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The proliferation of biomedical literature makes it increasingly difficult for researchers to find and manage
relevant information. However, identifying research articles containing mutation data, a requisite first step
in integrating large and complex mutation data sets, is currently tedious, time-consuming and imprecise. More
effective mechanisms for identifying articles containing mutation information would be beneficial both for the
curation of mutation databases and for individual researchers. We developed an automated method that uses
information extraction, classifier, and relevance ranking techniques to determine the likelihood of MEDLINE
abstracts containing information regarding genomic variation data suitable for inclusion in mutation databases.
We targeted the CDKN2A (p16) gene and the procedure for document identification currently used by
CDKN2A Database curators as a measure of feasibility. A set of abstracts was manually identified from a
MEDLINE search as potentially containing specific CDKN2A mutation events. A subset of these abstracts was
used as a training set for a maximum entropy classifier to identify text features distinguishing “relevant” from
“not relevant” abstracts. Each document was represented as a set of indicative word, word pair, and entity
tagger-derived genomic variation features. When applied to a test set of 200 candidate abstracts, the classifier
predicted 88 articles as being relevant; of these, 29 of 32 manuscripts in which manual curation found
CDKN2A sequence variants were positively predicted. Thus, the set of potentially useful articles that a manual
curator would have to review was reduced by 56%, maintaining 91% recall (sensitivity) and more than doubling
precision (positive predictive value). Subsequent expansion of the training set to 494 articles yielded similar
precision and recall rates, and comparison of the original and expanded trials demonstrated that the average
precision improved with the larger data set. Our results show that automated systems can effectively identify
article subsets relevant to a given task and may prove to be powerful tools for the broader research community.
This procedure can be readily adapted to any or all genes, organisms, or sets of documents. Hum Mutat 0, 1-8,
2006.  Published 2006 Wiley-Liss, Inc."
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INTRODUCTION

Recent acceleration in research activities have produced
challenges for researchers to identify, synthesize, and utilize
published information. The semistructured nature of biomedical
text is not readily amenable to systematic approaches for
information retrieval and management. Public repositories of
biomedical research articles, such as the National Library of
Medicine’s MEDLINE database [Bodenreider, 2004], and inter-
to query these sets, such as PubMed
(www.ncbi.nlm.nih.gov/Database/index.html)  [McEntyre and
Lipman, 2001] and OVID (www.ovid.com), play critical roles in
allowing the identification of relevant articles through user-
directed queries. However, MEDLINE provides only shallow
semantic and no syntactic annotation of its content, with the
result that document retrieval and relevance ranking capabilities
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are limited. More sophisticated automated techniques to extract
information from text hold great promise in assisting in the
identification and management of this wealth of research
information [Cohen and Hersh, 2005; Krallinger and Valencia,
2005].

The current limitations of biomedical text retrieval capabilities
can be illustrated by mutation databases that collect global
mutation events, such as Online Mammalian Inheritance in Man
(OMIM;  www.ncbi.nlm.nih.gov/entrez/query.fcgi?db = OMIM),
Catalogue of Somatic Mutations in Cancer (COSMIC; www.sanger.
ac.uk/genetics/CGP/cosmic), and the Human Gene Mutation
Database (HGMD; www.hgmd.org) [Forbes et al., 2006; Stenson
et al., 2003; Wheeler et al., 2006], as well as specialized locus-
specific databases (LSDBs), which record disease-causing gene
mutations and neutral variants for single genes, malignancies,
or disease types [Horaitis and Cotton, 2004]. LSDBs in particular
have become valuable resources in the study and clinical
management of cancer and many other genetic diseases. Over
200 publicly available LSDBs have been created in recent years.
Many LSDBs now integrate large and complex mutation data sets
with clinical and biological features of gene function. For example,
we have created and continue to curate a LSDB for the tumor
suppressor gene CDKN2A [Murphy et al, 2004]. CDKNZA
(MIM# 600160) encodes the cell cycle regulatory protein
pl6(Ink4A), which is frequently mutated in a variety of cancers
[Kamb et al., 1994; Sharpless, 2005]. The CDK2NA Database is a
compendium of germline and somatic CDKNZ2A sequence variants
associated with cancer.

