
simply throws away all patterns whose score is less than some threshold.

This algorithm is easy to relate to the Yarowsky algorithm. The classifier used by DIPRE
is simply a pattern matching system, which is trained by extracting patterns for known
(author, book) pairs. All strings that match at least one of the classifier’s patterns are
classified as positive and all other strings negative. The (author, book) pairs in the strings
classified as positive are then added to the set of labeled examples to retrain the classifier
(i.e., extract more patterns). DIPRE terminates when no new candidate pairs are extracted,
or when a human observer decides sufficiently many pairs have been returned.

One of the central insights of DIPRE is that the size of the web allows the use of extremely
selective patterns to induce new example pairs of (author, book). Even with extremely
selective patterns, new seed examples will be introduced due to the sheer size of the web.
Hence, DIPRE explicitly maintains selectivity by using highly precise patterns and implicitly
increases coverage through the size of the unlabeled data set.

2.2 Snowball

Agichtein and Gravano [5] present the system Snowball for extracting relations from unstruc-
tured text. Snowball shares much in common with DIPRE, including the employment of the
Yarowsky bootstrapping framework as well as the use of pattern matching to extract new
candidate relations. The relation that Snowball focuses on is the (organization, location)
relation. In order to be consistent, Snowball will be described in terms of the Yarowsky
algorithm from Figure 1.

2.2.1 Initialization

The seed set S given as input is a short list of organization/location pairs, (o,lx). Like
DIPRE, this list can be very small, and in practice has fewer than ten pairs. Snowball
also requires three primary input parameters: Ty, Tsuyp and Teong. The purpose of these
parameters will become clear in the following sections.

7

2.2.2 Training the Classifier

Like DIPRE, the underlying classifier of Snowball is a pattern matching system, in which
high confidence patterns are induced by the current set of known pairs, T. Snowball initially
defines a confidence measure on pairs in the training set. Initially:

Conf((ox, k) = 1.0 V(ok, lx) € 5

Given a set of known related pairs:

T = {(og,)},

Snowball extracts a tuple for every string in which a known location and organization pair,
(ok,lx) € T, are close to one another: [l, e;, m, es,r]. Where ey, e5 € {loc,org} & e; # e3. m
is a feature vector that represents the tokenized terms that occur between the identified pair.
Similarly [and r are also feature vectors representing the tokenized terms occurring to the
left or right of the pair up to some limit on the number of terms. For example, if (Microsoft,
Redmond) is a known pair, then for the string “... while at Microsoft’s headquarters in
Redmond, there were ...” the extracted tuple would be:

[{<wv1, while>, <wvq, at>}, org, {<va, 's>, <vy4, headquarters>, <vs, in>}, loc, {<wvg, ,>, <vz, there>}]

This is for the case when the limit on the left and right feature vectors is 2.

Several values, v; € R, have been introduced. These are the corresponding weights for
each term. A weight for a term is calculated by the normalized frequency of that term in
the left, middle or right context. Hence a term can have a different weight when it occurs in
the m feature vector then it might have in the [feature vector. For example the weight for
the term at in the left context would be:

weight(at,) = count(at € 1)
\/Zw(cmmt(w €l))?

These weights are updated every iteration since every iteration will introduce more tuples.
Finally the weights are adjusted to allow for different contexts to be assigned different levels
of importance:

weight(at,) = \; - weight(at,)

A, A and A, are all input parameters.
Agichtein and Gravano define a similarity function over extracted tuples:

(lz . l]) + (ml . mj) + (Ti . T‘j) if €14 = €15 & tgﬂ' = t27j

Match(tup;, tup;) = { 0 otherwise.

tup; = [l;, e1i, mg, €, 1]

Clearly tuples that share common terms in their feature vectors are going to have higher
similarity over those that do not. Also note that this is a much softer matching criteria than
used by DIPRE. Instead of having hard textual matches, Snowball’s match metric allows for
slight variations in tokens or punctuation. This is primarily a coverage metric that helps to
identify pairs that exact matching systems might miss.

Snowball then induces patterns in two steps. The first step is to cluster all the tuples
into a set of groups, G = {g1,...,gm}, gx = {tupk,... tupt}, using the similarity function
Match. In the second step, each group, gx € G induces a tuple pattern:

Dy, = [l07 €1, Mc, €2, TC]

where [, me and r¢ are the centroids of all the left, right and middle feature vectors for the
tuples in the group. By the definition of the similarity metric, Match, every tuple belonging
to the same group will have identical values for e; and es.

As noted earlier, a major concern of Yarowsky style bootstrapping is the selectivity of
the classifier. Following the garbage-in-garbage-out principle of classifiers, it would be wise
to make sure that the classifier only spits out precise information. DIPRE handles this by
favoring long patterns, thus making matches less likely.

Snowball handles selectivity by first removing all patterns that were induced by less than
Tsup €xtracted tuples (i.e., the group that induced the pattern only contained a small number
of tuples). A confidence score is then assigned to each pattern. On every iteration Snowball
measures, for each pattern p,, , the number of positive and negative pairs resulting from the
application of that pattern. A pair (o, l;) is considered positive if, on the current set of pairs
used to induce the patterns, T, there exists a pair (og,[};) € T with a high confidence value,
Conf((ox,1},)), and Iy = I},. (o, lx) is considered negative if if there is a high confidence pair
with [, # [}, and neutral otherwise. Using this, the confidence of a pattern, p,, , is defined

as:4

num-pos(py,)
num-pos(p,,) + num-neg(py,)

Conf (pgk) =

In other words, if Snowball has confidence in the pairs extracted by previous iterations of
the system, and this pattern generates lots of those pairs and few contradicting pairs, then
the system will have confidence in those patterns.

Now that a confidence metric has been introduced, the simple approach would be to only
use patterns with highest confidence to introduce new pairs for the next iteration, which is
the method of DIPRE. However, Snowball takes a different approach. Instead Snowball uses
the confidence measure of patterns to recalculate the confidence of the pairs that the induced
patterns extract. Only those pairs with highest confidence are kept for the next iteration.

