Efficient Large-Scale Distributed Training of
Conditional Maximum Entropy Models

Gideon Mann Ryan McDonald Mehryar Mohri
Google Google Courant Institute and Google
gmann@oogl e. com ryanntd@oogl e. com nmohri @i ns. nyu. edu
Nathan Silberman Daniel D. Walker*
Google NLP Lab, Brigham Young University
nsi | ber mman@oogl e. com danl 4@s. byu. edu
Abstract

Training conditional maximum entropy models on massiva dats requires sig-
nificant computational resources. We examine three comnsribdited training
methods for conditional maxent: a distributed gradient potation method, a
majority vote method, and a mixture weight method. We areéyrd compare the
CPU and network time complexity of each of these methods eegbpt a theoret-
ical analysis of conditional maxent models, including algtaf the convergence
of the mixture weight method, the most resource-efficiectibéque. We also re-
port the results of large-scale experiments comparingetiiege methods which
demonstrate the benefits of the mixture weight method: tléghod consumes
less resources, while achieving a performance comparaltthat of standard ap-
proaches.

1 Introduction

Conditional maximum entropy models [1, 3], conditional raaxmodels for short, also known as
multinomial logistic regression models, are widely usedpplications, most prominently for multi-
class classification problems with a large number of classestural language processing [1, 3] and
computer vision [12] over the last decade or more.

These models are based on the maximum entropy principleyoedg11], which consists of se-
lecting among the models approximately consistent withctirestraints, the one with the greatest
entropy. They benefit from a theoretical foundation simitathat of standard maxent probabilistic
models used for density estimation [8]. In particular, altiytheorem for conditional maxent model
shows that these models belong to the exponential familghtsvn by Lebanon and Lafferty [13],
in the case of two classes, these models are also closelgdéteAdaBoost, which can be viewed as
solving precisely the same optimization problem with th@sa@onstraints, modulo a normalization
constraint needed in the conditional maxent case to derdlegbility distributions.

While the theoretical foundation of conditional maxent ralsdnakes them attractive, the computa-
tional cost of their optimization problem is often prohibé for data sets of several million points.
A number of algorithms have been described for batch trginfrconditional maxent models using
a single processor. These include generalized iteratiakngc[7], improved iterative scaling [8],
gradient descent, conjugate gradient methods, and sewroledmethods [15, 18].

This paper examines distributed methods for training doomthl maxent models that can scale to
very large samples of up to 1B instances. Both batch algostind on-line training algorithms such

*This work was conducted while at Google Research, New York.

as that of [5] or stochastic gradient descent [21] can befnefit parallelization, but we concentrate
here on batch distributed methods.

We examine three common distributed training methods:taldlised gradient computation method

[4], a majority vote method, and a mixture weight method. \Walgze and compare the CPU and
network time complexity of each of these methods (Secticani?) present a theoretical analysis of
conditional maxent models (Section 3), including a studihefconvergence of the mixture weight
method, the most resource-efficient technique. We alsatéporesults of large-scale experiments
comparing these three methods which demonstrate the tseoftite mixture weight method (Sec-

tion 4): this method consumes less resources, while actgevperformance comparable to that of
standard approaches such as the distributed gradient ¢atigpumethod.

2 Distributed Training of Conditional Maxent Models

In this section, we first briefly describe the optimizationlgem for conditional maximum entropy
models, then discuss three common methods for distribuééuirig of these models and compare
their CPU and network time complexity.

2.1 Conditional Maxent Optimization problem

Let X be the input spacéy the output space, anbl: X’ x)Y — H a (feature) mapping to a Hilbert
spaceH, which in many practical settings coincides Wi, N = dim(H) < co. We denote by
|| - || the norm induced by the inner product associateH to

LetS=((z1,91),---, (zm,ym)) be a training sample of: pairs inX’x). A conditional maximum
entropy model is a conditional probability of the fopg [y|«] = % exp(w-®(z,y)) with Z(x) =

Zyey exp(w-®(x,y)), where the weight or parameter vectoe H is the solution of the following
optimization problem:

m
w = argmin Fg(w) = argmin \||w||* — e Zlogpw[yi|xi]. 1)
weH weH m =
Here,\ > 0 is a regularization parameter typically selected via cia@dilation. The optimization
problem just described corresponds tad/arregularization. Many other types of regularization have
been considered for the same problem in the literature,riticpéar L, regularization or regulariza-
tions based on other norms. This paper will focus on conuticmaximum entropy models withsy
regularization.

