Online Large-Margin Training of Dependency Parsers

Ryan McDonald Koby Crammer Fernando Pereira
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA
{ryant m crammer, perei ra}@i s. upenn. edu

Abstract models of the same vintage even though it scores
parsing decisions in isolation and thus may suffer
We present an effective training al- from the label bias problem (Lafferty et al., 2001).
gorithm for linearly-scored dependency Discriminatively trained parsers that score entire
parsers that implements online large- trees for a given sentence have only recently been
margin multi-class training (Crammer and investigated (Riezler et al., 2002; Clark and Curran,
Singer, 2003; Crammer et al., 2003) on 2004; Collins and Roark, 2004; Taskar et al., 2004).
top of efficient parsing techniques for de- The most likely reason for this is that discrimina-

pendency trees (Eisner, 1996). The trained tive training requires repeatedly reparsing the train-
parsers achieve a competitive dependency ing corpus with the current model to determine the
accuracy for both English and Czech with parameter updates that will improve the training cri-
no language specific enhancements. terion. The reparsing cost is already quite high
for simple context-free models with (n3) parsing
complexity, but it becomes prohibitive for lexical-
ized grammars witlD (n5) parsing complexity.
Research on training parsers from annotated dataDependency trees are an alternative syntactic rep-
has for the most part focused on models and traimesentation with a long history (Hudson, 1984). De-
ing algorithms for phrase structure parsing. Th@endency trees capture important aspects of func-
best phrase-structure parsing models represent geienal relationships between words and have been
eratively the joint probabilityP(x,y) of sentence shown to be useful in many applications includ-
x having the structurgy (Collins, 1999; Charniak, ing relation extraction (Culotta and Sorensen, 2004),
2000). Generative parsing models are very convgaraphrase acquisition (Shinyama et al., 2002) and
nient because training consists of computing probanachine translation (Ding and Palmer, 2005). Yet,
bility estimates from counts of parsing events in thénhey can be parsed i®(n?) time (Eisner, 1996).
training set. However, generative models make contherefore, dependency parsing is a potential “sweet
plicated and poorly justified independence assumgpot”’ that deserves investigation. We focus here on
tions and estimations, so we might expect better peprojective dependency trees in which a word is the
formance from discriminatively trained models, agparent of all of its arguments, and dependencies are
has been shown for other tasks like document classion-crossing with respect to word order (see Fig-
fication (Joachims, 2002) and shallow parsing (Share 1). However, there are cases where crossing
and Pereira, 2003). Ratnaparkhi's conditional maxdependencies may occur, as is the case for Czech
imum entropy model (Ratnaparkhi, 1999), traineqHaji¢, 1998). Edges in a dependency tree may be
to maximize conditional likelihoodP(y|x) of the typed (for instance to indicate grammatical func-
training data, performed nearly as well as generativiion). Though we focus on the simpler non-typed

1 Introduction

and Czech treebank data.

Y-

root John hit the ball with the bat 2 System Description

Figure 1: An example dependency tree. 2.1 Definitions and Background
In what follows, the generic sentence is denoted by

case, all algorithms are easily extendible to typea3 (possibly SUbSC”pte.d); théh word Ofm.ls de-
structures. noted byz;. The generic dependency tree is denoted

The following work on dependency parsing isby y- It y is a dependency tree for sentencewe

most relevant to our research. Eisner (1996) ga\%rite (i,5) € y to indicate that there is a directed

a generative model with a cubic parsing algorithnffﬂ'dge from wordz; to wordz; in the tree, that isy;

T T
based on an edge factorization of trees. Yamada aft' Parent ok;. 7 = {(zt,y1)}i=, denotes the

. . training data.
Matsumoto (2003) trained support vector machmeé
() PP We follow the edge based factorization method of