2.2.3 Labeling the Data

To extract new pairs, Snowball first runs a named-entity tagger over the data to identify all
the location and organization entities within the documents. For each organization /location

4Note that the Conf function is overloaded. There are versions for both patterns and as well related
pairs.

pair, (o,[) that are within the same sentence, the system extracts a tuple, tup(, ;) in the same
manner as in the previous section. Hence, a pair that occurs many times will have a set of
tuples associated with it, tupg?l). This tuple is then compared to all the induced patterns
that were previously extracted and introduced to the classifier.

For each candidate pair, (o,[), the system records which patterns match the pair with
a similarity greater than 7,,, as well as what the similarity value is. More concretely, for
(0,1), the system stores a set:

M = {< p,,, Match(tupgi?l),pgk) > | Vpg,, tupgf)?l) s.t. Match(tupgi?l),pgk) > Teim }
Let M;[0] be the pattern involved in the i entry of M and M;[1] be the similarity score
causing this entry.
Snowball defines the confidence of a pair, (o, ;) as:

| M|
Conf (o0, 14)) = 1 = [[(1 = (Conf(M;[0]) - M{1])
i=0
This value is high when the pair (o, lx), is matched by many tuples with high similarity
to patterns that the system is confident in.
The seed set for the next iteration is set to the original seed set, plus the candidate pairs
with highest confidence (confidence greater than 7..,s).

2.3 Discussion

The primary advantage of Snowball and other related semi-supervised training systems is
that they require little to no human annotation. Later, the work of Miller et al. [7] and
Zelenko et al. [9] will be discussed, both of which rely heavily on a large set of manually
annotated examples.

Having said this, Snowball relies on the use of a named-entity recognizer when matching
patterns. Current state-of-the-art entity recognizers are largely supervised systems [3, 4],
requiring annotated training data. Identifying organizations and locations is not problematic
due to the availability of data annotated with these entities. However, this is not the case
for all entities and it may be difficult to extend Snowball to incorporate other relation types.

Furthermore, Snowball relies on an intrinsic property of organizations and locations -
that every organization has its headquarters in only one location - when calculating the
confidence score of a pattern. This property does not hold for all relations. For instance, in
the author-of relation, one author can be associated with many books and one book with
many authors. Even organizations can have multiple headquarters in different parts of the
world.

One major disadvantage of Snowball is its reliance on a large number of input parameters
(I counted nine in total). The definition of most of these parameters is clear, but there is
no guarantee that good values on one set of data will translate to good values on all sets
of data. However, these parameters do provide a method for which users can balance their
requirements of the system.

A simple refinement to Snowball would be to replace the pattern matching method of
extracting new seed pairs with a more sophisticated classifier. For instance, Yarowsky [6]

10

uses a decision list algorithm to classify word-sense. Similarly, one could extract every orga-
nization/location pairs in relative proximity and create a feature vector of their surrounding
context. The feature vectors for known pairs can be used to train the classifier. In fact,
this would allow for the training of almost any classifier, including current state-of-the-art
classifiers like maximum entropy [15] and support-vector-machines [11]. These classifiers
usually define a probability (or some similar notion) to each classification, which would nat-
urally substitute for confidence in order to maintain selectivity. Supervised classifiers are
also usually quite principled, either minimizing error or maximizing likelihood of the labeled
data.

At the beginning of this section an alternative semi-supervised bootstrapping algorithm
was mentioned: co-training. Recent studies on natural language parsing have shown that co-
training actually outperforms Yarowsky style bootstrapping in empirical tests [16]. Though
the domains are somewhat different, this does provide evidence for improved semi-supervised
approaches.

Yangarber [17] proposes semi-supervised relation extraction using a co-training like al-
gorithm called counter-training. Unlike co-training, the multiple classifiers provide negative
and not positive information to the other classifiers. This negative information will eventu-
ally cause all the classifiers, save one, to stop acquiring patterns. Yangarber argues that each
classifier learns a specific subset of patterns with high precision, since low precision patterns
may intrude on another classifiers domain and get negative information from that classifier.
This way it is possible to maintain selectivity through the precision of each classifier and
coverage through the use of multiple classifiers.

The main problem with Yarowsky style bootstrapping algorithms according to Yangarber
[17] is that the patterns that the system extracts degrade with every iteration since ultimately
some errors will be introduced to the system. With co-training or counter-training algo-
rithms, the multiple classifiers play a role in preventing this from happening by constraining
each other through the different views of the data.

3 Integrated Parsing: Miller et al. [7]

3.1 Background

This sections moves away from the analysis of semi-supervised methods into the domain of
fully-supervised methods. In particular, the focus will be on the work of Miller et al. [7],
which use an integrated parsing approach to extracting relations.

The primary motivation of Miller et al. is the observation that most relation extraction
systems are pipelined. Usually entity tagging and other syntactic tagging such as part-of-
speech and parse tree generation are done beforehand using separately trained models. The
output of these models are then used as input to the relation extraction model. In the last
section, the system of Agichtein and Gravano [5] indeed use an entity tagger’s output as its
gold standard. In fact, Snowball can be seen as a repeating pipeline, in which output from
one stage is taken as gold standard for the next. Hence, errors at one stage propagate to
errors in future stages.

Agichtein and Gravano are acutely aware of this. That is why selectivity is a central issue

11

Figure 2: An example parse tree. The version on the right is has been lexicalized.

S(]umped)
\ \
]umped)
\
NP boy P(over)
—
NP(stream)
I 1
v DT DT =" N
The boy jumped over the stream The bo Jjumped over the stream

when devising semi-supervised methods. However, Miller et al. take a different approach.
Their system makes all relation, entity and syntax decisions at once using a generative
probability model. They create this model by encoding all decisions into natural language
parse trees. Once this is done, then the model of interest becomes P(T,S), where T is a
parse tree and S the input sentence.