These models have been extensively used and studied irahktnguage processing [1, 3] and
other areas where they are typically used for classificatBiven the weight vectow, the outputy
predicted by the model for an inputis:

Yy = argmax pwlylz] = argmax w - ®(z,y). (2)

yey yey

Since the functiorFs is convex and differentiable, gradient-based methods eanskd to find a
global minimizerw of Fs. Standard training methods such as iterative scaling,igmadescent,
conjugate gradient, and limited-memory quasi-Newton alieithe general form of Figure 1, where
the update functiod': H — H for the gradientV Fs(w) depends on the optimization method
selected. T’ is the number of iterations needed for the algorithm to cogwéo a global minimum.
In practice, convergence occurs whign(w) differs by less than a constanin successive iterations
of the loop.

2.2 Distributed Gradient Computation Method

Since the points are sampled i.i.d., the gradient compmurtati step 3 of Figure 1 can be distributed
acrossgp machines. Consider a samgfle= (51, ...,.S,) of pm points formed by subsamples of

A batch parallel estimation technique for maxent modeletam their connection with AdaBoost is also
described by [5]. This algorithm is quite different from tistributed gradient computation method, but, as for
that method, it requires a substantial amount of networuess, since updates need to be transferred to the
master at every iteration.

1 w«0

1 w0 2 fort« 1toT do

2 fort« 1toT do 3 VFs(w) <« DISTGRADIENT(Fs, (w) || p machine$

3 VFs(w) < GRADIENT(Fs(w)) 4 w—w+[(VFs(w))

4 w — w + ['(VFs(w)) 5 UPDATE(w || p machine$

5 return w 6 return w

Figure 1: Standard Training Figure 2: Distributed Gradient Training

m points drawn i.i.d.S1, ..., S,. At each iteration, the gradient8F’s, (w) are computed by these

p machines in parallel. These separate gradients are themedmp to compute the exact global
gradient on a single machine, which also performs the opétitn step and updates the weight
vector received by all other machines (Figure 2). Chu etddldgscribe a map-reduce formulation
for this computation, where each training epoch consistsnaf map (compute eacViFs, (w))
and one reduce (update). However, the update method they present is that of Newaphson,
which requires the computation of the Hessian. We do notidensuch strategies, since Hessian
computations are often infeasible for large data sets.

2.3 Majority Vote Method

The ensemble methods described in the next two paragraplmaed on mixture weighjse RP.
LetA,={p € R?: p>0A>_7_, pr = 1} denote the simplex &” and letu € A,,. In the absence
of any prior knowledgey is chosen to be the uniform mixtugg, = (1/p,...,1/p) as in all of our
experiments.

Instead of computing the gradient of the global function arghel, a (weighted) majority vote
method can be used. Each machine receives one subsamplec [1, p], and computesv;, =
argmin, ; Fs, (w) by applying the standard training of Figure 149p. The output predicted by
the majority vote method for an inputis

p

y = argmax Y _ i I(argmax pu, [/ |7] = y), 3)
yeY 1 y'ey

wherel is an indicator function of the predicate it takes as argumeXternatively, the con-

ditional class probabilities could be used to take into aoatdhe uncertainty of each classifier:

y=argmax, Y p_ fix Pw, [¥]7]-
2.4 Mixture Weight Method

The cost of storing weight vectors can make the majority vote method unappgalinstead, a
single mixture weightv,, can be defined form the weight vectars, k<1, p|:

p
WH = Z HUEWE. (4)
k=1
The mixture weightv,, can be used directly for classification.

