Generalized Higher-Order Dependency Parsing with Cube Pruning

Hao Zhang Ryan McDonald
Google, Inc.
{haozhang, ryanncd}@oogl e. com

Abstract

State-of-the-art graph-based parsers use fea-
tures over higher-order dependencies that rely
on decoding algorithms that are slow and
difficult to generalize. On the other hand,
transition-based dependency parsers can eas-
ily utilize such features without increasing the
linear complexity of the shift-reduce system
beyond a constant. In this paper, we attempt to
address this imbalance for graph-based pars-
ing by generalizing the Eisner (1996) algo-
rithm to handle arbitrary features over higher-
order dependencies. The generalization is at
the cost of asymptotic efficiency. To account
for this, cube pruning for decoding is utilized
(Chiang, 2007). For the first time, label tuple
and structural features such as valencies can
be scored efficiently with third-order features
in a graph-based parser. Our parser achieves
the state-of-art unlabeled accuracy of 93.06%
and labeled accuracy of 91.86% on the stan-
dard test set for English, at a faster speed than
areimplementation of the third-order model of
Koo et al. (2010).

system at decoding time, as expanding the feature
scope is often trivial and in most cases only leads to
a constant-time increase in parser complexity. The
most common approach is to use beam search (Duan
et al., 2007; Johansson and Nugues, 2007; Titov and
Henderson, 2007; Zhang and Clark, 2008; Zhang
and Nivre, 2011), but more principled dynamic pro-
gramming solutions have been proposed (Huang and
Sagae, 2010). In all cases inference remains approx-
imate, though a larger search space is explored.

In the graph-based parsing literature, the main
thrust of research has been on extending the Eisner
chart-parsing algorithm (Eisner, 1996) to incorpo-
rate higher-order features (McDonald and Pereira,
2006; Carreras, 2007; Koo and Collins, 2010). A
similar line of research investigated the use of inte-
ger linear programming (ILP) formulations of pars-
ing (Riedel and Clarke, 2006; Martins et al., 2009;
Martins et al., 2010). Both solutions allow for exact
inference with higher-order features, but typically at
a high cost in terms of efficiency. Furthermore, spe-
cialized algorithms are required that deeply exploit
the structural properties of the given model. Upgrad-

1 Introduction ing a parser to score new types of higher-order de-

The trade-off between rich features and exact déendencies thus requires significant changes to the
coding in dependency parsing has been well docyinderlying decoding algorithm. This is in stark con-
mented (McDonald and Nivre, 2007; Nivre and Mc-lrast to transition-based systems, which simply re-
Donald, 2008). Graph-based parsers typically trag@uire the definition of new feature extractors.
off rich feature scope for exact (or near exact) de- In this paper, we abandon exact search in graph-
coding, whereas transition-based parsers make thased parsing in favor of freedom in feature scope.
opposite trade-off. Recent research on both parsifje propose a parsing algorithm that keeps the back-
paradigms has attempted to address this. bone Eisner chart-parsing algorithm for first-order
In the transition-based parsing literature, the foparsing unchanged. Incorporating higher-order fea-
cus has been on increasing the search space of tiees only involves changing the scoring function of

ROOT

potential parses in each chart cell by expanding the oo w o moo oo
signature of each chart item to include all the non- mm /N N N

local context required to compute features. The cofé?CT The new rate will be payable Feb. 15
chart-parsing algorithm remains the same regardless Figure 1: Example Sentence.
of which features are incorporated. To control com-

plexity we use cube pruning (Chiang, 2007) with th('%‘ains UAS 0f92.81% and comparable to the state-of-

beam S.'ch.m each cell. Furthermore, dynamic pro- e-art transition-based system of Zhang and Nivre
gramming in the style of Huang and Sagae (2010(011) that employs beam search.

can be done by mergingbest items that are equiv-
alent in scoring. Thus, our method is an applicag Graph-based Dependency Parsing

tion of integrated decoding with a language model

in MT (Chiang, 2007) to dependency parsing, whichPependency parsers produce directed relationships
has previously been applied to constituent parsingetweenheadwords and their syntactimodifiers
(Huang, 2008). However, unlike Huang, we onlyEach word modifies exactly one head, but can have
have one decoding pass and a single trained modany number of modifiers itself. Theot of a sen-
while Huang’s constituent parser maintains a sepence is a designated special symbol which all words
arate generative base model from a following disin the sentence directly or indirectly modify. Thus,
criminative re-ranking model. We draw connectionghe dependency graph for a sentence is constrained
to related work in Section 6. to be a directed tree. The directed syntactic rela-

Our chart-based approximate search algorithm afionships, aka dependency arcs or dependencies for
lows for features on dependencies of an arbitrary ofhort, can often be labeled to indicate their syntactic
der — as well as over non-local structural propertole. Figure 1 gives an example dependency tree.
ties of the parse trees — to be scored at will. In For a sentence = x...x,, dependency pars-
this paper, we use first to third-order features ofg is the search for the set of head-modifier depen-
greater varieties than Koo and Collins (2010). Addency arcg” suchthay* = argmax,cy,) f(z,y),
ditionally, we look at higher-order dependency arcwheref is a scoring function. As mentioned before,
label features, which is novel to graph-based parg~ must represent a directed trég)(x)| is then the
ing, though commonly exploited in transition-base@et of valid dependency trees forand grows ex-
parsing (Zhang and Nivre, 2011). This is becauseonentially with respect to its lengtty|. We fur-
adding label tuple features would introduce a largéher define as the set of possible arc labels and use
constant factor of)(|L|?), where|L| is the size of the notation(4 j) € y to indicate that there is a
the label set, into the complexity for exact third- dependency from head worg to modifierz; with
order parsing. In our formulation, only the top-labell in dependency treg.
ranked labelled arcs would survive in each cell. As In practice,f(z,y) is factorized into scoring func-