SVM) t k ing decisi [hift-red
() to make parsing decisions in a shift-reducg_, er (1996) and define the score of a dependency

dependency parser. As in Ratnaparkhi’s parser, tﬁésn

classifiers are trained on individual decisions rathetFee as the sum of the score of all edges in the tree,

than on the overall quality of the parse. Nivre and _ N T
Scholz (2004) developed a history-based learning swy)= > sld)= 3 wtGij)
model. Their parser uses a hybrid bottom-up/top-
down linear-time heuristic parser and the ability tavheref(i, j) is a high-dimensional binary feature
label edges with semantic types. The accuracy oépresentation of the edge framto z;. For exam-
their parser is lower than that of Yamada and Matple, in the dependency tree of Figure 1, the following
sumoto (2003). feature would have a value of

We present a new approach to training depen-
dency parsers, based on the online large-margin (i,) :{
learning algorithms of Crammer and Singer (2003)
and Crammer et al. (2003). Unlike the SVMin general, any real-valued feature may be used, but
parser of Yamada and Matsumoto (2003) and Ratn@ve use binary features for simplicity. The feature
parkhi’s parser, our parsers are trained to maximiageights in the weight vectow are the parameters
the accuracy of the overall tree. that will be learned during training. Our training al-

Our approach is related to those of Collins angorithms are iterative. We denote ") the weight
Roark (2004) and Taskar et al. (2004) for phraseector after the'” training iteration.
structure parsing. Collins and Roark (2004) pre- Finally we define dtr) as the set of possi-
sented a linear parsing model trained with an aveble dependency trees for the input sentemcand
aged perceptron algorithm. However, to use pardsesy,(x;w) as the set of dependency trees in(dt)
features with sufficient history, their parsing algothat are given the highest scores by weight veator
rithm must prune heuristically most of the possiblawith ties resolved by an arbitrary but fixed rule.
parses. Taskar et al. (2004) formulate the parsing Three basic questions must be answered for mod-
problem in the large-margin structured classificatioels of this form: how to find the dependency tnge
setting (Taskar et al., 2003), but are limited to parswith highest score for sentenag how to learn an
ing sentences of 15 words or less due to computaticippropriate weight vector from the training data;
time. Though these approaches represent good fiegid finally, what feature representatidn ;) should
steps towards discriminatively-trained parsers, thelye used. The following sections address each of
have not yet been able to display the benefits of dishese questions.
criminative training that have been seen in named-) _
entity extraction and shallow parsing. 2.2 Parsing Algorithm

Besides simplicity, our method is efficient and acGiven a feature representation for edges and a
curate, as we demonstrate experimentally on Engliskeight vectorw, we seek the dependency tree or

(i,5)€y (i,5)€y

Lif 2;="hit" and z;="ball’
0 otherwise

h1

hz hz
A B é B B
s 1 r r+1 ho ho t

h1 h1
hl h S

h1
h1 ha ha h1
/] /\‘ AN -
h1 h1 ho ho t s hi hy t

Figure 2:0(n?) algorithm of Eisner (1996), needs to keep 3 indices at angrgstage.

trees that maximize the score functiafig, y). The ~ Training data7” = {(x:, y:)}i=s

primary difficulty is that for a given sentence ofl-Wo=0;v=0;i=0

lengthn there are exponentially many possible de2- forn:1..N

pendency trees. Using a slightly modified version o$- fort: 1.T

a lexicalized CKY chart parsing algorithm, it is pos-4- ~ w'*" = updatew” according to instancéz, y:)
sible to generate and represent these sentences ira Vv =V+w*V

forest that isO(n®) in size and take®(n°) timeto 6 i=i+1

create. 7.w=V/(NxT)

Eisner (1996) made the observation that if the
head of each chart item is on the left or right periph-
ery, then it is possible to parse (n?). The idea is
to parse the left and right dependents of a word indéhe values ofv after each iteration, and the returned
pendently and combine them at a later stage. This reseight vector is the average of all the weight vec-
moves the need for the additional head indices of tiers throughout training. Averaging has been shown
O(n®) algorithm and requires only two additionalto help reduce overfitting (Collins, 2002).
binary variables that specify the direction of the ite

. . . . 2.3.1 MIRA
(either gathering left dependents or gathering righ]
dependents) and whether an item is complete (avail- Crammer and Singer (2001) developed a natural

able to gather more dependents). Figure 2 showRethod for large-margin multi-class classification,
the algorithm schematically. As with normal CKY Which was later extended by Taskar et al. (2003) to

parsing, larger elements are created bottom-up frofjructured classification:
pairs of smaller elements. min |||