2.5 Comparison of CPU and Network Times

This section compares the CPU and network time complexitthefthree training methods just
described. Table 1 summarizes these results. Here, weeleyndt the dimension off. User CPU
represents the CPU time experienced by the esemlative CPU the total amount of CPU time for
the machines participating in the computation, #atdncy the experienced runtime effects due to
network activity. Thecumulative network usage is the amount of data transferred across the network
during a distributed computation.

For a training sample gfm points, both the user and cumulative CPU times ar@dn, (T’pmN)
when training on a single machine (Figure 1) since at eachedf'titerations, the gradient compu-
tation must iterate over athn training points and update all the componentsvof

Training Training Training Prediction

User CPU + Latency Cum. CPU Cum. Network| User CPU
Single Machine Ocpu(pmNT) Ocpu(pmNT) N/A Ocpu(N)
Distributed Gradien{ Ocpu(mNT') + Ot (NT) | Ocpu(pmNT) Onet(pNT) Ocpu(N)
Majority Vote Ocpu(MNTmax) + O1at(N) | Yo7 _, Ocpu(mNT) | Onet(pN) Ocpu(pN)
Mixture Weight Ocpu(MNTimax) + O1at(N) | Yor_, Ocpu(mNTr) | Onet(pN) Ocpu(N)

Table 1: Comparison of CPU and network times.

For the distributed gradient method (Section 2.2), the ease user CPU of the gradient and
parameter update computations (lines 3-4 of Figure 2)js (mN +pN + N) since each parallel
gradient calculation takesa N to compute the gradient fan instancesp gradients of sizéV need

to be summed, and the parameters updated. We assume héehe tirate to computé' is negligible.

If we assume thagt < m, then, the user CPU is ifl.,,(mNT). Note that the number of iterations
it takes to convergdl}, is the same as when training on a single machine since thpwtations are
identical.

In terms of network usage, a distributed gradient stratefjyincur a cost of O,e(pNT') and a
latency proportional t@,:(NT'), since at each iteratiow must be transmitted to each of the
p machines (in parallel) and eadhFs, (w) returned back to the master. Network time can be
improved through better data partitioning 8fwhen®(z, y) is sparse. The exact runtime cost of
latency is complicated as it depends on factors such as gfmgaihdistance between the master and
each machine, connectivity, the switch fabric in the nekwand CPU costs required to manage
messages. For parallelization on massively multi-corehimas [4], communication latency might
be negligible. However, in large data centers running coditpanachines, a more common case,
network latency cost can be significant.

The training times are identical for the majority vote anctmie weight techniques. L&t be the
number of iterations for training thieth mixture component;, and letTy, . = max{T,...,Tp}.
Then, the user CPU usage of training i€lg,, (mNTmax), Similar to that of the distributed gradient
method. However, in practicd,,.. is typically less tharf" since convergence is often faster with
smaller data sets. A crucial advantage of these methodstoelistributed gradient method is that
their network usage is significantly less than that of thérithisted gradient computation. While
parameters and gradients are exchanged at each iteratitnsfonethod, majority vote and mixture
weight techniques only require the final weight vectors toréesferred at the conclusion of training.
Thus, the overall network usage %,.:(pN) with a latency inOp,.(NT). The main difference
between the majority vote and mixture weight methods is $e&r €PU (and memory usage) for
prediction which is iNDcp, (pNV') versusOcp, (N) for the mixture weight method. Prediction could
be distributed ovep machines for the majority vote method, but that would inaldigaonal machine
and network bandwidth costs.

3 Theoretical Analysis

This section presents a theoretical analysis of conditioraent models, including a study of the
convergence of the mixture weight method, the most reseefifa@ent technique, as suggested in
the previous section.

The results we obtain are quite general and include the mioséveral fundamental properties of
the weight vectow obtained when training a conditional maxent model. We firstg the stability
of w in response to a change in one of the training points. We thenagconvergence bound for
w as a function of the sample size in terms of the norm of thaifeatpace and also show a similar
result for the mixture weight/,,. These results are used to compare the weight vegigrobtained
by training on a sample of sizen with the mixture weight vectow,.