a result, label features can be scored without comiiions on parts of(z,y). For example, in first-
natorial explosion. In addition, we explore the us@rder dependency parsing (McDonald et al., 2005),
of valency features counting how many modifiers & (z, y) is factored by the individual arcs:

word can have on its left and right side. In the past,

only re-rankers otk-best lists of parses produced byy™ = argmax f(x,y) = argmax Z G5 9)

a simpler model use such features due to the diffi- €Y yey(z) ey
culty of incorporating them into search (Hall, 2007).

The final parser with all these features is both acFhe factorization of dependency structures into arcs
curate and fast. In standard experiments for Englisknables an efficient dynamic programming algo-
the unlabeled attachment score (UAS)906%, rithm with running timeO(|x|3) (Eisner, 1996), for
and the labeled attachment score (LASY1s86%. the large family of projective dependency structures.
The UAS score is state-of-art. The speed of our Figure 2 shows the parsing logic for the Eisner
parser is220 tokens per second, which is ovér algorithm. It has two types of dynamic program-
times faster than an exact third-order parser that aming states:complete itemsndincomplete items

Complete items correspond to half-constituents, and
are represented as triangles graphically. Incomplete
items correspond to dependency arcs, and are repre-
sented as trapezoids. The Eisner algorithm is the ba-
sis for the more specialized variants of higher-order
projective dependency parsing. (b) I
Se.cond-order S'b“ng_ models (Mc.DonaId anq:igure 2: Structures and rules for parsing first-order mod-
Pereira, 2006) score adjacent arcs with a commQls ith the (Eisner, 1996) algorithm. This shows only
head. In order to score them efficiently, a new stai@e construction of right-pointing dependencies and not
corresponding to modifier pairs was introduced tthe symmetric case of left-pointing dependencies.
the chart-parsing algorithm. Due to the careful fac-
torization, the asymptotic complexity of the revise
algorithm remaingO(|z|?). The resulting scoring

@ _ ’,..

Olh(—:‘ scoring of certain types of third-order dependen-
cies withO(|z|*) decoder run-time complexity.

function is: . . :
Each of these higher-order parsing algorithms
y* =argmax > f(i i k) makes a clever factorization for the specific model
yed(@) , T, in consideration to keep complexity as low as possi-

(i k)ey ble. However, this results in a loss of generality.
Lo R . . .
where (i = j,i = k) € y indicates wo adja- 4 Generalizing Eisner’s Algorithm
cent head-modifier relationships in dependency tree
y, one fromz; to z; with labell and another from |n this section, we generalize the Eisner algorithm
x; to x;, with label’. Wordsz; andz; are com- without introducing new parsing rules. The general-
monly referred to asiblings In order to maintain ization is straight-forward: expand the dynamic pro-
cubic parsing complexity, adjacent dependencies aggamming state to incorporate feature histories. This
scored only if the modifiers occur on the same sidg done on top of the two distinct chart items in the
in the sentence relative to the head. O(|x|3) Eisner chart-parsing algorithm (Figure 2).
Second-order grandchild models (Carreras, 200The advantage of this approach is that it maintains
score adjacent arcs in length-two head-modifiehe simplicity of the original Eisner algorithm. Un-
chains. For example, if word; modifies wordz; fortunately, it can increase the run-time complex-
with label /, but itself has a dependency to modidty of the algorithm substantially, but we will em-
fier 2;, with label /', then we would add a scoring ploy cube pruning to regain tractability. Because our
function f(j LN k). These are calledrand- higher-order dependency parsing algorithm is based
child models as they can score dependencies bie Eisner algorithm, it is currently limited to pro-
tween a word and its modifier's modifiers, i.e; duce projective trees only.
is the grandchild ofr; in the above example. The
states in the Eisner algorithm need to be augmenteq’d1
with the indices to the outermost modifiers in ordeiVe start with the simplest case of sibling models. If
to score the outermost grandchildren. The resultinge want to score sibling arcs, at rulg in Figure 2,
algorithm become® (|z|*). we can see that the complete item lying between
Finally, third-order models (Koo and Collins, the head and the modifier (the middle of the three
2010) score arc triples such as three adjacent sibtems) does not contain information about the out-
ling modifiers, calledri-siblings, or structures look- ermost modifier of the head, which is the previous
ing at both horizontal contexts and vertical contextsjependency constructed and the sibling to the mod-
e.g., grand-siblingsthat score a word, its modifier ifier of the dependency currently being constructed.
and its adjacent grandchildren. To accommodafEhis fact suggests that, in order to score modifier
the scorers for these sub-graphs, even more specibigrams, the complete item states should be aug-
ized dynamic programming states were introducedanented by the outermost modifier. We can aug-
The Koo and Collins (2010) factorization enablesnent the chart items with such information, which

Arbitrary n-th-order dependency parsing

Figure 3: Structures and rules for parsing models basddgure 4: Structures and rules for parsing models based
on modifier bigrams, with a generalized (Eisner, 1996pn modifier trigrams in horizontal contexts, with a gener-
algorithm. Here the dashed arrows indicate additional irelized (Eisner, 1996) algorithm. Here the dashed arrows
formation stored in each chart-cell. Specifically the preindicate the previous two modifiers to the head in each
vious modifier in complete chart items. chart item.