However, compiling and maintaining a mutation database is
labor-intensive. The first step in this process, the identification
of research articles that contain mutation data from the vast
biomedical literature, is especially tedious, time-consuming and
imprecise. As part of our efforts to improve the CDKNZA
Database curation process, we have recently explored automated
methods for the efficient identification of appropriate research
articles that contain mutation data. We sought to develop an
automated information retrieval technique that would predict
manuscripts that contain variation data suitable for inclusion
in the CDK2NA Database, but that would be readily adaptable
to any document set potentially describing genomic variation
information of particular interest. Here, we describe a methodo-
logy for predicting and relevance ranking articles of interest. This
process combines: 1) a named entity recognition algorithm to
identify words or phrases where genomic variations are mentioned
in free text (mentions), and 2) a text-feature classifier that
performs similarity analysis of potentially interesting documents to
predict likely relevance. This method was successfully employed to
predict with high precision which articles were most likely to
contain mentions of CDKN2A genomic variation events. The
overall procedure is directly applicable to any task requiring the
identification of articles describing genomic variations.

MATERIALS AND METHODS
Literature Search

For Version 1.0 of the CDKN2A Database, PubMed queries
were performed in August 2000, November 2002, and February
2003 to identify manuscripts of potential relevance published
through December 2002. Search parameters were: p16, mutation,
cancer, human. Together, the queries identified 419 manuscripts
published between January 2000 and December 2002. This set was
labeled as Dataset 1. An expert curator manually read abstracts
looking for variants reported in human tumors or cell lines and/or
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mention of one of the common techniques used to detect
mutations. The expert scanned articles sequentially, considering
first the article title, then the abstract, and then the full text of
the article only if the expert considered there to be a likelihood
of relevant information after each successive determination.
Variants were included only if genomic DNA or cDNA sequencing
was performed. In each case the article was marked as “true” if it
contained at least one CDKN2A variation instance; otherwise,
it was marked as “false.” A second data set (Dataset 2) comprising
the full collection of Dataset 1 along with an additional 267
documents represented all identified articles from January 2000
through June 2004. These additional articles were identified
(in August 2004 and January 2005) and marked for relevance with
the identical query and evaluation procedures employed for
Dataset 1. The use of a second training set that entirely
encompassed the first was employed to mimic how the classifier
would likely be applied, i.e., a user would wish to maximize the
machine-learning benefit by including all possible documents
suitable for training.

Document Classifier

In the natural language processing (NLP) and machine learning
communities, there has been a flurry of research on the problem
of document classification and ranking [Crammer and Singer,
2003; Joachims, 2002; Nigam et al., 1999]. Our model uses the
maximum entropy classification principle [Nigam et al., 1999];
such models are equivalent to multinomial logistic regression
[Berger et al., 1996]. A maximum entropy classifier defines the
probability that a document, x, is classified by the label, y, as shown
in Figure 1. As per this formula, the probability of a document
being relevant is proportional to a weighted linear sum over a
set of features, f;. The denominator in this term is present merely
to insure that the probability distribution is properly normalized.

The CDKN2A document classification task requires only binary
classification. In other words, only one of two labels for each
document is possible: either it is relevant (y=1) or it is not
relevant (y =—1). Maximum entropy classification relies on the
definition of a set of indicative features, f;, to help guide
classification. Our model uses two kinds of features.

1. Word features indicate the presence of a word or word pair
in the document. For instance the feature “fi(x,y) = 1.0 if
document x contains the word CDKN2A” may be created.
Conjunctions, such as, “fi(x,y) = 1.0 if document x contains the
word-pair point mutation,” may also be created. Frequency of
mention, but not location within a document, was considered in
the model. Word triplets were not considered due to the likelihood
of feature over-fitting for the document set. Character-based
features did not significantly increase performance of the model.

2. The second class of features, genomic variation features,
indicate the presence of a specific component of a genomic
variation. For instance, the feature “fi(x,y) = 1.0 if document
x contains the location codon 12” may be created. In order to

determine the presence or absence of genomic variation

P(y|x) =
(y| Z()
FIGURE 1. Equation used to define the probability that a
document, x, is classified by the label, v. This equation states that
the probability of a document being classified as “relevant” is
proportional to a weighted linear sum over a set of features, f.



components, a named entity tagger for identifying text mentions
of genomic variation that was previously developed by our group
was applied [McDonald et al., 2004]. Specifically, this tagger identifies
and distinguishes between text mentions of genomic variation type
(e.g., point mutation, deletion), location (e.g., base pair 25, exon
2), and nucleic acid and protein state (e.g., A to T, Ala— Val).
All CDKN2A document abstracts under consideration were used
as input for the genomic variation tagger. The tagger annotated
each abstract for genomic variation mention predictions, and
these annotations were used as input for feature evaluation by
the classifier.