Eisner shpwed that his algorithm is sufficient for st s(z,y) —s(z,y) > Ly, y)
both searching the space of dependency parses and, V(z,y) €T, y € dt(z)
with slight modification, finding the highest scoring
tree y for a given sentence under the edge fac- where L(y,y’) is a real-valued loss for the trag
torization assumption. Eisner and Satta (1999) giveelative to the correct treg. We define the loss of
a cubic algorithm for lexicalized phrase structuresa dependency tree as the number of words that have
However, it only works for a limited class of lan- the incorrect parent. Thus, the largest loss a depen-
guages in which tree spines are regular. Furthedency tree can have is the length of the sentence.
more, there is a large grammar constant, which is Informally, this update looks to create a margin
typically in the thousands for treebank parsers. between the correct dependency tree and each incor-
rect dependency tree at least as large as the loss of
the incorrect tree. The more errors a tree has, the
Figure 3 gives pseudo-code for the generic onlinfarther away its score will be from the score of the
learning setting. A single training instance is con¢orrect tree. In order to avoid a blow-up in the norm
sidered on each iteration, and parameters updatefithe weight vector we minimize it subject to con-
by applying an algorithm-specific update rule to thestraints that enforce the desired margin between the
instance under consideration. The algorithm in Figeorrect and incorrect treks
ure 3 returns amveraged weight vector: an auxil- " 'The constraints may be unsatisfiable, in which case we can
iary weight vectow is maintained that accumulatesrelax them with slack variables as in SVM training.

Figure 3: Generic online learning algorithm.

2.3 Online Learning

The Margin Infused Relaxed Algorithm overfitting to the training data. All the experiments
(MIRA) (Crammer and Singer, 2003; Cram-presented here uge= 5. The Eisner (1996) algo-
mer et al., 2003) employs this optimization directlyrithm can be modified to find the-best trees while
within the online framework. On each updatepnly adding an additionaD(k log k) factor to the
MIRA attempts to keep the norm of the change tountime (Huang and Chiang, 2005).
the parameter vector as small as possible, subject toA more common approach is to factor the struc-
correctly classifying the instance under consideraure of the output space to yield a polynomial set of
tion with a margin at least as large as the loss of thecal constraints (Taskar et al., 2003; Taskar et al.,
incorrect classifications. This can be formalized b2004). One such factorization for dependency trees
substituting the following update into ling of the is

generic online algorithm, min Hw(i+1) —w® H
. . s.t.s(l,j) —s(k,j) > 1
min [[w0) —w]| (L, §) € wi, (k. J) & ui
sit.s(xe, y) — s(xe,y') > Ly, y) 1)
Vy' € di(x;) It is trivial to show that if theseD(n?) constraints

are satisfied, then so are those in (1). We imple-
This is a standard quadratic programming probmented this model, but found that the required train-
lem that can be easily solved using Hildreth’s a'jng time was much larger than thebest formu-
gorithm (Censor and Zenios, 1997). Crammer angtion and typically did not improve performance.
Singer (2003) and Crammer et al. (2003) providgyrthermore, the:-best formulation is more flexi-
an analysis of both the online generalization erropje with respect to the loss function since it does not
and convergence properties of MIRA. In equatiolyssume the loss function can be factored into a sum
(1), s(z, y) is calculated with respect to the weightof terms for each dependency.
vector after optimizationyw(*1).