is shown in Figure 3. It refines the complete items
by storing the previously constructed dependency to
the outermost modifiers. Note that now the signature
of the complete items is not simply the end-point in-

dexes, but contains the index of the outer modifier. (b) L

_Using this chart item augmentation it iS NOW POStq e 5: Structures and rules for parsing models based
sible to score both first-order arcs as well as secongn modifier trigrams in vertical contexts, with a gener-

order sibling arcs. In fact, by symmetry, the newalized (Eisner, 1996) algorithm. Here the dashed arrows
dynamic program can also score the leftmost aniddicate the modifier to the head and the modifier's mod-
rightmost grandchildren of a head-modifier pair, irifier, forming a modifier chain of length two.

rule (a) and rule(b) respectively. By counting the

number of free variables in each pa5rsing.rule_, WSBossible parsing histories and loop over the cross
see that the parsing complexityg|z|”), which is rqqyct of the histories in the innermost loop of Eis-

higher than both McDonald and Pereira (2006) anfler gigorithm. The cardinality of the cross product
Carreras (2007). The added complexity comes fropa z[* - |z|". Thus, the complexity of the algo-

the fact that it is now possible to score a third-ordefiim augmented by variables isO(|z|? - |z[2")
dependency consisting of the head, the modifier, tk@(|x’3+2n) wheren > 0. Note that this complexity

sibling, and the outermost grandchild jointly. is for unlabeled parsing. A factor ¢f.| for all or
We can go further to augment the complete ang sypset of the encoded arcs must be multiplied in

incomplete states with more parsing history. Figwhen predicting labeled parse structures.
ure 4 shows one possible next step of generaliza-

tion. We generalize the states to keep track of th&2 History-based dependency parsing

latest two modifiers of the head. As a result, it betphe previous: modifiers, either horizontal or ver-
comes possible to score tri-siblings involving thregjca, is a potential signature of parsing history. We
adjacent modifiers and grand-siblings involving twgsgn put arbitrary signatures of parsing history into
outermost grandchildren — both of which comprisgne chart items so that when we score a new item,
the third-order Model 2 of Koo and Collins (2010) —\ye can draw the distinguishing power of features
plus potentially any additional interactions of thesgyased on an arbitrarily deep history. For example,
roles. Figure 5 shows another possible generalizapnsider thepositionof a modifier, which is the po-
tion. We keep modifier chains up to length two insjtion in which it occurs amongst its siblings relative
the complete states. The added history enables thethe |ocation of the head. We can store the position
computation of features for great-grandchildren reof the last modifier into both chart states. In com-
lationships:(h & m & ge = gge). plete states, this signature tells us the position of the

In general, we can augment the complete and irputermost modifier, which is the valency of the head
complete states witln variables representing thein the left or right half-constituent.

()

In the extreme case, we can use full subtrees &gerarchical phrase-based model of Chiang (2007),
histories, although the cardinality of the set of hiswhere|x| is the input sentence length. The standard
tories would quickly become exponential, especiallyechnique is to force a beam sizeon each transla-
when one considers label ambiguity. Regardless, thien state so that the possible combinations of lan-
high complexity associated with this generalizationguage model histories is bounded b%. Further-
even for second or third-order models, requires us tmore, if the list ofk: language model states are sorted

appeal to approximate search algorithms. from the lowest cost to the highest cost, we can as-
sume the best combinations will still be among the
3.3 Advantage of the generalization combinations of the top items from each list, al-

The complexity analysis earlier in this section refhough the incorporation of-gram features breaks
veals the advantage of such a generalization schenfigé monotonic property of the underlying semi-ring.
It factorizes a dynamic programming state for de- Cube pruning is based on this approximation
pendency parsing into two parts: 1) the structurdChiang, 2007). It starts with the combination of the
state, which consists of the boundaries of incomOP items in the lists to be combined. At each step, it
plete and complete chart items, and accounts for tHtS the neighbors of the current best combination,
O(|=|?) term in the analysis, and 2) the feature hisWhich consists of going one position down in one of
tory, which is a signature of the internal content of 1@ k-best lists, into a priority queue. The algorithm
sub-parse and accounts for t|z|2") term. The stops wherk |tems have bgen popped off from the
rules of the deductive parsing system — the Eisner diueue. At the final step, it sorts the popped items
gorithm — stay the same as long as the structural re5i_nce they can be out-of-order. It reduces the combi-
resentation is unchanged. To generalize the pard&ition complexity fromO (k) to O(k - log(k)).
to handle richer features, one can simply enrich the OUr history-augmented parsing is analogous to
feature signature and the scoring function withouMT decoding. The possible higher-order histories
changing the structural state. A natural grouping df&n Similarly be limited to at most in each com-
states follows where all sub-parses sharing the sarREste or incomplete item. The core loop of the gener-
chart boundaries are grouped together. This grouplized algorithm which has a complexity Of |z |*")
ing will enable the cube pruning in Section 4 for ap£an similarly be reduced t0(k-log(k)). Therefore,
proximate search. the whole parsing algorithm remair@(|z|?) re-
There is another advantage of keeping the gidardless how deep we look into parsing history. Fig-

ner parsing logic unchanged: derivations one-to-ort© 6 illustrates the computation. We apply rti¢
correspond to dependency parse trees. Augmenti% combine two lists of augmented complete items