3.1.1 Parse Trees

The data structure primarily employed by Miller et al. [7] are natural language parse trees.
Each node in a parse tree is labeled to represent the linguistic entity in which that node
subsumes, i.e., noun phrase by NP, verb phrase by VP and sentence by S. Parse trees can be
broken down into the root node (usually S), internal nodes, preterminal nodes and terminal
nodes. The terminal nodes, or the leafs of the tree, are the words of the sentence. The
preterminal nodes represent the part-of-speech of each word, such as noun, preposition and
determiner. Figure 2 shows an example parse tree.

A lexicalized parse tree is one in which a head word is assigned to each internal node
of the tree. Intuitively the head word is the most representative word of the phrase that a
internal node subsumes. This is typically the verb of a verb phrase or the right most noun in
a noun phrase. Collins [18], provides a deterministic algorithm for lexicalizing a parse tree
that is widely used. Figure 2 also shows a lexicalized parse tree.

3.2 The Collins Parser

Recently, due in large part to the availability of a large tagged corpus [19], much work has
been done in the area of statistical supervised automatic parsing techniques [20, 18]. One of
the most widely used parsing models is the lexicalized generative model of Collins [18]. The
model presented here is the variation of Collins model used by Miller et al.

Collins model works by generating information from the head outward. The basic gener-
ative process is outlined in Figure 3. It can be seen as a depth-first model that starts with
some non-terminal, generates head information for that non-terminal, and then begins to
generate left and right modifier information. In order to begin the process, a head word and
POS tag must be generated for the sentence from the start distribution P(hg,ts|START).
Modifier generation is terminated when the model generates the null modifier.

12

Figure 3: Modified Collins parsing model used by Miller et al.

GenerativeParse(NN, wy, tn)

generate head child non-terminal C' from P(C|N)
while (generate left modifier non-terminal M;; # null from P(M;;|N,C,wy, M ;—1))
generate head POS for modifier typ;,, from P(tn; ,|Ms,wn,tn)

generate head word feature for modifier fy,, from P(fa, ,[Mii,ta, ,, wN,tn, known(wy,,))

1.
2.
3
4. generate head word for modifier wyy,, from P(way |Mii,ta, ,, wN,tN)
5
6 GenerativeParse (M, wyy, ; »tm, ;)

7.

Repeat 2-6 for right modifiers

known(w) = true if w is known word.

The model used by Miller et al. differs from the original Collins model in many significant
ways. Primarily, the Miller et al. model uses a first order Markov assumption when generating
new modifiers, whereas Collins uses a 0" order model. Miller et al. also generates word
features for unknown words, such as capitalization. This is most likely a way to improve
entity recognition, since orthographic features are often very indicative of a tokens entity
type. Miller et al. also make no mention of complement distinction or sub-categorization
generation and it is unclear what part, if any, these are considered in the model. Finally,
there is no mention of distance or verb crossing statistics in the distributions.

Like Collins, Miller et al. use smoothed maximum likelihood estimates to calculate the
required probability distributions. For example, the probability of generating a word given
its history is defined as:

P(wn, | Mg, ta, , wN, tN) =

M P(wng, [My tar s wn) + A P(war, [M, tar, , tv) + X3P (wag, [Mg, tar) + AP (war, |t)

The purpose of these smoothed estimates is too account for sparseness in counts for
distributions with a lot of history by backing off to less sparse estimates. The parameters \;
can be calculated in any number of ways. The only constraint is that >, A; = 1.0.

In order to find the best parse given an input sentence, the entire search space must
be explored. Though this space is exponential in size, it is still possible to search it in
polynomial time since all calculations are over local parent/child subtrees. This allows for a
modified version of CKY [21] to be used. The complexity is still high at O(n®) for lexicalized
trees, making the use of pruning necessary to limit the size of the search to those chart items
with highest score.® The best parse can be retrieved by following back pointers from the
constituent with highest probability that is headed by the start symbol and spans the entire
sentence.

5The score is the probability of a constituent generated by the model multiplied by the prior probability
of the non-terminal heading that constituent [22].

13

Figure 4: a) A parse tree with entity annotations but no relation annotations. In this
tree William Shakespeare is related to King Lear, through the author-of relation. Lexical
information left of for simplicity. b) The same parse-tree but with relation information
included.

a) b)

S S-author-of-r

VP V P-book-ptr
/ ~ ~
NP NP N P-per-r N P-book-r
1 | — 1 / _—

N v N N N-per N-per v N-book N-book

William Shakespeare wrote King Lear William Shakespeare wrote King Lear

3.3 Annotating Relations in Parse Trees

A fundamental insight of Miller et al. [7] is the realization that by encoding relation and
entity information into a parse-tree’s non-terminals, results in the ability to train a state-
of-the-art parser to extract relations. No additional models are necessary for relations or
entities since they are encoded in the resulting parse trees.

For entities, it is fairly straight forward to encode them in a tree provided that all parse
trees obey entity boundaries. All that is required is to find the lowest most node in the
tree that covers all and only the tokens of an entity and augment the label of the tree to
include information about the entity. Miller et al. label this lowest most node as a reportable
type. For example, if the node is a noun phrase and covers an organization entity, then the
node would be labeled NP-org-r. All nodes in the tree rooted at this node would also be
augmented to store entity information, except that these nodes would not be reportable (i.e.,
N-org). This is a key distinction in the annotation guidelines. Only those nodes marked up
as reportable represent complete entity or relational information.