After defining the set of relevant features for classification,
the weight, w;, for each feature is determined. If a set of training
data is available, this can be done automatically by finding the
weights that maximize the likelihood of the training data [Berger
et al., 1996]. The Dataset 1 and 2 training sets consisted of 219
and 494 documents, respectively. All documents had been
manually labeled as either relevant (contains CDKN2A mutation
data) or not. Once the classifier was trained, it was then run on a
set of evaluation documents comprising the remaining articles in
the trial set (200 for Dataset I; 192 for Dataset 2). The MALLET
implementation of maximum entropy was used to construct the
system (http://mallet.cs.umass.edu).

Since automatically trained classifiers cannot guarantee that all
relevant documents are classified correctly, a useful method would
return a ranking of documents with the more relevant documents
nearer the top. Maximum entropy provides a natural mechanism
for ranking the documents. In particular, maximum entropy
defines a probability P(y = 1 x), which is the probability that the
document, x, is relevant. Using this probability score, a ranking
of the documents was determined in each trial.
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Evaluation

To evaluate the metric, the ranking criterion of average
precision was used. Average precision measures the average
accuracy of the rank over each possible rank cutoff. For instance,
in Figure 2, if the cutoff between “considered relevant” and
“considered not relevant” was established as being before position
5, the result would yield four documents, three that are actually
relevant and one that is not (as assessed by the expert evaluator).
The accuracy at this cutoff is 75%. The average precision metric
sums this calculation (true positives/all documents), performed
for all cutoffs. Intuitively this metric represents the likelihood of
seeing a relevant document in the ranking at an arbitrary cutoff.
For each trial, the cutoff yielding the highest maximum average
precision was used for evaluation of performance. For determina-
tion of classifier performance relative to manual curation, the
standard text mining measures of precision and recall were used.
Precision was calculated as the number of articles correctly
classified as relevant divided by the number of articles classified as
relevant. Recall was calculated as the number of articles classified
as relevant divided by the number of articles determined as
relevant by the expert evaluator.

RESULTS

A set of 419 biomedical articles published between January
2000 and June 2002 were identified from MEDLINE using a query
of several keywords associated with CDKN2A, malignancy,
and genomic variation (see Materials and Methods). This set
was named Dataset 1. These articles were then evaluated
manually by a domain expert to determine whether they described

Average Precision Plot for Dataset 1
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FIGURE 2. Average precision for Dataset 1. Shows the average percentage of relevant documents returned as a function of the number
of documents in total. Our system is compared to a baseline in which a relevance ranking of documents is randomly created.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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CDKNZ2A mutation instances suitable for inclusion in Version 1.0
of the CDKN2A Database. Articles were manually scored as either
containing or not containing CDKN2A mutation data. A total of
70 of the 419 manuscripts (16.7% precision [specificity]) were
found by the expert to contain relevant variation data. This set
was then randomly divided into a training set of 219 articles and
an evaluation set of the remaining 200 articles.

The training data were used to estimate a maximum entropy
classifier that distinguished relevant from not relevant abstracts.
As described in Materials and Methods, our classifier defines the
probability that a document, x, is classified by the label, y, based on
weighting of syntactic and semantically-derived word features.
Each document was represented as a set of indicative word, word
pair, and entity tagger-derived genomic variation features
[McDonald et al., 2004]. The model established by the training
set was then evaluated on the remaining 200 articles. Article titles
and abstracts in the evaluation set were subjected to the classifier,
and each document was accorded an overall probability score
indicating the likelihood that the document contained CDKNZA
mutation information. An average precision metric was then
calculated, which measures the average accuracy of the rank over
each possible rank cutoff (Fig. 2).

The domain expert manually determined that 32 of the 200
evaluation articles actually contained CDKN2A mutation in-
formation (precision of the PubMed search was 32/200 = 16.0%).
The classifier determined that 88 of the 200 articles (44%) likely
contained mutation information. A total of 29 of the 32 articles
considered positive by the domain expert were included in the
88 articles predicted by the classifier (precision of 29/88 = 33.0%;
recall of 29/32 = 90.6%). Predictions for each article are shown in
Supplementary Table S1. (available online at http://www.inter

science.wiley.com/jpages/1059-7794/suppmat). Application of the
classifier more than doubled precision (33% vs. 16%), which
would reduce expert evaluation efforts by 56% (88 articles to
consider vs. 200).