the complete and incomplete states does not intrd"'d keep the combinations with the highest model

duce spurious ambiguity. This grouping view is useScOres: With cube pruning, we only explore cells at

ful for proving this point. Introducing higher order (0-0): (0,1), (1,0), (2,0), and (1, 1), without the

features in each chart item will cause sub-derivatiod&€€d o evaluate scoring functions for the remaining

to be re-ranked only. As a result, the final viterbicells in the table. Similar computation happens with

parse can differ from the one from the standard EigU'€ (@)-

ners algorithm. But the one-to-one correspondence !N this example cube pruning does find the high-
still holds. est scoring combination, i.e., céll, 1). However,

note that the scores are not monotonic in the order in
4 Approximate Search with Cube Pruning which we search these cells as non-local features are
used to score the combinations. Thus, cube pruning
In machine translation decoding, argram lan- may not find the highest scoring combination. This
guage model can be incorporated into a translaticeppproximation is at the heart of cube pruning.
model by augmenting the dynamic programming o
states for the translation model with the boundar-1 Recombination
n — 1 words on the target side. The complexityThe significance of using feature signatures is that
for exact search involves a factor pf|*»~* in the when two combinations result in a state with the

identical feature signature the one with the highest 0: L 2:
score survives. This is the core principle of dynamic | ,/] J
programming. We call itecombination It denotes 4 x =

the same meaning adate-mergingn Huang and
Sagae (2010) for transition-based parsers. 0 TN ool po1 | peo
In cube pruning, with recombination, thebest =
items in each chart cell are locally optimal (in the
pruned search space) over all sub-trees with an
equivalent state for future combinations. The cube
pruning algorithm without recombination degener- 2k f=23| f=3|f=18
ates to a recursivk-best re-scoring algorithm since
each of thek-best items would be unique by itself Figure 6: Combining two lists of complete items with
as a sub-tree. It should be noted that by workingube pruning.
on a chart (or a forest, equivalently) the algorithm is
already applying recombination at a coarser level.

In machine translation, due to its large searc

Il
o
o

—
|£-
~
Il
—
ot
~~
Il
w
[}
~
Il
ot

ayong, 2012). However, we found that ignoring or

d the abstract nat i | odifying such updates led to negligible differences
spacean € abstract nature oragram language in practice. In all our experiments, we train MIRA

model, it is more common to see many sub—treef%r 8 epochs and use a beam/of= 5 during de-

W'th.the same _Ianguage "?Ode' fgature S"gnatwét)ding. Both these values were determined on the
making recombination crucial (Chiang, 2007). InEninSh development data

constituent parser reranking (Huang, 2008), recom-
bination is less likely to happen since the reranks 1 Features
ing features capture peculiarities of local tree strucl_

. . The feature templates we use are drawn from the
tures. For dependency parsing, we hypothesize thﬁ%st work on graph-based parsing and transition-

the higher-order features are more similar to the based parsing. The base templates for the higher-
gram language model features in MT as they tend t(S)rder dependencies are close to Koo and Collins
be common features among many sub-trees. But

the feat tb ioh bination t 10), with the major exception that our features
€ fealure set becomes richet, recombination eNEe, qe label-tuple information. The basic features

o Ihave ;elsmaller effe_ct. We W'” dlsc_uss the CMPIMhclude identities, part of speech tags, and labels of
cal results on recombination in Section 5.4. the words in dependency structures. These atomic
features are conjoined with the directions of arcs to
create composite-gram features. The higher-order

We define the scoring functiofi(z,) as a linear dependency features can be categorized into the fol-

classifier between a vector of features and a corrVN9 sub-group_s, where we gé?to -|n(_j|cate the
sponding weight vector, i.ef(z,y) = w - d(z,). headm th(_a modlflgr,s the modifier’s sibling angc
The feature function) decomposes with respect to? grandchild word in a dependency part.

scoring functionf. We train the weights to optimize 4 (jabeled) modifier feature¢h - m)

the first-best structure. We use the max-loss vari-)

ant of the margin infused relaxed algorithm (MIRA) o (labeled) sibling featuregh = m, h - s)
(Crammer et al., 2006) with a hamming-loss margin o (jabeled) outermost grandchild features:

as is common in the dependency parsing literature
(Martins et al., 2009; Matrtins et al., 2010). MIRA
only requires a first-best decoding algorithm, which e (labeled) tri-sibling features:
in our case is the approximate chart-based parsing
algorithms defined in Sections 3 and 4. Because our
decoding algorithm is approximate, this may lead to
invalid updates given to the optimizer (Huang and him ge,h B m D ge),

5 Experiments

(hi>mi>gc)

(hiwn,hL)s,thQ)

¢ (labeled) grand-sibling features:

e (labeled) sibling and grandchild conjoined features: Parser UAS | LAS | Toks/Sec
, . Huang and Sagae (2010) 92.1- - -
(h Lmhsms gc) Zhang and Nivre (2011) 9291 918 -
Zhang and Nivre (reimpl.jpeam=64) | 92.73 | 91.67 760
The general history features include valencies ofZhang and Nivre (reimpleam=256) | 92.75 | 91.71 190
.. Koo and Collins (2010) 93.04 - -
words conjoined with the directions of the dominat—; _
. . vpr 15*-order exact (reimpl.) 91.80 90.50 2070
ing arcs. The positions of the modifiers are also con-ynd.qrder exact (reimpl.) 9240 91.1p 1110
joined with the higher-order dependency features in3"-order exact (reimpl.) 92.81 f- 50
: : this paper 93.06] 91.86 220
the previous list.

