DISCRIMINATIVE LEARNING AND SPANNING TREE
ALGORITHMS FOR DEPENDENCY PARSING

Ryan McDonald

A DISSERTATION
in

Computer and Information Science

Presented to the Faculties of the University of Pennsyévani

in Partial Fulfillment of the Requirements for the Degree otr of Philosophy

2006

Supervisor of Dissertation

Graduate Group Chair

COPYRIGHT
Ryan McDonald
2006

Acknowledgements

First and foremost | would like to thank my advisor Fernanéoeifta. His contribution to
all the sections of this thesis is immeasurable. While anRevas very fortunate to work
with Fernando and to be the beneficiary of his vast knowledgdrendly persona.

| am of course grateful to my excellent thesis committee: éfgCharniak, Aravind
Joshi, Mark Liberman, and Mitch Marcus. | am also indebte@éoald Penn for fostering
my interest in natural language processing and giving me rstydpportunity to engage in
research.

| would like to acknowledge my co-authors on work that hasticbated largely to this
thesis. In particular, Koby Crammer and | jointly developedterial in Chapter 2 and
Chapter 3. Kiril Ribarov and Jan Haji¢ submitted a joint @awith myself and Fernando
Pereira that covers Kiril's and my independent formulabbdependency parsing as find-
ing maximum spanning trees, which can be found in Chaptee8irkLerman helped with
the labeled multilingual dependency experiments desgnbeChapter 5. Thanks also to
John Blitzer, Nikhil Dinesh, Kevin Lerman and Nick Montfdadr helping with the evalu-
ation in Chapter 9 and to Daniel Marcu for providing data sets

Discussions with Joakim Nivre, Hal Daumé, Jason Eisnegrigl Sutton, Andrew
McCallum, Libin Shen, Julia Hockenmaier and Mike Collindgesl form many of the
ideas presented here. At Penn | had the fortune of spending haaurs at the office (and

evenings at the food trucks) waxing poetic with John Blitadikhil Dinesh, Yuan Ding,

and eventually Liang Huang. | am also grateful to Anne, Gigsi®s\meesh, Kilian, Andrew,
Kimia, Norm, Sasha, and most importantly Tania, for makimgd@elphia an enjoyable
place to spend my graduate studies.

Finally 1 would like to thank my family. My mom and dad providen enormous
amount of support and convinced me to stick with school ag Bl could. My brother
Neill has always inspired me to better myself and it was tglolis example that | decided

to pursue my doctoral studies. | dedicate this thesis to them

ABSTRACT

DISCRIMINATIVE LEARNING AND SPANNING TREE ALGORITHMS FOR
DEPENDENCY PARSING

Ryan McDonald

Supervisor: Fernando Pereira

In this thesis we develop a discriminative learning methmddiependency parsing using
online large-margin training combined with spanning treerience algorithms. We will
show that this method provides state-of-the-art accuiaaitensible through the feature
set and can be implemented efficiently. Furthermore, wdaligpe language independent
nature of the method by evaluating it on over a dozen divensguages as well as show its
practical applicability through integration into a serderompression system.

We start by presenting an online large-margin learning &aork that is a generaliza-
tion of the work of Crammer and Singer [34, 37] to structuretpats, such as sequences
and parse trees. This will lead to the heart of this thesiseruihinative dependency pars-
ing. Here we will formulate dependency parsing in a spantrieg framework, yielding
efficient parsing algorithms for both projective and nobjective tree structures. We will
then extend the parsing algorithm to incorporate featuves karger substructures with-
out an increase in computational complexity for the prayectase. Unfortunately, the
non-projective problem then becomes NP-hard so we provrdetarally motivated ap-
proximate algorithms. Having defined a set of parsing algors, we will also define a
rich feature set and train various parsers using the ordirgeetmargin learning framework.
We then compare our trained dependency parsers to otherddtdte-art parsers on 14
diverse languages: Arabic, Bulgarian, Chinese, Czechjshabutch, English, German,
Japanese, Portuguese, Slovene, Spanish, Swedish anghlurki

Having built an efficient and accurate discriminative defssrcy parser, this thesis will

Vv

then turn to improving and applying the parser. First we wiibw how additional re-
sources can provide useful features to increase parsingaagcand to adapt parsers to
new domains. We will also argue that the robustness of dmcétive inference-based
learning algorithms lend themselves well to dependencgipawhen feature representa-
tions or structural constraints do not allow for tractabéesing algorithms. Finally, we
integrate our parsing models into a state-of-the-art sesteompression system to show

its applicability to a real world problem.

Vi

Contents

1

Introduction

11
1.2
1.3

1.4
15
1.6

General Parsing Framework
Discriminative Learningand Parsing
Dependency Parsing
1.3.1 Formal Definition.
1.3.2 ABriefHistory
1.3.3 Data-Driven Dependency Parsing
ComparisontoOtherWork
Thesis

Summary of Document

Online Large-Margin Learning

2.1
2.2

2.3

2.4

Structured Classification
OnlinelLearning

2.2.1 Margin Infused Relaxed Algorithm (MIRA)

Empirical Comparison for Sequence Classification

2.3.1 Performance versus Training Time

Why MIRA for Dependency Parsing?

Vii

3 Dependency Parsing

3.1

3.2

3.3

3.4

Dependency Structures as Maximum Spanning Trees
3.1.1 First-Order Spanning TreeParsing
3.1.2 Second-Order Spanning Tree Parsing
3.1.3 Summary: Dependency Parsingas MST
Defining the Feature Space
3.2.1 Second-OrderFeatures
3.2.2 Language Generality

AddingLabels.
3.3.1 First-OrderLabeling
3.3.2 Second-Order Labeling.

3.3.3 Two-StagelLabeling

Summaryof Chapter

4 Dependency Parsing Experiments

4.1
4.2

4.3

4.4

DataSets
Unlabeled Dependencies
4.2.1 Projective ParsingResults
4.2.2 Non-projective ParsingResults
4.2.3 Lexicalized Phrase-Structure Parsers as DepentRamsgrs
4.2.4 Training Time and Model Size
Labeled Dependencies
4.3.1 First-OrderResults
4.3.2 Two-StageResults

SummaryofChapter

viii

5 Parsing 14 languages with One Model

5.1 DataSets 73
5.1.1 General PropertiesoftheData 73
5.1.2 Data Sourcesand Specifics 74
5.2 Adding Morphological Features 78
53 Results. 79
54 SummaryofChapter 80
6 Analysis of Parsing Results 82
6.1 English e 82
6.1.1 ErrorAnalysis 82
6.1.2 Feature SpaceAnalysis., 93
6.2 AllLanguages e 99
6.2.1 Quantitative Error Analysis 1Q0
6.2.2 The Benefit of Morphological Features 101
6.2.3 Correlating Language and Data Properties with Aayura 102
7 Improved Parsing with Auxiliary Classifiers 106
7.1 Improving a WSJ Parser by Combining Parsers 106
7.2 Adaptinga WSJ ParsertoNewDomains 109
8 Approximate Dependency Parsing Algorithms 113
8.1 Second-order Non-projective Parsing114
8.2 Non-tree dependency structures: Danish 115
8.3 GlobalFeatures 711
8.3.1 Global Non-projectivity Features 118
8.3.2 Grandparent and Other Sibling Features 119

8.3.3 Global Feature Summary 120

8.4 SummaryofChapter 121
9 Application to Sentence Compression 122
9.1 PreviousWork 124
9.2 Sentence CompressionModel 126
9.21 Decoding e 127
9.22 Features e 129
9.23 Learning e e 133
9.3 Experiments 134
9.3.1 SomeExamples. 135
9.3.2 Importance of Dependency Features 137
9.4 SummaryofChapter 140
10 Discussion 142
10.1 Comparisonto RecentWork 142
10.1.1 CoNLL 2006 144
10.2 Future Work e 144
11 Summary of Thesis 148
A English Head Percolation Rules 153
B Feature Example 155
B.1 Second-Order Features 157
C Detailed Experimental Results 159
C.1 ArabiCc e 159
C.2 Bulgarian e 162

C.3 Chinese 164

C.4 Czech e 168
C5 Danish e 172
C.6 Dutch 175
C.7 English e 178
C.8 German 182
C.O Japanese e 186
C.10 Portuguese e e e e 918
C.A1 Slovene 192
C.12 Spanish e 195
C.A3 Swedish 198
C.14 Turkish o 202
Bibliography 206

Xi

List of Tables

2.1

3.1

4.1

4.2

4.3

4.4

4.5

Structured classification experimental results. 28

Features used by systeyit;, j), wherex; is the head and; the modifier

in the dependency relation:;-word: word of head in dependency edge.
xj-word: word of modifierz;-pos: POS of head:;-pos: POS of modifier.
x;-pos+1: POS to the right of head in sentenggpos-1: POS to the left
of head.z;-pos+1: POS to the right of modifiet,;-pos-1: POS to the left

of modifier. b-pos: POS of a word in between head and modifier. . . . 52

Unlabeled projective dependency parsing resitsuracyis the percent-

age of words modififying the correct hea@ompletes the percentage of
sentences for which the entire predicted dependency grapltarrect. . . 63
Evaluation oft-best MIRA approximation. These experiments were run

on a 2.4GHz 32-bit machine with 2G of memory.| 64
Unlabeled non-projective dependency parsingresults. 65
Results comparing our system to those based on the €aliid Char-

niak parsersComplexityrepresents the computational complexity of each

parser andimethe CPU time to parse sec. 23 of the Penn Treebank. 66
Results comparing our system to those based on extansidine Collins

and Charniak parserstoCzech. 7. 6

Xii

4.6
4.7

5.1

5.2

6.1
6.2
6.3

6.4

6.5
6.6
6.7

7.1

First-order labeling results for English. 70

Two-stage labeling results for English. 71

Properties of the data for the 14 languages. This talddean taken and
modified from [13], with permission. 73

Dependency accuracy on 14 languages. Unlabeled (UA)alpeled Ac-

curacy (LA). o 80
English parsing errors relative to part-of-speechitaggrrors. 83
English parsing errors by sentence length. 85

English parsing errors relative to permutations of esece order in the
trainingset. 86
Head modification accuracy by modifier part-of-speegh 1dA is unla-
beled accuracy, labeling accuracy is the percentage offramiwhose in-

coming edge has the correct label (though not necessagilyairect head),

and LAis labeled accuracy. o 91
Labeled precision/recall of dependency edges by ethgb la. 92
English parsing accuracy results using various sub$étatures. 95

Error analysis of parser components averaged over @mahlgarian, Dan-
ish, Dutch, Japanese, Portuguese, Slovene, Spanish, sbwaaalil Turk-
ish. Normal: Reported result, Projective: Only allow puotjee edges,
No-Morph Features: Only features over words and POS tagsniétLa-

beling: Do not use sequence labeling. Each cell containgrlabeled and

labeled accuracy values (UA/LA). 100

Improved WSJ parsing performance using auxiliary pgréeatures. 108

Xiii

8.1

8.2
8.3
8.4

9.1
9.2
9.3
9.4

Approximate second-order non-projective parsingltegar Czech dis-

playing the importance of learning relative to the appradgenparsing al-

gorithm. e 114
Parsing results for Danish. 116
Benefit of additional global non-projective features. 119
Benefit of additional global sibling and grandparentdess. 120
Sentence compressionresults. oL L L. 134
Example compressions for the evaluationdata. 136
Compression system comparison with and without syioteztures. . . . 138

Compression system comparison with and without phstrsieture features. 140

Xiv

List of Figures

11
1.2
1.3
1.4

2.1
2.2

2.3

3.1
3.2
3.3

Outline of generic syntactic parsing framework. 2
An example dependency graph. 6
A non-projective dependency graph. 6
An example of a labeled dependency graph. 8
Generic online learning algorithm. 22

An example incorrect dependency parse relative to thiatgure 1.2. The

loss of this parse is 2 sine@th andbat are incorrectly identified as modi-
flersofball. 24
Handwriting recognition (degree 2 kernel), namedtgmgcognition and

noun-phrase chunking. The plots show performance on tpgéintraining

timeinCPUmMInutes. 28
Cubic parsing algorithm of Eisner[45]. 34
Pseudo-code for bottom-up Eisner cubic parsing algorit. 36

Chu-Liu-Edmonds algorithm for finding maximum spanniregs in di-

rected graphs. 38

XV

3.4

3.5
3.6

4.1
4.2

6.1

6.2

7.1

8.1

An extension of the Eisner algorithm to second-ordeeddpncy parsing.
This figure shows how;, creates a dependency/itgwith the second-order

knowledge that the last dependentigfwash,. This is done through the

creation of asiblingiteminpart(B). 44
Pseudo-code for bottom-up second-order Eisner paaggogithm. 45
Approximate second-order non-projective parsingritlgm. a7
Converting a phrase-structure tree to a labeled depepdse. 69
Labels extracted from WSJ using [106]. 69

Feature selection tests comparing feature count €t-offormation gain.

The top dashed line represents the parser when all of théakpd@00,000
English features are included. 99
Plots of unlabeled dependency parsing accuracy verspeiies of the
data for each language. (a) Average conditional entropyatioffset dis-
tribution. (b) Average sentence length. (c) Percentagenajue tokens

in normalized training set. (d) Percentage of unseen tokettee test set
relative to normalized training set. (e) Normalized lesgtrares linear re-

gressionofa, b,c,andd., 105

Adapting a WSJ parser to biomedical text/SJ:performance of parser
trained only on WSBiomed:performance of parser trained on only biomed-
ical data. Biomed+WSJparser trained on biomedical data with auxiliary
WSJ parsing features. Figure plots dependency accuracypwsber of

biomedical training instances. 0 0. 110

An example dependency tree from the Danish Dependerepa@nk (from

Kromann[79]). e 115

XVi

9.1

9.2

Two examples of compressed sentences from the ZiffdDasipus. The
compressed version and the original sentence are given........ 123
An example dependency tree from the dependency pad@haase struc-

ture tree from the Charniak parser [16]. In this example watwa add
features from the trees for the case wialphandafter become adjacent

in the compression, i.e., we are dropping the phcas€uesday 130

XVii

Chapter 1

Introduction

Part of the material in this chapter has been drawn from [S]L, 9

1.1 General Parsing Framework

Computational methods for the syntactic parsing of serm®mave been at the forefront
of natural language processing research since its incepty 42, 70, 25, 16]. There are
many questions one must address when conducting reseasght@agtic parsing. Amongst
them areWhat formalism will be used? How will a parser be constru@tétbw will new
sentences be parsed to produce their syntactic represens®tin Section 1.3 we describe
dependency graphw/hich is the syntactic representation of sentences wéwitloncerned
with throughout this work.

To answer the latter questions, Figure 1.1 graphicallyldispthe framework we will
assume. First, a system must definkearning algorithmthat takes as input thigaining
data, which is a parsed set of sentences, and outpp@rsing model This process of a
learning algorithm producing a parsing model from a tragrset is usually callettaining

orlearning The parsing model (sometimes simply calledrtiede) contains the parameter

X

Parser v
— Learning Parsing Inference
~— ™ Algorithm | ™ Model Algorithm
- v
Training y

Data

Figure 1.1: Outline of generic syntactic parsing framework

settings as well as any feature specifications. The leamggyithm is generic and will

produce different parsing models when different trainirgads given as input. In fact,
we will show empirically that the learning algorithms prete in this work are language
independent. That is, if given training data in English, lesaning algorithm will produce

an English parsing model. Similarly, if given training daaSpanish, it will produce a
Spanish parsing model. The class of learning algorithma umsthis work are described in
Chapter 2.

The learned parsing model is part of tha@rser The parser consists of both the model
and annference algorithnfor parsing algorithm, which specifies how to use the model for
parsing. That is, when a new sentencks given to the parser, the inference algorithm uses
the parameter specifications in the model to produce a Syntapresentationy. In many
cases, the parsing model defines the inference algorithmexXample, if the model is a
Probabilistic Context Free Grammar, then the inferenceralgn will most likely by CKY
[152] or Earley’s [42]. Both the parsing models and corresfing inference algorithms

are described in Chapter 3.

1.2 Discriminative Learning and Parsing

Most recent work on producing parsers from annotated dagdwsed on models and
learning algorithms for phrase-structure parsing. The plesase-structure parsing models
represent generatively the joint probabiliB(x, y) of sentencer having the structurey
[16, 25]. These models are easy to train because all of tlaeanpeters are simple func-
tions of counts of parsing events in the training set. Howewey achieve that simplicity
by making drastic statistical independence assumptiorsiraining does not optimize a
criterion directly related to parsing accuracy. Therefare might expect better accuracies
from discriminatively trained models that set their partaretypically by minimizing the
conditional log-loss or error rate of the model on the tragrilata. Furthermore, discrimina-
tive models can easily handle millions of rich dependentiuies necessary to successfully
disambiguate many natural language phenomena — a feastbairputationally infeasi-
ble in generative models. The advantages of discrimindi&ming have been exploited
before, most notably in information extraction where disanative models represent the
standard for both entity extraction [142] and relation agtion [153]. The obvious ques-
tion the parsing community has asked ¢gn the benefits of discriminative learning be
applied to parsing?

Perhaps the earliest work on discriminative parsing istlealldecision maximum en-
tropy model of Ratnaparkhi [111], which is trained to maxamthe conditional likelihood
of each parsing decision within a shift-reduced parsingratigm. This system performed
nearly as well as generative models of the same vintage é&eergh it scores individual
parsing decisions in isolation and as a result it may suftenfthe label bias problem [80].
A similar system was proposed by Henderson [63] that wasecdausing neural networks.

Only recently has any work been done on discriminativelynad parsing models that

score entire structureg for a given sentence rather than just individual parsing deci-

sions [24, 30, 113, 138]. The most likely reason for this it thiscriminative training
requires repeatedly reparsing the training corpus withctireent model to determine the
parameter updates that will improve the training criteridrhis general description ap-
plies equally for extensions to parsing of standard disicrtive training techniques such
as maximum entropy [5], the perceptron algorithm [116],up=ort vector machines [10],
which we call herdinear parsing modelfecause they all score a paigéor a sentence

as a weighted sum of parse featuresf(x, y). The reparsing cost is already quite high for
simple context-free models with(n?) parsing complexity, but it becomes prohibitive for
lexicalized grammars [25] witth(n®) parsing complexity. The prohibitive cost of training
a global discriminative phrase-structure parser resnltadst systems employing aggres-
sive pruning and other heuristics to make training traetallonsequently, these systems
have failed to convincingly outperform the standard getnergyarsers of Charniak [16]
and Collins [25].

Another line of discriminative parsing research is parsearking, which attempts to
alleviate any computational problems by takingzkleest outputs from a generative parsing
model and training a post processing ranker to distingtisttorrect parse from all others.
The advantage of re-ranking is that it reduces parsing tosdlenmulti-class classification
problem that allows the classifier to condition on rich feasuspanning the entire structure
of each parse. This approach has been applied to both thin<phrser [28] and the

Charniak parser [17] and typically results in@% relative reduction in error.

1.3 Dependency Parsing

In this work, we wish to explore central questions in disénative parsing. To do this we
turn to dependency representations of natural languagadimstructure. A primary rea-

son for using dependency representations over more infosenaxicalized phrase struc-

tures is that they are simpler and thus more efficient to laathparse while still encoding
much of the predicate-argument information needed in apfdins. As a result, depen-
dency parsing has seen a surge of interest lately in applisasuch as relation extraction
[38], machine translation [40], synonym generation [1224l dexical resource augmen-
tation [130]. Thus, dependency parsing represents a simfacmalism whose compu-

tational complexity will allow us to explore discriminaéivtraining to its fullest, while at

the same time providing a usable representation of langt@geany natural language
processing tasks.

Another advantage of dependency parsers is the existemeegn@drous large annotated
resources. The Prague Dependency Treebank [56, 57] cemeais of thousands of human
annotated dependency representations for Czech. ThedNbreltbank Network [100] is
a group of European researchers that have developed masyf@oaependency parsing
including treebanks for Danish [79] and Swedish [44]. Thene also Turkish [107] and
Arabic [58] dependency treebanks available. Recentlyothanizers of the shared-task
at CoNLL 2006 [13] standardized data sets for 13 languagesbié, Bulgarian, Chi-
nese, Czech, Danish, Dutch, German, Japanese, Portu@legene, Spanish, Swedish
and Turkish [58, 124, 123, 19, 9, 79, 148, 11, 73, 2, 41, 23, 102, 4]. Furthermore,
most phrase-structure treebanks typically have commdas tooconverting them into de-

pendency treebanks including both the English and Chinesa ®eebanks [84, 150].

1.3.1 Formal Definition

Dependency graphs represent words and their relationsisyntactic modifiers using di-
rected edges. Figure 1.2 shows a dependency graph for ttemeedohn hit the ball with
the bat This example belongs to the special class of dependenpphgthat only contain
projective (also known as nested or non-crossing) edgesurmsg a unique root as the

left most word in the sentence, a projective graph is onedhate written with all words

5

root

hit
i ST AN

the bat root John hit the ball with the bat

yd
the

Figure 1.2: An example dependency graph.

in a predefined linear order and all edges drawn on the plameeahe sentence, with no
edge crossing another. Figure 1.2 shows this construaiithé example sentence. Equiv-
alently, we can say a dependency graph is projective if ahdiban edge from wordo to
word u implies that there exists a directed path in the graph fuota every word between
w andwu in the sentence.

Due to English’s rigid word order, projective graphs ardisight to analyze most En-
glish sentences. In fact, the largest source of Englishriigoecies is automatically gen-
erated from the Penn Treebank [84] and is by constructiofusixely projective [151].
However, there are certain examples in which a non-preedraph is preferable. Con-
sider the sentencegohn saw a dog yesterday which was a Yorkshire Terridere the
relative clausavhich was a Yorkshire Terrieand the noun it modifies (théog) are sep-
arated by a temporal modifier of the main verb. There is no wajraw the dependency
graph for this sentence in the plane with no crossing edgatiuatrated in Figure 1.3. In
languages with flexible word, such as Czech, Dutch and Germamprojective depen-
dencies are more frequent. Rich inflection systems redwcdemands on word order for
expressing grammatical relations, leading to non-prjeatependencies that we need to
represent and parse efficiently.

Formally, a dependency structure for a given sentence igatdd graph originating out

of a unique and artificially insertedot node, which we always insert as the left most word.

- N
root John saw a dog yesterday which was a Yorkshire Terrier
Figure 1.3: A non-projective dependency graph.

In the most common case, every valid dependency graph héasllinging properties,

1. Itis weakly connected (in the directed sense).

2. Each word has exactly one incoming edge in the graph (&xepoot, which has
no incoming edge).

3. There are no cycles.

4. If there aren words in the sentence (includimgot), then the graph has exactly- 1
edges.

It is easy to show that 1 and 2 imply 3, and that 2 implies 4. migaar, a dependency
graph that satisfies these constraints must be a tree. Thugllsay that dependency
graphs satisfying these properties satisfytiiee constraintand call such graphdepen-
dency treesFor most of this work we will be addressing the problem obpag dependency
graphs that are trees, which is a common constraint [103%ektion 8.2, we address the
problem of more general dependency graphs.

Directed edges in a dependency graph represent words andidifiers, e.g., a verb
and its subject, a noun and a modifying adjective, etc. Thelwonstitutes thbeadof the
edge and the argument theodifier. This relationship is often called theead-modifielor
thegovernor-dependemelationship. The head is also sometimes called the panehthe
modifier is also sometimes called the child or argument. Wealvways refer to words in

a dependency relationship as the head and modifier.

root

hit
\

SBJ 0OBJ PP

\

John * ball with
N

NP
AN

the bat

~

the
Figure 1.4: An example of a labeled dependency graph.

Dependency structures can be labeled to indicate gramahagiymtactic and even se-
mantic properties of the head-modifier relationships ingifagh. For instance, we can add
syntactic/grammatical function labels to the structurEigure 1.2 to produce the graph in
Figure 1.4.