Encoding relations is a little more complicated. To demonstrate the procedure, the two
instances identified by Miller et al. in which a relation might occur in a sentence will be
examined. The first is when two non-overlapping and non-modifying entities are related in
a tree. Consider the example in Figure 4. In this sentence there are two related entities,
William Shakespeare and King Lear, which are related through the author-of relation. To
annotate this relation, the system finds the lowest-most node that subsumes both entities, in
this case the start node S. This node is then augmented to indicate the author-of relation
type. The book entity is not a direct child of the relation tag, so pointers are added to make
it possible to traverse the tree and find the appropriate argument. This would be necessary
in the case of argument ambiguity, e.g., William Shakespeare wrote King Lear and not The
Inferno. Miller et al. also include nodes to distinguish the arguments of the relation. Most
likely this is necessary when one node subsumes multiple relations of the same type (e.g.,
William Shakespeare wrote King Lear, Richard III and Othello.), otherwise the pointer nodes
should be sufficient as is the case in Figure 4.

14

Figure 5: A parse tree with entity annotations but no relation annotations. This is the case
when one entity in the relation modifies the other.
/S'
N P-per-des-r

/ T~»rp \VP
/ > / _
N P-per-desc N P-org-r
1 ~— —~ 1

D Vv N-per-desc P N-org N-org

A paid consultant to ABC News was involved ...

Figure 6: Parse tree from Figure 5 with relations annotated.

S

N P-per-des-r
—
P P-link-employee-of
/ —

PP-org-ptr VP
~
N P-per-desc N P-org-r
1 ~— — 1
D / 1% N-per-desc P N-org N-org —_—
A paid consultant to ABC News was involved

The second case handled by Miller et al. is when one entity is a syntactic modifier of
another. One example given is A paid consultant to ABC News, in which ABC News is an
organization and the whole string a person description, with both entities in an employee-of
relation. This is the more difficult case when the modifier entity is actually part of the entity
being modified. It can be argued whether this is the correct annotation in this case. One
possible annotation would have a paid consultant as a person description. However, it must
be assumed that such relations are possible since they existed in the guidelines for the data
used by Miller et al. Consider the example given in Figure 5. By the previous guidelines
one can find the lowest most node that subsumes both entities involved in the employee-of
relation. However, this node is actually the reportable person description entity. The simple
approach would be to simply add a relation annotation to this node. Miller et al. do not
take this route and supply no reason; however, one can imagine that further annotation of
nodes that have already been labeled as entities may result in sparse data issues. Instead,
Miller et al. insert a link node directly below the topmost node and the child of that node
that subsumes the second entity in the relation (the organization in this case). This node
is then labeled with the employee-of relation and receives the same syntactic category as
the child node. Finally pointers to the entities are included so that it is possible to find the
reportable entities directly from the node labeled with the relation. The modified tree from
Figure 5 can be seen in Figure 6.

These guidelines for relation annotation seem to be incomplete. An example given earlier
was, William Shakespeare wrote King Lear, Richard III and Othello. In this case one node

15

subsumes three different binary author relations and it is not specified what the correct
tree augmentation should be. Also not specified is how to handle crossing relations, such as
Shakespeare and Dante wrote King Lear and The Inferno respectively. A sound and complete
guideline for annotating all relations in parse trees is a daunting task and beyond the scope
of this review. One can only assume that since Miller et al. do not discuss any difficulties,
that their annotation guidelines were sufficient for their data.

The fact the the annotation guidelines are a times unclear should not detract from the
method proposed. The key insight was that augmenting trees to include relation information,
allows for the easy creation of a model which neatly incorporates all syntactic and semantic
decisions. The choice of how to actually encode the trees is a separate issue. It is not one
that should be ignored, and the fact that Miller et al. do not provide any motivation for
their choice of annotations is disappointing.

3.3.1 Some Practical Details

In order to create a large set of labeled examples, Miller et al. run the Collins parser trained
on the Penn Treebank [19] over their training data. The model is run so that the parser
only outputs trees that obey the predefined entity bracketing. The trees are then annotated
with entity and relation information. Finally, it is possible to retrain the Collins parser on
the augmented trees in order to tag new sentences.

3.4 Discussion

The intuition behind the integrated parsing approach seems sound. Every entity, relation,
POS, and parse tree decision is related and they should all be made at the same time.
In particular information about relations, entities and tree structure are highly correlated.
For instance, if there is evidence that the tree structure should have a verb phrase headed
by s that is modified by a noun phrase headed by author that contains a prepositional of
phrase, then this is strong evidence that there needs to be an author entity to the left and an
author-of relation tagged in the tree. Similarly, there are probably few syntactic variants for
which this relation may be embedded. Hence, author and book entity information provides
evidence for one of these syntactic structures.

This last point raises a possible criticism of the model. Collin’s parsing model only
considers local pairwise dependencies with very little history (relative to the entire tree).
A major advantage of using parse information to influence relations and vice versa is that
through parse trees, long-range structural information can give rise to relations between
distant entities. However, since parsing models are constrained to be local (due to complexity
issues), it is hard to see how it is possible to improve the accuracy of long range dependencies.
A possible solution to this problem is the recent use of re-ranking methods for parsing models
[23]. Re-rank models take the k-best candidates from a (usually) generative parsing model
and apply a discriminative classifier over them to pick the best candidate. The primary
advantage is that these models can contain features over the entire structure of the tree,
since the search is constrained to only consider k different parses. This could allow for
the use of features over long range dependencies, which could significantly improve relation
identification.

16

The model of Miller et al. is also sentential model and on the surface appears to only
manage simple relations. Complex relations can exist over multiple sentences making such
relations difficult to extract from a sentential system. Furthermore, it is not completely
clear how to extend the tree annotation procedure to include relations containing arbitrarily
many entities or multiple relations that are both represented by the same lowermost node
in a tree. Most of these annotation problems can most likely be fixed by increasing the
amount of markup on internal nodes or by inserting new nodes into the trees, but this
will eventually lead to sparser probability estimates since the set of labels will undoubtedly
increase dramatically.

4 Kernel Methods: Zelenko et al. [9]

4.1 Background

As noted in the last section, one of the primary disadvantages of the Miller et al. parser is its
inability to incorporate long-range features into relation decisions. Another possible draw-
back is the use of a generative parse model since generative models cannot easily represent
a rich set of dependent features in a computationally tractable manner®.