The features that are new compared to Koo anthble 1: Comparing this work in terms of parsing accu-
Collins (2010) are the label tuple features, the siacy compared to state-of-the-art baselines on the English
ling and grandchild conjoined features, and the vdest data. We also report results for a re-implementation

lency features. We determine this feature set bas@{€xact first to third-order graph-based parsing and a re-

. ¢ the devel t data for Endli Implementation of Zhang and Nivre (2011) in order to
on expenments on the development data for Eng ISIEt)mpare parser speetur exact third-order implemen-

In Section 5.3 we examine the impact of these Nesion currently only supports unlabeled parsing.
features on parser performance.

52 Main Results parsers (Huang and Sagae, 2010; Zhang and Nivre,
Our first set of results are on English dependerpp11). Second, at a similar toks/sec parser speed,
cies. We used the Penn WSJ Treebank convertedd@r method achieves better performance than the
dependencies with Penn2Mationversion software transition-based model of Zhang and Nivre (2011)
specifying Yamada and Matsumoto head rules anglith a beam of 256. Finally, compared to an im-
Malt label set. We used the standard splits of thiglementation of an exact third-order parser — which
data: sections 2-21 for training; section 22 for Vali-provides us with an apples-to-apples comparison in
dation; and section 23 for evaluation. We evaluategérms of features and runtime — approximate decod-
our parsers using standard labeled accuracy scoiigg with cube pruning is both more accurate and
(LAS) and unlabeled accuracy scores (UAS) excludyhile being 4-5 times as fast. It is more accurate as
ing punctuation. We report run-times in tokens peft can easily incorporate more complex features and
second. Part-of-speech tags are predicted as inpuis faster since its asymptotic complexity is lower.
using a linear-chain CRF. We should point out that our third-order reimple-
Results are given in Table 1. We compare oumentation is a purely unlabeled parser as we do not
method to a state-of-the-art graph-based parser (K¢@wve an implementation of an exact labeled third-
and Collins, 2010) as well as a state-of-the-aigrder parser. This likely under estimates its accu-
transition-based parser that uses a beam (Zhapgty, but also significantly overestimates its speed.
and Nivre, 2011) and the dynamic programming neyi e looked at the impact of our system
transition-based parser of Huang and Sagae (201(), non-English treebanks. Specifically we fo-
Additionally, we compare to our own implementa~;, ;seq on two sets of data. The first is the Chi-
tion of exact first to third-order graph-based parsingeqe Treebank converted to dependencies. Here
and the transition-based system of Zhang and NIV{ge, ;56 the identical training/validation/evaluation
(2011) with varying beam sizes. _ splits and experimental set-up as Zhang and Nivre
There are a number of points to make. FIrsto011). Additionally, we evaluate our system on
approximate decoding with rich features and CUbSight other languages from the CoNLL 2006/2007
pruning gives state-of-the-art labeled and unlabele&ared-task (Buchholz and Marsi, 2006; Nivre et
parsing ac?cu'racies relative to previously reported r%ﬂ 2007). We selected the following four data
sults. This includes the best graph-based parsings since they are primarily projective treebanks
results of Koo and Collins (2010), which has neakl.o% non-projective arcs): Bulgarian and Span-
identical performance, as well as the best beani1s-h from CoNLL 2006 as well as Catalan and ltal-

based and dynamic-programming-based transitiqQ, fom CoNLL 2007. Currently our method is
http://w3.msi.vxu.setnivre/research/Penn2Malt.html restricted to predicting strictly projective trees as it

uses the Eisner chart parsing algorithm as its back—r':'(i)%zer‘order Features A To"lss’lsgc
bone. We also report results from four additionat-wcoonaia 2006) features + labels 92.48 9145 860
CoNLL data sets reported in Rush and Petrov (2012)Carreras (2007) features + labels| ~ 92.85 9166 540
. der to di fl Th _ Koo (2010) features + labels 92.92 91.75 300
in order to directly compare accuracy. These arejm res 9306 oL 54 550

German, Japanese, Portuguese and Swedish. For all)]])

data sets we measure UAS and LAS excluding punggble 3: Generalized higher-order parsing with cube
. . pruning using different feature sets.

tuation and use gold tags as input to the parser as'is

standard for these data sets. Beam | Recombination UAS LAS Toks/Sec
Results are given in Table 2. Here we compareto 2 no 92.86| 91.63 280
our re-implementations of Zhang and Nivre (2011), —2 yes 9289] 91.69 260
_ _) : 5 no 93.05| 91.85 240
exact first to third-order parsing and Rush and Petrov 5 ves 93.06| 91.86 230
(2012) for the data sets in which they reported re- 10 yes 93.05] 91.85 140

sults. We again see that approximate decoding witthble 4: Showing the effect of better search on accuracy
rich features and cube pruning has higher accuand speed on the English test data with a fixed model.

racy than transition-based parsing with a large beam.

In particular, for thezH-CTB data set, our system .

is currently the best reported result. FurthermorﬁIth these_ additional 'f_eatures, e.g., valency would at
our system returns comparable accuracy with exa ast multiply an additionad(n) factor.

third-order parsing, while being significantly faster5.4 Impact of Search Errors

and more flexible.
_ _ Since our decoding algorithm is not exact, it could
5.3 Ablation studies return sub-optimal outputs under the current model.