We should note that we are interested in produsiyigtacticdependencies in this work

and not semantic ones. A distinction that will be made cleiarthe next section.

1.3.2 A Brief History

Dependency grammars and dependency parsing have a loongyhistboth the formal
linguistic and computational linguistic communities. Anemon starting point on modern
linguistic theories of dependency representations isdhdesniere [140] who, in 1959,

wrote:

The sentence is an organized whole, the constituent elesroénthich are words. Ev-
ery word that belongs to a sentence ceases by itself to keesbés in the dictionary.
Between the word and its neighbors, the mind perceives ctions, the totality of
which forms the structure of the sentence. The structuraheotions establish de-
pendency relations between the words. Each connectioningiple unites a superior

term and an inferior term. The superior term receives the @finead]. The inferior

8

receives the name [modifier[Translation by Joakim Nivre [103]]

The definition given earlier for dependency graphs is cjeavident in this passage.
After the work of Tesniére there was a number of studies éntlieoretic linguistics com-
munity on dependency representations and their relatipagh other formalisms, most
notably by Hays [61] and Gaifman [53]. However, it would beter quarter of a century
before dependency representations of sentences becamapvehd in the computational
linguistics community. Perhaps the two most well known vgoirk this respect are Hud-
son’s Word Grammar [67] and Méuk’s Meaning Text Theory [96]. Since then, a vari-
ety of computational syntactic dependency formalisms lueen proposed. Most notable
amongst them is the work on constraint based dependencn@48%], which treats the
parsing of dependency graphs as a constraint satisfactaiigm. This framework has
been extended theoretically [85, 60] as well as applied attpral evaluations [51, 149],
providing some of the best empirical support for any gramb@aed dependency formal-
ism. Another important framework is Functional Generabescription [119], which pro-
vides the core theoretical foundation for the Prague DepecydTreebank [9] — the largest
dependency treebank currently in use. Finally, work onednsensitive formalisms such
as those in the TAG family [70] or CCGs [131] can also be viewsgroducing depen-
dency graphs of sentences through their derivation treesveker, these trees typically
represent semantic dependencies, not syntactic ones.

When constructing a dependency graph there are many iseaanwst address. Chief
amongst them is the definition of theead and modifierin a relation. Some classes of
relations are relatively easy to define. For instance, iinseelear that both subjects and
objects are modifying a verb (or sets of verbs). Similartyjeatives and adverbials play
the obvious role of modifier. However, what about preposgior relative clauses? Does
the preposition/complementizer govern the noun/verb®2-Viersa? In this case it is often

the word whose identity determines the syntactic categbtiiesubgraph that is chosen

9

as the head (i.e., the preposition/complementizer). Tisedesagreement on this issue, in
particular in the empirical parsing community where datarspness must be traded off
against informative features. Treating a preposition aséad would result in less sparse
parameter estimation. However, having the noun as the heattlwaturally provide more
information.

Most theories assume a distinction between various levallependency representa-
tion. Meaning Text Theory argues that there are essentlaige layers of representation,
the morphological, syntactic and semantic. Similarly, Buactional Generative Descrip-
tion framework assumes both syntactic and semantic lajiéris.distinction can be bene-
ficial when determining the head-modifier relationship. iRgtance, at the syntactic level,
the preposition would govern the noun since it is the prejmrsihat determines the syntac-
tic category of the relationship with the verb. However,heg semantic level the opposite
is true since it is the noun that is filling the semantic terteots the verb.

Another important question is whether one word may modifg tords in a depen-
dency graph, which would break the tree constraint. For @@niudson’s word grammar
allows for this when dealing with conjunctions or relativause constructions. However,
the common argument against this representation is thatguenomena should be repre-
sented in the semantic dependency graph and not the sgntacti

Nivre [103] presents a more detailed discussion on the fyistod aspects of formal

dependency parsing, on which this section has been based.

1.3.3 Data-Driven Dependency Parsing

The formal properties of dependency-based represensatiepend entirely on the under-
lying grammar that produces them. For instance, many degpeydyrammars that enforce
projectivity are easily shown to be context-free [53, 12vljereas constraint dependency

grammars [60] and discontinuous grammars [78] have beewrsbtm be formally more

10

powerful in terms of strong generative capacity since thaymodel non-projectivity.

In this work we focus on parsing models that discriminateveen better and worse
parses for a given input sentehcd hus, there is no notion of a parser accepting the lan-
guagea™b”™ or a"b"a™b". In fact, our parser uses a grammar that accepts the set of all
possible strings. The goal of parsing will be to search theofall valid structures and
return the structure with highest score — it is given thatdtmletence under consideration
should be accepted. The Collins parser [25] is a well knowdehof this form. It searches
the entire space of phrase-structures for a given senteiticeut/the use of an underlying
grammar. For dependency parsing, this translates to segrtite space of projective or
non-projective trees and returning the most likely one.sThrm of parsing is often re-
ferred to aglata-driven parsingsince parsing decisions are made based on models trained
on annotated data alone without an underlying grammar. Bist that this relieves us
of making any of the difficult decisions about the nature @f llead-modifier relationship
discussed in the last section since we assume this infameticontained implicitly in the
annotated data.

The data driven view of parsing is also application-oridnt#/e are concerned with
finding syntactic representations for sentences that wolide a relevant structure for fur-
ther processing in information extraction, machine tramsh or other common language
processing applications. However, even in the applicatiew of parsing there are in-
stances when the ability to accept a sentence under somustileglly motivated grammar
is beneficial. Most notably, the language generation praplghich arises in translation
and summarization, requires a measurement of a sentemmggisstic plausibility. It is pos-
sible to block certain analyses within our parsing framéwmy artificially assigning them
a score of-oco. However, we can only restrict parsing decisions withinltal context

that the parser considers while searching. This is alsoaf@G-based phrase-structure

1In fact the parsing models discussed in this work really jslea mechanism for ranking parses.

11

parsers.

1.4 Comparison to Other Work

Our discriminative learning algorithms for dependencyspay are closely related to those
of Collins and Roark [30] and Taskar et al. [138] for phraseeture parsing. Collins
and Roark [30] presented a broad coverage linear parsinginrathed with the averaged
perceptron algorithm. However, in order to use parse featwith sufficient history, the
parsing algorithm must prune away heuristically most goegparses. Taskar et al. [138]
formulate the parsing problem in the large-margin strieddurlassification setting [137],
but are limited to parsing sentences of 15 words or less daertgputation time. Though
these approaches represent good first steps towards drsatively-trained parsers, they
have not yet been able to display the benefits of discrimiadtaining that have been seen
in information extraction and shallow parsing.

The following work on dependency parsing is most relevarithi® work. Eisner [45]
gave a generative model with a cubic parsing algorithm based graph factorization
that very much inspired the core parsing algorithms for thigsk. Yamada and Mat-
sumoto [151] trained support vector machines (SVM) to madesipg decisions in a shift-
reduce dependency parser for English. As in Ratnaparkhrsep [111], the classifiers
are trained on individual decisions rather than on the divgtality of the parse. Nivre
and Scholz [105] developed a memory-based learning modebiced with a linear-time
parser to approximately search the space of possible paksagnificant amount of work
has been done by the researchers at Charles University léabiajic and Eva HajiCova.
In addition to developing the Prague Dependency Treebafk {bere has also been ex-
tensive research on parsing Czech at that institution [29, 154].

One interesting class of dependency parsers are thoserthatig labels on edges.

12

Two well known parsers in this class are the link-grammatesyisof Sleator and Tem-
perly [127] and the system of Lin [82]. Nivre and Scholz [1@sdvide two systems, one
a pure dependency parser and the other a labeled model lieds Edges with syntactic
categories. Wang and Harper [149] provide a rich dependerorjel with complex edge
labels containing an abundant amount of lexical and syictadbrmation drawn from a

treebank. Though we focus primarily on unlabeled dependgraphs, we also describe
simple extensions to our models that allow for the inclusiblabels.

Previous attempts at broad coverage dependency parsiregdnamarily dealt with
projective constructions. In particular, the supervispgraaches of Yamada and Mat-
sumoto [151] and Nivre and Scholz [105] have provided theiptes best results for pro-
jective dependency parsing. Another source of dependesrsgrs are lexicalized phrase-
structure parsers with the ability to output dependencgrimétion [16, 25, 151]. These
systems are based on finding phrase structure through restedparsing algorithms and
cannot model non-projective edges tractably. However, aganand Matsumoto [151]
showed that these models are still very powerful since tlmsider much more infor-
mation when making decisions then pure dependency parsers.

For non-projective dependency parsing, tractable inferexigorithms have been given
by Tapanainen and Jarvinen [134] and Kahane et al. [71]reNand Nilsson [104] pre-
sented a broad-coverage parsing model that allows for thediunction of non-projective
edges into dependency trees through learned edge trarafons within their memory-
based parser. They test this system on Czech and show anvenpeat over a pure projec-
tive parser. Another broad coverage non-projective pasgbat of Wang and Harper [149]
for English, which presents very good results using a camgtidependency grammar
framework that is rich in lexical and syntactic informatiddne aspect of previous attempts
at non-projective parsing is that inference algorithmstgpécally approximate. A com-

monly cited result is the proof by Neuhaus and Broker [1®@&f thon-projective parsing

13

is NP-hard. However, this result assumes the existence aftecyplar grammar generating
the language. In this study we are working within the dataedriframework and we will
show that this theoretical result does not apply.

The present work is closely related to that of Hirakawa [6B5pwlike us, relates the
problem of dependency parsing to finding spanning trees dpadese text. However,
that parsing algorithm uses branch and bound techniquesodnen-local parsing con-
straints and is still in the worst case exponential (thougénall scale experiments seems
tractable). Furthermore, no justification was providedi@ empirical adequacy of equat-
ing spanning trees with dependency trees.

The closely related research of Ribarov [112] was develapddpendently of this
work?. In that work, Ribarov also equates the problem of dependpatsing to finding
maximum spanning trees in directed graphs. Furthermoeeletirning model employed
is the perceptron algorithm [116], which is a learning aiton related to the framework
presented in Chapter 2. However, his empirical evaluatiothe Prague Dependency Tree-
bank [56] results in an accuracy well below the state-ofdtte This is most likely due to a
very impoverished feature representation that focusesgpily on aspects of the complex
Czech morphology and does not consider lexical or contékté@mation. We also ex-
tend the dependency parsing as maximum spanning tree frarkéovconsider trees with
larger (and possibly intractable) feature contexts as a®lapply the resulting parser to

new domains and in real world applications.

1.5 Thesis

In this thesis we develop a discriminative learning methmddiependency parsing using

online large-margin training combined with spanning tnefelience algorithms. We will

2Fortunately we were able to make a joint presentation on @uk ¥ HLT-EMNLP 2005 [95].

14

show that this method provides state-of-the-art accuiaatensible through the feature
set and can be implemented efficiently. Furthermore, wdalispe language independent
nature of the method by evaluating it on over a dozen divensguages as well as show its
practical applicability through integration into a serderompression system.

We start by presenting an online large-margin learning &aork that is a generaliza-
tion of the work of Crammer and Singer [34, 37] to structuretpats, such as sequences
and parse trees. This is a large-margin perceptron-likmileg technique which reduces
the learning task to one of inference. We argue that thigiigcie is intuitive, flexible, effi-
cient and performs competitively with other discriminatiearning algorithms. We display
this empirically on a number of standard NLP data sets.

This will lead to the heart of this thesis — discriminativegpdadency parsing. Here we
will formulate dependency parsing in a spanning tree fraarkyyielding efficient parsing
algorithms for both projective and non-projective treeistures. We will then extend the
parsing algorithm to incorporate features over larger subtires without an increase in
computational complexity for the projective case. Unfadtely, the non-projective prob-
lem then becomes NP-hard so we provide an approximate @dgowhich is motivated
from the knowledge that, in practice, non-projective treas typically be converted to a
projective tree using only a small number of edge transftiona. Having defined a set of
parsing algorithms, we will also define a rich feature settaaid various parsers using the
online large-margin learning framework. We then compamgi@ined dependency parsers
to other state-of-the-art parsers on English, Czech andeSkidata sets to show that our
discriminative model provides efficient parsing couplethwiigh accuracy. Furthermore,
we show how to extend the models to include syntactic edgedand present additional
detailed results for English. One advantage of our parsiodets is that they rely on little
to no language specific optimizations. To show the languadependence of our parsing

models we further evaluate its parsing accuracy on 14 dviensguages: Arabic, Bul-

15

garian, Chinese, Czech, Danish, Dutch, English, Germgan&se, Portuguese, Slovene,
Spanish, Swedish and Turkish.

Having built an efficient and accurate discriminative defssrcy parser, this thesis will
then turn to improving and applying the parser. First we wiibw how additional re-
sources can provide useful features to increase parsingaagcand to adapt parsers to
new domains. In particular, we will display that feature$irted on the output of in and
out of domain parsers can improve accuracy considerably.wiNealso argue that the
robustness of discriminative inference-based learniggrdhms lend themselves well to
dependency parsing when feature representations orwgtaliconstraints do not allow for
tractable parsing algorithms. Finally, we integrate ousey models into a state-of-the-art
sentence compression system to show its applicability éabworld problem.

It is important to note that this thesis will not argue for degency representations of
language from a linguistic perspective. We focus on deperydeepresentations primarily
for empirical and didactic reasons: dependency structuags been shown to be useful
for many language processing tasks and their computatpwoperties allow us to explore

discriminative parsing to its fullest.

1.6 Summary of Document
This document is organized as follows:

e Chapter 2 outlines the learning method used throughoutubik. In particular, we
discuss an online large-margin learning algorithm and @ favorably to other

discriminative learning frameworks.

e Chapter 3 formulates dependency parsing as the maximunmisygainee problem.

We show how an edge based score factorization leads tolitagtarsing algorithms

16

for both the projective and non-projective case. Extendiveyfactorization over

pairs of edges leads to tractable algorithms for projecivectures. However, non-
projective parsing becomes NP-hard. We discuss a richrieatt under these fac-
torizations that include both edge and edge-context inébion. Furthermore, we
show how to extend the parsing models to produce dependegeyiabels. This can

be done either through a joint model or through a secondedtdueler.

Chapter 4 presents extensive results for projective andpnojective parsing for
benchmark English, Czech and Chinese data sets. We conmegaretels favorably
to previous methods. In addition, we present results comggoint and two-stage

labeling.

Chapter 5 presents parsing results on 14 diverse languayes a single parsing

model. This section illustrates the language independefites parser.

In Chapter 6 we give a thorough analysis of the parsing eandsfeature space of
the dependency parser for English. We show that parsersearersimilar to other
parsing systems, e.g., preposition and conjunction attaah An important aspect
of this section is that we tease apart the contribution ol éeature type used in the
representation. We argue that edge-context features g@tiamt to simulate higher
order features over larger structures of the parse spacararttius key to achieving

high parsing accuracy. We also briefly discuss sources of far other languages.

In Chapter 7 we display the flexible nature of discriminapaesing models by easily
incorporating features over auxiliary classifiers to imyrahe accuracy of both in
domain and out of domain parsers. Then, in Chapter 8, we &ngtithe online large-

margin learning algorithms of Chapter 2 are robust to apprate parsing algorithms
by showing this empirically for higher-order non-projeetiparsing as well as non-

tree dependency graph parsing.

17

e To show the applicability of the dependency parser in a realdyproblem, we in-
corporate it into a sentence compression system in Chapidredresulting sentence

compressor yields highly accurate compressions.

¢ Finally, we summarize the major contributions of this worldaliscuss related, on-

going and future work in Chapter 10 and Chapter 11.

18

Chapter 2

Online Large-Margin Learning

Parts of this chapter are drawn from material in [35].

In this chapter we present the learning algorithms that weuse for the rest of this
work. One crucial property of these learning algorithmshit tthey are inference based,
that is, to create trained models they only require the tghidi find the highest scoring

output given an input. This will be exploited throughousthiork.

2.1 Structured Classification

Structured classification is a subfield of machine learnivag tlevelops theory and algo-
rithms for learning how to label inputs with non-atomic autipsuch as sequences and trees.
After the introduction of conditional random fields (CRF8)], several researchers devel-
oped margin-based learning alternatives, in particulatimam margin Markov networks
(M3Ns) [137] and the related methods of Tsochantaridis et d3][1 These algorithms
have proven successful in several real world applicatiankiding sequential classifica-

tion [86, 93, 120, 137], image labeling [62], natural langegarsing [138, 143] and Web

19

page classification [137]. All of these methods are in thdxatgh learning algorithms, in
which the training objective is optimized with respect tbtedining instances simultane-
ously. In practice, however, the large-margin methods #en@dapted to optimize with
respect to a small number of instances at a time in order tdledarge training sets.

This work focuses on purely online learning techniques.ikénbatch algorithms, on-
line algorithms consider only one training instance at a&twien optimizing parameters.
This restriction to single-instance optimization might $een as a weakness, since the
algorithm uses less information about the objective fumcénd constraints than batch al-
gorithms. However, we will argue that this potential weasis balanced by the simplicity
of online learning, which allows for more streamlined tragymethods. We focus here on
variants of the perceptron algorithm [116], which inhetstéonceptual and mathematical
simplicity and scale up to large problems much better thachoalgorithms.

Online learning with perceptron-style algorithms has nélgegained popularity due to
the work of Collins [26], who uses an approximation to theedgberceptron algorithm [52],
called here the averaged perceptron algorithm, for segletdssification problems. This
method has since been successfully adapted to parsindd&@liage modeling [115] and
very recently word alignment [97]. Perceptron-based aggites have gained a wide accep-
tance since they reduce learning to inference, which isettadyway, and they routinely
provide state-of-the-art performance.

One problem with the perceptron algorithm is that it doesaptimize any notion of
classification margin, which is widely accepted to reduceegalization error [10]. As a
result, ad-hoc approximations such as parameter averagéngquired. Here, we propose
a large-margin online algorithm that generalizes the rulidtss classification algorithm
MIRA (Margin Infused Relaxed Algorithm [34, 37, 33]) to sttured outputs, which in
essence is a large-margin perceptron variant. The geratiah is achieved by usinkr

best structural decoding to approximate the large-margdates of MIRA. We will argue

20

that MIRA for structured outputs has many desirable progert including simplicity,
accuracy and scalability — all of which make it a suitablenésy method for complex

structured outputs like dependency trees.

2.2 Online Learning

First, we define a linear score function for input/outputgai

S(w7y> =W- f(w7y>

wheref(x, y) is a high dimensional feature representation of inpaind outputy andw

is a corresponding weight vector. The goal will be to learso that correct outputs are
given a high score and incorrect outputs a low score. As dsualpervised learning, we
assume a training s€t = {(x;,y;)}.,, consisting of pairs of an input; and its correct
outputy,. Though these algorithms work for a variety of outputs, weukon the case
when the output space is the set of dependency parses fogmigput sentence.

In this work we focus on online-learning algorithms that immstances of the algorithm
schema in Figure 2.1. A single training instance is examigtedach iteration, and the
weight vector is updated by an algorithm-specific rule. Thgilary vectorv accumu-
lates the successive values ofwf so that the final weight vector is theverageof the
weight vectors after each iteration. This averaging effexst been shown to help reduce
overfitting [26].

In what follows, parsgs) denotes the set of possible dependency parses for sentence
x, and best(x; w) C parse&r) denotes the set df highest scoring parses relative to the

weight vectom.

21

Training data:7 = {(z, y¢)}1—y
1w =0;v=0;i=0

2. forn:1.N

3. fort:1.T

4. w(+1) = updatew(” according to instancer;, y;)
5. v =v+4with

6. t=1+4+1

7.w=vV/(NxT)

Figure 2.1: Generic online learning algorithm.

2.2.1 Margin Infused Relaxed Algorithm (MIRA)

Crammer and Singer [36] present a natural approach to laeggin multi-class classifica-

tion, which was later extended by Taskar et al. [137] to $tmed classification:

min ||w||
st. s(z,y)—s(z,y) > Ly, y')

V(z,y) € T, y' € parsesr)

whereL(y,y’) is a real-valued loss for the pargérelative to the correct parge Infor-
mally, this minimizes the norm of the weight vector subjeatiargin constraintshat keep
the score of the correct parse above the score of each istome by an amount given by
the loss of the incorrect parse.

The Margin Infused Relaxed Algorithm (MIRA) [34, 37, 33] elogs this optimization
directly within the online framework. On each update, MIR#eapts to keep the new
weight vector as close as possible to the old weight veaibijest to correctly parsing the
instance under consideration with a margin given by the dd¢se incorrect parses. This

can be formalized by substituting the following update i@ 4 of the generic online

22

algorithm from Figure 2.1,

WD = arg minys |[w* — w®||
such thats(x;, y,) — s(x;, y') > L(y, y'), with respect tav* (2.1)

Vy' € parsesr;)

This update attempts to minimize the change made to the weggitor subject to the set
of margin constraints for the instance under consideratiims quadratic programming
problem (QP) can be solved using Hildreth’s algorithm [1&rammer and Singer [37]
and Crammer et al. [34, 33] provide an analysis of both theergeneralization error and
convergence properties of MIRA.

For the dependency parsing problem, we defined the loss @ndgo be the number
of words with incorrect incoming edges relative to the corparse. This is closely related
to the Hamming loss that is often used for sequences [137}.iNstance, consider the
correct graph in Figure 1.2 versus the incorrect one in E@U2. The loss of the incorrect
graph relative to the correct one is 2 singigh and bat are both incorrectly labeled as
modifiers ofball. Note that this definition assumes dependency graphs asyslirees.
This is just one possible definition of the loss. Other pabsés are the 0-1 loss [136]
or another more linguistically motivated loss that peredizome errors (say conjunction
and preposition dependencies) over others. We use Hamosagltimarily since standard
evaluation of dependency parsers (see Chapter 4) is bagbe percentage of words that
modify the correct head in the graph. Thus, the Hamming lasgilly relates our training
optimization to our final evaluation metric. It has been adjthat learning model weights
relative to some loss function is advantageous. For maniicapipns, there are certain
parts of the output structure that are relevant and othatsatie not. One merely needs to
change the loss function to focus on reducing specific emndise trees. To the best of our

knowledge, only Finley and Joachims [48] have made novelofiske loss function for

23

root

hit
AN
yd

N/

Joh

ball\
~N

the with bat
y
the

Figure 2.2: An example incorrect dependency parse reltditieat in Figure 1.2. The loss
of this parse is 2 sinceith andbat are incorrectly identified as modifiers loéll.

structured classification. In that work it was shown thatiisgthe loss function to the final
evaluation metric helped significantly for co-referencsotation.

To use these algorithms for structured classification, MWlevicche common method of
equating structure prediction to multi-class classifamatwwhere each structure is a possible
class for a sentence. As a result we inherit all the the@epimoperties of multi-class
classification algorithms. The primary problem with thiswiis that for arbitrary inputs
there are typically exponentially many possible classeglaums exponentially many margin

constraints. This is the case for sequential classificattowell as dependency parsing.

k-best MIRA

One solution for the exponential blow-up in number of classdo relax the optimization
by using only the margin constraints for th@arseg with the highest scoregx, y). The

resulting online update (to be inserted in Figure 2.1, lipevduld then be:

WOt = arg miny» HW* - W(i)}}
such thats(xy, y,) — s(xy, y') > L(y:, y'), with respect tav*

Vy' € best(x,; w®)

In Section 2.3 we show that this relaxation works well anchesraall values of: yield near

optimal performance. This is also true for dependency pgrsis is shown in Section 4.2.1.

24

We call this algorithnk-best MIRA Throughout the rest of this document all experimental
results for MIRA will be with1-best MIRA unless stated otherwise.

This formulation of large-margin learning for structuraduts is highly related to that
of Tsochantaridis et al. [143]. In that work a learning algon repeatedly runs inference
over training examples to create a growing set of conssaiRarameter optimization is
then run over all collected constraints. Since this optatian incorporates constraints
from all the instances in training, it is primarily a batcliteing algorithm. However, since

the method used to collect the constraints is essentialiggrone can consider it a hybrid.