Consider two training samples of size, S = (z1,...,2m—1,2m) @andsS’ = (z1,..., 2m—1, 2,,),

with elements inY’ x), that differ by a single training point, which we arbitrgréet as the last one

of each samplez,, = (z,, ym) andz/,, = (x},,,y.,). Letw denote the parameter vector returned
by conditional maximum entropy when trained on samplev’ the vector returned when trained
on S’, and letAw denotew’ —w. We shall assume that the feature vectors are boundedsthat i
there existsk > 0 such that for al(z,y) in X x Y, || ®(z,y)|| < R. Our bounds are derived using

techniques similar to those used by Bousquet and ElissBgfbf other authors, e.g., [6], in the
analysis of stability. In what follows, for amy € H andz = (z,y) € X x), we denote by, (w)
the negative log-likelihoodleg py, [y|].

Theorem 1. Let S” and S be two arbitrary samples of size m differing only by one point. Then, the
following stability bound holds for the weight vector returned by a conditional maxent model:

2R
< —.
lAw] < — (5)

Proof. We denote byBr the Bregman divergence associated to a convex and diffabémfunction
F defined for allu, u’ by: Br(u'|ju) = F(u')—F(u)-VF(u)-(u'—u). LetGg denote the function
u— L3 L. (u) andW the functionu — Al|ul|>.. G andW are convex and differentiable

functions. Since the Bregman divergence is non-negalive,> 0 and Bp, = By + Bg, > Bw.
Similarly, Br,, > By . Thus, the following inequality holds:

Bw (W'[|w) + Bw (w||w') < Brs (W'[[w) + Brg, (W[w'). (6)
By the definition ofw andw’ as the minimizers of's andFs/, VFs(w) = VFg/(w') = 0 and
Brs(W'||w) 4+ Br,, (w|w') = Fg(w') — Fs(w) + Fs/(w) — Fs/(w')

= ([() = Ly ()] + [, (w) — Loy, (W]
< L [TLa (W) (3 = W) 4 VL (W) (= w)]
= VL (W) = Vo, (W)] - (W~ w),

where we used the convexity 6f, andL.,,. Itis not hard to see thay (w’||w)+ Bw (w|w’') =
2)\||Aw (2. Thus, the application of the Cauchy-Schwarz inequalithéanequality just established
yields

1 1
2N [Aw] € — VL., (W) = VL (W] < —[IVL., W) + VL, W] ()
The gradientofw — L., (w) =logy oy €™ ®@m¥) —w . & (2, ym) is given by

ZyEY ew-@(zm,y)q)(xm7 y)

VL, (w)= y —®(z, ym) = E Pz, y) — P(Tm, Ym)|-
%) Dyey €V BE@my) (@, Ym) yrpwl|Tm] [®@m,) = B(@m, ym)]

Thus, we obtain|VL.,,(W)| < Eywp,(12,,) [®(@m,y) = B(@m, ym)ll] < 2R and similarly
VL., (w)||<2R, which leads to the statement of the theorem. O

Let D denote the distribution according to which training and pesnts are drawn and let* be
the objective function associated to the optimization afiwith respect to the true log loss:

F*(w) = argmin A|w[> + E_[L.(w)]. (8)
weH z~D

F* is a convex function sincEp [L.] is convex. Let the solution of this optimization be denotgd b
w* = argming, ¢ i F*(w).

Theorem 2. Let w € H be the weight vector returned by conditional maximum entropy when
trained on a sample S of size m. Then, for any § > 0, with probability at least 1 — ¢, the following

inequality holds:
. R
lw —w*|| < (1+ /log1/9). 9)

A/m/2

Proof. Let S and S’ be as before samples of size differing by a single point. To derive this
bound, we apply McDiarmid’s inequality [17] t6(S) = ||lw — w*||. By the triangle inequality and
Theorem 1, the following Lipschitz property holds:

2R

() = w(S)] = [[lw" = w[| = w = w*[[| < W' = w|| < . (10)

Thus, by McDiarmid’s inequalityPr[¥ — E[¥] > ¢] < exp (%) The following bound can be
shown for the expectation df (see longer version of this papeB[¥| < F Using this bound

and setting the right-hand side of McDiarmid’s inequalay tshow that the following holds

\IJSE[\I!]A—?\/lOg‘lS <)\\/_(1+\/10g1 75), (11)

with probability at least —d. O

Note that, remarkably, the bound of Theorem 2 does not deperttie dimension of the feature
space but only on the radidsof the sphere containing the feature vectors.