In this section, we analyze the contributions fron¥Ve analyze the effect of search errors on accuracies
each of the feature groups. Each row in Table 3 uség Table 4. We vary the beam size at each cell and
a super set of features than the previous row. ABwitch the option for signature-based recombination
systems use our proposed generalized higher-ord@rmake search better or worse to see how much im-
parser with cube-pruning. I.e., they are all using thgact it has on the final accuracy.
Eisner chart-parsing algorithm with expanded fea- The results indicate that a relatively small per-cell
ture signatures. The only difference between sy$eam is good enough. Going from a beam of 2 to
tems is the set of features used. This allows us to seincreases accuracy notably, but going to a larger
the improvement from additional features. beam size has little effect but at a cost in terms of
The first row uses no higher-order features. lefficiency. This suggests that most of the parser am-
is equivalent to the first-order model from Table 1biguity is represented in the top-5 feature signatures
The only difference is that it uses thebest algo- at each chart cell. Furthermore, recombination does
rithm to find the first-best, so it has additional overhelp slightly, but more so at smaller beam sizes.
head compared to the standard Viterbi algorithm. If we keep the beam size constant but enlarge
Each of the following rows gets a higher accuracyhe feature scope from second-order to third-order,
than its previous row by adding more higher orone would expect more search errors to occur. We
der features. Putting in the sibling and grandchildneasured this empirically by computing the num-
conjoined features and the valency features yieldser of sentences where the gold tree had a higher
a further improvement over the approximation ofnodel score than the predicted tree in the English
Koo and Collins (2010). Thus, the addition of newevaluation data. Indeed, larger feature scopes do
higher-order features, including valency, extra thirdlead to more search errors, but the absolute hum-
order, and label tuple features, results in increasdzr of search errors is usually quite small — there
accuracy. However, this is not without cost as thare only 19 search errors using second-order features
run-time in terms of tokens/sec decreases (300 #nd 32 search errors using third-order plus valency
220). But this decrease is not asymptotic, as it woulfkatures out of 2416 English test sentences. Part
be if one were to exactly search over our final modedf the reason for this is that there are only 12 la-

Zhang and Nivre| Zhang and Nivre Rush 15t-order 2nd-order 374-order

(reimpl.) (reimpl.) and exact exact exact
Language (beam=64) (beam=256) Petfov (reimpl.) (reimpl.) (reimpl.) this paper
BG-CONLL 92.22/87.87 92.28/87.91 91.9-/- 91.98/87.13 93.02/88.1%.96 / - 93.08/88.23
CA-CONLL 93.76/87.74 93.83/87.85 92.83/86.22 93.45/87[{194.07/ - 94.00/88.08
DE-CONLL 89.18/86.50 88.94/86.58 90.8-/- 89.28/86.p06 90.87/87.721.29/ - 91.35/88.42
ES-CONLL 86.64/83.25 86.62/83.11 85.35/81.53 86.80/82[91 87.26{|- 87.48/84.05
IT-CONLL 85.51/81.12 85.45/81.10 84.98/80.23 85.46/80{66 86.49 (|- 86.54/82.15
JA-CONLL 92.70/91.03 92.76/91.09 92.3-/- 93.00/91.p3 93.20/91.283.36/ - 93.24 /91.45
PT-CONLL 91.32/86.98 91.28/86.88 91.5-/- 90.36/85.y7 91.36/87.221.66/ - 91.69/87.70
SV-CONLL 90.84/85.30 91.0085.42 90.1-/- 89.32/82.06/ 90.50/83.01 90.32/-| 91.44/84.58
ZH-CTB 86.04 / 84.48 86.14/84.57 84.38/82.62 86.63/84.95 86.77/{ 86.87/85.19
AVG [89.80/86.03 [89.81/86.06 [H 89.05/ 84.'{4 90.14/ 85}89 90.46 H 90.63/ 86.65

Table 2: UAS/LAS for experiments on non-English treebamksmbers in bold are the highest scoring system. Zhang
and Nivre is a reimplementation of Zhang and Nivre (2011 hviieams of size 64 and 256. Rush and Petrov are
the UAS results reported in Rush and Petrov (2012)"-dtder exact are implementations of exact 1st-3rd order
dependency parsing’.For reference, Zhang and Nivre (2011) report 86.0/84.4ckis previously the best result
reported on this data sett should be noted that Rush and Petrov (2012) do not joinitintize labeled and unlabeled
dependency structure, which we found to often help. Thiss pktra features, accounts for the differences in UAS.

bels in the Penn2Malt label set, which results in lithamic programming states and how best-first search
tle non-structural ambiguity. In contrast, Stanfordean be used to find the optimal transition sequence.
style dependencies contain a much larger set of ldlowever, when the feature scope becomes large,
bels (50) with more fine-grained syntactic distincthen the state-space and resulting search space can
tions (De Marneffe et al., 2006). Training and testbe either intractable or simply non-practical to ex-
ing a model using this dependency representatioplore. Thus, they resort to an approximate beam
increases the number of search errors of the fullearch that still exploring an exponentially-larger
model to 126 out 2416 sentences. But that is stipace than greedy or beam-search transition-based
only 5% of all sentences and significantly smallesystems. One can view the contribution in this pa-

when measured per dependency. per as being the complement of the work of Huang
and Sagae (2010) for graph-based systems. Our ap-
6 Related Work proach also uses approximate decoding in order to