To apply MIRA to dependency parsing, we car2.4 Feature Set

simply S€e parsing as a multi-class CIaS_S'f'Cat'OEinally, we need a suitable feature representation
problem 'n_Wh'Ch each dependency free is one %ﬁ,j) for each dependency. The basic features in
many possible classes for a sentence. However, t

: on fail ionallv b r model are outlined in Table 1a and b. All fea-
Interpretation fails computationally because a gefy o 4re conjoined with the direction of attachment

eral sentence has exponentially many possible dgé well as the distance between the two words being
penden_c y trees and thus exponentially many Malgittached. These features represent a system of back-
co$str:_;unts. hi bl ke th off from very specific features over words and part-

0 circumvent this problem we maxe the aSSumpéf-speech tags to less sparse features over just part-

tion that the constraints that matter for large marg"af-speech tags. These features are added for both the

optimization are those involving the incorrect trees, ... -
R _ f _ Rntire words as well as triegram prefix if the word
y' with the highest scores(x,y’). The resulting is longer tharb characters

optimization made by MIRA (see Figure 3, line 4) Using just features over the parent-child node

would then be: pairs in the tree was not enough for high accuracy,

min HW(HI) —w® H because all attachment decisions were made outside
st s(xpy) — s(xny') > Ly, y') of the context in which the words occurred. To solve
Vy' € besf(x;;w?) this problem, we added two other types of features,

which can be seen in Table 1c. Features of the first
reducing the number of constraints to the constant type look at words that occur between a child and
We tested various values bfon a development data its parent. These features take the form of a POS
set and found that small values/ofire sufficient to trigram: the POS of the parent, of the child, and of
achieve close to best performance, justifying our ag word in between, for all words linearly between
sumption. In fact, ag grew we began to observe athe parent and the child. This feature was particu-
slight degradation of performance, indicating somérly helpful for nouns identifying their parent, since

b)

a) __)

Basic Uni-gram Features Basic Big-ram Features In Between POS Features

p-word, p-pos p-word, p-pos, c-word, c-po$ p-pos, b-pos, C-pos

E-\F/)vcc));d S\?v%?dccwvc\)/g(:dccpgzs Surrounding Word POS Features

c-word, c-pos p-word, p-pos, c-pos ngzlp Sosgsl ,Cc_-;)é)ss_-ll,cc_bpé)ss

c-word p-word, p-pos, c-word : - ’

cwor b-word c-word p-pos, p-pos+1, c-pos, c-pos+1
P b-p0S, 5-p0S p-pos-1, p-pos, ¢-pos, c-pos+1

Table 1: Features used by system. p-word: word of parent imodiependency tree. c-word: word of child
node. p-pos: POS of parent node. c-pos: POS of child nodespip POS to the right of parent in sentence.
p-pos-1: POS to the left of parent. c-pos+1: POS to the rifilchidd. c-pos-1: POS to the left of child.
b-pos: POS of a word in between parent and child nodes.

it would typically rule out situations when a noundent for a word, it would be useful to know previ-

attached to another noun with a verb in betweemus attachment decisions and incorporate these into

which is a very uncommon phenomenon. the features. It is fairly straightforward to modify
The second type of feature provides the local corthe parsing algorithm to store previous attachments.

text of the attachment, that is, the words before andowever, any modification would result in an as-

after the parent-child pair. This feature took the fornymptotic increase in parsing complexity.

of a POS4-gram: The POS of the parent, child,

word before/after parent and word before/after child3 Experiments

The system also used back-off features to various tri-

grams where one of the local context POS tags Wvge tested our methods experimentally on the Eng-

removed. Adding these two features resulted in iSh Penn Treebank (Marcus et al., 1993) and on the

: : zech Prague Dependency Treebank (Hajic, 1998).
large improvement in performance and brought thg\ll experiments were run on a dual 64-bit AMD
system to state-of-the-art accuracy.

Opteron 2.4GHz processor.

To create dependency structures from the Penn
Treebank, we used the extraction rules of Yamada
Besides performance (see Section 3), the approaghd Matsumoto (2003), which are an approximation
to dependency parsing we described has sevetalthe lexicalization rules of Collins (1999). We split
other advantages. The system is very general amige data into three parts: sections 02-21 for train-
contains no language specific enhancements. In fagiig, section 22 for development and section 23 for
the results we report for English and Czech use iderwvaluation. Currently the system Ha998, 447 fea-
tical features, though are obviously trained on differtures. Each instance only uses a tiny fraction of these
ent data. The online learning algorithms themselveigatures making sparse vector calculations possible.
are intuitive and easy to implement. Our system assumes POS tags as input and uses the