Factored MIRA

Another option would be to factor the constraints relativétte structure of the output to
produce an equivalent polynomial sized set of constraifaskar et al. [137, 138] showed
that this can be done for both sequences and phrase-seuias, providing that the loss
function can also factor relative to the structure of thepaut The advantage of this ap-
proach is that it provides an exact solution to the QP giver{Zy). Even though the
resulting set of constraints is still polynomial, it is tgglly linear or squared in the length
of the input and can lead to large QP problems. For these measaestrict ourselves to

k-best MIRA solutions.

Non-separability and Kernelization

Many large-margin learning algorithms have benefited frotnoducing slack variables
that trade-off good margin properties versus a separatypgrplane [137] as a way to
guarantee convergence when the data is not separable aaswelliuce overfitting when
outliers exist. In the original formulation of MIRA for mudtlass classification [37] slack
variables are included. We implemented a version of MIRAwsitck variables but found

it had negligible impact on performance, so we leave it owtistussion for simplicity.

25

Another advantage of linear classifier models such as theeptton and SVMs is that
they can be kernelized, that is, they can be reformulateldagatl learning and inference is
calculated by a similarity metric (a kernel) between inpaoitps [98]. This can often make
large (even infinite) feature space calculations tractabltRA can easily be kernelized.
However, we focus on the feature space representation affStipat is more common in the
NLP community. Defining interesting kernels compatiblehattte algorithms we provide

here is an area of research beyond the scope of this work.

2.3 Empirical Comparison for Sequence Classification

Unfortunately there are no readily available implementaiof CRFs or MNs for parsing
and to implement them is a non-trivial engineering task.rtteoto compare MIRA to other
learning frameworks we will look at sequential classifioatiasks that represent non-trivial
language processing problems and for which implementatoa available.

Our first set of experiments are on the handwriting recogmitask used by Taskar
et al. [137] to evaluate RNs, which is a subset of an earlier evaluation collectiori.[72
We use exactly the same data set, training and test spbtsyice representation, and first
and second degree kernel data representations. For tresment we compared averaged
perceptronj-best MIRA (¢ = 20), CRFs and MNs. Looking at Table 9.1(a), we can
see that both MIRA and RNs outperform the averaged perceptron, most likely duedo th
fact that they aggressively maximize margin. Furthermarecan see the performance of
MIRA is comparable to that of BNs for the degree 2 kerrfelin the impoverished degree
1 kernel, both CRFs and Ws appear to be the best option. Interestingly, CRFs perform
as well as MNs for the degree 1 kernel, but do much worse than all metlwdhé degree

2 kernel. The reason for this is the use of feature normabzdi37], which improves

We simulate the degree 1 and 2 kernel in the primal featuresspa

26

the performance of all methods dramatically except for GR#®se performance seems
independent of normalization. Feature normalizatiorfieidily increases the value of the
edge bias feature (i.e., the state transition feature)ewogmt it from being overwhelmed by
the overall magnitude of the vertex features in the modgdanticular for the second-degree
kernel.

Our next experiments involved two larger sequential cfasdion problems: noun-
phrase chunking and named-entity recognition. For thesblgms, we used a feature-
based primal formulation, which is commonly used in natlamagjuage processing and eas-
ier to implement. For noun-phrase chunking we implementigtorder Markov model
using the features of Sha and Pereira [120] on the CoNLL 260@ skt [141]. For named-
entity recognition we used standard word and sub-word featon the CoNLL-2003 data
set [142], including word, part-of-speech, suffix and prefientity as well as orthographic
features (e.g. word is capitalized), with all features avevindow of two words previous
to two words next.

These data sets contain thousands of sentences (rouglilyf@0thunking and 14,000
for named-entity recognition). For both tasks we compaheee methods: averaged per-
ceptron,k-best MIRA ¢ = 5) and CRFs. We did not have access to an implementation
of M3Ns for chunking or entity recognition. Training takes un8édrours for all the other
algorithms. The results are shown in Table 9.1(b-c). We earttzat MIRA slightly outper-
forms the averaged perceptron and begins to bridge therpafwe gap with batch learn-
ers such as CRFs. According to McNemar significance tegslifterence between MIRA
and averaged perceptron is only significant for namedyerg@ognition < 0.0001) and
the difference between MIRA and CRFs is not significant.

For the larger data sets (chunking and entity extractionpis&erved that maximum
performance is achieved with < k£ < 10, with sometimes diminishing returns when

k > 20, providing evidence that the approximation is reasonabléresults for MIRA

27

(a) Handwriting (degree 1/degree 2) (b) NP chunking (c) NE recognition

Accuracy F-Meas F-Meas

Avg. Perc.| 0.781/0.859 Avg. Perc.| 0.941 Avg. Perc.| 0.823

MIRA | 0.785/0.870 MIRA | 0.942 MIRA | 0.830

CRF | 0.802/0.818 CRFs| 0.943 CRFs| 0.831
M3Ns | 0.803/0.869

Table 2.1: Structured classification experimental results

Figure 2.3: Handwriting recognition (degree 2 kernel), edrentity recognition and noun-
phrase chunking. The plots show performance on testingaisirig time in CPU minutes.
also include parameter averaging. Though important foh lbebdels, averaging had a

much smaller effect on accuracy for MIRA.

2.3.1 Performance versus Training Time

Due to the complexity of the output space, learning withctrted outputs is inherently
more computationally demanding than simple classifiemiegr In fact, many studies on
batch learning for structured outputs use small or redueda skets to fit within available
computing budgets [137, 138, 143]. In contrast, the onk@@ring methods studied here
require onlyk-best inference on a single instance in addition to solvisgiall quadratic
program. Figure 6.1 plots the test accuracy for each metgathst CPU training time
for all three tasks studied in this paper. We only compareamex perceptron, MIRA and
CRFs, since we did not have an implementation dN¥. Results for these plots were

gathered on a dual processor 1.3GHz 32-bit Pentium with 2GBemory.

28

These plots show that learning withbest MIRA and perceptron is typically much
less costly than learning with CRFs. A training epoch haghtyuthe same computa-
tional cost, due to inference, for the three methods (Vitésb perceptron and MIRA,
forward-backward for CRFs). However, MIRA and perceptraicily converge after a

few iterations, whereas CRFs require many iterations bedtinining high test accuracy.

2.4 Why MIRA for Dependency Parsing?

When it comes to discriminative training, there are manyamst In this section we sum-
marize why we believe MIRA is good discriminative learnimgrhework for dependency

parsing.

e Accuracy: MIRA performs just as well or better than the leading batdriéeng
algorithms, CRFs and RMNs while routinely outperforms the averaged perceptron
algorithm. Of course, this only applies to sequence classifin problems for which

we can compare these methods.

e Efficiency: With the exception of the perceptron algorithm, MIRA is tlaestest
global discriminative learner, mainly because it only sa&dew iterations to achieve

optimal performance.

e Simplicity: MIRA relies only on inference and Hildreth’s algorithm tohs® the
guadratic programming problem. Together, this typicadigresents only a few hun-
dred lines of code and both are relatively straightforwardntiplement — unlike
forward-backward or the inside-outside algorithms (regghifor CRFs), computing
marginal distributions (required for Mis) or complicated convex optimization code

(required for CRFsS).

29

In addition to these three main points we should also noteMhRA, like the percep-
tron and MNs, do not require the calculation of a normalization fumctin order to return
a proper probability distribution. It has been shown thatdome problems inference is
tractable, but computing the normalization is not [136].nEk, methods like MIRA have
an additional advantage over CRFs since they do not needripute a normalization fac-
tor. Furthermore, MIRA is very flexible with respect to thesdunction. Any loss function
on the output is compatible with MIRA since it does not require loss to factor according
to the output, unlike NMNs.

In summary, we have argued that the online large-margimilegralgorithm of MIRA

is a learning framework suitable for structured outputs tlkependency graphs.

30

Chapter 3

Dependency Parsing

Parts of this chapter are drawn from material in [91, 95, 24, 9

This chapter describes both the parsing models (SectionSeétion 3.2 and Sec-
tion 3.3) and inference algorithms (Section 3.1 and Sei@) that constitute the core

of our dependency parser.

3.1 Dependency Structures as Maximum Spanning Trees

In this section we translate the problem of dependency maisito that of finding max-
imum spanning trees for directed graphs. This formulati@viges a unified theoretical
framework for discussing the algorithmic properties ofenmgnce in projective and non-

projective parsing.

3.1.1 First-Order Spanning Tree Parsing

In what follows,x = z;---x, represents a generic input sentence, grregpresents a

generic dependency tree for sentemcé&Seeingy as the set of tree edges, we wiiiej) €

31

y if there is a dependency i from wordz; to wordz;.
We follow a common method of factoring the score of a depecglaee as the sum of
the scores of all edges in the tree. In particular, we defiaestlore of an edge to be the dot

product between a high dimensional feature representatithre edge and a weight vector,
s(i, j) =w-1(i,)

Thus the score of a dependency tgefor sentencex is,

sley)= Y s(ig)= Y, wiij)
(i.7)€y (i,5)€y

Assuming an appropriate feature representation as wellnasght vectoiw, dependency
parsing is the task of finding the dependency yeeith highest score for a given sentence
x. This is true for learning as well since we focus on an infeeebased online learning
framework (Chapter 2). We should note that the feature sgpationf(i, j) can also
include arbitrary features on the senteacsince it always fixed as input. To indicate this
fact, a more appropriate representation of the featurdifumeould bef(x, i, j). However,
for notational simplicity we will just defin&(i, j) = f(x, i, 7).

Consider a directed gragh = (V, £) in which each edgéi, j) (wherev;, v; € V) has
a scores(i, j). SinceG is directed,s(-, -) is not symmetric. The maximum spanning tree
(MST) of G is the treey that maximizes the valu®_; ; ., s(i, j), such that(i, j) € E
and every vertex i’ is used in the construction @f. The maximunprojectivespanning
tree of G is constructed similarly except that it can only containjective edges relative
to some linear ordering on the vertices(of The MST problem for directed graphs is also

known as the-arborescence or maximum branching problem [135].

32

For each sentencewe can define a directed graph, = (V,, E) where

Ve = {xg =r00t zy,...,2,}

Thatis,G is a graph where all the words and the dummy root symbol ateesrand there
is a directed edge between every pair of words and from thiesggobol to every word. It
is clear that dependency trees torand spanning trees far, coincide. By definition, a
spanning tree of7 is a sub-grapld’ with nodesV’ = V and edges’ C E, such that? is
weakly connected and all the nodesiihhave an in-degree of exactlyexcept the unique
root node with in-degre@. This definition is equivalent to being a dependency graph
satisfying the tree constraint (Section 1.3.1). Hence,riopdhe (projective) dependency
tree of highest score is equivalent to finding the maximunojgative) spanning tree in
G, rooted at the artificial root. Thus by factoring the scorehs tree into the sum of
edge scores we have made dependency parsing equivaleffingitty maximum spanning
trees.

Throughout this work we will refer to this particular spangitree formulation as the
first-order spanning tree problem (dirst-order dependency parsing problem). This is
because the score factors as a sum of individual edge s@fesurse, we can factor the
score of the tree any way we wish, though not all factorizetitead to efficient parsing
algorithms. In Section 3.1.2 we will indeed modify how wettache score of the tree to
incorporate features over pairs of edges.

In what follows, we make the assumption that calculatifigy) is O(1). In fact, this
is slightly misleading sincev andf typically have a dimension in the millions. As usual,
sparse vector representations are used to reduce theatadoub linear in the number of
features that are active for a given edge. We can view thiutlon as some form of

grammar constant, which is a common notion for most parsingélisms. We will argue

33

hi1 hi
h1 h1 h2 h2 h1 h2 h2 hl
| N AL N A

s hi hit r r+1 hs ho t s hi1 hi ho hy t s hi hi t

Figure 3.1: Cubic parsing algorithm of Eisner [45].

in Section 3.2 that this constant is typically very smallu@bly 100), especially when
compared to grammar constants in phrase-based modeld) ednidoe on the order of tens

of thousands when extracted from a large treebank.

Projective Parsing Algorithms

Using a slightly modified version of the CKY [152] chart pagialgorithm, it is possible
to generate and represent all projective dependency tmegdarest that is)(n°) in size
and take®)(n°) time to create, which is equivalent to context-free phrstseeture parsing.
However, Eisner [45] made the observation that if one kelepsead of each chart item to
either the left or right periphery of that item, then it is pile to parse i) (n?). The idea is
to parse the left and right dependents of a word independeamitl combine them at a later
stage. This removes the need for the additional head indic#ee O(n°) algorithm and
requires only two additional binary variables that spetiifg direction of the item (either
gathering left dependents or gathering right dependentsdnether an item is complete
(available to gather more dependents). Figure 3.1 illtestréne algorithm. We use s and

t for the start and end indices of chart items, @jdand i, for the indices of the heads
of chart items. In the first step, all items are complete, Wiscrepresented by each right
angle triangle. The algorithm then creates an incomplete ftom the word#; to h, with

h, as the head ok,. This item is eventually completed at a later stage. As wdmal
CKY parsing, larger items are created from pairs of smaléans in a bottom-up fashion.

It is relatively easy to augment this algorithm so that edchricitem also stores the

34

score of the best possible subtree that gave rise to the Tham.augmentation is identical
to those used for the standard CKY algorithms. We must atse $tack pointers so that it
is possible to reconstruct the best tree from the chart it&hdpans the entire sentence.
We will now describe the Eisner parsing algorithm in moreadetet C[s][t][d][c] be
a dynamic programming table that stores the score of thesodxstee from positior to
positiont, s < t, with directiond and complete value The variablel € {«, —} indicates
the direction of the subtree (gathering left or right depend). Ifd =< thent must be
the head of the subtree andiif=— thens is the head. The variablec {0, 1} indicates
if a subtree is complete:(= 1, no more dependents) or incomplete= 0, needs to be
completed). For instanc€;|s][t][<][1] would be the score of the best subtree represented

by the item,

andC'[s][t][—][0] for the following item,

The Eisner algorithm fills in the dynamic programming talbd&tdm-up just like the CKY
parsing algorithm [152] by finding optimal subtrees for dubgs of increasing increasing
length. Pseudo code for filling up the dynamic programmiibigetss in Figure 3.2.

Consider the line in Figure 3.2 indicated by (*). This saya tio find the best score for

35

Initialization: C[s][s][d][c] = 0.0 Vs,d,c

fork:1.n
fors:1..n
t=s+k

if ¢ > n then break

% First: create incomplete items
Cls]lt][][0] = maxs<,<¢ (C[s]lr][=][1] + Clr + 1[[<][1] + s(t,5)) ()
Cls][t][=][0] = maxs<,<¢ (C[s]lr][=][1] + Clr + 1[E][<][1] + s(s, 1))

% Second: create complete items
Cls]lt][][1] = maxs<r<¢ (C[s][r][][1] + C[r][t][][
Cls]ft][=][1] = maxs<,<¢ (C[s][r][=][0] + C[r][E][=][1])

=)
~—

end for
end for

Figure 3.2: Pseudo-code for bottom-up Eisner cubic parsliggrithm.

an incomplete left subtree

S t

we need to find the index < r < ¢ that leads to the best possible score through joining

N/

s r r+l ¢t

two complete subtrees,

The score of joining these two complete subtrees is the suotieese subtrees plus the
score of creating an edge from wargdto wordz,. This is guaranteed to be the score of the
best subtree provided the table correctly stores the sodrak smaller subtrees. This is

because by enumerating over all values,ofie are considering all possible combinations.

36

By forcing a unique root at the left-hand side of the sentetimescore of the best tree
for the entire sentence S[1][n][—][1]. This can be shown easily by structural induction
using the inductive hypothesis that the chart stores thieslsese over all strings of smaller
length. A quick look at the pseudo-code shows that the nme-tf the Eisner algorithm is
O(n?).

For the maximum projective spanning tree problem, it is éasshow that the Eisner
dependency parsing algorithm is an exact solution if we arenga linear ordering of the
vertices in the graph. Indeed, every projective dependémey of sentence: is also a
projective spanning tree of the gragh and vice-versa. Thus, if we can find the maximum
projective dependency tree using the Eisner algorithnm weecan also find the maximum
spanning tree. For natural language dependency tree gathim linear ordering on the
graph vertices is explicitly given by the order of the wonds$he sentence.

In addition to running irO(n?), the Eisner algorithm has the additional benefit that it is
a bottom-up dynamic programming chart parsing algoritnowahg for £-best extensions

that increase complexity by a multiplicative factor@fk log k) [66].

Non-projective Parsing Algorithms

To find the highest scoring non-projective tree we simplyaeghe entire space of span-
ning trees with no restrictions. Well known algorithms é&X@ the less general case of
finding spanning trees in undirected graphs [31], as welk-®®st extensions to them
[47]. Efficient algorithms for the directed case are lessl webwn, but they exist. We
will use here the Chu-Liu-Edmonds algorithm [21, 43], skeftt in Figure 3.3 following
Georgiadis [54]. Informally, the algorithm has each veitethe graph greedily select the
incoming edge with highest weight. If a tree results, it mustthe maximum spanning
tree. If not, there must be a cycle. The procedure identifiegce and contracts it into

a single vertex and recalculates edge weights going intocamaf the cycle. It can be

37

Chu-Liu-Edmonds(G, s)
GraphG = (V, E)
Edge weight functiors : £ — R

LetGy = (V, M)

If G has no cycles, then it is an MST: retutiy

Otherwise, find a cycl€ in Gy

Let< G¢, ¢, ma >= contrac{G, C, s)

Lety = Chu-Liu-EdmondéG¢, s)

Find vertexz € C

such thatz’, ¢) € y andma(z’,c) =z

Find edggz",z) € C

Find all edgegc, z""’) € y

y=yu {(ma(c’ Il”)’ w”’)}V(c,z”’)Ey
UCU{(z’,z)} — {(=",2)}

11. Remove all vertices and edgesjrcontainingc

NoakswdhpE

cow®

10.

LetM = {(z*,z) : ¢ € V,z* = arg max,, s(z’, x)

contract(G = (V, E), C, s)
1. LetGc¢ be the subgraph af excluding nodes i
2. Add anode to G¢ representing cycl€’
} 3. Forz eV —C:3cc(@,z)€FE
Add edge(c, z) to G¢ with
ma(c, ©) = arg max ¢ o s(z’, x)
z' = ma(c, x)
s(e,z) = s(z’,)
4. Forz €V —-C:3ycc(z,z’)EE
Add edge(z, c¢) to G¢ with
ma(x, C) = argmax,scc [S(wil) - 8(0,(&?’)7 wl)}
z' = ma(z,c)
s(x,¢) = [s(z,2') — s(a(z’), 2’) + s(C)]
wherea(v) is the predecessor ofin C

ands(C) = 3, ¢ s(a(v),v)

12 returny 5. return< Gg,c,ma >

Figure 3.3: Chu-Liu-Edmonds algorithm for finding maximupasning trees in directed
graphs.
shown that a maximum spanning tree on the resulting coetlagtaph is equivalent to a
maximum spanning tree in the original graph [54]. Hence tgerehm can recursively
call itself on the new graph. Naively, this algorithm runsin?) time since each recur-
sive call takegD(n?) to find the highest incoming edge for each word and to contheect
graph. There are at moStn) recursive calls since we cannot contract the graph more then
n times. However, Tarjan [135] gives an efficient implementabf the algorithm with
O(n?) time complexity for dense graphs, which is what we need h&hese algorithms
can be extended to thebest case [14] with a run-time 6f(kn?).

To find the highest scoring non-projective tree for a sergemcwe simply construct
the graphG,, and run it through the Chu-Liu-Edmonds algorithm. The r@sglspanning
tree is the best non-projective dependency tree. We idtesthis on the simple example

x = John saw Marywith directed graph representationh,,

The first step of the algorithm is to find, for each word, thehleist scoring incoming edge

root

— —_
20 saw 30

[\

John — Mary

If the result of greedily choosing the highest scoring inocaypedge to every node re-
sults in a tree, it would have to be a maximum spanning treeseéahis, consider a trgé
constructed by greedily choosing the highest scoring inogradge for every word. Now
consider a tred” such thatl’ # 7" and7” is the maximum spanning tree. Find edges
(1,7) € T'and(7', j) € T" such that # i'. We know by the definition of" that the score
of (i,7) is at least as large than the score(¢fj). So we can simple make the change
T =T"U{(i,5)} — {(¢,4)} andT” will be a graph of a least equal weight. If we repeat
this process, we will eventually converge to the tiéand we are always guaranteed that
the resulting graph will have a score at least as large a®tidt Thus, eithefl” could not
have been the maximum spanning tree, or Bodnd7” are trees of equal weight. Either
way,T' is a maximum spanning tree.

In the current example there is a cycle, so we will contraattid a single node and

recalculate edge weights according to Figure 3.3.

- N\
7
P /saiuj’ 30
- sz// \
’john//// Mar
(d y

\"\31/

The new vertexv;, represents the contraction of vertidedinandsaw The edge fromw;,

39

to Mary is 30 since that is the highest scoring edge from any vertexjnThe edge from
rootinto w;, is set to 40 since this represents the score of the best sppinee originating
from root and including the vertices in the cycle representeduby The same leads to
the edge fronMary to w;,. The fundamental property of the Chu-Liu-Edmonds algarith
is that an MST in this graph can be transformed into an MST éndtiginal graph [54].
The proof of this fact follows from the lemma that, after theegy step, all the edges
of any cycle must exist in some MST, except a single edge. Jihgte edge is one that
must be removed to break this cycle and satisfy the tree @nstKnowing this lemma,
we can observe that in the contracted graph, the weight adsedging into the contracted
node represent, exactly, the best score of that edge emthercycle and breaking it. For
example, the edge fromoot into w;, is 40 representing that edge entering the nsale
and breaking the cycle by removing the single edge fdoimto saw

We recursively call the algorithm on this graph. Note thativeed to keep track of
the real endpoints of the edges into and outvof for reconstruction later. Running the

algorithm, we must find the best incoming edge to all words,

This is a tree and thus the MST of this graph. We now need to goleyel and reconstruct
the graph. The edge from,, to Mary originally was from the worgaw so we include

that edge. Furthermore, the edge fromot to w,, represented a tree fromot to sawto

40

John so we include all those edges to get the final (and correci),MS

root
10
N
saw
AN
30 30
Pl ~
John Mary

A possible concern with searching the entire space of spgrirees is that we have not
used language-specific syntactic constraints to guidegaeck. Many languages that al-
low non-projectivity are still primarily projective. By aeching all possible non-projective
trees, we run the risk of finding extremely bad trees. Agamhave assumed a data driven
approach to parsing and appeal to the properties of therigaitata to eliminate such cases.

We address this concern in Chapter 4.