Consider now a samplg= (S, ...,.S,) of pm points formed by subsamples ofx points drawn
i.i.d. and letw,, denote thg:-mixture weight as defined in Section 2.4. The following tfezo gives
a learning bound fow,, .

Theorem 3. For any u € A, let w,, € H denote the mixture weight vector obtained froma sample
of size pm by combining the p weight vectors wy,, k € [1, p|, each returned by conditional maximum
entropy when trained on the sample S, of sizem. Then, for any § > 0, with probability at least 1—9,
the following inequality holds:

Wi = | < B [wi = w*[] + ?ﬁLvﬁ__‘ (12)

For the uniformmixture o= (1/p, ..., 1/p), the bound becomes

o
A/pm/2

Proof. The result follows by application of McDiarmid’s inequglito Y (S) = ||w, — w*||. Let
S"=(51,...,5,) denote a sample differing froifi by one point, say in subsamptg.. Let w),
denote the weight vector obtained by training on subsarfiplandw;, the mixture weight vector

associated té¢’. Then, by the triangle inequality and the stability bound@b&orem 1, the following
holds:

Wy — W[l < B [[lw,, —w]]] +

log1/6. (13)

QMkR
T(S) = ()] = [llw), = W = [[wp = W] < [[Wh, = Will = pualwi, = wi | < ==
Thus, by McDiarmid’s inequality,
—2¢? —22%2me?
Pr[Y(S) — E[T(S)] > ¢ Sexp(—):exp<7), (14)
which proves the first statement and the uniform mixture easee||p,|| = 1/,/p. O

Theorems 2 and 3 help us compare the mixture weight, obtained by training on a sample of
size pm versus the mixture weight vectev,, . The regularization parametaris a function of
the sample size. To simplify the analysis, we shall assuraeXh- O(1/m'/*) for a sample of
sizem. A similar discussion holds for other comparable asymptb&haviors. By Theorem 2,
[Wpm — w*|| converges to zero i0(1/(\/pm)) = O(1/(pm)'/4), sincex = O(1/(pm)'/*) in
that case. But, by Theorem 3, the slack term boundimg — w*|| converges to zero at the faster
rateO(1/(\/pm))=0(1/p*/*m!/*), since here\=0O(1/m'/*). The expectation term appearing
in the bound on|w,, — w*||, E[[|w,, — w*||], does not benefit from the same convergence rate
however.E[||w,,, — w*||] converges always as fast as the expectdiiw,, — w*||] for a weight
vectorw,,, obtained by training on a sample of sizesince, by the triangle inequality, the following
holds:

* * 1 - * *
Effw, —w*[[] = [II— Z(WR —wil] < - ZE[HWk —w] = E[[jwi —wr[l]. (15)
Pio
By the proof of Theorem Z&[||w; —w*||] < R/()\\/ O(1/(Ay/m)), thusE[||w,, —w*||] <
O(1/m'*). In summary,w,, always converges S|gn|f|cantly faster thamn,. The convergence
bound forw,, contains two terms, one somewhat more favorable, one soatéegs than its coun-
terpart term in the bound fow,,, .

pm | Y| |X| | sparsity P
English POS [16] Y 24 | 500K | 0.001 10
Sentiment 9M 3 | 500K | 0.001 10
RCV1-v2 [14] 26 M | 103| 10K | 0.08 10
Speech 50M | 129 39| 1.0 499
Deja News Archive 306 M 8| 50K | 0.002 200
Deja News Archive 250K| 306 M 8 | 250K | 0.0004 200
Gigaword [10] 1,000M| 96| 10K | 0.001 1000

Table 2: Description of data sets. The column named spasitgrts the frequency of non-zero
feature values for each data set.