The efficientO(n?) parsing algorithm of Eisner tagger of Ratnaparkhi (1996) to provide tags for the
allows the system to search the entire space of ddevelopment and evaluation sets.
pendency trees while parsing thousands of sentencesTable 2 shows the performance of the systems
in a few minutes, which is crucial for discriminative that were compared. Y&M2003 is the SVM-shift-
training. We compare the speed of our model to geduce parsing model of Yamada and Matsumoto
standard lexicalized phrase structure parser in Se@003), N&S2004 is the memory-based learner of
tion 3.1 and show a significant improvement in parsiivre and Scholz (2004) and MIRA is the the sys-
ing times on the testing data. tem we have described. We also implemented an av-

The major limiting factor of the system is its re-eraged perceptron system (Collins, 2002) (another
striction to features over single dependency attaclonline learning algorithm) for comparison. This ta-
ments. Often, when determining the next deperble compares onlpure dependency parsers that do

2.5 System Summary

English Czech
Accuracy Root Complete Accuracy Root Complete

Y&M2003 90.3 91.6 38.4
N&S2004 87.3 84.3 30.4 - - -

Avg. Perceptron 90.6 94.0 36.5 82.9 88.0 30.3
MIRA 90.9 94.2 375 83.3 88.6 31.3

Table 2: Dependency parsing results for English and Cz&cturacy is the number of words that correctly
identified their parent in the tre®oot is the number of trees in which the root word was correctliyiiied.
For Czech this is f-measure since a sentence may have reultipls. Complete is the number of sentences
for which the entire dependency tree was correct.

not exploit phrase structure. We ensured that théid need to make some data specific changes. In par-
gold standard dependencies of all systems compargcular, we used the method of Collins et al. (1999) to
were identical. simplify part-of-speech tags since the rich tags used
Table 2 shows that the model described here pdpy Czech would have led to a large but rarely seen
forms as well or better than previous comparablset of POS features.
systems, including that of Yamada and Matsumoto The model based on MIRA also performs well on
(2003). Their method has the potential advantagézech, again slightly outperforming averaged per-
that SVM batch training takes into account all ofceptron. Unfortunately, we do not know of any other
the constraints from all training instances in the opparsing systems tested on the same data set. The
timization, whereas online training only considersCzech parser of Collins et al. (1999) was run on a
constraints from one instance at a time. Howevedifferent data set and most other dependency parsers
they are fundamentally limited by their approximateare evaluated using English. Learning a model from
search algorithm. In contrast, our system searchdéise Czech training data is somewhat problematic
the entire space of dependency trees and most liketynce it contains some crossing dependencies which
benefits greatly from this. This difference is am-cannot be parsed by the Eisner algorithm. One trick
plified when looking at the percentage of trees thds to rearrange the words in the training set so that
correctly identify the root word. The models thatall trees are nested. This at least allows the train-
search the entire space will not suffer from bad agng algorithm to obtain reasonably low error on the
proximations made early in the search and thus ateining set. We found that this did improve perfor-
more likely to identify the correct root, whereas themance slightly t®3.6% accuracy.
approximate algorithms are prone to error propaga- o
tion, which culminates with attachment decisions ag-1 Lexicalized Phrase Structure Parsers
the top of the tree. When comparing the two onlindt is well known that dependency trees extracted
learning models, it can be seen that MIRA outperfrom lexicalized phrase structure parsers (Collins,
forms the averaged perceptron method. This differt999; Charniak, 2000) typically are more accurate
ence is statistically significany < 0.005 (McNe- than those produced by pure dependency parsers
mar test on head selection accuracy). (Yamada and Matsumoto, 2003). We compared
In our Czech experiments, we used the depemur system to the Bikel re-implementation of the
dency trees annotated in the Prague Treebank, a@allins parser (Bikel, 2004; Collins, 1999) trained
the predefined training, development and evaluationith the same head rules of our system. There are
sections of this data. The number of sentences two ways to extract dependencies from lexicalized
this data set is nearly twice that of the English treephrase structure. The firstis to use the automatically
bank, leading to a very large number of features —generated dependencies that are explicit in the lex-
13,450,672. But again, each instance uses just &alization of the trees, we call this syste®ollins-
handful of these features. For POS tags we used thato. The second is to take just the phrase structure
automatically generated tags in the data set. Thouglutput of the parser and run the automatic head rules
we made no language specific model changes, vewer it to extract the dependencies, we call this sys-