3.1.2 Second-Order Spanning Tree Parsing

Restricting scores to a single edge in a dependency tree ésyaimpoverished view of
dependency parsing. Yamada and Matsumoto [151] showekdbping a small amount of
parsing history was crucial to improving performance faithocally trained shift-reduce
SVM parser. Itis reasonable to assume that other parsinglsadll benefit from features
over previous decisions.
Here we will focus on methods for parsisgcond-ordespanning trees. These models

factor the score of the tree into the sum of adjacent edgs.pBorquantify this, consider the
example from Figure 1.2, with words indexed: root(0) Johh{i(2) the(3) ball(4) with(5)

the(6) bat(7). Using a first-order spanning tree formufattbe score of this tree would be,

s(0,2) +s(2,1) + s(2,4) + s(2,5)
+5(4,3) + s(5,7) + s(7,6)

However, in our second-order spanning tree model, the sddhas tree would be,

41

s(0,—,2) +s(2,—, 1)+ s(2,—,4) + s(2,4,5)
+s(4,—,3)+s(5,—,7)+ s(7,—,6)

Here we have changed the score functior(ik, j), which is the score of creating a
pair of adjacent edges, from worgto wordsz;, andz;. For instances(2, 4, 5) is the score
of creating a the edges frohit to with and fromhit to ball. The score functions are relative
to the left or right of the head and we never score adjacerastimt are on different sides
of the head (e.gs(2, 1,4) for the adjacent edges frohit to Johnandball). This left/right
independence assumption is common and will allow us to defihgomial second-order
projective parsing algorithms. We leti, —, j) be the score when, is the first left/right
dependent of word;. For examples(2, —, 4) indicates the score of creating a dependency
from hit to ball, whereball is the first modifier to the right dfit. More formally, if the

word z;, has the modifiers as shown,

the score factors as follows:

?;11 s(%0, tkt1, i) + S(io, —, 05)

+ s(io, = ij41) + Sy (i, ik, i)

A second-order MST is mathematically a richer factorizatigince the score function
can just ignore the middle modifier, sibling, argument and it would be reduced to the
standard first-order model. In fact our second order scorneawporate first-order infor-
mation,s(i, k, j) = s(i, k, j) + s(i, 7). Here the first term includes features over the pairs
of adjacent edges and the second over features of a singe kagjalso important to note
thats(i, k, j) # s(i, 7, k). In fact, the order of the two adjacent modifiers is determhipg

there relative location in the sentence to the head. Theclosdifier is always the first

42

argument. Furthermore, for features over pairs of edgessth@ive order of the modifiers
is always incorporated.

The score of a tree for second-order parsing is now,

s@y) = 3 s(ikj)

(i,k,5)€Y

Which is the sum of adjacent edge scoregin

Essentially the second-order model allows us to conditiothe most recent parsing
decision, i.e. the last dependent picked up by a particutladwThis is analogous to the
Markov conditioning of the Charniak parser [16] for phrasescture parsing.

When moving to this second-order factorization we haveothiced the notion of edge
adjacency in a tree. This notion is only meaningful whenehera fixed order on the
vertexes in the graph, as is the case with dependency parHirg with respect to this

restricted formulation that we consider maximum spannieg parsing in this section.

A Projective Parsing Algorithm

In this section we describe@(n?) second-order parsing algorithm that works by break-
ing up dependency creation in the first-order algorithm imo steps - sibling creation
followed by head attachment. This cubic extension to thersg@order case was in the
original work of Eisner [45]. Graphically the intuition bield the algorithm is given in
Figure 3.4. The key insight is to delay completion of itemslwail the dependents of the
head have been gathered. This allows for the collection io$ pasibling dependents in a
single stage while maintaining a cubic time parsing al@onit We will define a new item
type called asibling type (in addition to the usuabmpleteandincompleteypes).

The algorithm works by defining an almost identical bottopdynamic programming

table as the original Eisner algorithm. The only differercéhe addition the newibling

43

hi h1 h1

ha ho h3 ha ho hs h3
RE - D L

h1 ha hs r 7r+l hg h1 ho heo hs h1 hs

) (B) ©

Figure 3.4: An extension of the Eisner algorithm to secordkodependency parsing. This
figure shows how:; creates a dependency/ig with the second-order knowledge that the
last dependent of; wash,. This is done through the creation o$ilingitem in part (B).
type. Pseudo-code for the algorithm is given in Figure 3.5.bafore, we leC/s][t][d][c]

be a dynamic programming table that stores the score of thiesbibtree from position

to positiont, s < t, with directiond and complete value In the second-order case we let
c € {0, 1,2} to indicate if a subtree is complete £ 1, no more dependents), incomplete
(c = 0, needs to be completed), or represents sibling subtrees2). Sibling types have
no inherent direction, so we will always assume that when2 thend = null (-). Asinthe
first-order case, the proof of correctness is done througltsiral induction. Furthermore,
back-pointers can be included to reconstruct the highestrgrparse and thie-best parses

can be found irO(k log(k)n?).

An Approximate Non-projective Parsing Algorithm

Unfortunately second-order non-projective MST parsin§liz-hard. We prove this fact
with a reduction from 3-dimensional matching.

3DM: Disjoint sets, X, Y, Z each withm distinct elements, and a S€&tC X x Y x Z.
Question: is there a subsgtC 7" such thatS| = m and eachv € X UY U Z occurs in
exactly one element if.

Reduction: Given an instance of 3DM we define a graph in which the vestimee the
elements ofX U Y U Z as well as an artificialoot node. We insert edges froraot to all

x € X aswellas edgesfromall € X toally € Y andz € Z. We order the words s.t.

44

Initialization: C[s][s][d][c] = 0.0 Vs,d,c

fork:1.n
fors:1.n
t=s+k

if ¢ > n then break

% Create Sibling Items
Cls][t)[-][2] = maxs<r<i {C[s][r][=][1] + Clr + 1[t][][1]}

% First Case: head picks up first modifier
Clsllt][][0] = Cls][t — 1[=][1] + CL][E][][1] + s(t,-, 5)
Cls][t][=][0] = Cls][s][=][1] + Cls + [E][—][A] + s(s, -, 1)

% Second Case: head picks up a pair of modifiers (throughiagitdém)
Cls][t)[][0] = max {C[s][t][][0], maxs<r<¢ {Cls][r][-][2] + Clr][t][][0] + s(t, 7, 5)}}
Cls][t][=1[0] = max {C[s][t][=][0], maxs<r<; {Cls][r][=][0] + C[r][][-][2] + s(s, 7, 8)}}

% Create complete items
Cls][t)[][1] = maxs<r<p {C[s][r][][1] + C[r][t][][0]}
Cls][t)[=][1] = maxs<r<i {C[s][r][=][0] + Clr][t][=][1]}

end for
end for

Figure 3.5: Pseudo-code for bottom-up second-order Earsing algorithm.

45

the root is on the left followed by all elements &f, thenY’, and finallyZ. The order of
elements within each set is unimportant. We then define #enskeorder score function as
follows,

s(root,x,z') =0, Va,2’ € X

s(z,—,y)=0,Vre X,yeY

s(x,y,2z) =1, Y(z,y,2) € T
All other scores are defined to bexo, including for edges pairs that were not defined in
the original graph.
Theorem: There is a 3D matching iff the second-order MST has a score. of
Proof: First we observe that no tree can have a score greaterrthaimce that would
require more tham pairs of edges of the forrfx:, y, z). This can only happen when some
x has multipley € Y modifiers or multiplez € Z modifiers. But if this were true then
we would introduce a-co scored edge pair (e.g(z,y,y’)). Now, if the highest scoring
second-order MST has a scoreraf that means that every must have found a unique
pair of modifiersy andz, which represents the 3D matching, since there woulghiseich
triples. Furthermore; andz could not match with any othef since they can only have one
incoming edge in the tree. On the other hand, if there is a 3bBh there must be a tree
of weightm consisting of second-order edgesy, z) for each element of the matchiisg
Since no tree can have a weight greater therthis must be the highest scoring second-
order MST. Thus if we can find the highest scoring second+dw&T in polynomial time,
then 3DM would also be solvable. Note that this proof worksoioth dependency parsing
with the left/right modifier independent assumption anchwitt. l

Thus, the Chu-Liu-Edmonds algorithm most likely cannot kieeded polynomially
to handle second-order feature representations. Thisiim@ortant result, since it shows

that even for data driven parsing, non-projective exaatcbebecomes intractable for any

46

2-order-non-proj-approx (x, s)
Sentencer = xq...xy,, To = root
Weight functions : (i,k,j) — R

1. Lety = 2-order-proj (x, s)
2. while true
3. m=—-o00,c=—1,p=-—1
4, forj:1---n
S. fori:0---n
6. y = yli — J]
7. if —tree(y’) or 3k : (i, k, j) € y continue
8. §=s(z,y) —s(z,y)
9. ifd >m
10. m=46c=jp=1i
11. end for
12. end for
13. ifm >0
14. y=ylp—
15. elsereturn y
16. end while

Figure 3.6: Approximate second-order non-projective ipgralgorithm.

factorization other than first-order To combat this, we will create an approximate algo-
rithm based on thé&(n?) second-order projective parsing algorithm just provid@the
approximation will work by first finding the highest scoringpjective parse. It will then
rearrange edges in the tree, one at a time, as long as sudmigaments increase the over-
all score and do not violate the tree constraint. We can lgleaotivate this approximation
by observing that even in non-projective languages likecEznd Dutch, most trees are
primarily projective with just a few non-projective edgd94]. Thus, by starting with the
highest scoring projective tree, we are typically only a kmamber of transformations
away from the highest scoring non-projective tree. Psexmte for the algorithm is given
in Figure 3.6.

The expressiowy[: — j| denotes the dependency graph identica) &xcept that:;’s

head isz; instead of what it was iy. The testree(y) is true iff the dependency graph

1Even though the above reduction was for pairwise adjaceye &ttorization, it is easy to extend the
reduction for arbitrary constraints over more than one edge

47

satisfies the tree constraint.

In more detalil, line 1 of the algorithm saydo the highest scoring second-order projec-
tive tree. The loop of lines 2-16 exits only when no furthesredmprovement is possible.
Each iteration seeks the single highest-scoring changeparmtiency withiny that does not
break the tree constraint. To that effect, the nested lo@psrg) in lines 4 and 5 enumerate
all (i, 7) pairs. Line 6 setg’ to the dependency graph obtained frgntoy changingz;’s
head toz;. Line 7 checks that the move frognto ¥’ is valid and that:;'s head was not
alreadyz; and thaty’ is a tree. Line 8 computes the score change fipto y’. If this
change is larger then the previous best change, we recordhiswew tree was created
(lines 9-10). After considering all possible valid edge rufpes to the tree, the algorithm
checks to see that the best new tree does have a higher dabet.i$ the case, we change
the tree permanently and re-enter the loop. Otherwise waiexie there are no single edge
changes that can improve the score.

This algorithm allows for the introduction of non-projediedges because we do not
restrict any of the edge changes except to maintain the tageegy. In fact, if any edge
change is ever made, the resulting tree is guaranteed torbprogective, otherwise there
would have been a higher scoring projective tree that woaletalready been found by
the exact projective parsing algorithm.

It is clear that this approximation will always terminatehete are only a finite number
of dependency trees for any given sentence and each iteiatithe loop requires an in-
crease in score to continue. However, the loop could patintake exponential time, so
we will bound the number of edge transformations to a fixedeval. It is easy to argue
that this will not hurt performance. Even in freer-word ardEnguages such as Czech,
almost all non-projective dependency trees are primaribjegtive, modulo a few non-
projective edges. Thus, if our inference algorithm staith ¥ine highest scoring projective

parse, the best non-projective parse only differs by a smatiber of edge transformations.

48

Furthermore, it is easy to show that each iteration of the kadesO(n?) time, resulting
in aO(n® + Mn?) runtime algorithm. In practice, the approximation termésaafter a
small number of transformations and we do not bound the nuwititerations in our ex-
periments. In fact, the run-time of this algorithm is donethby the call t®-order-proj
(see Chapter 4).

We should note that this is one of many possible approximatiee could have made.
Another reasonable approach would be to first find the higbestingfirst-order non-
projective parse, and then re-arrange edges based on saclandcores in a similar man-
ner to the algorithm we described. We implemented this ntettmal found that the results
were slightly worse.

It is also easy to find examples in which this approximatiolhfail to find the highest
scoring non-projective parse. Consider a sentaneea b c d, i.e. root = a. We set the

following edge weights,

s(a,b,c) =10
s(b,—,d) =10
s(d,c,b) =11

Let every other second-order edge have a weiglit dflow, note that any pair of the
three second-order edges with score greater theither cross or result in a cycle, hence
the highest scoring projective tree can contain at most étigese. This also means that
the highest scoring projective tree can have a score of at ot turns out that there is

exactly one projective tree with a scoreldf,

Now, if we enter the edge transformation step of the algorjtive can look for changes
of heads in, c or d that lead to a higher scoring tree, sinces the root. Of course, there

are only two non-zero second-order edges not in this tteé, c¢) and(b, —, d). The former

49

edge cannot be constructed in a single edge transformatioe & results in a change of
head for bothh and ¢ and the latter will result in a cycle. Thus, there is no singlige
change that will lead to a strictly higher scoring tree, se éifigorithm stops. However,

consider the tree,

This tree has a score @f), which is obviously a higher scoring tree than the one re-
turned by the algorithm. This example relies on the propiy very similar second-order
edges will have a wide range in scores and that very diffezdges (e.g. reversal of the
head and modifier) will have very similar scores. Both of ehpeoperties are unlikely in
practice.

We should note the similarity of this approximate depengigrarsing algorithm with
that of Foth et al. [51]. In that work they describe an aldoritfor constraint based de-
pendency parsing [85, 60] in which a suboptimal solutiomigally found and subsequent
local constraint optimizations attempt to push the algoninear the global optimum. As
is the case with our algorithm it is possible for this methodyét stuck in a local max-
ima. Their main motivation to designing this algorithm wasowvercome difficulties in a

standard constraint based dependency grammar when papsikgn dialogue.

3.1.3 Summary: Dependency Parsing as MST

In this section we defined dependency parsing as the searahafamum spanning trees
in directed graphs constructed from sentences. This fatoul naturally led to first and
second-order parsing algorithms for projective strucuhat were originally defined by
Eisner [45]. More surprisingly, a polynomial first-orderrgpiag algorithm was provided
for non-projective trees that was based on the Chu-Liu-EdiledST algorithm. Unfor-

tunately, it has been shown that second-order non-pre@MST parsing is NP-hard and

50

thus we were forced to define an approximate algorithm. Hewem Chapter 4 we will
see that this approximation still leads to state-of-theesults.

The major contribution of this formulation is that it proesia uniform framework for
defining and parsing both projective and non-projectivayleges using efficient cubic
parsing techniques. Furthermore, it unifies previous warkarsing dependencies into a
single framework, including the work of Eisner [45], Fothadt [51], Hirakawa [65] and
Ribarov [112].

3.2 Defining the Feature Space

In the last section, we defined the score of an edgéiag) = w-f(7, j). This assumes that
we have a high-dimensional feature representation for edge(:, j). The basic set of
features we use are shown in Table 3.1a and b. All featuresajeined with the direction
of attachment as well as the distance between the two wosriticg the dependency.
These features provide back-off from very specific featores words and part-of-speech
(POS) tags to less sparse features over just POS tags. Batseek are added for both the
entire words as well as thiegram prefix if the word is longer thancharacters.

Using just features over head-modifier pairs in the tree i€nough for high accuracy
since all attachment decisions are made outside of thexdantehich the words occurred.
To solve this problem, we added two more types of featureschwtan be seen in Ta-
ble 3.1c. The first new feature class recognizes word ty@ottur between the head and
modifier words in an attachment decision. These featuresttekform of POS trigrams:
the POS of the head, that of the modifier, and that of a word iwéxen, for all distinct
POS tags for the words between the head and the modifier. Teaisges were particu-
larly helpful for nouns to select their heads correctlycsithey help reduce the score for

attaching a noun to another noun with a verb in between, wikiehrelatively infrequent

51

a) b) c) d)

Basic Bi-gram Features

Basic Uni-gram Features In Between POS Features
g x ;-word, x ;-pos,z ;-word, z ;-pos - b — Second-order Features
a;-word, z;-pos Z;-PpOS,x ;-WOrd, « ;-POS -POS, D-POSz ;-POS Z,-POS, T ,-POS, T ;-pOS
z;-word . 1 L Surrounding Word POS Features . 1
- x;-word, x ;-word, x ; -pos . - - - 2 },-POS,x ;-pos
x ;-pos — x;-POS,x;-pos+1,x ;-pos-1,z ;-pos — o
x;-word, x ;-pos,z ;-pos x3,-word, z ;-word
x j-word, x ; -pos x§-pos-1,,-pos,x ;-pos-1,z ;-pos
zi»word,zi»pos,zy--word zk»word,zy--pos
x j-word x §-POS,x;-pos+1.x ; -pos,x ;-pos+1
zi»word,zy--word zk»pos,zy-»word
rj-pos x;-p0os-1,x;-pos,x ;-pos,x ;-pos+1

«-POS,x ;-pOS

Table 3.1: Features used by systefty, j), wherez; is the head and; the modifier in
the dependency relation:;-word: word of head in dependency edge-word: word of
modifier. z;-pos: POS of headz;-pos: POS of modifierz;-pos+1: POS to the right of
head in sentence,-pos-1: POS to the left of head,-pos+1: POS to the right of modifier.
x;-pos-1: POS to the left of modifier. b-pos: POS of a word in leehead and modifier.

configuration. The second class of additional featuresesgmts the local context of the
attachment, that is, the words before and after the headfieroplir. These features take
the form of POSI-grams: The POS of the head, modifier, word before/after haddvord
before/after modifier. We also include back-off featureigrams where one of the local
context POS tags was removed.

These new features can be efficiently added since they aea @iv part of the input
and do not rely on knowledge of dependency decisions outbieleurrent edge under
consideration. Adding these features resulted in a larggadwement in performance and
brought the system to state-of-the-art accuracy. Foitrtitise purposes Appendix B shows
the feature representation for our example sentence oxeddpe it,with) for the example
sentence in Figure 1.2.

As mentioned earlier, all of the runtime analysis relied loa fact that the calculation
of s(i,7) wasO(1), when in fact it is really linear in the number of featurest thiee active
for each edge. Table 3.1 shows that for each edge there arexdwandful of bigram and
unigram features as well as context POS features. Moreltngudire the POS features for
all the words in-between the two words in the edge - this in fagkes the calculation of
s(i, j) atleastO(n) making the projective parsing algorithi@$n*) and the non-projective
parsing algorithmO(n3). However, a feature can be active at most once for each clistin

POS, e.g., if there are two proper nouNNP) betweenr; andz;, the feature is active only

52

once.

We define a tableos(i, j) that is the set of POS tags for all the words in-betwegen
andz;. This table can be calculated statically before parsin@(n*) using a dynamic
programming algorithm that fills in the table for succeslsivarger sub-strings. It is easy
to see thapos(i, j) is equal topos(i,j — 1) plus the POS of;_,, if it is not already in
pos(i, j — 1), which can be calculated if(1) using a hash map. We have now only added
(not multiplied) a factor ofD(n?) to the runtime. Using this table we can now calculate
s(i, 7) without enumerating all words in-between.

The result is that our grammar constant is now, in the worsecan the order of the
number of distinct POS tags, which is typically around 40 @y @us the handful of uni-
gram, bigram and context features. When compared to thergasirvonstant for phrase-

structure parsers this is still very favorable.

3.2.1 Second-Order Features

Since we are also building a second-order parsing model, ust definef (i, &, j). We let
the first set of features be all those in the definitiorf(@f;). This is possible by simply
ignoring the middle index and creating features only on tigirmal head-modifier indexes.
In addition to these features, we add the features in Talt 3.

These new features have two versions. The first is exactlgssithed in the table. The
second conjoins them with the distance between the twagibks well as the direction of
attachment (from the left or right). These features wereduon a development set. We
tried additional features, such as the POS of words in-batwvtiee two siblings, but the set
defined here seemed to provide optimal performance.

Again, Appendix B provides a concrete example of this featepresentation.

53

3.2.2 Language Generality

The feature set we propose is generalizable to any languegecan be tokenized and
assigned POS tags similar to English. In fact, our featurgtates were created by trial
and error on our English development set, but are used faf #tle languages for which
we study in this work. The only difference between the parsethat they are trained on
language specific data sets. In Chapter 5 we discuss theécdalitmnorphological features,

which can be shown to be useful for highly inflected languages

3.3 Adding Labels

Though most large scale evaluations of dependency paraeesdealt with unlabeled de-
pendency accuracies, it is clear that labeled dependenststes like those in Figure 1.4
are more desirable for further processing since they iflentt only the modifiers of a
word, but also their specific syntactic or grammatical fiorct As a result, many standard
dependency parsers already come with the ability to lalgge{B2, 105, 127]. In this sec-
tion we extend the algorithms previously presented to mhelsyntactic labels. We assume
throughout this section that there is a knowntsetT" of labels and that our training data
is annotated with this information.

One simple approach would be to extract the highest sconitepeled trees and then
run a classifier over its edges to assign labels. Dan Kleientc showed that labeling is
relatively easy and that the difficulty of parsing lies inatieg bracketings [75], providing
evidence that a two-stage approach may prove good enougheveq for the sake of
completeness, we will provide details and experiments amlag dependencies trees with

labels in a single stage as well as a two-stage system.

54

3.3.1 First-Order Labeling

For first-order parsing we will change our edge score fundiianclude label information,
s(i, g, t) =w-f(i, 7, 1)

In other words, we now define the score of the edge as the dduprbetween a weight
vector and a high dimensional feature representation oketigeand that edges label

Hence the score of a dependency tree will now be,

s(wy)= Y w-f(i,jt)

(i,4,t)€Y

Both the Eisner projective and the Chu-Liu-Edmonds nonegtive parsing algorithm can
be modified so that only af(|T'|n?) factor is added (not multiplied) to the run-time.

Consider a label for an edgd, j) such that,
t = argmax W - f(z,7,t)
tl

It is easy to show that, if the highest scoring tigender some weight vectov contains
the edge(i, j), then the label of this edge must beConsider somg = arg max,, s(x, y)
and an arbitrary edgg, j, t) € y. Assume that # arg max, w - f(i, j,t'). We can simply
replace the label of this edge with the label that maximibesedge score to produce a
higher scoring tree. Thus, by contradiction, it must be thgecthat = argmax, w -
f(i,j,t).

Using this fact, we can define a taldigi, j) such that each entry stores the best label

55

for that particular edge, i.e.,
bt(i,j) = argmax W - f(i, 7, ')
t/

This table take®)(|T'|n?) to calculate and can be calculated statically before par&hoir-
ing parsing we define(, j) = s(i, 7, bt(4, 7)) and we can run the algorithm as before with-
out increasing complexity. Thus the new complexity for th@gctive parsing algorithmis

O(n? 4+ |T|n*) andO(|T'|n?) for the non-projective algorithm.

3.3.2 Second-Order Labeling

We redefine the second-order edge score to be,
S(ia kaj) t) =W- f(lv kaj) t)

This is the score of creating an edge from wordo z; with edge labet such that the last
modifier ofz; waszy. It is easy to show that we can use the same trick here andashati
calculate,

bt(i, k,j) = argmax W - f(i, k, 7, ")
t/

and sets(i, k, j) = s(i, k, j, bt(i, k, 7)) to allow us to apply our old parsing algorithfns
The result is @ (|T'|n3) complexity for the second-order projective extensioneitevill
takeO(|T'|n?) to computéet (i, k, j).

We could have defined our second-order edge score as,

s(isk, gt t) =w (i, k, j. t'.1)

2Additional care is required in the non-projective secondeo approximation since a change of one edge
could result in a label change for multiple edges.

56

wheret’ is the label for the edgg, k). This would allow us to model common sibling edge
labels, e.g., possibly preventing a verb from taking adjaseabjects. However, inference
under this definition becomes(|T'|>n?), which can be prohibitive if the number of labels

is large.

3.3.3 Two-Stage Labeling

As mentioned earlier, a simple solution would be to createcisd stage that takes the
output parsey for sentencer and classifies each edge j) € y with a particular label
t. Though one would like to make all parsing and labeling denss jointly to include
the shared knowledge of both decisions when resolving arbiqnties, joint models are
fundamentally limited by the scope of local factorizatidhat make inference tractable.
In our case this means we are forced only to consider featu&ssingle edges or pairs
of edges in the tree. Furthermore, the complexity of infeeencreases by a factor of the
number of possible labels, which can be very detrimentaldfiabel set is large. However,
in a two-stage system we can incorporate features over tive eatput of the unlabeled
parser since that structure is fixed as input. The simpleststage method would be to

take as input an edde, j) € y for sentencer and find the label with highest score,

t = argmax s(t,(4,7),y,)
t

Doing this for each edge in the tree would produce the fingbawtutSuch a model could
easily be trained using the provided training data for eaolgllage. However, it might be
advantageous to know the labels of other nearby edges. $tanite, if we consider a head
x; with dependents;; , ..., z;,,, it is often the case that many of these dependencies will

have correlated labels. To model this we treat the labelfibeoedgesi, j1), . . ., (¢, jum)

57

as a sequence labeling problem,
(Eigi)s - s tiga) =t = arginax s(t,i,y,x)
We use a first-order Markov factorization of the score
M
t = arg i’IlaX Z S<t(i,jm)7 t(i,jm71)7 ’i, Yy, CC)
m=2

in which each factor is the score of assigning labels to thacadt edgesi, j,,) and
(1, Jm—1) in the treey. We attempted higher-order Markov factorizations but ttielynot
improve performance uniformly across languages and trgibecame significantly slower.