To confirm these findings and to determine whether a larger
training set would improve performance, a second evaluation
(Dataset 2) was performed on a set of 686 CDKNZ2A documents
identified in MEDLINE between January 2000 and June 2004
by using the same initial query strategy. For this evaluation, all 419
documents used in Dataset 1 and an additional 75 documents
(total of 494 documents) were used as a training set for the
classifier. A separate set of 192 new articles was used for
evaluation. Within the evaluation set, 27 were considered as
positive for CDKN2A mutation instance data by the domain
expert (precision of 27/192 = 14.1%). The classifier determined
that 69 of the 192 articles (35.9%) likely contained mutation
information. A total of 23 of the 27 articles considered positive
by the domain expert were included in the 67 articles predicted
by the classifier (precision of 23/69 =33.3%; recall of 23/
27 =285.2%). In this trial, application of the classifier improved
precision 2.4-fold (33.3% vs. 14.1%) over that obtained by expert
evaluation, which would in turn reduce expert evaluation efforts
by 64% (69 articles to consider rather than 192). An average
precision plot of the results is shown in Figure 3. Comparison of
the results from Dataset 1 and Dataset 2 demonstrates an overall
higher performance for the larger trial (Fig. 4).

Finally, the eight mutation-containing articles that the classifier
failed to identify were analyzed in greater detail to determine
possible causes. Article PMID:11058911 [Moore et al., 2000]
describes in detail a specific germline mutation of CDKN2A, but
while this information is apparent in the article’s title, there is no
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FIGURE 3. Average precision for Dataset 2. Shows the average percentage of relevant documents returned as a function of the number
of documents in total. Our system is compared to a baseline in which a relevance ranking of documents is randomly created.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]

Human Mutation DOI 10.1002/humu



HUMAN MUTATION 0, 1-8, 2006 5

Average Precision Plot: Dataset 1 vs. Dataset 2
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FIGURE 4. Comparison of the average precision values for Datasets 1 and 2. Shows the average percentage of relevant documents
returned as a function of the number of documents in total. [Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]

abstract body. Article PMID:14507338 [Godfraind et al., 2003]
focuses upon chromosomal deletions. This abstract has only
four nonstandard references to mutation: “CDKNZ2A alterations”
(one instance) and “(epi)genetic modifications” (three instances).
Similarly, articles PMID: 12898359 [Ohtsubo et al., 2003]
and PMID: 12721243 [Schneider-Stock et al., 2003] both
mention “mutation(s)” and either “homozygous deletion” or “loss
of heterozygosity” sporadically, but each usually instead refers
to “abnormalities”, and the focus of the articles are on methyla-
tion status and immunohistochemical analysis of tumors.
PMID:11159196 [Schraml et al., 2001], specifically mentions
“mutation analysis” and “24-bp deletion” as the only two direct
instances of mutation mentions, while most of the abstract
describes results of a chromosomal deletion analysis. Importantly,
9p allelic loss and loss of heterozygosity (LOH) instances are
not considered as entries for inclusion in the CDKN2A Database.
Article PMID: 15128789 [Huang et al., 2004] frequently dis-
cusses a “mutated” product rather than a mutation, and this word
would likely be missed by the tagger (stemming is not currently
employed as a feature set) and not considered as similar to
standard mentions such as “mutation” or “mutations” by the
similarity analysis. Similarly, article PMID:15173226 [Goldstein
et al., 2004] mentions “mutations” but provides no specificity
as to mutation types or locations, or the state of the DNA
or protein. Thus, the tagger did not identify any mentions of
genomic variation in this abstract, as it is trained to identify
instances rather than generalized terms. The final false-negative
article, PMID:10942797 [Tsuchiya et al., 2000] has five standard
mentions of specified mutation phrases identified by the tagger.
This abstract is written in an unusual style with many gene
abbreviations and frequencies, and it uses an unusual form of
the pl6 gene name (pl6INK4). As the classifier measures text

feature similarity of documents to positive articles, is likely that
these unusual elements makes this abstract sufficiently dissimilar
to the positive training instances as to be unrecognized.