4 Experiments

We ran a number of experiments on data sets ranging in sine I\ to 1B labeled instances (see
Table 2) to compare the three distributed training methadsidbed in Section 2. Our experiments
were carried out using a large cluster of commodity machivigsa local shared disk space and a
high rate of connectivity between each machine and betweshimes and disk. Thus, while the
processes did not run on one multi-core supercomputergtveonk latency between machines was
minimized.

We report accuracy, wall clock, cumulative CPU usage, amautative network usage for all of our
experiments. Wall clock measures the combined effectseofifer CPU and latency costs (column
1 of Table 1), and includes the total time for training, irdihg all summations. Network usage
measures the amount of data transferred across the net®aekto the set-up of our cluster, this
includes both machine-to-machine traffic and machineis&-tlaffic. The resource estimates were
calculated by point-sampling and integrating over the dargpime. For all three methods, we used
the same base implementation of conditional maximum eptrapdified only in whether or not the
gradient was computed in a distributed fashion.

Ouir first set of experiments were carried out with “mediundlsadata sets containing 1M-300M in-
stances. These includelingl i sh part - of - speech tagging, generated from the Penn Treebank
[16] using the first character of each part-of-speech tagigsud, sections 2-21 for training, section
23 for testing and a feature representation based on thétidexifixes, and orthography of the in-
put word and the words in a window of size tw&ent i nent anal ysi s, generated from a set of
online product, service, and merchant reviews with a thewbel output (positive, negative, neutral),
with a bag of words feature representatiB@y1- v2 as described by [14], where documents having
multiple labels were included multiple times, once for ekdiel;Acousti ¢ Speech Dat a, a 39-
dimensional input consisting of 13 PLP coefficients, plwertfirst and second derivatives, and 129
outputs (43 phonesg 3 acoustic states); and tibej a News Archi ve, a text topic classification
problem generated from a collection of Usenet discussiaimfis from the years 1995-2000. For all
text experiments, we used random feature mixing [9, 20] tdrobthe size of the feature space.

The results reported in Table 3 show that the accuracy of tlxeure weight method consistently
matches or exceeds that of the majority vote method. As éggdethe resource costs here are
similar, with slight differences due to the point-samplingthods and the overhead associated with
storingp models in memory and writing them to disk. For some data se¢scould not report
majority vote results as all models could not fit into memaomyacsingle machine.

The comparison shows that in some cases the mixture weigtitoehéakes longer and achieves
somewhat better performance than the distributed gradietihod while for other data sets it ter-
minates faster, at a slight loss in accuracy. These diftmemay be due to the performance of the
optimization with respect to the regularization parameteiHowever, the results clearly demon-
strate that the mixture weight method achieves comparaisieracies at a much decreased cost in
network bandwidth — upwards of 1000x. Depending on the castahassessed for the underlying
network and CPU resources, this may make mixture weightrafgigntly more appealing strategy.
In particular, if network usage leads to significant incesaim latency, unlike our current experi-
mental set-up of high rates of connectivity, then the mitweight method could be substantially
faster to train. The outlier appears to be the acoustic $pdata, where both mixture weight and
distributed gradient have comparable network usage, 158@ER00GB, respectively. However, the
bulk of this comes from the fact that the data set itself is@Bn size, which makes the network

Training Method Accuracy| Wall Clock | Cumulative CPU Network Usage
English POY Distributed Gradient 97.60% 17.5m 11.0h 652 GB
(m=100k,p=10) | Majority Vote 96.80% 125m 18.5h 0.686 GB
Mixture Weight 96.80% 5m 115h 0.015GB
Sentiment | Distributed Gradient 81.18% 104 m 123 h 367 GB
(m=900k,p=10) | Majority Vote 81.25% 131m 168 h 3GB
Mixture Weight 81.30% 110 m 163 h 9GB
RCV1-v2 Distributed Gradienf 27.03% 48 m 407 h 479 GB
(m=2.6M,p=10) | Majority Vote 26.89% 54 m 474 h 3GB
Mixture Weight 27.15% 56 m 473 h 0.108 GB
Speech Distributed Gradient 34.95% 160 m 511 h 200 GB
(m=100k,p=499) | Mixture Weight 34.99% 130 m 534 h 158 GB
Deja Distributed Gradienf 64.74% 327 m 733 h 5,283 GB
(m=1.5M,p=200) | Mixture Weight 65.46% 316 m 707 h 48 GB
Deja 250K | Distributed Gradient 67.03% 340 m 698 h 17,428 GB
(m=1.5M,p=200) | Mixture Weight 66.86% 300 m 710 h 65 GB
Gigaword Distributed Gradienf 51.16% 240 m 18,598 h 13,000 GB
(m=1M,p=1k) Mixture Weight 50.12% 215 m 17,998 h 21 GB