For score functions, we use the standard dot products betwgk dimensional feature

representations and a weight vector. Assuming we have apgte feature represen
tation, we can find the highest scoring label sequence witbribis algorithm. We use
the MIRA online learner to set the weights since we foundaitnted quickly and provide
good performance. Furthermore, it made the system homogsria terms of learning
algorithms since that is what is used to train our unlabekegqy. Of course, we have to

define a set of suitable features. We used the following:

e Edge Features:Word/pre-suffix/POS feature identity of the head and the ifrexd
(suffix lengths 2 and 3). Does the head and its modifier sharefefsuffix. Attach-
ment direction. s the modifier the first/last word in the seo#®

e Sibling Features: Word/POS/pre-suffix feature identity of the modifiers ledfit
siblings in the tree (siblings are words with same head inttbe)? Do any of the
modifiers siblings share its POS?

e Context Features: POS tag of each intervening word between head and modifier.
Do any of the words between the head and the modifier have adtkadthan the
head? Are any of the words between the head and the modifier aedcendent of
the head (i.e. non-projective edge)?

58

e Non-local: How many modifiers does the modifier have? Is this the lefitrigost
modifier for the head? Is this the first modifier to the leftitigf the head?

Various conjunctions of these were included based on pedoce on held-out data.
Note that many of these features are beyond the scope of geebaded factorizations of
the unlabeled parser. Thus a joint model of parsing andilapebuld not easily include

them without some form of re-ranking or approximate paramestimation.

3.4 Summary of Chapter

In this chapter we presented the primary contribution of Whork — the formulation of de-
pendency parsing as the maximum spanning tree problem. BieWwew of dependency
trees has many advantages. Primarily it leads to efficiesttdind second-order projective
parsing algorithms as well as efficient first-order non-@ectiye parsing algorithms. Fur-
thermore, we also gave an approximate second-order ngeefive parsing algorithm for
which we will empirically justify in the next chapter. We alshowed how all algorithms
can be extended to provide labeled dependencies. The M&itivies gives a uniform and
algorithmically justifiable view of dependency parsing f@atural language, which we will
exploit together with the learning algorithms in Chapteo ptoduce efficient and accurate

parsers for a variety of languages.

59

Chapter 4

Dependency Parsing Experiments

Parts of this chapter are drawn from material in [91, 95, 94].

4.1 Data Sets

We performed these experiments on three sets of data, tmeHPegtish Treebank [84], the
Czech Prague Dependency Treebank (PDT) v1.0 [56, 57] anBehe Chinese Treebank
[150]. For the English data we extracted dependency traag tise rules of Yamada and
Matsumoto [151], which are similar, but not identical, t@sle used by Collins [25] and
Magerman [83]. These rules are given in Appendix A. Becahsalependency trees are
extracted from the phrase-structures in the Penn Treellagkare by construction exclu-
sively projective. We used sections 02-21 of the Treebankr&ining data, section 22 for
development and section 23 for testing. All experimentsewan using every single sen-
tence in each set of data regardless of length. For the EBndgdita only, we followed the
standards of Yamada and Matsumoto [151] and did not inclushetpation in the calcu-
lation of accuracies. For the test set, the number of wordlsont punctuation is 49,892.

Since our system assumes part-of-speech information as nwp used the maximum en-

60

tropy part-of-speech tagger of Ratnaparkhi [110] to preuvags for the development and
testing data. The number of features extracted from the Pexebank weré, 998, 447 for
the first-order model and 595, 549 for the second-order model.

For the Czech data, we did not have to automatically extrapeddency structures
since manually annotated dependency trees are precisaltidhPDT contains. We used
the predefined training, development and testing splitHerdata. Furthermore, we used
the automatically generated POS tags that were providddtivit data. Czech POS tags
are extremely complex and consist of a series of slots thgtonanay not be filled with
some value. These slots represent lexical properties sushaadard POS, case, gender,
and tense. The result is that Czech POS tags are rich in iateym but quite sparse when
viewed as a whole. To reduce sparseness, our features fglgrothe reduced POS tag set
from Collins et al. [29]. The number of features extractauhfrthe PDT training set were
13,450, 672 for the first-order model anti, 654, 388 for the second-order model.

Czech has more flexible word order than English and as a tbsURDT contains non-
projective dependencies. On averag&), of the sentences in the training, development
and test sets have at least one non-projective dependeoayeudr, less thad% of total
edges are actually non-projective. Therefore, handling-pojective arcs correctly has
a relatively small effect on overall accuracy. To show thifeafmore clearly, we created
two Czech data sets. The first, Czech-A, consists of theeeR@DIT. The second, Czech-
B, includes only the3% of sentences with at least one non-projective dependertog. T
second set will allow us to analyze the effectiveness of therahms on non-projective
material.

The Chinese data set was created by extracting dependdraneshe Penn Chinese
Treebank [150] using the head rules that were created byiaersgeaker primarily for the
purpose of building a machine translation system. Agaioabse the dependency trees are

extracted from the phrase-structures, they are by congtruexclusively projective. We

61

split the data into training and testing by placing evenhiesentence in the data into the
test set. We use gold POS tags for this data set since we hayetwained a Chinese
POS tagger. The number of features extracted from the Peme&&hTreebank training
set were2, 985, 843 for the first-order model ang, 346, 783 for the second-order model.

Unlike English and Czech, we did not include angram prefix features.

4.2 Unlabeled Dependencies

This section reports on the most extensive experiments wed@npleted to date on unla-
beled dependencies. Itis primarily divided into two sets$igrojective and non-projective
results. For the non-projective results we focus on the Kzista since it contains this
particular phenomenon.

The first two sections compare pure dependency parsers @ilyhose parsers trained
only on dependency structures. We include a third sectiahdbmpares our parsers to
lexicalized phrase-structure parsers, which have beewrsho produce state-of-the-art

dependency results [151].

4.2.1 Projective Parsing Results

We compare five systems,

e Y&M2003: The Yamada and Matsumoto parser [151] is a discriminativegra
based on local decision models trained by an SVM. These matel combined
in a shift-reduce parsing algorithm similar to Ratnapaf&ail].

e N&S2004: The parser of Nivre and Scholz [105] is a memory based parnsieran
approximate linear parsing algorithm.

e N&N2005: The parser of [104], which is an extension of N&S2004 to Czéldtis
paper presents both a projective and non-projective varidke report the non-
projective results in the next section.

62

English Czech-A Chinese
Accuracy Complete Accuracy Complete Accuracy Complete
Y&M2003 90.3 38.4 - - -
N&S2004 87.3 30.4 - -
N&N2005 - - 78.5 20.6 - -
15t-order-proj 90.7 36.7 83.0 30.6 79.7 27.2
2nd-order-proj 915 42.1 84.2 33.1 82.5 32.6

Table 4.1: Unlabeled projective dependency parsing resddicuracyis the percentage of
words modififying the correct hea@ompletds the percentage of sentences for which the
entire predicted dependency graph was correct.

e 1%t-order-proj: This parser uses the Eisner first-order projective pardiggrishm
combined with the MIRA learning framework.

e 2-order-proj: This parser uses the second-order extension of the Eigy@nitain
combined with the MIRA learning framework.

Results are shown in Figure 4.1. Not all systems report allite. Across all lan-
guages the parsers we have developed here provide sttte-aft performance without
any language specific enhancements. It can be argued thatintgry reason for this im-
provement is the parsers ability to incorporate millionsicii dependent features, which is
not possible in for the history based models [104, 105]. TAmada and Matsumoto [151]
SVM parser also has this ability. However, their locallyiiesd model can suffer from the
label bias problem [80] as well as error propagation duriregrtshift-reduce search. Fur-
thermore, we can also see that the introduction of secoderdeatures improves parsing

substantially for all languages, as expected.

k-best MIRA Approximation

We need to determine how justifiable is théest MIRA approximation, in particular when
k = 1. Table 4.2 indicates the test accuracy and training time rogligh for thek-best
MIRA first-order model withk = 1,2,5,10,20. Even thought-best parsing multiplies

asymptotic parsing complexity by/alog k factor, empirically the training times seem to

63

| k=1 k=2 k=5 k=10 k=20
Accuracy | 90.73 90.82 90.88 90.92 90.91
Traintime | 183m 235m 627m 1372m 2491m

Table 4.2: Evaluation ok-best MIRA approximation. These experiments were run on a
2.4GHz 32-bit machine with 2G of memory.

scale linearly withk. Peak performance is achieved for léwwith a slight degradation
aroundk = 20. We speculate that the reason for this phenomenon is thatakel is over-
fitting by ensuring that even unlikely trees are separataah ihe correct tree in proportion

to their loss.

4.2.2 Non-projective Parsing Results

As mentioned earlie3% of the sentences in the PDT contain at least one non-pregecti
dependency and roughBf% of all dependencies are non-projective. In this section we
examine the performance of our non-projective parsers eeiiire PDT (data s€zech-

A) as well as a subset containing only those sentences witiprajactive dependencies
(data seCzech-B.

We compare five systems,

e N&N2005: The parser of Nivre and Nilsson [104] is a memory based pditser
[105]. This parser models non-projective dependenciesitiitr edge transformations
encoded into labels on each edge. For instance a label cadeacparental raises
in the tree (when a edge is raised along the spine towardstheftthe tree).

e 1%-order-proj: The first-order projective parser from Section 4.2.1.
e 2"-order-proj: The second-order projective parser from Section 4.2.1.

e 1%t-order-non-proj: This parser uses the Chu-Liu-Edmonds MST algorithm as de-
scribed in Section 3.1.1.

e 2-order-non-proj: This parser uses the approximate second-order non-pk@ect
parsing algorithm described in Section 3.1.2.

64

Czech-A Czech-B
Accuracy Complete Accuracy Complete
N&N2005 80.0 31.8 - -
1%t-order-proj 83.0 30.6 74.4 0.0
2nd-order-proj 84.2 33.1 74.6 0.0
1%t-order-non-proj 84.1 32.2 81.0 14.9
2nd-order-non-proj 85.2 35.9 81.9 15.9

Table 4.3: Unlabeled non-projective dependency parsisigjte

Results are shown in Figure 4.3. This table shows us thatdibr the first and second-
order models, modeling non-projective dependencies leads improvement in perfor-
mance of around% absolute. Especially surprising is that the second-orpgpraximate
algorithm leads to such a large improvement. The most likehgon is that the approxi-
mate post-process edge transformations are incorpordtethe online learning algorithm,
which allows the model to adjust its parameters for commatakes made during the ap-
proximation. Thus the algorithm learns quickly that thetlmes-projective tree is typically
only one or two edge transformations away from the highestisg projective tree. The
robustness of discriminative online learning algorithmspproximate inference will be
discussed further in Chapter 8.

As mentioned earlier, we have not been able to put a worgt-@asplexity on our ap-
proximate second-order non-projective parsing algorithfowever, in terms of runtime,
our projectiveO(n?) second-order model runs in 16m32s and our non-projectigeoap
imation in 17m03s on the Czech evaluations data. Cleartyptist-process approximate
step of inference does not in practice add too much time. iBhieecause each sentence
typically contains only a handful of non-projective dependes. As a result the algorithm

will learn not to adjust too many edges after the initial pative parsing step.

65

English
Accuracy Complete Complexity Time

Collins [7, 25] 91.4 42.6 O(n%) 98m 21s
Charniak [16] 92.1 45.3 O(n®) 31m 24s
2nd_order-proj 91.5 42.1 O(n?) 8m46s

Table 4.4: Results comparing our system to those based oRdhims and Charniak
parsers.Complexityrepresents the computational complexity of each parseifandthe
CPU time to parse sec. 23 of the Penn Treebank.

4.2.3 Lexicalized Phrase-Structure Parsers as DependenBgarsers

Itis well known that dependency trees extracted from Idided phrase-structure parsers [16,
25] are typically more accurate than those produced by pepertlency parsers [151]. We
compared our system to the Charniak parser [16] and the Bekihplementation of the
Collins parser [7, 25] trained with the same head rules asyatem. By taking the phrase-
structure output of the parser and running the automatid hdas over it, we were able to
extract the dependencies. Table 4.4 shows the results cogmaur second-order projec-
tive system to the Charniak and Collins parser for Englighsystems are implemented in
Java and run on the same machine, except for the Charniadrpetngch was implemented
in C. The Charniak parser clearly has an accuracy advantageboth our parser and the
Collins parser, whose performance is indistinguishaldefour discriminative parser. In
terms of complexity and runtime, our system is a large impnognt over both parsers. In
particular, the parser is still significantly faster thae @harniak parser that is implemented
in C.

We should note that comparing our parser to dependencieshatitally extracted from
phrase-structure is misleading in a number of ways. Firallafur parser was trained and
designed to maximize dependency accuracy, whereas therpafsCollins and Charniak
were trained and designed to maximize phrase-structurgrawe Furthermore, extract-

ing dependencies from phrase-structure assumes that adrrbkes are a priori correct.

66

Czech-A
Accuracy Complete
Collins-proj [29, 154] 82.5 -
Charniak-proj [59, 154] 84.3 -
Charniak-non-proj [59] 85.1 -
2nd-grder-proj 84.2 33.1
2nd_grder-non-proj 85.2 35.9

Table 4.5: Results comparing our system to those based ensahs of the Collins and
Charniak parsers to Czech.

A better means might be to actually extract the lexical@aproduced by these parsers.
However, this is difficult since these parsers by default dbpnoduce their internal lexi-
calization and sometimes exclude certain punctuation tft@utput since accuracies are
calculated independently of punctuation.

Thus, a better comparison would be on the Czech data setiscm#ains hand anno-
tated dependencies and there has been extensive work awliexg¢éhe generative models
of Collins and Charniak to Czech [29, 59, 154]. We comparedlaystems to our second-
order models in Table 4.%ollins-projis the Collins parser extended to Czech as described
by [29]. Charniak-projis the Charniak parser extended to Czech as reported in §89, 1
Both of these models are based on phrase-structure parsktera limited to producing
projective trees.Charniak-non-projis the recently published parser of Hall and Novak
[59] that takes the best parse from the Charniak parser arates a new set of parses
based on small transformations that can introduce noregtigg edges. A maximum en-
tropy re-ranker then picks the best parse from this new setd¥\hot report parsing times
since code for these systems is unavailable.

We can see that our second-order approximate parser par&ightly better than the
Charniak parser modified to include non-projective edgehis s particularly promis-
ing since our parser is a single model trained with our apprate inference algorithm,

whereas Hall and Novak require two models, the originahi@lak parser plus a non-

67

projective re-ranker.

It is rather disappointing that our discriminative parseesinot in general outperform
these generative models (in particular the Charniak pardg@owever, as we will show
in Chapter 7, we can incorporate features into our discrative model that represent the
parsing decisions of both the Collins and Charniak pargadihg to a significant improve-

ment in accuracy.

4.2.4 Training Time and Model Size

A major concern when training discriminative learners aigdatraining sets for compu-
tationally heavy tasks such as dependency parsing isrgatime. Currently, on a 64-bit
Linux machine running Java 1.5, the largest model (Czeclneriuil data with the Eisner
algorithm) takes just under a day to train. However, most @éf®thke under 15 hours.
These times increase by a factor of 2-2.5 when the model ismun32-bit machine. Cur-
rently, the Czech model can only be run on the 64-bit machiaeause of the very large
feature set. However, we could easily remedy this by onlutliag features that occur
more than once in the training set. This reduces the feapaeessubstantially with little
harm to performance. Feature count cut-offs are commortypidally used as a form of

regularization. Section 6.1.2 addresses this issue Hirect

4.3 Labeled Dependencies

In this section we report results for the first-order labelegendency models described in
Section 3.3.1 as well as a two-stage labeling system, ne. tlwat learns a model to label
the output of an unlabeled dependency parser. We repoitsdsu English on the WSJ

using sections 02-21 for training, section 22 for developimaad section 23 for evalua-

tion. To extract labeled dependency trees from this dataoale the label of the highest

68

NP-SBT mpp\
John ball with
NP- SBJ NP OBJ NP — S
/ | thel h bat
v DT IN DT N -
| | DEP
John hlt the baII Wlth the bat the”

Figure 4.1: Converting a phrase-structure tree to a lalgeendency tree.

ADJP LST NX S VP
ADVP NAC PP SBAR

CONJP NP PRN SBARQ wnﬁgvp
DEP NP-OBJ PRT SINV X

FRAG NP-PRD QP SQ ROOT
INTJ NP-SBJ ROOT UCP

Figure 4.2: Labels extracted from WSJ using [106].

node in the phrase-structure tree for which that word iselkeal head. For example, the
phrase-structure tree fdohn hit the ball with the batvould be transformed into a labeled
dependency tree as shown in Figure 4.1. Running an extnestiagpt (we used Penn2Malt

[106]) resulted in the set of 29 labels shown in Figure 4.2 Hiels are standard from the
Penn Treebank, except the labels ‘DEP’, which is meant teesgmt a generic dependency,
and ‘ROOT’, which is designated for modifiers of the artifici@ot node.

In the next sections we report results for EnglishLaeled AccuracyndUnlabeled
Accuracy The former measures the number of words who correctly ileththeir head
and assign the correct label to the edge and the latter neslastmal unlabeled dependency
parsing accuracy (as discussed in the last section). Weysluse the projective parsing
algorithms in this evaluation since the English data sexctusively projective.

In Chapter 5 we present labeled experiments for languadgpes thtan English.

69

English
Labeled Accuracy Unlabeled Accuracy
1%t-order-proj with joint labeling 88.7 90.9

Table 4.6: First-order labeling results for English.

4.3.1 First-Order Results

Results for the first-order labeling model (Section 3.3rg&)shown in Table 4.6. The first
thing to note is that even with a large set of possible lak#f#y, (overall accuracy drops
only 2% absolute, which roughly says that the labeling aaxcyiis 97.6% accurate over
correctly identified dependencies. This is a very promisasgllt. However, we will see in
Chapter 5 that labeling for English is typically much easian for all other languages and
can usually be deterministically decided based on thegfaspeech tags of the modifier
and head words in the dependency.

Another interesting property is that the unlabeled acguestually improves (from
90.7 to 90.9). This is consistent with previous results |1 displays that learning to
label and find dependencies jointly will help overall penfi@nce. However, this benefit
does come at the expensive of computation, since the tgpanid inference have an added
O(Tn?) term, which in practice leads to roughly to run times on théeorof 3 times
slower than the unlabeled system. The fact that second-@u parsing and labeling
results in a run-time complexity @ (7'n?) made it unreasonable to train large models in a
practical amount of time. In the next section, it will be shmatvat learning to label and find
dependencies separately does not degrade performancasntlich nicer computational

properties.

70

English
Labeled Accuracy Unlabeled Accuracy

15t-order-proj with joint labeling 88.7 90.9
1%t-order-proj with 2-stage labeling 88.8 90.7
2nd_order-proj with 2-stage labeling 89.4 91.5

Table 4.7: Two-stage labeling results for English.

4.3.2 Two-Stage Results

Results for two-stage labeling (Section 3.3.3) are showrable 4.7. From this table, we
can see that a two-stage labeler with a rich feature set dges$ well as a joint labeler
that is restricted to features over local factorizatiors§8/s. 88.7). The advantage of the
two stage labeler is that it is much quicker to train and ruitha complexity ofO(n? +
T?n), where theT? factor comes from the fact that we have to run Viterbi's aidon.
Furthermore, the complexity for the second-order modelésiical atO(n® + 72n) and
can be trained very efficiently. Results for this system &e shown in Table 4.7 and once

again display the advantage of a second-order model.

4.4 Summary of Chapter

In this chapter we presented an empirical evaluation of #peddency parsers described
in this work. For unlabeled dependencies we compared thénetourrent best systems fa-
vorably. Furthermore, we showed that they have compepi@réormance with lexicalized
phrase-based parsers, but are much more computationfdigef. Finally, we presented
results for the labeled parser and showed that two-stagegazan provide equal or better
performance to a joint parser and labeler due to its aboiiptlude features over the entire

dependency tree.

71

Chapter 5

Parsing 14 languages with One Model

Part of the material in this chapter is drawn from [92].

An important question for any parsing model is, how well ddegpply to new lan-
guages? In this section we aim to show that the models deskciibthis work are, for
the most part, language independent. We do this by evatu#tas models on 14 diverse
languages. This data set includes the 13 standard depgndatacsets provided by the
organizers of the 2006 CoNLL shared task [13] plus the Ehgleta set we described in
Section 4.1. We show that our standard parser with littleadanguage specific enhance-
ments achieves high parsing accuracies across all langegative to state-of-the-art).
This is a very promising result and a strong argument for gdieability of the parsers in
this work. We used the two-stage parsing model describe@dticéh 3.3.3 for all experi-

ments in this chapter.

72

[language [Ar [Ch] Cz] Da] Du] Ge] JaJ Po] ST T Sp] Sw [Tu] BuJ En]|
genres [Lne] [3] 8 [5+ Line] Iidi [Iine [1:no | 9] 4+] 8] 12T 1ne
annotation || d | o+ | d | d [de+f | de+f | c+f | def | d [c(+f) [de+fid [d | o+t | c+f

training data
tokens (k) 54 337 1249 94 195 700 151 207 29 89 191 58 190 950
%non-scor. 8.8 0.8 14.9 13.9 11.3 115 11.6 14.2 17.3 12.6 11.0 33.1 14.4 9.1
sents (k) 1.5 57.0 72.7 5.2 13.3 39.2 17.0 9.1 1.5 3.3 11.0 5.0 12.8 39.8
tokens/sent 37.2 5.9 17.2 18.2 14.6 17.8 8.9 22.8 18.7 27.0 17.3 115 14.8 23.9
LEMMA Yes No Yes No Yes No No Yes Yes Yes No Yes No No
CPOSTAGs 14 22? 12 10 13 52 20 15 11 15 37 14 11 36
POSTAGs 19 303? 63 24 302 52 7 21 28 38 37 30 53 36
FEATS 19 0 61 47 81 0 4 146 51 33 0 82 50 0
DEPRELs 27 82 78 52 26 46 7 55 25 21 56 25 18 28
D.H.=0 15 1 14 1 1 1 1 6 6 1 1 1 1 1
%HEAD=0 5.5 16.9 6.7 6.4 8.9 6.3 18.6 5.1 5.9 4.2 6.5 13.4 7.9 4.2
%H. left 82.9 24.8 50.9 75.0 46.5 50.9 8.9 60.3 47.2 60.8 52.8 6.2 62.9 47.0
%H. right 11.6 58.2 42.4 18.6 44.6 42.7 72.5 34.6 46.9 35.1 40.7 80.4 29.2 48.8
H.=0/sent 1.9 1.0 1.0 1.0 1.2 1.0 15 1.0 0.9 1.0 1.0 1.0 1.0 1.0
%n.p. edges 0.4 0.0 1.9 1.0 5.4 2.3 1.1 1.3 1.9 0.1 1.0 1.5 0.4 0.0
%n.p. sents 11.2 0.0 23.2 15.6 36.4 27.8 5.3 18.9 22.2 1.7 9.8 11.6 5.4 0.0

Table 5.1: Properties of the data for the 14 languages. Hhile thas been taken and
modified from [13], with permission.

5.1 Data Sets

In this section we briefly describe the source and size of datdnset. For further details
see [13]. Each of these data sets consist of a number of sestannotated with labeled

dependency graphs satisfying the tree constraint.