DISCUSSION

Efforts by several groups to provide portals to genomic
variation information, including OMIM, the Human Genome
Variation Database (HGVbase; http://hgvbase.cgb.ki.se), and the
Human Genome Variation Society (HGVS; www.hgvs.org), have
assisted with consolidation and more effective retrieval of
mutation instances for particular diseases [Fredman et al.,
2004; Hamosh et al.,, 2005; Horaitis and Cotton, 2004].
Similarly, ongoing genome-wide mutation screening and data
curation projects are generating sizable numbers of mutation
instances for particular malignancies [Bamford et al., 2004;
Gottlieb et al., 2004; Murphy et al., 2004; Van Dreden et al.,
1989]. However, many mutation instances are reported in the
scientific literature, and attributing functional significance of
identified mutation events requires specialized curation. As a
result, LSDBs such as the CDKN2A Database have proved to be
important resources for cancer and other genetic disorders, as
they commonly provide data critical for linking molecular causes
of disease with biological and clinical outcome. However, the
level of effort required to initiate and maintain LSDBs is high.
Also, because LSDBs target relatively specialized audiences,
support for these resources is often limited. Despite these
obstacles, over 200 separate LSDBs have been established
[Horaitis and Cotton, 2004], and this number is expected to
increase as the human genome becomes more fully annotated in
functional terms. Our classification method is readily adaptable
to assist with literature curation for many of these databases, as
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well as for more general applications to populate biomedical
datasets with mutation information.

The results reported here suggest that use of a specialized
document classifier can substantially assist with the time-
consuming task of filtering relevant documents from a larger
initial set. Collectively, our system was able to positively identify
51 of 59 articles (86.4% recall) mentioning CDKN2A mutation
instances, while reducing the number of articles under considera-
tion from 419 to 157. This reduction of over 60% translates to a
saving of many person-hours of effort in curation each year
Interestingly, this procedure used only article titles and abstract
texts, indicating that in most cases the article summaries provide
sufficient clues regarding the presence or absence of desired
mutation instances in the full text. Analysis of the articles missed
indicate that these abstracts often mentioned mutation events
in unusual ways, such as using nonstandard terms for describing
the genomic variations. Our genomic variation tagger includes a
specialist lexicon of commonly used synonyms for mutation and
genomic alteration text mentions [McDonald et al., 2004].
Expansion of this list to include the mentions used in the missed
articles, or inclusion of additional feature sets specific to these
exceptional cases, would likely assist with identification of these
articles. It would also be interesting to see if a similar approach
using full-length articles as input would yield higher performance,
or whether the documents would be more dissimilar due to a
greater proportion of divergent and extraneous text, differences in
article formatting, and variation in writing style.

Comparison of the results of the original and expanded datasets
showed modest improvement in precision and a marginal decline
in recall, suggesting the possibility that larger training sets will
positively influence performance. It is reasonable to expect that
continued utilization of the classifier would provide more accurate
results over time. However, determination of the significance and
optimal size of the training set, as well as the iterative impact of
the machine learning component, will require additional training
data and analysis.

While term-based queries of MEDLINE are effective for many
information retrieval tasks, use of this procedure for identifying
specific text content that is often mentioned in various ways is
inefficient, and to our knowledge, tools to assist with this process
are not readily available to bioinformatics-limited groups at this
time. For example, the MEDLINE web interface PubMed has a
“Related articles” feature that precomputes a word feature-based
similarity for all MEDLINE documents, allowing a user to identify
articles similar to a selected individual abstract [McEntyre and
Lipman, 2001]. However, this tool does not allow similarity
analysis to be performed within a selected set of documents. To
determine how well the PubMed tool performs for our task, we
determined the frequency with which a CDKN2A mutation-
positive article in Dataset 1 was present in the “Related Articles”
set for each CDKN2A-positive article in Dataset 2. The overall
precision (¥ of Dataset 1 positive articles identified/# of Dataset 1
positive articles) and recall (¥ of Dataset 1 positive articles
identified/# of articles in the “Related Articles” set) for this feature
were 11.4% and 13.1%, respectively. Because the “Related
Articles” feature is calculated against all MEDLINE articles rather
than a smaller set of likely candidates, a lower performance is
expected. However, this result indicates that many CDKNZ2A-
related articles are likely sufficiently dissimilar to require more
domain-targeted approaches such as our method provides.