The model of Zelenko et al. [9] is designed to combat both these problems. By using the
output of a shallow parser as its gold standard, it is not constrained to create the parse and
can instead consider non-local dependencies similar to parse re-ranking. For each shallow
parse, the model generates all possible relation instantiations and makes straightforward
yes/no classifications on each instantiation to determine what relations, if any, a shallow parse
may contain. This allows for the use of powerful discriminative classification techniques,
which can easily handle millions of highly dependent features. Their discriminative methods

of choice are kernel-based methods such as SVMs [11] or the voted perceptron [10].

4.2 Shallow Parsing and Example Creation

Unlike Miller et al., Zelenko et al. use shallow parses and not full parses to encode relations.
A shallow parse is like a full parse, except it only aims to identify the basic surface level
components of a sentence, such as noun phrases and entities. The shallow parser used by
Zelenko et al. identifies noun-phrases, people, organizations and locations as well as the part-
of-speech tags of those words that occur outside noun-phrases or within noun-phrases when
there are non-noun words. Figure 7 shows an example.

Once the shallow parse regions of a sentence have been established, the primary question
asked is whether a subtree is an example of the relation of interest. Zelenko et al. are
restricted to those relations that consist of people, organizations or locations. However,
the method generalizes as long as there is access to shallow parses that identify the entity
components of a relation.

Assuming there is a large set of labeled data, it is possible to create a set of posi-
tive and negative examples for classification. For example, say there was interest in the
employee-of relation. First a sentence is parsed with the shallow parser. Then, for every

6Tt should be pointed out that for parsing, generative models still represent the state-of-the-art.

17

Figure 7: Example of a shallow parse structure used by Zelenko et al. [9]

Nprer
/ ~
NP per NP per NP per N P-org
1
N >N P | \
Jane szth confirmed that John szth s he chief scientist at Hardcom Corporation

Figure 8: Extracted positive and negative examples

Positive Example:
N P-per(role = per)

N P-per —_— N P-org(role = org)

N S P \

the chief scientist at Hardcom Corporation
Negative example:

/ ’ \ NP per
N P-per(role = per) N P-per N P- per | NP org(role = org)
wDT | v b N Sn

Jane Smith confirmed that John Smith is the chief scientist at Hardcom Corporation

person/organization pair in the tree, the lowest common node subsuming both entities is
found and the subtree rooted at that node extracted. The entity nodes are labeled with a
role (e.g., person or organization) in the relation. If those entities are known to be related,
then the subtree is given a positive classification and negative otherwise.

Considering the example in Figure 7, it is possible to construct multiple positive examples
(when the person role is ‘John Smith’, ‘the chief scientist” or ‘the chief scientist at Hardcom
Corporation’ and the organization role is ‘Hardcom Corporation’) and one negative example
(when the person role is ‘Jane Smith’ and the organization role ‘Hardcom Corporation’).
Figure 8 displays two extracted labeled examples.

4.3 Kernel Methods

Having extracted various positive and negative examples it is fairly straightforward to create
a classifier to identify sub-trees containing the relation of interest. For instance, one could
extract a feature vector from the tree and train a linear-regression, perceptron or naive Bayes
model. The problem would then be reduced to finding appropriate features for this problem.

Another approach, which has gained popularity recently [11], is to use kernel-based meth-
ods. A kernel is a similarity function, K(z,y) : X x X — R, over input pairs (in our case

18

subtrees) that must be symmetric and positive-definite.

The primary property of kernels, often called the kernel trick, is that every kernel im-
plicitly represents the dot product between two inputs in a high dimensional feature space.
This follows from Mercer’s theorem [24] that states all kernel functions can be written as:

K(z,y) = Z Aigi(2)9i(y)

where ¢;(x) is the i’ eigenvalue of x.

The kernel trick is very important. It allows for the substitution of a kernel in any learn-
ing method which can be reformulated so that all calculations on input feature vectors are
pairwise dot-products. A surprisingly large number of learning paradigms can be reformu-
lated into this form, including the perceptron algorithm and support vector machines, both
of which Zelenko et al. consider.

There are many motivations for using kernel-based methods as opposed to explicit feature
representations. Kernels can make feature vector calculations in large or even infinite spaces
usually on the order of the size of the input and not on the size of the corresponding feature
space’. Also, all kernel calculations need be to be made only once, when computing the
Gram matrix K,, = K(z,y). Feature spaces also require large maps from subsets of the
input to dimensions in the space, which can be both difficult to manage and difficult to store
in memory if the number of dimensions grows too large. Kernels, on the other hand, simply
require a function definition and space on the order of O(T?) to store the Gram matrix,
where T is the size of the training data.

Before the definition of a relation subtree kernel is given, some notation must be specified.
Specifically, each node in a subtree, N, has both a role, N.role € {none, per,org,etc.}, a
type, N.type € {NP, NP-per,V, etc.} and a substring of text in which that node subsumes
N.text. Zelenko et al. define the following kernel on two subtrees rooted at Ny and Nj:

0 if (N, No) =0
KNy, N>) = { k(Ny, Ny) + K.(Ny, N,) otherwise.
1 if Ny.role = Ny.role & Ni.type = Ns.type
0 otherwise.

t(Nl, NQ) = {

1 if Nj.text = Ny.text

k(N1 Ny) = { 0 otherwise.

To define K, a definition for subsequences of child nodes for a node N is needed. Say a
node N has ordered children C' = {C4,Cy, ..., C,,} (from left to right). Define Cs C C' as
any subset of C' such that the order of the nodes in C's obey the same order as in C' (e.g.,
C, cannot occur before Cy in Cg). Let Cg[i] represent the i member of Cs. Also, define a
function D(Cy) as the difference in index between the rightmost child and leftmost child in
the subset®. Then K. is defined as:

"Usually this problem is overcome by sparse representations.
Se.g., D({Cg, 04, Cg}) =9-2="T.