_ _ _) exploit arbitrary feature scope, while still exploring
As mentioned in the introduction, there has beef, eyxponentially-large search space. The primary
numerous studies on trying to reconcile the richgitterence is how the system is parameterized, over
features versus exact decoding trade-off in depegpendency sub-graphs or transitions. Another criti-

dency parsing. In the transition-based parsing lig| gifference is that a chart-based algorithm, though
erature this has included the use of beam search dgy| sybject to search errors, is less likely to be hin-

increase the search space (Duan et al., 2007; Johaggreq by an error made at one word position be-
son and Nugues, 2007; Titov and Henderson, 200¢y;se it searches over many parallel alternatives in a

Zhang an;l g'a”“ 22000% ZheLng and Nivre, ?Ojl)bottom—up search as opposed to a left-to-right pass.
Huang and Sagae (2010) took a more principled ap- In the graph-based parsing literature, exact pars-

proach proposing a method combining shift-reduce . .
.) . . Ing algorithms for higher-order features have been
parsing with dynamic programming. They showed,~ = . .)
how feature sianatures can be compiled into d Studied extensively (McDonald and Pereira, 2006;
g P yCarreras, 2007; Koo and Collins, 2010), but at a

2This model gets 90.4/92.8 LAS/UAS which is comparabldligh computational cost as increasing the order of a
to the UAS of 92.7 reported by Rush and Petrov (2012). model typically results in an asymptotic increase in

running time. ILP formulations of parsing (Riedel2009), and dynamic beam-width prediction (Boden-
and Clarke, 2006; Martins et al., 2009; Martins estab et al., 2011). Of particular note, Rush and
al., 2010) also allow for exact inference with higherPetrov (2012) report run-times far better than our
order features, but again at a high computation&ube pruning system. At the heart of their system is
cost as ILP’s have, in the worst-case, exponential linear time vine-parsing stage that prunes most of
run-time with respect to the sentence length. Studhe search space before higher-order parsing. This
ies that have abandoned exact inference have feffectively makes their final system linear time in
cused on sampling (Nakagawa, 2007), belief progractice as the higher order models have far fewer
agation (Smith and Eisner, 2008), Lagrangian reparts to consider. One could easily use the same
laxation (Koo et al., 2010; Martins et al., 2011),first-pass pruner in our cube-pruning framework.
and more recently structured prediction cascadesIn our study we use cube pruning only for de-
(Weiss and Taskar, 2010; Rush and Petrov, 2012)oding and rely on inference-based learning algo-
However, these approximations themselves are oftgithms to train model parameters. Gimpel and Smith
computationally expensive, requiring multiple de{2009) extended cube pruning concepts to partition-
coding/sampling stages in order to produce an outdnction and marginal calculations, which would en-
put. All the methods above, both exact and approxable the training of probabilistic graphical models.
imate, require specialized algorithms for every new Finally, due to its use of the Eisner chart-parsing
feature that is beyond the scope of the previous fagigorithm as a backbone, our model is fundamen-
torization. In our method, the same parsing algomlly limited to predicting projective dependency
rithm can be utilized (Eisner’s- cube pruning) just structures. Investigating extensions of this work to
with slight different feature signatures. the non-projective case is an area of future study.
Our proposed parsing model draws heavily on th@york on defining bottom-up chart-parsing algo-
work of Huang (2008). Huang introduced the idegjithms for non-projective dependency trees could
of “forest rescoring”, which uses cube pruning topotentially serve as a mechanism to solving this
enable the incorporation of non-local features intgroblem (@mez-Rodiguez et al., 2009; Kuhlmann

a constituency parsing model providing state-of-thgnd Satta, 2009; @nez-Rodiguez et al., 2010).
art performance. This paper is the extension of such

ideas to dependency parsing, also giving state-of Conclusion

the-art results. An important difference between our

formulation and forest rescoring is that we only havén this paper we presented a method for general-
one decoding pass and a single trained model, whilzed higher-order dependency parsing. The method
forest rescoring, as formulated by Huang (2008Wworks by augmenting the dynamic programming
separates a generative base model from a followgignatures of the Eisner chart-parsing algorithm and
ing discriminative re-ranking model. Hence, ourthen controlling complexity via cube pruning. The
formulation is more akin to the one pass decodintgsulting system has the flexibility to incorporate ar-
algorithm of Chiang (2007) for integrated decodingditrary feature history while still exploring an ex-
with a language model in machine translation. Thigonential search space efficiently. Empirical results
also distinguishes it from previous work on depenshow that the system gives state-of-the-art accura-
dency parse re-ranking (Hall, 2007) as we are n@ties across numerous data sets while still maintain-
re-ranking/re-scoring the output of a base model bung practical parsing speeds — as much as 4-5 times
using a single decoding algorithm and learned modéster than exact third-order decoding.

at training and testing.

This work is largely orthogonal to other attemptsAcknowledgments: We would like to thank Sasha Rush
to speed up chart parsing algorithms. This inand Slav Petrov for help modifying their hypergraph pars-
cludes work on coarse-to-fine parsing (Charniak anidg code. We would also like to thank the parsing team
Johnson, 2005; Petrov and Klein, 2007; Rush anat Google for providing interesting discussions and new
Petrov, 2012), chart-cell closing and pruning (Roarideas while we conducted this work, as well as comments
and Hollingshead, 2008; Roark and Hollingsheadn earlier drafts of the paper.