5.1.1 General Properties of the Data

Table 5.1 outlines general properties of the data for thadguages: Arabic (Ar), Chinese
(Ch), Czech (Cz), Danish (Da), Dutch (Du), German (Ge), dapa (Ja), Portuguese (Po),
Slovene (Sl), Spanish (Sp), Swedish (Sw), Turkish (Tu)gBtibn (Bu) and English (En).

Table 5.1 contains the following information,

genres: The number of genres in the data set. ne: news, no: noveitlite,
di:dialogue (other if not specified).

annotation: The original annotation in the treebank. d=dependencymstituents,
dc=discontinuous constituents, +f=with functions, +tthwtiypes (labels).

tokens: The number of tokens in the data set.

%non-scor: Number of non-scoring tokens in the data (usually puncbati

73

sents:Number of sentences in the data set.

LEMMA: Does the data set contain lemmas (in addition to inflectad $y?
CPOSTAGs: Number of coarse-grained part-of-speech tags in data.
POSTAGs: Number of part-of-speech tags in data.

FEATS: Does the data set contain morphological feature informa&tio
DEPRELs: The number of edge labels in the data set.

D. H.=0: The number of labels for dependencies involving the roohefgraph.
%HEAD=0: Percentage of tokens whose head is the root of the graph.

%H. left: Percentage of tokens whose head is to its left (not incluttikgns whose
head is the root).

%H. right: Percentage of tokens whose head is to its right (not inctuthkens
whose head is the root).

H.=0/sent: Average number of words per sentence whose head is the rdbe of
graph.

%n.p. edges:Percentage of non-projective edges in data.

%n.p. sents: Percentage of sentences with at least one non-projectge ed

5.1.2 Data Sources and Specifics

In this section we briefly describe the source of each datassst as well as if any trans-

formations were required. Note that the size of each test/aetchosen to approximately

make the number of scoring tokens equivalent for each lageyuexcept English, which is

not officially one of the CoNLL data sets.

Arabic

Dependencies were taken from the Prague Arabic Dependerepdnk [58, 129], which

is a proper dependency treebank. The data is drawn from etyarfinews sources includ-

ing Agence France Presse, Al Hayat News Agency, Ummah Pezse&, An Nahar News

74

Agency, Xinhua News Agency. The training set consists of0lgéhtences and the test set

consists of 146 sentences.

Bulgarian

Dependencies were taken from the Bulgarian Treebank [123}, 126, 125, 108], which
was converted to dependencies from a Head-Driven Phraget@t format. The data is
drawn from a wide variety of sources including, news textiieoks and literature. The

training set consists of 12,823 sentences and the testrsgistoof 398 sentences.

Chinese

Dependencies were taken from the Sinica Treebank [19], wisisyntactically and se-
mantically annotated corpus of phrasal structure inclydi@ad and modifier information.
The data is drawn from a wide variety of genres in the Sinicpu®[18]. The training set

consists of 56,957 sentences and the test set consists eE86hces.

Czech

Dependencies were taken from the Prague Dependency Tiegjawhich is a proper de-
pendency treebank. The data is drawn from from Czech newspapd academic publish-

ers. The training set consists of 72,703 sentences anddiseteconsists of 365 sentences.

Danish

Dependencies were drawn from the Danish Dependency Trk¢b8j which is a proper
dependency treebank. This data set also consists of a setofidaryedges, which break
the tree constraint. For these experiments, only primagegdre considered. In Sec-
tion 8.2 we discuss extensions to our parsing algorithmis thig ability of producing sec-

ondary edges. This data is drawn from the PAROLE corpus wtoatains sentences from

75

a variety of sources. The training set consists of 5,19Cesert and the test set consists of

322 sentences.

Dutch

Dependencies were drawn from the Alpino Treebank [148, ,14fHjch is a corpus of
syntactically annotated phrasal information. Dependeneaiere generated using standard
head selection rules. The data is drawn from news text, spdisdogue, sentences that
are questions, and even sentences from a Dutch yellow pagedraining set consists of

13,349 sentences and the test set consists of 386 sentences.

English

Dependencies were created from the Penn Treebank [84] tilsengethod described in
Section 4.1. The training set consists of 39,832 sentemuktha test set consists of 2,416

sentences.

German

Dependencies were taken from the TIGER Treebank [11], wisiehcorpus of sentences
annotated under a Lexical Functional Grammar formalismpebeencies are easily ex-
tracted in this data using deterministic head rules. Tha datrawn from the German

news source Frankfurter Rundschau. The training set dsri89,216 sentences and the

test set consists of 357 sentences.

Japanese

Dependencies were taken from the Verbmobil Treebank [7B]chvwas converted from

phrase-structure using pre-annotated head associafitresdata is drawn from two way

76

conversations negotiating business meetings. The tgasenconsists of 17,044 sentences

and the test set consists of 709 sentences.

Portuguese

Dependencies were taken from the Bosque subset of the EldBasta(c)tica Treebank
project [2], which was converted from phrase-structuredpehdencies using a fixed set of
head rules. The data is drawn from two news and journal seufidee training set consists

of 9,071 sentences and the test set consists of 288 sentences

Slovene

Dependencies were taken from the Slovene Dependency Tie¢dbd], which is a pure
dependency treebank annotated in the same fashion as tpgeHd@pendency Treebank
and Prague Arabic Dependency Treebank. The text contairierames from a Slovene
translation 0fl984by George Orwell. The training set consists of 1,534 sem®aad the

test set consists of 402 sentences.

Spanish

Dependencies were taken from the Cast3LB Treebank [23,Z9which was converted
from phrase-structure using a fixed set of head rules. The idadrawn from journals,
literature and scientific text from Spain as well as South Acae The training set consists

of 3,306 sentences and the test set consists of 206 sentences

Swedish

Dependencies were taken from Talbanken05 [102], which i©sdem version of one of
the oldest treebanks in existence, Talbanken76 [44, 138pahken05 is annotated with

dependencies so no conversion was necessary. The datatsaidioth written text and

77

transcribed speech. The training set consists of 11,042 sees and the test set consists

of 389 sentences.

Turkish

Dependencies were drawn from the METU-Sabanci Turkishbaelk [107, 4], which an-
notates dependencies between inflectional groups. Withinfeectional group all words
modify the last. The data is drawn from a wide body of genrekioiing news and litera-

ture. The training set consists of 4,997 sentences andghsdeconsists of 623 sentences.

5.2 Adding Morphological Features

One advantage of the CoNLL data sets is that they came withedemorphological fea-
tures for each language. The types of features differed taysid so we incorporated them
into our models in a general way.

For the unlabeled dependency parser we augmented thedeapresentation of each
edge. Consider a proposed dependency of a modifiéor the headr;, each with mor-
phological featured/; and/; respectively. We then add to the representation of the edge:
M, as head featured/; as modifier features, and also each conjunction of a featane f
both sets. These features play the obvious role of explinitbdeling consistencies and
commonalities between a head and its modifier in terms abatés like gender, case, or
number.

For the second-stage labeler we used the following featire s

e Edge Features:Word/pre-suffixfPOS/morphological feature identity of thead and
the modifier (suffix lengths 2 and 3). Does the head and its fieodihare a pre-
fix/suffix. Attachment direction. What morphological feets do head and modifier
have the same value for? Is the modifier the first/last wortiémsentence?

78

e Sibling Features: Word/POS/pre-suffix/morphological feature identity of tinodi-
fiers left/right siblings in the tree (siblings are wordsiwsame head in the tree)? Do
any of the modifiers siblings share its POS?

e Context Features: POS tag of each intervening word between head and modifier.
Do any of the words between the head and the modifier have adtkadthan the
head? Are any of the words between the head and the modifier sedcendent of
the head (i.e. non-projective edge)?

e Non-local: How many modifiers does the modifier have? What morphological
features does the grandparent and the modifier have ideutitges? Is this the
left/right-most modifier for the head? Is this the first magfifio the left/right of the
head?

This is identical to the old feature set, except where mdagaofeatures have been

included.

5.3 Results

Based on performance from a held-out section of the traidatg, we used non-projective
parsing algorithms for Czech, Danish, Dutch, German, Jeg@mrPortuguese and Slovene,
and projective parsing algorithms for Arabic, Bulgariahjrii@se, English, Spanish, Swedish
and TurkisA. Furthermore, for Arabic and Spanish, we used lemmas idstemflected
word forms since this seemed to alleviate sparsity in patanestimates for these lan-
guages.

Results on the test sets are given in Table 9.1. Performanoeasured through unla-
beled accuracy, which is the percentage of words that dbyrielentify their head in the
dependency graph, and labeled accuracy, which is the gag=ef words that identify
their head and label the edge correctly in the graph. Putictugs ignored for all lan-

guages. For all languages except English, a token is caesiginctuation if and only if

1Using the non-projective parser for all languages doesffetteperformance significantly.

79

UA LA
Arabic | 79.3 66.9
Bulgarian| 92.0 87.6
Chinese| 91.1 85.9
Czech| 87.3 80.2
Danish| 90.6 84.8
Dutch | 83.6 79.2
English| 91.5 89.4
German| 90.4 87.3
Japanese 92.8 90.7
Portugueseg 91.4 86.8
Slovene| 83.2 73.4
Spanish| 86.1 82.3
Swedish| 88.9 825
Turkish | 74.7 63.2
Average| 87.4 81.4

Table 5.2: Dependency accuracy on 14 languages. Unlabdghcbhd Labeled Accuracy
(LA).
all of its characters are unicode punctuation charactensERglish we define punctuation
identical to Yamada and Matsumoto [151].

These results show that a two-stage system can achieveiaaiglhigh performance.
In fact, for every language our models perform significahttyher than the average perfor-
mance for all the systems reported in the CoNLL 2006 shagd[f8] and represent the
best reporting system for Arabic, Bulgarian, Czech, Darishtch, German, Slovene and

Spanish (English was not included in the shared task).

5.4 Summary of Chapter

In this chapter we showed that the discriminative spannmiggyparsing framework is easily
adapted across all these languages. Only Arabic, Turkidls&vene have parsing accura-
cies significantly below 80%, and these languages havevalasmall training sets and/or
are traditionally difficult languages to parse. These tesare very promising. In fact, they

are state-of-the-art when compared to other parsers dedlirathe CoNLL shared task

80

[13].

Section 6.2 and Appendix C provide a detailed error analyses

81

Chapter 6

Analysis of Parsing Results

Parts of the material in this chapter is drawn from [92].

In this chapter we attempt to provide an analysis of commuaor&in both the English
parsing models as well as a brief error analysis of the moidelsll other languages.
Furthermore, we present experiments that tease apart tiebedion of various features

in the models. For a detailed quantitative error analysislicsections, see Appendix C.

6.1 English

6.1.1 Error Analysis

For these experiments, we used sections 02-21 of the Pembalrk to train a parsing
model for English. We then used the standard test data tgzn#ie errors (section 23).
Throughout the development of the parser, we had only useddielopment section (22)
to analyze errors and modify the models. Now that we have fikegarsing model, we

wish to gain an insight on the kinds of errors that are beindarfar the reported results.

82

English
Accuracy
Standard 91.5
Top2POSTraining 91.9
GoldPOS 93.1

Table 6.1: English parsing errors relative to part-of-ghe@gging errors.

Part-of-speech tagging errors

One aspect of our system that differs from at least one sfatiee-art parsing model (Char-

niak [16]) is that part-of-speech (POS) tags for the inputeece are fixed before parsing.
This of course can lead to a propagation of errors if the P@§etais not accurate. For-

tunately, POS tagging is very well studied with the best @@ seporting accuracies near
human capabilities. For instance, the POS tagger we us@ji\\&k 96.3% accurate on the
test data. Though this is a high number, the fact that paestogracies are also over 90%
suggests that this could be a significant source of erroGhwinifact it is.

Table 6.1 shows the parsing accuracies of three systemdirghgystem Standard is
the English second-order model from Section 4. The finaksysEoldPOS s identical to
Standard, except that at test time we use the true POS tagsefdata. This final system
represents the upper-bound on parsing accuracy relatR®ftag information.

It is clear from the difference in accuracies betw&tandardandGold that propagated
POS tagging errors account for a large chunk of the remaipaémging errors, around 20%
of it in fact. This result definitely suggests that a parsimadel that predicts POS tags and
dependencies jointly should be investigated to alleviaite tHowever, once there is POS
ambiguity, exact parsing for the second-order projectieelehbecome® (| P|3n?), where
| P| is the number of unique POS tags. This presents a difficultyesP| is usually around
than 40. However, one interesting approach to try is to fixlmaber of possible POS tags
for a given token to a small set of likely candidates durirgning/testing, say of size.

These fixed tags can be provided from ghbest outputs of most statistical classification

83

algorithms. The resulting parsing algorithm would®&?*n?), which seems a little more
reasonable.

It is easy to motivate such an approach by observing thatotiROS taggers get near
99% recall if we consider the top 2 POS tags for each token. édew even withp = 2,
we are multiplying the run-time by a factor of 8. Trainingesdy takes over 10 hours for
English, thus multiplying this by 8 is cumbersome for use umrent systems. However,
for the sake of completeness, we implemented and trainedanderder parsing model
that takes as input the top 2 POS tags for each token based ariemom entropy tagger
implemented in MALLET [87]. It took approximately 5 days tmin the new parsing
model, which resulted in an improvement in parsing accufismy 91.5 to 91.9 (Table 6.1,
systemTop2POSTraining For the context POS features used in the model, we simply
fixed them as the single most likely POS tag in order to makeramice tractable.

Unfortunately, it is easy to show that incorporating POS igimby into the first-order

non-projective MST parsing algorithm makes the problemhdRd.

Errors by Sentence Length

Another quantitative measure of error is by sentence lenigtis natural for longer sen-
tences to contain more errors absolute, since there aresimopdy more parsing decisions.
Similarly, it is also natural for parsers to perform on ageravorse for longer sentences.

However, the latter is usually for two reasons,

1. Longer sentences are more likely to have conjunctiorepqsitions and multi-verb
constructions, which typically cause most parsing errse the rest of this section

for more detalils).

2. Often, greedy parsing algorithms will make early mistaksausing the propaga-

tion of errors. Similarly, parsers based on a pruned dyngragramming search

84

English
Accuracy Complete Root
0-10 94.3 85.6 96.3
11-20 92.7 54.2 95.8
21-30 91.5 33.7 94.0
31-40 91.1 21.7 93.3
41-50 90.4 8.9 93.3
> 50 88.7 9.4 97.2

Table 6.2: English parsing errors by sentence length.

may prematurely eliminate correct solutions early, agaawling to error propagation.

Longer sentences result in more opportunities to make gadpd search mistakes.

There is no real guard against the former, except creatimgriparsing models. However,
for the latter, we would expect our system to be relativelgnimme since we use exact search
without pruning and without greedy parsing decisions.

Table 6.2 presents parsing accuracy for sentences of galgmgth. In terms of stan-
dard dependency accuracy, we see an expected drop off orpenfice as sentence length
increases. For complete parse accuracy we see a massiveftinwpere the model rarely
gets longer sentences correct and almost always gets iskentiences correct. However,
note that the accuracy for the root dependency (column Rim&3 not drop off as drasti-
cally as complete sentence accuracy for larger sentencdact| root accuracy drops at a
rate very close to overall accuracy. This result suggesis dven though more mistakes
are made for longer sentences, errors are not necessanty®pagated by bad mistakes
made early, since the parsing model still tends to have geddimance on identifying the

root of the tree.

Errors due to Training Sentence Order and Online Learning

One important aspect of our learning algorithm is its efficie This is primarily a result

of its online nature resulting in single instance parameptimization. A natural concern

85

English
Accuracy Complete
Averaging Original 91.5 42.1
Random 1 91.5 41.7
Random 2 91.5 41.9
Random 3 91.5 41.9
Random 4 91.5 41.6
Random 5 91.6 425
No Averaging Original 90.3 37.7
Random 1 89.5 34.9
Random 2 89.9 35.9
Random 3 89.8 35.9
Random 4 90.2 36.2
Random 5 89.8 36.1

Table 6.3: English parsing errors relative to permutatimirsentence order in the training
set.

would be whether or not the order in which instances are seengitraining has an impact
on the final parsing accuracies. In particular, one woulceekfhose sentences seen near
the end of training to contribute more than those seen eadni¢his section we will provide
results alleviating such concerns and argue that parameteaging solves this problem.

To show this we created five new training sets, each a randomypation of the orig-
inal training set. We then trained two models per data setyding the original data set).
The first model is standard MIRA with parameter averagingtaedecond model is MIRA
without parameter averaging. Results are shown in Table 6.3

This table clearly indicates that with parameter averagiegtence order has no effect
on the accuracy of the final model. However, once averagirigrised off, we see that
a disparity between accuracy does occur (nearly 1% ab3olbitete that the best parser
without averaging is the original. We speculate that thisesause the sentences in that
data set are chronological (sections 02-21 of the treebditikjs, the latter sentences (from

section 21) should be closer in distribution to the test ¢sation 23).

86

Errors by Modifier Type

In this section we aim to get a better picture of the kinds gfedelency errors occurring
in the model. In particular, dependency accuracy is defisat@percentage of words that
modify the correct head in the corpus. A natural analysisld/ba to look at these errors by
part-of-speech tag. This analysis is given in Table 6.4¢ctvig sorted by the total number
of incorrect head attachment decisions for each POS taghbr words, tags near the top
of the table account for the largest amount of errors madédparser.

Let’s first look at unlabeled accuracy (column with UA headérhe results here are
not surprising at all. These show, for English, that most ification errors are for prepo-
sitions (IN) and coordinating conjunctions (CC and ,). Tehkave repeatedly been shown
to be the most difficult phenomena to parse in English [25toiErin prepositions are of-
ten caused by inherent ambiguities in attachment decisibliosvever, this is not usually
the case for conjunctions, whose errors are often the regidicality restrictions on the
feature representation. Note that nouns also account &zga humber of absolute parsing
mistakes. However, this is really due to their abundancéeéncorpus. In fact, unlabeled
parsing accuracies for nouns are well above the average.

A common coordinating conjunction error occurs with conedion within a base-NP
as in,That was modestly higher than the 8.8 % and 9.2 % levels in #tumnd September of
1987. Here the conjunction phrage8 % and 9.2 %modifies the noutevels(i.e., (8.8 %9
and 0.2 %) levelg. NP coordinating conjunctions in our English data set riyathe final
element of the conjunction, which in this case is the tdkeas head of the noun-phra8e
%. However, the parser makes a simple mistake and pro@u2és levelss a noun phrase.
As a result it incorrectly makes the conjunction a modifieteviels This situation could
benefit from some regular expression features that notiepeat in pattern, i.efnum] %,

which might help with the recognition of the proper boundarof the conjunction phrase.

1Exemplified by the NX tag in the Penn Treebank.

87

Another common error is sentence initial sentence init@s@ttaching to the wrong
verb in multi-verb sentences. For examBt a strong level of investor withdrawls is
much more unlikely this time around, fund managers .sdiiére, the parser incorrectly
attaches the sentence initial conjunction to its closedi i instead of the main verb of
the sentencsaid This case also is an example of a genuine ambiguity, in wknclwledge
of the discourse is required to parse correctly. Part-eksh errors also cause problems.
For instance, in the sentenbf. Shidler 's company specializes in commercial real-tsta
investment and claims to have ... The wordclaimsis mislabeled a noun due to the
financial nature of the corpus. Here the conjunction shoubdlify the first verb in the
conjunction,specializes but gets confused due to the fact that it is surrounded by two
nouns and thus modifies the second of these nouns. Finalifheminteresting example is
It is now the United Kingdom of Great Britain and Northernl&ed, comprising of Wales,
Northern Ireland, Scotland, and ... oh yes, England, tddere are actually two noun
phrases herdJnited Kingdom of Great Britain and Northern IrelarahdWales, Northern
Ireland, Scotland, and ... oh yes, England,)tdout the parser mistakenly treats it as an
entire phrase (i.ecomprising of Walemistakenly modifies the firdiorthern Ireland

One obvious solution to preposition and conjunction erie® identify specific and
more global features for these cases. For example, if wea@arsidering a dependency
in which a preposition will modify a noun, we can heuristigdind the first verb to the
left of the noun and the first noun phrase to the right of thenntoucreate features over
the tuple (V,N,P,N) to help with attachment ambiguitiesh®zn the verb and the noun. If
the heuristic is reasonable, then we have simulated thsifitagion environment of PP-
attachment [27]. We can do a similar thing for conjunctiopsibing regular expressions to
find all the base-nouns or verbs participating in the corjoncas mentioned earlier. Since
conjunctions typically modify the last or first argumentethsuch features might improve

performance. We tried introducing these features, but didyot improve accuracy. Even

88

breaking results down by part-of-speech tag showed thatracies for prepositions and
conjunctions were not significantly effected. This couldloe to errors in the heuristics to
extract those features.

The final major source of unlabeled accuracy error comes &dwerbials (RB). This
is a result of a number of things, including reduced relatiaeises, inherent ambiguities
in the sentence as well as inconsistencies between the fheafeotive phrases resulting
from the fixed head percolation rules. A frequent source fraalso arose due to ADJPs
in comparative constructions likes high aswhere the first instance afs should modify
the adjectivéhighto create an ADJRs high This was often parsed with either the first or
lastasbeing the head of an adverbial phrase.

In terms of labeling accuracy, which is the percentage ofifresd for which the in-
coming edge in the tree has the correct label (not necegdhélcorrect head), we see
that the largest sources of errors are nouns (NN, NNS), v&fBs VBZ, VBN, VBG,
VBP), adverbials (RB) and adjectives (JJ). This is not saipg for nouns and verbs since
edges involving these words have the most ambiguity (g labels SBJ, OBJ, PRD, NP,
SBAR, S, VP, DEP). On the other hand, part-of-speech types asideterminers, preposi-
tions, conjunctions and punctuation can usually be labei¢da single rule (e.g., DT
DEP), thus have labeling accuracies greater than 95%. Vdijec errors are most com-
mon due to subjects following the verb, suchNast included in the bid are Bonwit Teller
or B. Altman & Co., L.J. Hooker’s department store chaiméere, the conjoined phrase
was parsed correctly, however, it incorrectly modified teeoare as a NP-PRD.

For NP-OBJ a common error seems to be from nouns modifyirfgpvuamnwvhat is defined
in the Penn Treebank as the “Closely Related” relationgbiggxamplehe has had trouble
finding the stocks he like$lere the nourroubleis considered closely related to the verb
had and is annotated essentially as the fixed phresktrouble The parser mistakes this

for a direct object. The opposite also happens, where tteepaeats the noun as a closely

89

related modifier, when it really should be the object. Sonrersrare also due to the
heuristic nature of the inclusion of the NP-OBJ label in thizaction script, since OBJ is
not a function tag originally annotated in the Penn Treebdile OBJ label was included
for any NP under a VP that lacks an adverbial function [106)r &le, inrRevenue
gained 6 % ta$ 2.55 billion from$ 2.4 billion, the extraction script labeled the dependency
from 6 % to gainedas an NP-OBJ since it is an NP within a VP. Howev&fo is not

a direct object, but simply a result of the gaining event arlg Vabeled as an NP by the
dependency parser.

For the label ADVP a large number of errors result from ineotipart-of-speech tag-
ging. For instance, in.. having much of an effect .the adjectivemuchis mislabeled
as an adverb. It is correctly parsed as the head of the phmask of an effectaccord-
ing to the head rules), but that phrase is incorrectly labale ADVP and not a NP-OBJ
Other common errors are due to adverbs heading adjectiesgdyrsuch asho are [ADJP
[ADVP only casually] related [PP to the magazinefiereonly heads the adjective phrase
(according to the Yamada and Matsumoto head rules), bus gitecan adverb, the edge is
labeled an ADVP. This error causes many of the ADJP phrasditejopproblems as well.