19

‘Csl‘ |C,S'1
Ko(N1, Ny) = > AP(Cs1) \P(Csy) Z K(Cgi], Cs,i] H t(Cs, 1], Cs,[5])
CSI=CSQ=|05'1|:‘CSQ‘

This is a rather lengthy definition of a kernel, so it will broken down piece by piece for a better
understanding. The simple components of the kernel are the functions ¢(Ny, N2), which is an
indicator function checking that two nodes have the same syntactic type and semantic role,
and k(Np, Ny), which is an indicator function checking that two nodes subsume the same
textual string. By examining the kernel function K(z,y) it is clear that if two subtrees do
not have roots with the same type and role, then they have a value of 0.

The key computation of the kernel is the function K.(z,y). This function sums over all
equal length child subsequences of two nodes N; and N, adding the value of the recursive
kernel calls to the aligned children in the subsequences. The product term in this calculation
requires that every aligned child node in the subsequence has the same type and role for a
subsequences contribution to be added to the sum. Finally, each subsequence contribution
is weighted by the (user-defined) parameter A\, 0 < A < 1, raised to the power of the distance
between the rightmost and leftmost child in the subsequence. This results in spread-out
matching subsequences being penalized.

What does the kernel value actually represent? First of all it is the sum over all common
partial-trees between N; and N, that can be created only by removing internal subtrees. Each
node in the common partial-tree is weighted by the A values plus 1 if the node subsumes the
same text in the original trees. The weight of each tree is thus the sum over the weight of
all the nodes in the tree.

Zelenko et al. provide an O(mn?) algorithm for calculating K.(Ny, Ny) where m and n
are the number of children of Ny and Ny, m > n and K. has already been calculated for
all children. For two trees N; and Ns, it is then possible to compute K., for every pair of
matching nodes bottom up starting with the nodes that span the smallest amount of text.
Assuming in the worst-case that all internal nodes in the two trees are matching and that
there are k internal nodes in the largest subtree, then the calculation is O(k*mn?) in total,
where m and n are the longest sequences of children for some node in the two respective
trees.”

Finally, Zelenko et al. provide a proof that K (z,y) is actually a kernel. The proof relies
on the fact that the base functions k and t are trivially kernels as well as the property
that kernels are closed under multiplication and addition. Using structural induction on the
subtrees with their leafs as the base case it can be shown that K. is a kernel. It then follows
that the whole function K is a kernel.

4.3.1 Classification

As noted earlier, every kernel implicitly represents the dot product of the two input examples
in some high dimensional space. Therefore, any learning algorithm that can be reformulated

9Zelenko et al. present two formulations of their kernel. This first is when child subsequences may only
contain contiguous children and the second is when the subsequences can be sparse. The first formulation
leads to better complexity for the kernel calculation, but the latter leads to significantly better performance.
I assume the second formulation throughout this review.

20

Figure 9: Perceptron algorithm. a) the algorithm in its more familiar form, b) the reformu-
lated kernel version of the algorithm.

a) b)
Input: training instances {(vi,x;)}7; Input: training instances {(vi, %)},
1. w0 1. o <~ 0
2. for i:1,...,T 2. for¢:1,...,T
(a) if yi(w- (%)) <0 (@) if yi(30; ay;(®(z)) - @(2:))) <0
(b) wo— w + y;D9(x;) (b) a; —a; +1
3. end for 3. end for
4. repeat 2-3 until convergence 4. repeat 2-3 until convergence

so that each input example is only used in dot product calculations with other input examples
can be considered a kernel method, since it is always possible to substitute a kernel calculation
for a dot product calculation.

Possibly the simplest kernel method is the perceptron algorithm. This is presented in
Figure 9. By observing the update step of the perceptron algorithm, it can be easily shown
that each training pair instance (y;,x;) is added «; times to the final weight vector w, where
a; is a natural number. Hence, the final weight vector is equal to w = Y, a;y; ®(x;). Further-
more it is possible to calculate «; by adding 1 at each iteration in which x; is misclassified
and it is easy enough to show that the weight vector at any stage can be calculated by,
w = 3, a;y;P(x;), thus:

WD) = 3 au0(x) - B(xi) = Y s (B(x;) - D(xy))

The result is that the perceptron algorithm can be rewritten as b) in Figure 9.

In this reformulated perceptron algorithm, input is only used during the dot product
calculation of the feature vectors. Hence, a kernel function may be substituted for that dot
product. It is not difficult to show that this result also generalizes for the voted perceptron.

Zelenko et al. experiment with both the Voted Perceptron and support vector machines
(SVMs). SVMs are similar to the perceptron in that they find a separating hyperplane (when
the data is separable), except that SVMs guarantee that the hyperplane returned will be
that which maximizes margin. Briefly, maximizing margin will result in a hyperplane that
is as far away as possible from the positive and negative examples closest to the decision
boundary. The motivation is that max margin will lead to improved regularization since
it fits equally well to both the positive and negative inputs. Max margin approaches, like
SVMs, have been extremely successful in the classification community, offering state-of-the-
art results [11]. In fact, one of the key findings of Zelenko et al. is that SVMs significantly
outperform Voted Perceptron for relation extraction.

It can be shown that the key step in the SVM learning algorithm is the solution to:

1
max > a; = 5) @iy (D(x) - D(x;))
i irj
subject to a; > 0 and >, ai;y; = 0. This is a quadratic optimization problem, and there are
multiple methods for solving this equation [24]. Again the kernel trick may be used since

21

the training data is only used during feature vector dot products. For both perceptron and
SVMs, once « is found, it is possible to classify a new instance x by:

Flx) = POS if ¥,y K(x,%x;) >0
X) =\ NEG otherwise.

4.4 Discussion

There are two primary advantages of the approach taken by Zelenko et al. The first is that
their system is able to exploit non-local dependencies since they are not required to model
the parse structures of their system (unlike Miller et al.). This is explicitly handled through
the similarity metric. Trees that share more substructure will be given a higher similarity
score, making the function global in nature. The second advantage is that by reformulating
the problem into a yes/no classification problem, they are able to take advantage of state-
of-the-art discriminative methods like support vector machines.