Machine learning-based document classification is a mechanism
in wide use in other application domains, such as Internet
searching and e-mail spam detection [Robinson, 2004; Zhang

Human Mutation DOI 10.1002/humu

et al.,, 2004]. However, for biomedical tasks, only a few groups
have reported the use of classifiers to identify document subsets
[Bartling et al., 2003; Chapman et al., 2003, 2005; Rubin et al.,
2005], and these systems do not typically utilize advanced NLP
methods. Dobrokhotov et al. [2005] successfully used a combina-
tion of lemmatization, morphosyntactic pattern recognition, and
either support vector machine— or probabilistic latent—based
classifiers to classify and relevance rank MEDLINE articles
suitable for annotating protein sequences. In contrast, our
approach combined an NLP technique that was trained specifically
upon the domain of interest, with a generalized classifier to
improve performance. The high recall from our method indicates
that this approach is suitable as a convenient filtering step prior to
manual assessment and retrieval of relevant CDKN2A mutation
data. In addition, as our classifier provides a ranking function for
each document, database curators can begin with the articles
deemed most relevant and establish their own imposed cutoffs.

An advantage of our system over the Dobrokhotov et al. [2005]
approach is that tailoring the NLP-based retrieval component to
a specialized domain of interest provides an opportunity for
increased performance. However, specialization requires additional
effort for each new domain encountered. Our genomic variation
entity tagger is built upon a probabilistic model that can operate
with high performance in the absence of domain-specific features,
but that also requires specialized feature sets for optimal
performance, as well as a moderate amount of hand-annotated
text specific to the domain of interest. A more comprehensive
tagging procedure that incorporates part-of-speech tagging and
sentence-level syntactic parsing would likely improve the quality
of the genomic variation features employed by the classifier.
As mentioned above, additional lexicons and regular expressions
specific to genomic variation would undoubtedly improve
performance; analysis of false negatives from a larger set of
documents could assist in identifying recurrent patterns to exploit.
Alternatively, additional syntactic and semantic approaches could
be applied to the text independently and their outputs
incorporated as feature sets for the classifier. Moreover, pretagging
the entirety of MEDLINE with the genomic variation tagger to
generate an exhaustive lexicon of genomic variation mentions
would likely be a valuable classifier feature set. It would also be
expected that training of a classifier such as the one described here
on full-text articles would improve performance, especially as
many variation events are described in detail only in manuscript
tables.

While our classifier assists with document ranking, it does not
assist with the identification of specific text sections relevant
to curation and annotation tasks. A possible use of our classifier
would be to utilize it in combination with a specialized biomedical
literature indexing tool for extraction of sentences and phrases
relevant to genomic variation. For example, Textpresso (www.
textpresso.org) is a tool that provides advanced indexing
capabilities that incorporate gene ontology terms, to allow a user
to immediately identify sections of text matching predefined
biological attributes [Muller et al., 2004]. Textpresso has been
implemented in several model organism domains as an effective
literature curation tool. Our classifier could be used to define and
relevance rank the document set of interest, whereupon relevant
contextual strings could be extracted or annotated using
Textpresso or a similar tool. Furthermore, as our classifier utilizes
a tagger that identifies short phrases describing genomic variation,
a slight modification of the application would allow output to
be marked up (e.g., by color-coded HTML tags) for phrases
representing genomic variation.



Our classifier was designed specifically to be readily adaptable
to a wide domain of knowledge. For the identification of articles
potentially mentioning genomic variations or mutations of a
specific gene, the system requires only: 1) the classifier; 2) a set of
training articles or abstracts that contain both positive and
negative instances of the type of genomic mention of interest; and
3) our genomic variation tagger. Preliminary results have shown
that performance is slightly but not substantially improved with
the addition of the tagger. Furthermore, the classifier can be
trained upon any set of documents in which a contextual
distinction can be made, although the performance will likely
vary depending upon how precisely the distinction between
positive and negative instances can be defined.

In summary, specialized document classification is a powerful
technique for assisting with the growing need for curation of
biological and biomedical text. Automated systems can effectively
identify article subsets relevant to a given task. Opportunities
for specialized high-performance document classifiers exist for
database population and curation, but also for data integration
tasks such as the alignment of molecular and clinical objects with
biomedical text records. The combination of a generalized
classifier with a feature-based and domain-trained NLP engine
provides a potential way to streamline curation and annotation
tasks considerably.

ACKNOWLEDGMENTS

We thank the members of the Penn/CHOP BiolE team,
especially M. Liberman, M. Mandel, Y. Jin, and K. Murphy for

helpful discussions and technical assistance.