The final column in Table 6.4 is labeled accuracy (LA), whiombines both unlabeled
accuracy and labeling accuracy. The primary property @rast in this column is to note
that the differences in unlabeled and labeling accuragnaftultiply. For instance, nouns
and verbs have high unlabeled accuracy but low labelingracguresulting in average
labeled accuracy, and vice-versa for conjunctions andgsigpns. The worst is adverbs,
whose low unlabeled accuracy and low labeling accuracyiptyltogether to result in a

labeled accuracy of 76%, well below the average.

2This seems like another case of an error in assigning noer®&d label.

90

Part-of-speech correct | incorrect correct | labeling | correct head

Tag words head head UA label accuracy and label LA
IN 5934 5039 895 85% | 5549 94% 4814 81%
, 3064 2431 633 79% 3062 100% 2431 79%
NN 7841 7246 595 92% | 7227 92% 7012 89%
RB 1991 1661 330 83% 1673 84% 1517 76%
NNS 3561 3264 297 92% | 3265 92% 3164 89%
NNP 5500 5215 285 95% 5206 95% 5070 92%
JJ 3663 3439 224 94% 3374 92% 3272 89%
CcC 1369 1168 201 85% | 1358 99% 1164 85%
CD 1943 1792 151 92% 1855 95% 1767 91%
DT 4834 4692 142 97% | 4784 99% 4667 97%
VBG 856 722 134 84% 735 86% 680 79%
. 2363 2231 132 94% | 2363 100% 2231 94%
VBD 1814 1695 119 93% 1717 95% 1685 93%
VBZ 1239 1126 113 91% | 1139 92% 1110 90%
“ 531 426 105 80% 531 100% 426 80%
VB 1549 1446 103 93% 1445 93% 1404 91%
VBN 1190 1092 98 92% | 1074 90% 1036 87%
: 324 235 89 73% 324 100% 235 73%
TO 1240 1151 89 93% | 1206 97% 1144 92%
VBP 811 727 84 90% 731 90% 710 88%
' 512 436 76 85% 511 100% 435 85%
MD 583 530 53 91% 546 94% 525 90%
WDT 276 234 42 85% 266 96% 231 84%
JIR 190 151 39 79% 150 79% 133 70%
WRB 132 96 36 73% 123 93% 93 70%
$ 376 342 34 91% 342 91% 334 89%
POS 548 524 24 96% 538 98% 522 95%
RBR 107 85 22 79% 88 82% 78 73%
-RRB- 72 53 19 74% 72 100% 53 74%
PRP 1050 1032 18 98% | 1033 98% 1025 98%
WP 112 95 17 85% 104 93% 92 82%
PRP$ 511 494 17 97% 511 100% 494 97%
-LRB- 72 61 11 85% 72 100% 61 85%
JJS 128 118 10 92% 116 91% 112 88%
NNPS 118 112 6 95% 109 92% 108 92%
UH 10 5 5 50% 8 80% 4 40%
WP$ 21 17 4 81% 21 100% 17 81%
PDT 21 17 4 81% 21 100% 17 81%
RBS 27 24 3 89% 26 96% 24 89%

LS 4 2 2 50% 2 50% 0 0%
FW 4 2 2 50% 1 25% 1 25%
EX 58 56 2 97% 58 100% 56 97%
RP 130 129 1 99% 105 81% 105 81%
5 4 1 80% 5 100% 4 80%

Table 6.4: Head modification accuracy by modifier part-afesgh tag. UA is unlabeled
accuracy, labeling accuracy is the percentage of modifiGieses incoming edge has the
correct label (though not necessarily the correct headl)L#nis labeled accuracy.

91

Dependency Label gold correct | incorrect | system | recall(%) | precision(%)
DEP 25522 | 23278 2244 25767 91.21 90.34
NP 7449 6586 863 7434 88.41 88.59
PP 5429 4574 855 5582 84.25 81.94

SBAR 1757 1275 482 1638 72.57 77.84
S 2774 2375 399 2800 85.62 84.82
ADJP 769 456 313 592 59.3 77.03
NP-SBJ 4111 3809 302 4039 92.65 94.31
ADVP 1166 908 258 1199 77.87 75.73
NP-OBJ 2011 1775 236 2075 88.26 85.54
VP 2232 2057 175 2264 92.16 90.86
ROOT 2416 2288 128 2416 94.7 94.70
PRN 141 77 64 116 54.61 66.38
NP-PRD 346 284 62 351 82.08 80.91
PRT 159 106 53 130 66.67 81.54
NX 44 3 41 6 6.82 50.00
QP 187 154 33 190 82.35 81.05
UCP 30 3 27 7 10 42.86
FRAG 19 1 18 3 5.26 33.33
CONJP 21 4 17 14 19.05 28.57
NAC 30 16 14 17 53.33 94.12
SINV 11 2 9 3 18.18 66.67
WHNP 30 22 8 24 73.33 91.67
INTJ 10 4 6 8 40 50.00
X 5 1 4 2 20 50.00
LST 4 0 4 2 0 0.00
WHADVP 8 5 3 5 62.5 100.00
SBARQ 2 0 2 0 0 NaN
SQ 1 0 1 0 0 NaN

Table 6.5: Labeled precision/recall of dependency edgexigg label.
Dependency Errors by Label Type

Another method of analyzing dependency parsing perform@&to measure labeled pre-
cision and recall, which is similar, but not analogous, tdgenance metrics for phrase-
based parsing [25]. Labeled precision for an edge labeldaspgrcentage of edges we
predicted with that label that were valid, and recall is teecpntage of valid edges with
that label that were predicted. For English, results arevehn Table 6.5.

Here the errors are also not surprising. For instance, tied BBAR has both a poor
precision and recall due to its confusion versus both theléa® and VP, which occur more
frequently. Similarly, the modifiers of verbs typically lea& low precision and recall. In
particular, the labels NP-OBJ, NP-PRD, NP and DEP are ofterfiused since they are
typically to the right of the verb, whereas NP-SBJ is almastgsively to its left (i.e., the

direction of attachment feature plus modifier POS tag woydcally be enough to get

92

NP-SBJ edges correct).

Again we note that both adverbial and adjective phrasallsabh&ve particularly bad
precision and recall. Finally, we note that the label ROO&gloot have a precision/recall
of 1.0 due to unlabeled parsing errors (i.e., the wrong wveebmulti-clause sentence being

attached to the root) and not because of labeling errors.

6.1.2 Feature Space Analysis

One powerful aspect of discriminative models is their &pito incorporate rich sets of

highly dependent features. In previous sections the madelsave described have clearly
taken advantage of this property by incorporating millieigeatures over parsing deci-
sions and the input in order to produce dependency scores.vény natural question to

ask is,how does each feature affect performance?

For generative parsing models, Bikel [6] provided a detialralysis of the contribution
of each class of distribution to the generative power of tloel@eh One conclusion drawn
from Bikel's experiments was that bilexical distributios® very similar to back-off dis-
tributions that do not use bilexical information, which &dped the long-known property
that generative parsers have little performance deg@adaince bilexical information is
removed. Ideally we would like to do a similar analysis of dapendency parsing models.
However, the non-probabilistic nature of our models présvémat kind of comparison.

A simple method might be to look at the weight of each indialdieature to deter-
mine its importance to parsing. But again there is a probl&usitive feature weights
typically indicate good dependency decisions and negatéights bad decisions. Beyond
that though, there is very little one can infer from the weiggelf. This is due to the dis-
criminative way in which the weights are learned. Considatdresf; through f,, that
occur frequently, always occur together and only occur tiges that represent valid de-

pendencies. Since we train our models to set weights so thedat decisions are made

93

with the smallest weights possible, it should be the casketieaweight for each of these
features is low, since all we require is the sum of their wiggh be high. On the other
hand consider featurg that occurs once for a correct dependency. Furthermorenessil
the other features that are on for this correct dependenggilysoccur only for incorrect
dependencies. The model will naturally set the weight ofuiessf/’ high since it needs to
overcome the negative influence of all those other featuresvever, a high weight for
featuref’ does not necessarily mean it is an important feature, itgilyljust means that
that particular edge is an outlier in the training set. Cos®ly, the low weights of features
fi... fm does not indicate they are less important. In fact, for perémce on the test set,
it is almost certain that featurgs. . . f,,, will be of more use.

In this section we describe two experiments. The first is émidy classes of features,
such as word or part-of-speech features, and evaluateitgact on overall accuracy by
retraining the model without them and measuring the sules@gdrop in performance.
In the second experiment we compare two feature selectaimigues, count cut-off and

information gain, and evaluate the performance of each ogningsizes of feature sets.

Leave Out Feature Tests

The most common technique for determining the impact of éasature in a discriminative
learning setting is the so calléelave out feature test3 his method simply identifies com-
mon classes of features, retrains the models without tlezgares and measures the drop
in subsequent performance. The intuition is simple - théufea that are most important
to parsing will result in the largest drop in accuracy wheeythre left out. This analysis
is imperfect. Often two feature classes will overlap sigaifitly, thus leaving one class out
may not have a huge impact on performance since anotheradassncode much of the
information. We will try to identify such classes when theisa.

For these experiments, we broke our feature set Sectiomt® 2he following classes:

94

English English
First-Order Second-Order
Unlabeled Accuracy Unlabeled Accuracy
Full 90.7 Full 91.5
NoPrefix 90.7 NoPrefix 91.4
NoPOSContext 89.4 NoPOSContext 91.0
NoPOSBetween 90.2 NoPOSBetween 91.3
NoPOSContextBetweer] 86.0 NoPOSContextBetweer 90.0
NoEdge 87.3 NoEdge 89.5
NoBiLex 90.6 NoBiLex 91.5
NoAttachmentOrDistance 88.1 NoAttachmentOrDistance 91.3

Table 6.6: English parsing accuracy results using variabsets of features.

Full: The full set of features.

e NoPrefix: The full set, but without prefix features.

e NoPOSContext: The full set, but without POS context features, i.e., theuess
describing the POS tags of the words surrounding the headhaddier word of the
dependency.

o NoPOSBetween:The full set, but without POS features for the words in-betwve
the head and modifier.

¢ NoPOSContextBetweenThe intersection of NoPOSContext and NoPOSBetween.
POS context and in-between features overlap significantlis set is meant to show
the performance without either of them.

e NoEdge: The full set, but without any features over the head or madifie

e NoBiLex: Identical to NoEdge, however we only omit those features ¢batain
the word identities oboththe head and modifier. This also includes bilexical prefix
features.

¢ NoAttachmentOrDistance: The full set, but we never include any information
about dependency attachment direction or the distancesketithe head and modi-
fier.
Table 6.6 shows the results for each subset of features. pdetnesults for both the
first-order model and the second-order model for English.
For both systems the prefix features had very little effectatt, the reason the system

even includes prefix features is to improve performance @tlavhich had a much larger

vocabulary and rich morphology. The prefix feature was dijgatly designed as an ad-hoc

95

method for extracting the lemma from the inflected form in @zeThe prefix feature for

Czech resulted in around a half percent increase in perfazenabsolute. Similarly, the
bilexical features had virtually no effect on parsing periance. This is not surprising and
confirms previously reported results from the lexicalizadgse-structure community [55].

For the first-order model, knowing the direction of attachires well as the distance
from the head to the modifier is crucial to performance. Withhis knowledge perfor-
mance drops from 90.7 to 88.1. This of course makes sensgcuParword classes (e.g.
noun and prepositional modifiers) typically will only havédead that is nearby, whereas
others (e.g., main verbs) can have heads at a much largandistDirection is important
since some modifiers exist almost exclusively to the leftgitrof the head (e.g., modifiers
of nouns are usually to the left, with the exceptions usuatly for prepositions or relative
clauses). Direction and distance become less importahttirgt second-order model. This
is not too surprising. Consider a preposition attachingnowan that is far away on its left.
Without distance we cannot rule out such a case because wetdaarn the regularity that
prepositions typically only attach to nouns if they are diketo the right of them. How-
ever, if the noun and the preposition are far away, the nolikely to have taken modifiers
between them, which is encoded in the second-order modaihwbkrves as a proxy in this
case.

The most interesting case is what happens when part-ot:smestext and in-between
features are removed. For the first order model, removirgeedoes not ruin the perfor-
mance of the parser (90.7 to 89.4 and 90.2). However, ondeduaritext and in-between
features are removed, parsing accuracy drops significemiB6.0%. Note that even re-
moving all the features of the head and modifier in the depsryddoes not even hurt
performance as much (87.3%). This result is one of the maggobitant in this work, so

important that we emphasize it here:

Maximum spanning tree parsing provides efficient inferealgerithms for

96

both the projective and non-projective case. Furthermtre,weaknesses
of edge-based factorization can be overcome with discativa learning
that exploits rich feature sets describing properties aftedependency as

well as their local context.

The edge features and part-of-speech context/in-betwesdnres are all statistically
dependent, but with our discriminative learning framewakkcan learn weights for each
of these features in order to achieve state-of-the-artrac@s. Thus, an aggressive edge
based factorization can be overcome with a rich featureesgmtation of the input. As a
result we achieve efficient non-projective parsing withhhegnpirical accuracy by using
discriminative learning with spanning tree inference algms.

The part-of-speech context and in-between features careted as simulating higher
order feature representations. First, we note the dropriofmeance of the second-order
model when these features are removed (Figure 6.6). Thgsidnoot nearly as significant
as the drop in performance of the first-order model, i.ergtieeonly a 15% relative change
in the second-order model versus a 34% change in the first-onddel. The relative
unimportance of these features for the second-order mdasVssthat their information

overlaps significantly with the second-order features.

Feature Selection

The number of features for the various models we have destribtypically between five
and fifteen million. Of these millions of features it seenkely that many are unimportant
and that even some are misleading (e.g., infrequent fegtufeor feature spaces of this
size, people often employ some form of feature selectioh #0neans to reduce model
size or improve generalization performance.

In this section we consider two simple feature selectioregs for our first-order pars-

ing models. The first is feature count cut-off. Here we sinjpst take those features that

97

occur in the training set more than a predefined threshold.sEleond criteria is informa-
tion gain. Consider a random variabfec {—1, 1} thatis 1 if a proposed dependency edge
(1,7) is valid and—1 if it is not. Let H(Y) represent the entropy @f(Y"). Now consider

a particular featurg and the distributiorP(Y'|) with entropy H (Y| f). The information

gain of featuref is defined as,

1G(f) = H(Y) = H(Y[f)

This difference in entropy measures how much informaticoudlbandom variablé’,
the featuref encodes. We would expect features with high information g@encode a lot
of information about which dependency edges are valid aridhwdre not. Thus, it seems
reasonable that these features should help in parsing depeies.

Figure 6.1 shows dependency accuracy results for both methsing cut-off or in-
formation gain thresholds that result in feature set siZeswghly 10,000, 100,000 and
500,000 features. This figure shows that with many featureetis little difference be-
tween the two methods. However, when we look at smaller featet sizes feature count
cut-off seems to outperform information gain. At first glartbis seems like a surprising
result since count cut-off is one of the crudest methodsdature selection.

A closer look at the actual features returned by each methedsssome light on why
count cut-off performs so well. Most of the features thatrdocut-off returns are based
on part-of-speech information and not lexical informatiés we showed in the previous
section, these features tend to generalize best. Furtihersioce we are using frequency as
a means for selection, these features are also more likelgcuar in the test set as well. On
the other hand, information gain in many cases returnedifeathat are highly indicative
when present, but occur less frequently. It appears thah@avlot features on per edge is

more important than having few informative features thauoinfrequently in the test set.

98

Feature Selection: Count Cut-Off vs. Info-Gain
T T T

©
s

Accuracy
@ =) ® ® ©
(= ~ @ © o
T T T T

)
a
T

3
R
T

@
@
B

Number of Features X 10°

Figure 6.1: Feature selection tests comparing featuretoottoff to information gain. The
top dashed line represents the parser when all of the rodgdd@,000 English features are
included.

We should note that other feature selection metrics wemmgitited including Chi-
squared and Bi-normal separation [50]. However, none Ieletter results than count
cut-off or information gain.

In terms of model selection, we can determine from Figurat@atwith less thai /10"
of the feature set (from 7 million features to 550,000) perfance is nearly as good as the

full model (90.7% versus 90.2%) using feature count cut-off

6.2 All Languages

In this section we will present a brief quantitative studytioé errors produced by the
parsers for languages other than English. The error asatyshis section is much more
coarse grained than that for English. It is meant to providatuition for what aspects of
parsing systems improve performance across language|lleaswvhat are the properties

of a language that make it either difficult or easy to parse.

99

Projective
No-Morph
Normal Projective No-Morph Features Atomic Labeling Atomic

Arabic | 79.6/66.9 79.3/66.9 78.0/65.1 79.3/66.8 78.0/65.0
Bulgarian| 92.0/87.6 92.0/87.6 91.9/87.2 92.0/87.3 91.9/86.5
Danish| 90.6/84.8 89.8/84.1 90.1/84.0 90.6/84.3 89.0/82.6
Dutch | 83.6/79.2 78.8/74.7 82.2/77.8 83.6/79.2 78.3/73.8
Japanese 92.8/90.7 92.9/90.7 92.7/90.6 92.8/90.4 92.6/90.3
Portuguesg 91.4/86.8 91.7/87.0 90.5/85.7 91.4/86.5 90.0/84.7
Slovene| 83.2/73.4 82.5/72.6 82.2/71.5 83.2/73.3 81.7/70.8
Spanish| 86.1/82.3 86.1/82.3 85.1/80.9 86.1/82.0 85.1/80.7
Swedish| 88.9/82.6 88.9/82.6 89.2/82.6 88.9/81.7 89.2/82.0
Turkish | 74.7/63.2 74.7/63.2 72.8/60.6 74.7/63.4 72.8/60.6
Average| 86.3/79.7 85.7/79.2 85.5/78.6 86.3/79.4 84.9/77.7

Table 6.7: Error analysis of parser components averagedAredic, Bulgarian, Danish,
Dutch, Japanese, Portuguese, Slovene, Spanish, Swedigudash. Normal: Reported
result, Projective: Only allow projective edges, No-Motfpdatures: Only features over
words and POS tags, Atomic Labeling: Do not use sequencérigbé&ach cell contains
the unlabeled and labeled accuracy values (UA/LA).

6.2.1 Quantitative Error Analysis

The models described in this work have several componerdisiding the ability to pro-
duce non-projective edges, sequential assignment of ethgdslinstead of individual as-
signment, and a rich feature set that incorporates derivagmological properties when
available. The benefit of each of these is shown in Table 6hés& results report the la-
beled and unlabeled precision for the 10 languages withalast training sets. This
allowed us to train new models quickly.

Table 6.7 shows that each component of our system does nugelperformance sig-
nificantly (row labeledAveragd. However, if we only allow projective parses, do not
use morphological features and label edges with a simpimiatolassifier, the overall
drop in performance becomes significant (first column vetass column). Allowing
non-projective parses helped with freer word order langadifie Dutch {8.8%/74.7% to
83.6%/79.2%, unlabeled/labeled accuracy). Including rich morpholégtures naturally

helped with highly inflected languages, in particular SpaniArabic, Turkish, Slovene,

100

Dutch and Portuguese. Derived morphological features orgat accuracy in all these
languages by 1-3% absolute. See Section 6.2.2 for mordsletai

Sequential classification of labels had very little effeat @verall labeled accuracy
(79.4% to 79.7%)3. The major contribution was in helping to distinguish sabgeobjects
and other dependents of main verbs, which is the most comatahithg error. This is not
surprising since these edge labels typically are the mostleded (i.e., if you already know
which noun dependent is the subject, then it should be edsydtthe object). For instance,
sequential labeling improves the labeling of objects froinv%/75.6% to 84.2%/81.3%
(labeled precision/recall) and the labeling of subjeasfg6.8% /88.2% t0 90.5%/90.4%
for Swedish. Similar improvements are common across afjuages, though not as dra-
matic. Even with this improvement, the labeling of verb degents remains the highest

source of error.

6.2.2 The Benefit of Morphological Features

The integration of morphology into statistical parsers@sn an open issue in the parsing
community. In particular, interest in parsing Semitic laages and other highly inflected
languages has given rise to the question of what role moogiaa! information will play
in parsing. One key aspect of the discriminative parsinget®described in this work is
that they have a natural mechanism for incorporating suichrmation — the feature set.
Our parsing models simply incorporated the cross-produntarphological informa-
tion between a head and a modifier as features. This simpls@ndwhat naive method
resulted in an overall improvement in labeled accuracy ol®bto 66.9% for Arabic,
77.8% to 79.2% for Dutch, 85.7% to 86.8% for Portuguese,®a®82.3% for Spanish,
71.5% to 73.4% for Slovene, and 60.6% to 63.2% for Turkish.

3This difference was much larger for experiments in whichdgstandard unlabeled dependencies are
used.

101

Extending the feature set to improve parsing of highly inddanguages is clearly
one of the most important areas of future research for disoative parsing models such

as those presented here.

6.2.3 Correlating Language and Data Properties with Accuray

By building a single system to parse multiple languages, meepéaced in a situation to
gain insight into the underlying properties of a language thake it either difficult or easy
to parse. This is because we can eliminate any variationsriioqmance due to language
specific parser optimizations. In this section we compatlahated parsing accuracies

(including punctuation) relative to four properties,

1. Average conditional entropyf the head offset distribution. Consider the distribution
P(Olt,p), which is the probability that the head of a token is at soniqudar
offsetO € Z, for the given token and part-of-speech tagdp). For instance,
P(—2|Inc.,N) is the probability that the head of the wolmk. is two words to its
left. One would expect that languages with a non-uniforndheféset distribution

(e.g., always modify the word to the right) will be easier toge.

2. Average sentence lengthhis simply measures throughout both the full training and
testing sets what the average sentence length is for eaghdga. As mentioned
earlier, longer sentences typically cause more errors aluleet higher presence of

prepositions, conjunctions and multi-clause construstio

3. Percentage of unique tokens in training.98h a normalized training set (i.e., identi-
cal length for each language), this measures the numbeigui@tokens in the data.
Data sets with more unique tokens are typically drawn frommardiverse sources

and can lead to sparse parameter estimations. This alsauresdsxical sparsity.

102

4. Percentage of new tokens in test.sktthe i.i.d. assumption is broken between the
training and test set, then we would expect to see a high pex@e of unseen tokens

in the test set relative to the training set. This also messlaxical sparsity.

Figure 6.2 plots unlabeled dependency accuracy versustineffiteria outlined above.
We normalized the training sets for each language so thatrthghly contained the same
number of tokens. This was done by randomly picking sentefroen the data (without
replacement) until the desired number of tokens was exceede

Figure 6.2a, Figure 6.2b, Figure 6.2c and Figure 6.2d shatthiere is little correlation
between parsing accuracy any of the properties we haveibledciThis is not too surpris-
ing, since one would expect multiple properties of a languaag/or data set to contribute
to parsing difficulty. For example, Arabic has a low averageditional entropy (1.1), but
has on average the longest sentences (37). Turkish hashatysentences (8), but a high
percentage of unique tokens due to the fact that it is higiflgcted. Of all the properties,
unique tokens in the training set has the highest correlatith parsing accuracy (around
0.56 statistical correlation).

The final plot, Figure 6.2e, is a linear combination of Figét2a, b, c and d. This
plot was generated by first normalizing all values using tgedf each value relative to
the average, i.elpg(value/average valug. Then, the coefficients for each property in the
linear combination were chosen using least-squares lieggession. Figure 6.2e clearly
shows that a correlation with parsing accuracy is begintongppear. This suggests that
all of the properties together have a high impact on parsicgracy, even though no one
property is directly correlated. The statistical cornelatof this linear combination and

parsing accuracy is 0.85.

4For average conditional entropy we did not take the log sinisealready on the log scale. Instead we
just subtracted the average conditional entropy of all éimlgliages together.