To gain these advantages, there is a fundamental trade-off. Miller et al. propose a
model in which decisions are made in unison, so that evidence for one decision may also
provide evidence for another (i.e., phrase structure providing evidence for relations). Ze-
lenko et al. must take the output of their parser as their gold standard and as a result is
susceptible to pipeline errors. Having said that, noun-phrase chunks, part-of-speech and
person/organization/location entity information are all well-studied problems with current
systems displaying accuracy well above 90% [25, 26, 4]. Taking these parses as the gold
standard may not result in too many pipelined errors.

It is not made clear by Zelenko et al. why they chose shallow parsing as the underlying
structure for their kernel methods. Complete parse structure would probably provide more
information, but automatic parsers might introduce more errors and the kernel computation
will most likely be more cumbersome due to the added structure. Culotta and Sorenson
[27] define a relation kernel over dependency structures, however they do not provide an
empirical comparison to Zelenko et al.

As for the kernel function itself, it appears to be a good similarity metric. In fact, Zelenko
et al. do present a very significant empirical improvement using their tree kernel as opposed
to using a linear kernel within the SVM framework. However, in places the kernel seems a
little restrictive. For instance, the indicator function k(z,y) that is only on when substrings
match exactly is excessive. A functions that takes into account string similarity, edit distance
[28] or even word overlap might be more indicative. Clearly, it would be beneficial for the
two strings Bill Gates works at Microsoft and Microsoft employs Bill Gates to contribute
some weight to the similarity score. Similarly, by considering the parse structure for these
two sentences, it can be seen that some score will be given for subsequences of length 1
(the matching noun phrases Bill Gates and Microsoft), however no weight will be given for
a sequence of length 2 since the nodes appear in the wrong order, and the algorithm only
considers ordered sequences. However, including unordered subsequences into the kernel
calculation would result in a massive computational challenge.

This leads to the last point. As stated, the kernel computation in the worst cast is
O(k*mn®). To calculate the Gram matrix would then take O(T?k*mn?®), where T is the
size of the training data. Even with reasonable values of k, n, and T, this computation is

22

enormous. Zelenko et al. acknowledge this fact but provide no details as to the length of
training and testing using their method.

5 Discussion and Future Directions

In each section, I presented multiple ways to improve upon the methods described and, when
possible, gave a qualitative comparison between them. In this section a brief summary of
these points is provided.

5.1 Quantitative Comparison?

Throughout this critical review I have failed to mention the empirical performance of each
system on their varying tasks. I did so intentionally, since each system was evaluated with
different data and relations of interest. Comparing numbers would be, at best, misleading.
Instead I decided to focus on the qualitative aspects of each system. It would be an interesting
experiment to test each system on the same set of data to check empirical performance. There
exist so-called ‘bake-off” competitions that serve just this purpose, such as MUC and its new
incarnation ACE.

5.2 Semi-supervised Methods

One simple way to possibly improve semi-supervised approaches is to use trainable classifiers
such as naive Bayes classifiers, decisions lists, perceptrons and support vector machines. An
advantage of using such classifiers is that most provide a natural way of defining confidence
of predictions through probability or scores. It may be tricky to incorporate some of these
classifiers since most are quite powerful and could over-fit to the small amount of initial
seed data. Some care would have to be taken, either through proper regularization or
feature selection, in order to ensure that new examples are introduced. The classifiers also
provide natural ways to handle non-local features such as those pertaining to document class
and structure. For instance, it might be possible to train a separate classifier to recognize
documents containing author information (e.g., Amazon.com pages). The output from this
classifier could then provide beneficial features to a classifier that identifies author-book pairs
in order to increase coverage.

There are also the considerations raised by Abney [13]. Abney only requires minor
modifications to the original Yarowsky algorithm plus the use of EM or decision lists to
show that the algorithm increases the likelihood of the data (or a related function). This
would allow the semi-supervised methods to have stronger theoretical guarantees, which is
a major advantage of supervised methods.

5.3 Supervised Methods

Unlike entity, part-of-speech and noun-phrase identification, which have been successfully
extracted using local information only, relation extraction could benefit greatly from the use
of non-local structural information. Generative parse models create tree structure, however,

23

state-of-the-art models do so by considering local information only. Recent advances in parse
re-ranking [23] allow for the output of generative parses to be re-ranked with discriminative
methods. The methods can incorporate more global information due to the limited search
space for each training instance (usually < 30 trees).

Zelenko et al. avoid this problem entirely by assuming the output of a shallow parser
is gold, and then defining tree kernels over the shallow parses. However, as noted, this
reverts back to a pipelined method and is susceptible to errors common to such systems. A
combination of the Miller et al. integrated parse method combined with a re-ranking method
using Zelenko et al. kernel definitions would definitely be an experiment worth attempting.

There is also the question of appropriate data structure for representing relations. Miller
et al. use full parse trees, whereas Zelenko et al. use only shallow parses. Recently Gildea and
Palmer [29] showed that a system that uses full parses to extract semantic role information
significantly outperformed one using only shallow parse information. This is very significant,
since semantic role, or predicate-argument, identification is very similar to relation extrac-
tion. Both depend on identifying the presence of a relation/predicate as well as identifying
the proper arguments.

It seems obvious that some complex syntactic structure should be beneficial, but there are
actually many to choose from. For instance, Culotta and Sorenson [27] employ an approach
similar to Zelenko et al., but they use dependency trees as the underlying data structure.
Dependency structure seems like a reasonable alternative since they naturally model verbs
and their arguments, which is how many relations can be seen. Link grammars [30] are related
to dependency grammars but also include syntactic information on connectives and could
offer the advantages of parse-tree-like structural information combined with the improved
parsing complexity of dependency grammars.