English
Accuracy Root Complete Complexity Time
Collins-auto 88.2 92.3 36.1 O(n®) 98m 21s
Collins-rules 91.4 95.1 42.6 O(n) 98m 21s
MIRA-Normal 90.9 94.2 37.5 o(n?) 5m 52s
MIRA-Collins 92.2 95.8 42.9 O(n®) 105m 08s

Table 3: Results comparing our system to those based on thiesGQoarser. Complexity represents the
computational complexity of each parser dmahe the CPU time to parse sec. 23 of the Penn Treebank.

temCollins-rules. Table 3 shows the results compar- | k=1 k=2 k=5 k=10 k=20
ing our systemMIRA-Normal, to the Collins parser Tg?ﬁ%?ﬁg igéﬁ ggfrﬁ gg'ﬁﬁ 193%2% 294%2;

for English. All systems are implemented in Java

and run on the same machine. Table 4: Evaluation ok-best MIRA approximation.

Interestingly, the dependencies that are automati-
cally produced by the Collins parser are worse than .
those extracted statically using the head rules. Aﬁ'z k-best MIRA Approximation
guably, this displays the artificialness of English de©ne question that can be asked is how justifiable is
pendency parsing using dependencies automaticatlye k-best MIRA approximation. Table 4 indicates
extracted from treebank phrase-structure trees. Otlre accuracy on testing and the time it took to train
system falls in-between, better than the automatimodels withk = 1,2,5, 10, 20 for the English data
cally generated dependency trees and worse than #&t. Even though the parsing algorithm is propor-
head-rule extracted trees. tional to O(k log k), empirically, the training times

Since the dependencies returned from our systefir@le linearly witht. Peak performance is achieved
are better than those actually learnt by the Collin¥e"y €arly with a slight degradation arourer20.
parser, one could argue that our model is actyth® most likely reason for this phenomenon is that
ally learning to parse dependencies more accuratefj)¢ model is overfitting by ensuring that even un-
However, phrase structure parsers are built to malikely trees are separated from the correct tree pro-
imize the accuracy of the phrase structure and u&@rtional to their loss.
lexicalization as just an additional source of infor-

mation. Thus it is not too surprising that the de# Summary

pendencies output by the Collins parser are not &§e described a successful new method for training
accurate as our system, which is trained and built t@ependency parsers. We use simple linear parsing
maximize accuracy on dependency trees. In compodels trained with margin-sensitive online training
plexity and run-time, our system is a huge improveg|gorithms, achieving state-of-the-art performance
ment over the Collins parser. with relatively modest training times and no need
The final system in Table 3 takes the output ofor pruning heuristics. We evaluated the system on
Collins-rules and adds a feature tBlIRA-Normal both English and Czech data to display state-of-the-
that indicates for given edge, whether the Collingrt performance without any language specific en-
parser believed this dependency actually exists, we&ncements. Furthermore, the model can be aug-
call this systenMIRA-Callins. This is a well known mented to include features over lexicalized phrase
discriminative training trick — using the sugges-structure parsing decisions to increase dependency
tions of a generative system to influence decisionsiccuracy over those parsers.
This system can essentially be considered a correc-We plan on extending our parser in two ways.
tor of the Collins parser and represents a significarirst, we would add labels to dependencies to rep-
improvement over it. However, there is an addedesent grammatical roles. Those labels are very im-
complexity with such a model as it requires the outportant for using parser output in tasks like infor-
put of theO(n®) Collins parser. mation extraction or machine translation. Second,

we are looking at model extensions to allow nond. Eisner and G. Satta. 1999. Efficient parsing for bilexi-
projective dependencies, which occur in languages cal context-free grammars and head-automaton gram-
such as Czech, German and Dutch. mars. InProc. ACL.