REFERENCES

Bamford S, Dawson E, Forbes S, Clements ], Pettett R, Dogan A,
Flanagan A, Teague ], Futreal PA, Stratton MR, Wooster R.
2004. The COSMIC (Catalogue of Somatic Mutations in
Cancer) database and website. Br ] Cancer 91:355-358.

Bartling WC, Schleyer TK, Visweswaran S. 2003. Retrieval and
classification of dental research articles. Adv Dent Res 17:
115-120.

Berger A, Della Pietra S, Della Pietra V. 1996. A maximum
entropy approach to natural language processing. Comput
Linguist 22:39-71.

Bodenreider O. 2004. The Unified Medical Language System
(UMLS): integrating biomedical terminology. Nucleic Acids Res
32:D267-D210.

Chapman WW, Cooper GF, Hanbury B, Chapman BE, Harrison
LH, Wagner MM. 2003. Creating a text classifier to detect
radiology reports describing mediastinal findings associated with
inhalational anthrax and other disorders. ] Am Med Inform
Assoc 10:494-503.

Chapman WW, Christensen LM, Wagner MM, Haug PJ, Ivanov O,
Dowling JN, Olszewski RT. 2005. Classifying free-text triage
chief complaints into syndromic categories with natural
language processing. Artif Intell Med 33:31-40.

Cohen AM, Hersh WR. 2005. A survey of current work in
biomedical text mining. Brief Bioinform 6:57-71.

Crammer K, Singer Y. 2003. A family of online algorithms for
category ranking. ] Mach Learn Res 3:1025-1058.

Dobrokhotov PB, Goutte C, Veuthey AL, Gaussier E. 2005.
Assisting medical annotation in Swiss-Prot using statistical

classifiers. Int ] Med Inform 74:317-324.

HUMAN MUTATION 0, 1-8, 2006 7

Forbes S, Clements ], Dawson E, Bamford S, Webb T, Dogan A,
Flanagan A, Teague ], Wooster R, Futreal PA, Stratton MR.
2006. Cosmic 2005. Br ] Cancer 94:318-322.

Fredman D, Munns G, Rios D, Sjoholm E Siegfried M, Lenhard B,
Lehvaslaiho H, Brookes AJ. 2004. HGVbase: a curated resource
describing human DNA variation and phenotype relationships.
Nucleic Acids Res 32 (Database issue):D516-D519.

Godfraind C, Rousseau E, Ruchoux MM, Scaravilli F, Vikkula M.
2003. Tumour necrosis and microvascular proliferation are
associated with 9p deletion and CDKN2A alterations in 1p/19q-
deleted oligodendrogliomas. Neuropathol Appl Neurobiol 29:
462-4171.

Goldstein AM, Struewing JB, Fraser MC, Smith MW, Tucker MA.
2004. Prospective risk of cancer in CDKN2A germline mutation
carriers. ] Med Genet 41:421-424.

Gottlieb B, Beitel LK, Wu JH, Trifiro M. 2004. The androgen
receptor gene mutations database (ARDB): 2004 update. Hum
Mutat 23:527-533.

Hamosh A, Scott AE, Amberger ]S, Bocchini CA, McKusick VA.
2005. Online Mendelian Inheritance in Man (OMIM), a
knowledgebase of human genes and genetic disorders. Nucleic
Acids Res 33 (Database issue):D514-D517.

Horaitis O, Cotton RG. 2004. The challenge of documenting
mutation across the genome: the Human Genome Variation
Society approach. Hum Mutat 23:447-452.

Huang ], El-Gamil M, Dudley ME, Li YE Rosenberg SA, Robbins
PE 2004. T cells associated with tumor regression recognize
frameshifted products of the CDKNZ2A tumor suppressor gene
locus and a mutated HLA class I gene product. ] Immunol
172:6057-6064.

Joachims T. 2002. Learning to classify text using support vector
machines, Ph.D. thesis. Ithaca, NY: Cornell University. 224p.
Kamb A, Shattuck-Eidens D, Eeles R, Liu QQ, Gruis NA, Ding W,
Hussey C, Tran T, Miki Y, Weaver-Feldhaus J, McClure M,
Aitken JE Anderson DE, Bergman W, Frants R, Goldgar DE,
Green A, MacLennan R, Martin NG, Meyer L], Youl B, Zone JJ,
Skolnick MH, Cannon-Albright LA. 1994. Analysis of the
pl6 gene (CDKN2) as a candidate for the chromosome 9p

melanoma susceptibility locus. Nat Genet 8:23-26.