References

N. Bodenstab, A. Dunlop, K. Hall, and B. Roark. 2011.
Beam-width prediction for efficient context-free pars-
ing. InProc. ACL

S. Buchholz and E. Marsi. 2006. CoNLL-X shared
task on multilingual dependency parsing. Rroc. of
CoNLL

X. Carreras. 2007. Experiments with a higher-order
projective dependency parser. Pmoc. of the CoNLL
Shared Task Session of EMNLP-CoNLL

E. Charniak and M. Johnson. 2005. Coarse-to-fine rA.

best parsing and maxent discriminative reranking. In
Proc. ACL

D. Chiang. 2007. Hierarchical phrase-based translatior.

Computational Linguistics33(2).
K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,

and Y. Singer. 2006. Online passive-aggressive ajz.

gorithms.Journal of Machine Learning Reseatrch

M. De Marneffe, B. MacCartney, and C.D. Manning.
2006.
phrase structure parses.Pmoc. of LREC

X. Duan, J. Zhao, and B. Xu. 2007. Probabilistic parsing
action models for multi-lingual dependency parsing.l_
In Proc. of EMNLP-CoNLL '

J. Eisner. 1996. Three new probabilistic models for de-
pendency parsing: an exploration. Pmoc. of COL-
ING.

K. Gimpel and N.A. Smith. 2009. Cube summing,
approximate inference with non-local features, and-
dynamic programming without semirings. Rroc.
EACL

C. Gdbmez-Rodiguez, M. Kuhlmann, G. Satta, and

D. Weir. 2009. Optimal reduction of rule length in lin- S.

ear context-free rewriting systems. Pnoc. NAACL

Efficient parsing of well-nested linear context-free
rewriting systems. IfProc. NAACL
. Hall. 2007. K-best spanning tree parsing.Rroc. of
ACL.
. Huang and S. Fayong. 2012. Structured perceptron
with inexact search. IRroc. of NAACL

. . B.
Huang and K. Sagae. 2010. Dynamic programming context-free parsing pipelines via chart constraints. In

L.

for linear-time incremental parsing. Froc. of ACL

Huang. 2008. Forest reranking: Discriminative pars-

ing with non-local features. IRroc. of ACL

R. Johansson and P. Nugues. 2007.
pendency parsing using online learning. Rroc. of
EMNLP-CoNLL

L.

A.

Generating typed dependency parses fropg_

J. Nivre and R. McDonald. 2008.

. Gbmez-Rodiguez, M. Kuhimann, and G. Satta. 2010.S.

B.

A.

Incremental dS-

M. Kuhlmann and G. Satta. 2009. Treebank grammar

techniques for non-projective dependency parsing. In
Proc. EACL

A. F. T. Martins, N. Smith, and E. P. Xing. 2009. Con-

cise integer linear programming formulations for de-
pendency parsing. IRroc. of ACL

F. T. Martins, N. Smith, E. P. Xing, P. M. Q. Aguiar,
and M. A. T. Figueiredo. 2010. Turbo parsers: Depen-
dency parsing by approximate variational inference.
In Proc. of EMNLP

F. T. Martins, N. Smith, M. A. T. Figueiredo, and
P. M. Q. Aguiar. 2011. Dual decomposition with
many overlapping components. Broc of EMNLP

McDonald and J. Nivre. 2007. Characterizing the
errors of data-driven dependency parsing models. In
Proc. of EMNLP-CoNLL

McDonald and F. Pereira. 2006. Online learning of
approximate dependency parsing algorithmsPioc.
of EACL

McDonald, K. Crammer, and F. Pereira. 2005. Online
large-margin training of dependency parsersPitac.
of ACL

Nakagawa. 2007. Multilingual dependency parsing
using global features. IRroc. of EMNLP-CoNLL
Integrating graph-
based and transition-based dependency parsers.
Proc. of ACL

Nivre, J. Hall, S. Kibler, R. McDonald, J. Nils-
son, S. Riedel, and D. Yuret. 2007. The CoNLL
2007 shared task on dependency parsingPriyc. of
EMNLP-CoNLL

Petrov and D. Klein. 2007. Improved inference for
unlexicalized parsing. IFProc. NAACL

Riedel and J. Clarke. 2006. Incremental integer linear
programming for non-projective dependency parsing.
In Proc. of EMNLP

Roark and K. Hollingshead. 2008. Classifying chart
cells for quadratic complexity context-free inference.
In Proc. COLING

Roark and K. Hollingshead. 2009. Linear complexity

In

Proce. NAACL
Rush and S. Petrov. 2012. Efficient multi-pass depen-

dency pruning with vine parsing. Froc. of NAACL

Smith and J. Eisner. 2008. Dependency parsing by
belief propagation. IfProc. of EMNLP

T. Koo and M. Collins. 2010. Efficient third-order de- |. Titov and J. Henderson. 2007. Fast and robust mul-

pendency parsers. Proc. of ACL
T. Koo, A. Rush, M. Collins, T. Jaakkola, and D. Son-

tag. 2010. Dual decomposition for parsing with nonD.

projective head automata. Rroc. of EMNLP

tilingual dependency parsing with a generative latent
variable model. IrProc. of EMNLP-CoNLL

Weiss and B. Taskar. 2010. Structured prediction cas-

cades. IrProc. of AISTATS

Y. Zhang and S. Clark. 2008. A Tale of Two
Parsers: Investigating and Combining Graph-based
and Transition-based Dependency Parsing.Pioc.
of EMNLP.

Y. Zhang and J. Nivre. 2011. Transition-based depen-
dency parsing with rich non-local features.Rroc. of
ACL-HLT, volume 2.