J. Eisner. 1996. Three new probabilistic models for de-
Acknowledgments: We thank Jan Haji¢ for an- pendency parsing: An exploration. Rioc. COLING.
svyermg quer|e§ pn the Prague treebank, and Joak'jnHajié. 1998. Building a syntactically annotated cor-
Nivre for providing the Yamada and Matsumoto pys: The Prague dependency treebatssues of Va-
(2003) head rules for English that allowed for a di- lency and Meaning.
rect comparison with our systems. This work wa _Huang and D. Chiang. 2005. Betterbest parsing.

supported by NSF ITR grants 0205456, 0205448, 1echnical Report MS-CIS-05-08, University of Penn-
and 0428193. sylvania.

Richard Hudson. 1984M\ord Grammar. Blackwell.

References T. Joachims. 2002_Learning to Classify Text using Sup-
D.M. Bikel. 2004. Intricacies of Collins parsing model. Port Vector Machines. Kluwer.

Computational Linguistics. J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-

Y. Censor and S.A. Zenios. 199Farallel optimization : ditional random fields: Probabilistic models for seg-
theory, algorithms, and applications. Oxford Univer- menting and labeling sequence dataPtoc. ICML.
sity Press.

M. Marcus, B. Santorini, and M. Marcinkiewicz. 1993.
E. Charniak. 2000. A maximum-entropy-inspired parser. Building a large annotated corpus of english: the penn

In Proc. NAACL. treebank Computational Linguistics.

S. Clark and J.R. Curran. 2004. Parsing the WSJ usinl Nivre and M. Scholz. 2004. Deterministic dependency
CCG and log-linear models. Proc. ACL. parsing of english text. IRroc. COLING.

M. Collins and B. Roark. 2004. Incremental parsing withA- Ratnaparkhi. 1996. A maximum entropy model for
the perceptron algorithm. IRroc. ACL. part-of-speech tagging. Proc. EMNLP.

M. Collins, J. Haji¢, L. Ramshaw, and C. Tillmann. 1999A. Ratnaparkhi. 1999. Learning to parse natural
A statistical parser for Czech. Proc. ACL. Ili’:\nguage with maximum entropy modeldviachine

earning.

M. Collins. 1999. Head-Driven Satistical Models for

Natural Language Pa_rs'ng_ Ph.D. thesiS, University S. RieZ|er, T. King, R. Kaplan,_R. CrOUCh, J. Maxwe”,
of Pennsylvania. and M. Johnson. 2002. Parsing the Wall Street Journal

using a lexical-functional grammar and discriminative
M. Collins. 2002. Discriminative training methods for estimation techniques. Froc. ACL.

hidden Markov models: Theory and experiments with) .)]
perceptron algorithms. IRroc. EMNLP. F. Sha and F. Pereira. 2003. Shallow parsing with condi-

tional random fields. IfProc. HLT-NAACL.
K. Crammer and Y. Singer. 2001. On the algorithmic

implementation of multiclass kernel based vector maY- Shinyama, S. Sekine, K. Sudo, and R. Grishman.
chines.JMLR. 2002. Automatic paraphrase acquisition from news ar-

ticles. InProc. HLT.

K. Crammer and Y. Singer. 2003. Ultraconservative on-])
line algorithms for multiclass problem3MLR. B. Taskar, C. Guestrin, and D. Koller. 2003. Max-margin

Markov networks. IrProc. NIPS.
K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. _ _
2003. Online passive aggressive a|gorithmsp“oc' B. TaSkar, D. K|e|n, M. COI“nS, D. KO”er, and C. Man-

NIPS. ning. 2004. Max-margin parsing. Proc. EMNLP.
A. Culotta and J. Sorensen. 2004. Dependency tree kdi- Yamada and Y. Matsumoto. 2003. Statistical depen-
nels for relation extraction. IRroc. ACL. dency analysis with support vector machinesPtoc.
IWPT.

Y. Ding and M. Palmer. 2005. Machine translation using
probabilistic synchronous dependency insertion gram-
mars. InProc. ACL.