Krallinger M, Valencia A. 2005. Text-mining and information-
retrieval services for molecular biology. Genome Biol 6:224.

McDonald RT, Winters RS, Mandel M, Jin Y, White PS, Pereira E
2004. An entity tagger for recognizing acquired genomic
variations in cancer literature. Bioinformatics 20:3249-3251.

McEntyre ], Lipman D. 2001. PubMed: bridging the information
gap. CMAJ 164:1317-1319.

Moore PS, Zamboni G, Falconi M, Bassi C, Scarpa A. 2000. A
novel germline mutation, P48T, in the CDKN2A/p16 gene in a
patient with pancreatic carcinoma. Hum Mutat 16:447-448.

Muller HM, Kenny EE, Sternberg PW. 2004. Textpresso:
an ontology-based information retrieval and extraction system
for biological literature. PLoS Biol 2:¢309.

Murphy JA, Barrantes-Reynolds R, Kocherlakota R, Bond JE,
Greenblatt MS. 2004. The CDKN2A database: Integrating
allelic variants with evolution, structure, function, and disease
association. Hum Mutat 24:296-304.

Nigam K, Lafferty ], McCallum A. 1999. Using maximum entropy
for text classification. International Joint Conference on
Artificial Intelligence: Workshop on Information Filtering,
[JCAI-99, August 1, Stockholm, Sweden, 1999. p 61-67.

Ohtsubo K, Watanabe H, Yamaguchi Y, Hu YX, Motoo Y, Okai T,
Sawabu N. 2003. Abnormalities of tumor suppressor gene pl6
in pancreatic carcinoma: immunohistochemical and genetic

Human Mutation DOI 10.1002/humu



8 HUMAN MUTATION 0, 1-8, 2006

findings compared with
J Gastroenterol 38:663-671.

Robinson S. 2004. The ongoing search for efficient web search
algorithms. SIAM News 37.

Rubin DL, Thorn CF, Klein TE, Altman RB. 2005. A statistical
approach to scanning the biomedical literature for pharmaco-
genetics knowledge. ] Am Med Inform Assoc 12:121-129.

Schneider-Stock R, Boltze C, Lasota ], Miettinen M, Peters B,
Pross M, Roessner A, Gunther T. 2003. High prognostic value
of pl6INK4 alterations in gastrointestinal stromal tumors.
J Clin Oncol 21:1688-1697.

Schraml B, Struckmann K, Bednar R, Fu W, Gasser T, Wilber K,
Kononen ], Sauter G, Mihatsch M], Moch H. 2001. CDKNAZA
mutation analysis, protein expression, and deletion mapping of
chromosome 9p in conventional clear-cell renal carcinomas:
evidence for a second tumor suppressor gene proximal to
CDKNZ2A. Am ] Pathol 158:593-601.

Sharpless NE. 2005. INK4a/ARF: a multifunctional tumor
suppressor locus. Mutat Res 576:22-38.

Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS,
Abeysinghe S, Krawczak M, Cooper DN. 2003. Human Gene

clinicopathological ~ parameters.

Human Mutation DOI 10.1002/humu

Mutation Database (HGMD): 2003 update. Hum Mutat 21:
577-581.

Tsuchiya T, Sekine K, Hinohara S, Namiki T, Nobori T, Kaneko Y.
2000. Analysis of the pl6INK4, pl4ARFE pl5, TP53, and
MDM2 genes and their prognostic implications in osteo-
sarcoma and Ewing sarcoma. Cancer Genet Cytogenet 120:
91-98.

Van Dreden P, Richard B, Gonzales ]. 1989. Fructose and proteins
in human semen. Andrologia 21:576-579.

Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K,
Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S,
Geer LY, Helmberg W, Kapustin Y, Kenton DL, Khovayko O,
Lipman DJ, Madden TL, Maglott DR, Ostell ], Pruitt KD,
Schuler GD, Schriml LM, Sequeira E, Sherry ST, Sirotkin K,
Souvorov A, Starchenko G, Suzek TO, Tatusov R, Tatusova TA,
Wagner L, Yaschenko E. 2006. Database resources of the
National Center for Biotechnology Information. Nucleic Acids
Res 34(Database issue):D173-D180.

Zhang L, Zhu ], Yao T. 2004. An evaluation of statistical spam
filtering techniques. ACM Trans Asian Lang Inf Process 3:
243-269.