5.4 Semi-supervised vs. Supervised

It is hard to add more to the ongoing debate between semi-supervised and supervised ap-
proaches to not only relation extraction, but also natural language processing in general.
From the literature, it seems that the community is definitely leaning towards supervised
approaches when annotated data is available. Empirically, various bake-offs have also shown
that supervised approaches outperform semi-supervised or unsupervised approaches on shal-
low parsing and entity extraction [4, 31]. Having said that, there are cases when little to no
training data is available. Since annotated data can be expensive to create, semi-supervised
approaches could prove highly useful in such situations.

5.5 Non-sentential Relations

A major deficiency of all systems studied here is that they focus primarily on sentential
relations, in particular Miller et al. [7] and Zelenko et al. [9]. Relations are complex struc-
tures spanning multiple sentences and in some cases multiple documents. It would not be
straightforward to modify the methods presented here to capture such long range relations.
In particular, those methods relying on parse information would face inherent difficulty cap-
turing these relations due to the sentential nature of parse trees.

24

References

1]

[5]

[6]

[10]

[11]

[12]

Berners-Lee T, Hendler J, Lassila O: The Semantic Web. Scientific American 2001,
284(5):34-43.

World Wide Web Consortium|[http://www.w3c.org]].

Bikel DM, Schwartz R, Weischedel RM: An algorithm that learns what’s in a name.
Machine Learning Journal Special Issue on Natural Language Learning 1999, 34(1/3):221-231.

Tjong Kim Sang EF, De Meulder F: Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition. In Proceedings of CoNLL-2003
2003, pp.142-147.

Agichtein E, Gravano L: Snowball: extracting relations from large plain-text collec-
tions. In Proceedings of the fifth ACM conference on Digital libraries 2000, pp.85-94.

Yarowsky D: Unsupervised Word Sense Disambiguation Rivaling Supervised Meth-
ods. In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguis-
tics 1995, pp.189-196.

Miller S, Fox H, Ramshaw LA, Weischedel RM: A Novel Use of Statistical Parsing to
Extract Information from Text. In Proceedings of 1st Meeting of the North American
Chapter of the Association for Computational Linguistics 2000, pp.226—233.

Collins M: Three Generative, Lexicalised Models for Statistical Parsing. In Proceed-
ings of the 35th Annual Meeting of the ACL 1997.

Zelenko D, Aone C, Richardella A: Kernel Methods for Relation Extraction. Journal of
Machine Learning Research 2003, 3:1083-1106.

Collins M: Discriminative Training Methods for Hidden Markov Models: Theory
and Experiments with Perceptron Algorithms. In Proceedings of Empirical Methods in
Natural Language Processing 2002.

Joachims T: Learning to Classify Text using Support Vector Machines. Kluwer 2002.

Blum A, Mitchell T: Combining Labeled and Unlabeled Data with Co-training. In
COLT: Proceedings of the Workshop on Computational Learning Theory, Morgan Kaufmann
Publishers 1998.

Abney S: Understanding the Yarowsky Algorithm. Computational Linguistics 2004,
30(3).

Brin S: Extracting Patterns and Relations from the World Wide Web. In WebDB
Workshop at EDBT 1998.

Berger AL, Della Pietra SA, Della Pietra VJ: A maximum entropy approach to natural
language processing. Computational Linguistics 1996, 22.

Steedman M, Osborne M, Sarkar A, Clark S, Hwa R, Hockenmaier J, Ruhlen P, Baker S,
Crim J: Bootstrapping Statistical Parsers from Small Datasets. In Proceedings of the
Annual Meeting of the European Chapter of the ACL 2003.

25

[17]

[18]

[19]

[20]

[21]

22]

23]

[30]

[31]

Yangarber R: Counter-Training in Discovery of Semantic Patters. In Proceedings of
the 41st Annual Meeting of the ACL 2003.

Collins M: Head-Driven Statistical Models for Natural Language Parsing. PhD thesis,
University of Pennsylvania 1999.

Marcus M, Santorini B, Marcinkiewicz M: Building a Large Annotated Corpus of En-
glish: the Penn Treebank. Computational Linguistics 1993, 19(2):313-330.

Charniak E: A Maximum-Entropy-Inspired Parser. In Proceedings of the North American
Chapter of the Association for Computational Linguistics 2000.

Bikel D: Intricacies of Collins Parsing Model. Computational Linguistics (to appear) 2004.

Goodman J: Global thresholding and multiple-pass parsing. In Proceedings of the Second
Conference on Empirical Methods in Natural Language Processing 1997.

Collins M, Duffy N: New Ranking Algorithms for Parsing and Tagging: Kernels over
Discrete Structures, and the Voted Perceptron. In In proceedings of the Annual Meeting
of the ACL 2002.

Miiller KR, Mika S, Réatsch G, Tsuda K, Scholkopf B: An introduction to kernel-based
learning algorithms. IEEE Neural Networks 2001, 12(2):181-201.

Ratnaparkhi A: A maximum entropy model for part-of-speech tagging. In IEEFE Neural
Networks 1996.

Sha F, Pereira F: Shallow parsing with conditional random fields. In Proceedings of
HLT-NAACL 2003, pp.213-220.

Cullota A, Sorensen J: Dependency tree kernels for relation extraction. In Proceedings
of the Annual Meeting of the Association for Computational Linguists 2004.

Cohen W, Ravikumar P, Feinberg S: Comparison of String Distance Metrics for Name-
Matching Tasks. In Proceedings of IIWeb workshop 2003.

Gildea D, Palmer M: The Necessity of Syntactic Parsing for Predicate Argument
Recognition. In Proceedings of the 40th Annual Conference of the Association for Computa-
tional Linguistics (ACL-02).

Sleator D, Temperley D: Parsing English with a Link Grammar. In Proceedings of the
Third International Workshop on Parsing Technologies 1993.

A critical assessment of text mining methods in molecular biology workshop 2004,
[http://www.pdg.cnb.uam.es/BioLINK /workshop /workshop BioCreative_04]].

26