Table 3: Accuracy and resource costs for distributed tngisirategies.

usage closer to 1GB for the mixture weight and 40GB for disted gradient method when we
discard machine-to-disk traffic.

For the largest experiment, we examined the task of predidtie next character in a sequence
of text [19], which has implications for many natural langegorocessing tasks. As a training
and evaluation corpus we used the English Gigaword corpisadd used the full ASCII output
space of that corpus of around 100 output classes (uppeacastwercase alphabet characters
variants, digits, punctuation, and whitespace). For eaehacters, we designed a set of observed
features based on substrings fremy, the previous character, ta 1o, 9 previous characters, and
hashed each into a 10k-dimensional space in an effort toovepspeed. Since there were around
100 output classes, this led to roughly 1M parameters. We shib-sampled 1B characters from
the corpus as well as 10k testing characters and establéstrathing set of 1000 subsets, of 1M
instances each. For the experiments described above ghlarieation parameter was kept fixed
across the different methods. Here, we decreased the p@ranfier the distributed gradient method
since less regularization was needed when more data waaldgaand since there were three orders
of magnitude difference between the training size for eadependent model and the distributed
gradient. We compared only the distributed gradient andumdweight methods since the majority
vote method exceeded memory capacity. On this data setethvork usage is on a different scale
than most of the previous experiments, though comparalej@ 250, with the distributed gradient
method transferring 13TB across the network. Overall, tirdure weight method consumes less
resources: less bandwidth and less time (both wall clockGiPd). With respect to accuracy, the
mixture weight method does only slightly worse than theritisted gradient method. The individual
models in the mixture weight method ranged between 49.73%0126%, with a mean accuracy
of 50.07%, so a mixture weight model improves slightly oveilaadom subsample models and
decreases the overall variance.

5 Conclusion

Our analysis and experiments give significant support ferrttixture weight method for training
very large-scale conditional maximum entropy models withregularization. Empirical results
suggest that this method achieves similar or better acimsrachile reducing network usage by
about three orders of magnitude and modestly reducing theloak time, typically by about 15%
or more. In distributed environments without a high rate ofirectivity, the decreased network
usage of the mixture weight method should lead to substayatias in wall clock as well.

Acknowledgments

We thank Yishay Mansour for his comments on an earlier varsfahis paper.

References

[1] A. Berger, V. Della Pietra, and S. Della Pietra. A maximamtropy approach to natural
language processin@omputational Linguistics, 22(1):39-71, 1996.

[2] O. Bousquet and A. Elisseeff. Stability and generalaat Journal of Machine Learning
Research, 2:499-526, 2002.

[3] S. F. Chen and R. Rosenfeld. A survey of smoothing teaesdor ME models|EEE Trans-
actions on Speech and Audio Processing, 8(1):37-50, 2000.

[4] C.Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukan. Map-Reduce for machine
learning on multicore. lidvancesin Neural Information Processing Systems, 2007.

[5] M. Collins, R. Schapire, and Y. Singer. Logistic regliess AdaBoost and Bregman distances.
Machine Learning, 48, 2002.

[6] C. Cortes, M. Mohri, M. Riley, and A. Rostamizadeh. Saenglection bias correction theory.
In Proceedings of ALT 2008, volume 5254 of NCS, pages 38-53. Springer, 2008.

[7] J. Darroch and D. Ratcliff. Generalized iterative seglfor log-linear modelsThe Annals of
Mathematical Satistics, pages 1470-1480, 1972.

[8] S. Della Pietra, V. Della Pietra, J. Lafferty, R. Technahd S. Brook. Inducing features of
random fields. |EEE transactions on pattern analysis and machine intelligence, 19(4):380—
393, 1997.

[9] K. Ganchev and M. Dredze. Small statistical models bydman feature mixing. In\brkshop
on Mobile Language Processing, ACL, 2008.

[10] D. Graff, J. Kong, K. Chen, and K. Maeda. English gigagvtitird edition, linguistic data
consortium, philadelphia, 2007.

[11] E. T. Jaynes. Information theory and statistical medtg Physical Review, 106(4):620630,
1957.

[12] J. Jeon and R. Manmatha. Using maximum entropy for aatmnmage annotation. Imter-
national Conference on Image and Video Retrieval, 2004.

[13] G. Lebanon and J. Lafferty. Boosting and maximum likebd for exponential models. In
Advancesin Neural Information Processing Systems, pages 447-454, 2001.

[14] D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchineollection for text catego-
rization researchlournal of Machine Learning Research, 5:361-397, 2004.

[15] R. Malouf. A comparison of algorithms for maximum ergyoparameter estimation. Inter-
national Conference on Computational Linguistics (COLING), 2002.

[16] M. Marcus, M. Marcinkiewicz, and B. Santorini. Buildjra large annotated corpus of English:
The Penn TreebanlComputational linguistics, 19(2):313-330, 1993.

[17] C. McDiarmid. On the method of bounded differences.Slinveys in Combinatorics, pages
148-188. Cambridge University Press, Cambridge, 1989.

[18] J. Nocedal and S. WrighNumerical optimization. Springer, 1999.

[19] C. E. Shannon. Prediction and entropy of printed EhgliBell Systems Technical Journal,
30:50-64, 1951.

[20] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, anétienberg. Feature hashing for
large scale multitask learning. International Conference on Machine Learning, 2009.

[21] T. Zzhang. Solving large scale linear prediction proldeusing stochastic gradient descent
algorithms. InInternational Conference on Machine Learning, 2004.

A Proof of Theorem 2

Proof. To bound the expectation df, we first derive an upper bound dnthat does not depend on
w. Let D denote the empirical distribution related to the santplén the following, the expectations

with respect taD assume a fixesk. We use directly the properties of andw* as minimizers of
Fs andF*. Writing VFs(w)=0 andVF*(w*) =0 and taking the difference yield immediately

W= w =~ o [BVL.(w)] - E[VL.(w)]] (16)
= 2A[g[w (w*)] = E[VL.(w")] + E[VL.(w")] - E[VL.(w)]]. (17)
D D D
Taking the inner product withlw* — w) and using the convexity ofL., which implies
(Ep[VL.(w*)=VL.(w)]) - (w*—w) >0, lead to
ot = wl? <~ [BIVL.(w*)] - EIVL.(w*)]] - (w* — w) (18)
D
< 2AHEVL W)l — (VL (W] Ilw” — wll. (19)

Thus, we can write\||w* — wi| < |1 > Z;||, whereZ =V L,(w*)—E[VL,(w*)] andZ; =
VL, (w*)—E[VL.(w*)], forall i € [1,m]. Note that this upper bound does not dependagn
which makes it easier to analyze its expectation with resjpethe choice of.

By Jensen’s inequalitp \E[¥]<E [| L 37" 7;||] < \/E[H% S Z;)|?]. Using the fact that the
variablesZ;s are i.i.d. withE[Z;] =0, we obtain

lm_271 _ ! n_ 1t
Bl 2] = Z 1Z:l1%) + 3" BlZi) - BlZ,]] = — Bl Z0l]*) = - Var(Za).

i#£]

Using the expression 67 L. (w*) already derived in the proof of Theorem 1 and the elemenéganty f
that if Z; andZ, are independent and identically distributed, them(Z,) = 1/2E[(Z; — Z1)?],

this shows thaE[¥] < - (45;)2 = Aj%' -

10