103

What conclusions can be drawn? The fact that the we can aterphrsing accuracy
with properties of the data suggests that the parser is thideguage independent. How-
ever, some of these properties reflect aspects of the largisadf, and not just one partic-
ular data set. The percentage of unique or unseen tokenbenldirge for highly inflected
languages, which tend to be lexically sparse. We would éxped in fact it is the case,
that performance for these languages is lower than averBgse.suggests that the parser
still needs to be improved to attain total language gertgrali

Of course, this analysis is simplistic and there are manyenfactors that can con-
tribute. These include annotation design decisions, stersty of annotations, head ex-
traction rules for converted treebanks, and the qualithefautomatic part-of-speech and

morphology tagger.

104

2 T
o
18 o o o 35
o)
16 30
a2
g 5
2 2 o
a 3
T 14 o oo 3 25}
g °
2 o 2 °
5 &
S 12 o o g 201
<3 & o
g o 8 o o
H 2 ° °
1 o 15 o
o
o
08 10 g
o
o
o
. 5
72 74 76 78 80 82 84 86 88 % 92 72 74 76 78 80 82 84 86 88 % 92
() Dependency Parsing Accuracy (b) Dependency Parsing Accuracy y
04 05
o
045
035
o
3 L 04r
4 3 °
£ os3f o g ©
g o 8 o35 o
£ = ° ©
£)
r o o o 00 $ 03
5025 <
£ 2
S
e o c
§ 025
E 2 o o ,0
g o <
£ o2 S
2 5 02
5 o 2 o
° g o
g ° £ o
2015 g 015
8 5
5 -4
& 01l
01
0051 o
005 Lo
72 74 76 78 80 82 84 86 88 % 92 72 74 76 78 80 82 84 86 88 % 92

() Dependency Parsing Accuracy (d) Dependency Parsing Accuracy y

94

92t o

88 N

86 N

84 o N

82 o 4

COMBINED: LINEAR REGRESSION

78 o le) B

76 I I I I I I I I I
72 74 76 78 80 82 84 86 88 90 92

Dependency Parsing Accuracy

(e)

Figure 6.2: Plots of unlabeled dependency parsing accuwaisus properties of the data
for each language. (a) Average conditional entropy of héseidistribution. (b) Average
sentence length. (c) Percentage of unique tokens in naredktiiaining set. (d) Percentage
of unseen tokens in the test set relative to normalizedibgiset. (e) Normalized least-
squares linear regression of a, b, ¢, and d.

105

Chapter 7

Improved Parsing with Auxiliary

Classifiers

In this chapter we demonstrate how it is possible to define features indicating the

output of auxiliary parsers trained on in and out of domaitadats. The first section deals
with improving a WSJ parser by adding features on the outpditverse parsers trained on
the same data. The second section shows how it is possibdapt a WSJ parser to a new

domain in which little training data is available.

7.1 Improving a WSJ Parser by Combining Parsers

Combining the outputs of several classifiers has been showimei past to improve per-
formance significantly for many tasks. One common method Isearly interpolate the
probability distributions of all the classifiers by eithdéroosing or learning the weights on
some held-out data set [69]. However, this approach regjtiag all models return a valid
probability distribution and that the best parse can beiefftty found in the interpolated

model, both of which are unlikely.

106

For parsing, a more common approach to combining the outpusir@us parsers is
to use voting. Henderson and Brill [64] described a constitwvoting scheme for phrase-
structure and Zeman [154] describes an edge voting scherdegendency structures, both
of which provide state-of-the-art results. However, vgtiaquires at least three parsers and
can involve complicated tie-breaking schemes when padgogsions differ. Another prob-
lem of voting for parsing is that votes are typically accuated over constituents/edges and
often the winning constituents/edges do not constitutdid tree. In fact, for dependency
trees, the approach of Zeman is not guaranteed to obey thedrestraint, a property we
wish to maintain. In both cases, heuristics are requiredtiorm a consistent parse.

\oting is also deficient since it assumes that we trust eatcheoparsers equally since
each gets an equal vote. However, in practice, we typicakyep the output of some
parsers over others. To address this problem Hendersonrdhal® present a model that
learns voting weights for each parser by using a naive Bawssitier on a held-out set of
data. This way we can add weight to the votes of parsers thahast trustworthy on this
new data set. But again, the same problems with consistestitieents will arise.

Fortunately there is a simple mechanism for solving all ¢h@®blems in the discrim-
inative parsing framework. All one needs to do is define asctdfeatures that indicates
parsing decisions for each auxiliary parser and includeelieatures into the discrimina-
tive model. For dependency parsing, this amounts to inoptBatures indicating whether
an auxiliary parser believed a certain dependency or palepéndencies actually exist in
the tree. Once these features are added, we simply needntohigamodel on the new set
of data. Specifically, we add two features. The first is a sényphary feature indicating for
each edge (or pair of edges in the second-order case), whmthet the auxiliary parser
believes this edge to be part of the correct tree. The se@atdrk is identical to the first,
except that we conjoin it with the part-of-speech of the haad modifier in the edge (or

the head-sibling-modifier for the second-order case). We akgate these features and

107

English
Accuracy Complete

Collins 91.5 42.6
Charniak-proj 92.1 45.3
2nd_order-proj 93.2 47.1

Table 7.1: Improved WSJ parsing performance using auyiparsing features.

include features indicating whether an auxiliary padidmotbelieve an edge to be part of
the correct tree.

To train the new parser, we need the parsing decisions ofukidiaay classifiers on
the training data. The problem with this is that these cl@gsiare also trained on exactly
this data, which means they will be uncharacteristicallguaate on this data set and will
not represent the kinds of errors these parsers will makensean data. To alleviate this
problem we divide the training in two and train two separatedais for each auxiliary
classifier. We then run each model on the half of the data itivegrained on to extract
parsing decision features for the training set. This praceds very similar to collecting
training data for parse re-ranking.

Table 7.1 presents results for our second-order projeativdel on English that has
been modified to include new features that incorporate pdgsesions of the Collins and
Charniak parser. We call the systefif-order-proj-. This system can then balance these
features with its original feature set to produce an optipsabking model. The resulting
parser is far more accurate then the original second-orddehas well as both the Collins
and Charniak models. Thus, the core feature representafiandiscriminative model
allows us to naturally define new features on the output afrgplarsers to achieve the best

reported parsing accuracies without resorting to compdgixg schemes.

108

7.2 Adapting a WSJ Parser to New Domains

In general, large annotated data sets typically are nokadolaito train state-of-the-art pars-
ing models. One interesting problem is how to adapt ressudomains for which there
is little to no training data available. In this section weastigate how to adapt a WSJ
parser to parse biomedical research literature. Recémge and Charniak [81] provided
a set of techniques for modifying a trained WSJ phrase-streparser when no biomedical
training data is available. These techniques are easilpplkea to the case of dependency
parsing. In general, adapting out of domain or out of taslotated data to new problems
is known adransfer learning

In this section we focus on the different problem of parsimgpiedical text when there
is a small amount of training available. For these experisiare took 2,600 parsed sen-
tences from the biomedical domain related to cancer [109.dWided the data into 500
training, 100 development and 2000 testing sentences. Vet five sets of training
data with 100, 200, 300, 400, and 500 sentences respectiVély first experiment we
ran was to simply see how well our trained WSJ parser perfamthe biomedical text
using our second-order projective model. It turns out thaeirforms reasonably well at
80.6% accuracy. The primary reason for this is that the numerous feé@tures from the
WSJ parser are still beneficial for domains in which the lerics significantly different.
The next experiments we ran were to train five parsers on teeséts of training data to
measure parsing performance on small sets of data. Figlpdats accuracy as a function
of training instancesWSJis the performance of the basic WSJ parser Biainedis the
performance of the parsers trained on only the biomedidal dadom the plot we can see
that a parser trained on even a very small set of biomedidal @ound 280 sentences)
already outperforms a parser trained on 40,000 WSJ serstence

We again take advantage of the fact that our discriminat@geddency parser can de-

109

o | === wsJ

78

BioMed

mr ——6&—— BioMed+WSJ

76 I I I I I I I
100 150 200 250 300 350 400 450 500

Figure 7.1: Adapting a WSJ parser to biomedical teXi/SJ: performance of parser
trained only on WSJBiomed: performance of parser trained on only biomedical data.
Biomed+WSJparser trained on biomedical data with auxiliary WSJ payéeatures. Fig-
ure plots dependency accuracy vs. number of biomedicaltiginstances.

fine rich sets of features by creating a feature for the biocaég@arser that indicate pars-
ing decisions of the WSJ parser. This is completely analsgothe last section when we
added decision features for auxiliary parsers. This tinue,parser will be trained on the
biomedical text and the auxiliary parser is the trained W&34r. The performance of this
new model is plotted in Figure 7.1 &omed+WSJThis simple trick leads to an absolute
improvement of at leagt 2% in accuracy which represents greater thaifa reduction in
error.

The method of creating features over out of domain predistie similar to the work
of Florian et al. [49] for named-entity extraction. In thabrk, an extractor trained on
one newswire corpus was adapted to another newswire cdrpusgh features defined in
a discriminative model. We have shown two things here. Fihstt this method can be
applied to parsing and second, that this method still wortkemthe two domains are very

different in both content and writing style.

110

Another option would have been to combine the biomedicalthadVSJ training sen-
tences and train a model over this new set of data. Howevepdnformed only marginally
better than the WSJ parser since the number of WSJ trainimgrsees overwhelmed the
training procedure. We could run weighted training, in whitomedical training instances
are weighted higher than WSJ instances. However, this weqgldire the tuning of a weight
parameter, which is unnecessary in the approach we havestegly The power of using
the feature space to incorporate out of domain parsing idesiss that it allows us to focus
trainingin domainwhile incorporating information that can be obtained froramge out
of domain annotated corpus.

We also looked at feature bagging [12, 132] approaches g&epadaptation. By train-
ing many WSJ parsers on various subsets of the feature sgacanoften create a diverse,
but powerful, set of parsers, each providing a differentwad the feature space. We
then can add features over the outputs of all these parstgrshei hopes that the biomed-
ical parser will learn weights accordingly. Unfortunatetyis technique did not lead to
improved parser performance. This is not surprising, eappgdue to the nature of our
parsing models. It has been shown that linear classifiers loswvariance when trained on
different subsets of data or features. When this is couplédtive fact that bagging tends
to only work when the different classifiers have high vargnee should not expect these
techniques to improve performance.

One new approach to adapting parsers across domains id thabosky et al. [89].
That work uses an out of domain parser to annotate a largef $etdomain sentences.
Using the noisy annotations for the in domain data a new passeained. If a lot of
partially noisy data is equivalent to a modest amount ofrcldata, then an in domain
parser trained this way could provide good performance. iiéhods of McClosky et al.
are orthogonal to those presented here. We could easitydrparser in the same manner

and then define features on the output of that parser whemrtgaa new parser on a small

111

amount of annotated in domain data.

112

Chapter 8

Approximate Dependency Parsing

Algorithms

Parsing dependencies has a relatively low parsing contplekiO(n?) with little to no
grammar constant, which allows for searching the entiresp&dependency trees during
inference and learning. However, for other structuresh sisdexicalized phrase-structure,
non-projective second-order dependencies and dependencyures with multiple heads,
the computational cost can become exponential or just gelés permit an exhaustive
search.

Recently there has been much research on learning appriboimaavith discriminative
online learning algorithms. Collins and Roark [30] showkdttan incremental parsing
algorithm with an aggressive pruning criteria can stil\pde state-of-the-art performance
for phrase-structure parsing when combined with percadgarning. Daumé and Marcu
[39] formalized online learning for approximate infererme defining a learning step in
which updates are made based on errors in the approximatimegure. The primary
reason that these methods work is that discriminative eréarning allows the model to

set its parameters relative to the inference algorithm. sTHuthe inference algorithm is

113

Czech-A

Accuracy Complete
Learning w/ Approximation 85.2 35.9

Learning w/o Approximation 69.3 10.7

Table 8.1: Approximate second-order non-projective parsesults for Czech displaying
the importance of learning relative to the approximateipgralgorithm.

an approximation, then the model will set its parameteratired to the mistakes such an
approximation might make. As Daumé and Marcu noted, thevaidn and methods of

this learning framework are highly related those proposethk reinforcement learning

community [133].

8.1 Second-order Non-projective Parsing

We have already shown that our approximate second-ordepraective parsing algo-
rithm yields state-of-the-art results. However, we wislakso display the importance of
learning relative to the approximation. Table 8.1 shows systems. The first,.earning
w/ Approximations the original results for the second-order non-projecgarsing model
on Czech, in which the approximate post-process stage ddltfeeithm is incorporated
directly into inference during learning. The secohéarning w/o Approximatioms the
results for a system in which the approximation is only ugdést time. During learning,
this system simply learn the projective model. What we caniséhat it is crucial for ap-
proximations at test time to be incorporated during tragninis precisely learning relative
to a specific inference algorithm that allows the onlinenearto adapt to pitfalls in the

approximation procedure.

114

T

. Y
root Han spejder efter og ser elefanterne

He looks for and sees elephants

Figure 8.1: An example dependency tree from the Danish Dgpeay Treebank (from
Kromann [79]).

8.2 Non-tree dependency structures: Danish

Kromann [78] argues for a dependency formalism caldéstontinuous Grammaand an-
notated a large set of Danish sentences under this formélsDanish Treebank [79]).
This formalism allows for a word to have multiple heads, ,argthe case of verb conjunc-
tions where the subject/object is an argument for multipldds or relative clauses in which
words must satisfy dependencies within the clause anddmutgiit. An example is shown
in Figure 8.1 for the sentendd¢e looks for and sees elephantdere, the pronoukle is
the subject for both verbs in the sentence, and the mbephantshe corresponding ob-
ject. In the Danish Treebank, roughi{; of words have more than one head, which breaks
the single head (or tree) constraint we have previouslyirequwn dependency structures.
Kromann also allows for cyclic dependencies, but focus otesees with acyclic represen-
tations. Though less common then trees, dependency repaeas containing multiple
heads are well established in the literature (e.g., Hud&d}).[Unfortunately, the problem
of finding the dependency structure with highest score is $eitting is intractable [20].
This is true even for the first-order model and even if we cambidhe number of heads to
a constank, wherek > 1. In the first-order case, the problem is trivially polynohviden
we remove the acyclicity constraint. The second-order lprabs NP-hard for all cases.
To create an approximate parsing algorithm for dependetmagtares with multiple

heads, we start with our approximate second-order noregtige algorithm outlined in

115

Danish
Precision Recall F-measure

Projective 86.3 81.6 83.9
Non-projective 86.8 82.1 84.3
Non-projective w/ multiple headd 86.5 85.2 85.8

Table 8.2: Parsing results for Danish.

Figure 3.6. We use the non-projective algorithm since theighetreebank contains a small
number of non-projective arcs. We then modify lines 7-1thaf algorithm so that it looks
for the change in heaat the addition of an entirely new edge that causes the highasige
in overall score and does not create a cycle. Like before, alerne change per iteration
and that change will depend on the resulting score of the resv tJsing this simple new
approximate parsing algorithm we can train a new parsingehatith our online large-
margin learning framework that will allow for the inclusiofmultiple heads.

For our experiments we used the Danish Dependency Treeldaflk Whe treebank
contains a small number of inter-sentence dependencies@aneimoved all sentences that
contained such structures. The resulting data set cont&®&84 sentences. We split the
data into an 80/20 training/testing split by putting evefthfsentence into the training set.
We used the identical second-order feature set that ouidbreghd Czech parser use, which
resulted in 1,072,322 distinct features.

We compared three systems, the standard second-ordectpr®jand non-projective
parsing models, as well as our modified second-order nojeginee model that allows for
the introduction of multiple heads. All systems use golhdtrd part-of-speech since no
trained tagger is readily available for Danish. Resultssa@vn in Figure 8.2.

Some things we should note. First of all, the non-projeqgbiaeser does slightly better
then the projective parser since around 1% of the edges arg@nogective. We can no
longer use accuracy to measure performance since each wayrdnodify an arbitrary

number of heads. Instead we use edge precision and recattou@$e, this also means

116

that using the Hamming loss during training no longer makess. A natural alternative
is to use false positives plus false negatives over edgeidasi which relates the loss to
our ultimate performance metric. As expected, for the bpsigective and non-projective
parsers, the recall is roughly 5% lower than the precisinoesthese models can only pick
up at most one head per word. For the parser that can introdultgple heads, we see an
increase in recall of over 3% absolute with only a slight dimprecision. These results
are very promising and further show the robustness of dmsgdtive online learning to

approximate parsing algorithms.

8.3 Global Features

The trade-off between locality constraints (for tractaiblierence) and expressiveness is
an interesting area of research. In this work we have shown ddge based locality
constraints can provide tractable inference. When coupiéd a rich feature set, these
constraints also provide high empirical performance. H@xdt seems reasonable to con-
jecture that features over larger substructures of therakpey tree should improve perfor-
mance (much in the same way that second-order featuresldithis section we describe
two kinds of non-local feature experiments. The first death global non-projective fea-
tures. These features will represent global aspects of hoangorojective edge occurs in
the sentence relative to other edges. The hope is that satthrds will prevent our search
algorithms from arbitrarily inserting non-projectivityto dependency graphs. The second
kind of feature represents the parsing decisions of otliings (not just the nearest one)
as well as the dependency properties of the head word (hat i& the head’s head, a.k.a.,
grandparent).

Fortunately, there is a simple method for incorporatindgldeatures into the second-

order non-projective approximate parsing algorithm giveRigure 3.6. The post process-

117

ing stage considers ald(n?) possible edge transformations and recalculates the s€ore o
the entire tree for each one. Itis trivial in this stage to Bdures indicating (after an edge
transformation) the local and global properties of eacheedg

Such global features have been encoded into a re-rankingle{izB, 17]. However,

we do not focus on re-ranking issues in this work and leave fititure research.

8.3.1 Global Non-projectivity Features

Both the first and second-order non-projective spanniregalgorithms presented in Chap-
ter 3 make no restrictions on the types of non-projectivigt imay occur. In particular, the
features of the parsing models do not encode in anyway whatparticular edge, or sets
of edges are non-projective. In practice this does not seeadversely effect empirical
performance, even though for many languages, non-pregetiges typically only occur
in restricted situations. It seems reasonable to assuneftive can somehow encode
this information into the parsing models, then we might Elthe amount of erroneous
non-projectivity in the returned parses. To do this, we ddithe following binary edge

features,

1. Is the edge non-projective?
2. Is the edge non-projective & what are the POS tags of the &ed modifier?
3. Is the edge non-projective & what are the POS tags betweehead and modifier?

These features are distinct from those previously definedhier models. This is be-
cause they require the knowledge of an arbitrary number gé®th the tree to determine
if a single edge is non-projective. All of these featureseveonjoined with direction of
attachment and distance between the head and modifier. iNdtihese features cannot be
incorporated into the first-order non-projective parsingdel, since these properties rely

on knowledge of the entire dependency graph.

118

Czech
Accuracy Complete

2nd_grder-non-proj 85.2 35.9
2nd_grder-non-proj approx w/ global features ~ 85.2 35.6

Table 8.3: Benefit of additional global non-projective teast.

Results are shown in Table 8.3 for the Czech data. Unforéiyn#tiese features made
little difference to overall parsing performance. This dsnexplained by looking at the
precision and recall of the non-projective edges in the dataThe parser with the global
non-projective features had a higher precision but lowealfesince it tended to restrict
some non-projective edges from being inserted. This resalany ways justifies the data-
driven parsing algorithms without the use of underlyinggmaars specifying when certain

constructions may OCcCur.

8.3.2 Grandparent and Other Sibling Features

In the second-order parsing model we extended the featpresentation to include fea-
tures over pairs of adjacent edges in the tree. In this sectve extend this further and
allow features over an pair of edges that modify the same.hé&&dadd identical second-
order features, except that we also indicate whether thesealige adjacent or not. In addi-
tion to this, we also extend the feature representationdorporate dependency informa-
tion relating to the head word. That is, we add a featuresttveadentity of the head’s head
in the dependency graph (also known as the grandpareng.iffformation is designed to
disambiguate cases like prepositional attachment. If wisider the sentendeaw the sci-
entist with the telescop¢his new feature will tell us that the prepositional phraseuch
more likely to attach to the noun since the dependency grafihfpaturescientist— with
— telescopeshould have a high weight due to the high correlation betvgegentistand

telescopeln contrast, for the sentendesaw the planet with the telescgphbe path feature

119

English
Accuracy Complete

2nd_order-proj 91.5 42.1
2nd_grder-non-proj approx w/ global features 91.4 40.8

Table 8.4: Benefit of additional global sibling and grandpafeatures.

planet— with — telescopeshould have a lower weight since planets rarely are modified
by telescopes, but are often seen through them (i.e., ahwgtight should be associated
with saw— with — telescopg

Results are shown in Table 8.4 for the English data. We adeistiifes over the part-
of-speech tags of the grandparent, parent and child, thealexlentities of the grand-
parent and child and conjoin these with direction and dsametween grandparent and
child. Though we are parsing English, the system we repadrindi attempt to prevent
non-projective edges from occurring. We could have simplglesl a constraint forcing
the parser to only consider edge changes that did not brea#jecfivity constraint, but
we found that this led to slightly worse performance. Unfodtely adding these features
did not improve performance over the second-order modefladty performance did drop
slightly. There may be many reasons for this. First, thisfimfation may not be impor-
tant to improving dependency parsing accuracy. Secondethdditional features might
be causing the parsing models to overfit. And third, any adefit from these features
may might be washed out by the approximate inference. Risvigsults presented in this

chapter provide evidence against this final reason.

8.3.3 Global Feature Summary

In this section we described some preliminary experimaemisdlude global features of
edges including additional sibling and grandparent infation as well as global aspects

of non-projective edges. Unfortunately these featuresadidmprove performance. This

120

seems to contradict much work on parse re-ranking [28, 1/§lwéuggests global features
are important to improving performance of the parsers. Hewet can be argued that the
real benefit of parse re-ranking is the use of discrimindéaening optimizing an objective
directly related to prediction performance, which the pegsn this work already benefit
from.

One area of future work worth pursuing is to create an apprate greedy parser
trained with the learning algorithms of Daumé and Marcy[3%is algorithms provide a
principled approach to incorporating global features greedy approximate search algo-

rithms and has been shown to be empirically justifiable.

8.4 Summary of Chapter

In this section we described some initial experiments ssiyug that discriminative on-
line learning techniques are robust to inference approxams. This is an example of a
more general problem - learning and inference algorithmsnitbactable NLP problems.
As the language processing community moves to induce mon@lex structures and even
joint representations of various linguistic phenomenbwijli become increasingly impor-
tant to develop learning and inference algorithms whenttoachl dynamic-programming

algorithms like Viterbi, CKY, forward-backward or insidrstside fail.

121

Chapter 9

Application to Sentence Compression

In this chapter we apply our dependency parser to the probfesantence compression to
show its applicability in an important subcomponent of suanration systems. Summa-
rization systems are evaluated on the amount of relevaotnrdtion retained, the gram-
maticality of the summary and the compression rate. Thasrniag highly compressed,
yet informative, sentences allows summarization systemsttirn larger sets of sentences
and increase the overall amount of information extracted.

We focus on the particular instantiation of sentence cosgioa when the goal is to
produce the compressed version solely by removing word$w@ases from the original,
which is the most common setting in the literature [76, 1458]1 In this framework, the
goal is to find the shortest substring of the original sergethat conveys the most im-
portant aspects of the meaning. As is the case throughautitik, we use supervised
learning and assume as input a training Eei(:ct,yt)‘tﬂ of original sentences:; and
their compressiong;. We use the Ziff-Davis corpus, which is a set of 1087 pairsenf-s
tence/compression pairs. Furthermore, we use the samet@®jtexamples from Knight
and Marcu [76] and the rest for training, except that we haid2® sentences for the pur-

pose of development. A handful of sentences occur twice bhtdifferent compressions.

122

The Reverse Engineer Tool is priced from $8,000 for a singé to $90,000 for a multiuser project site .
The Reverse Engineer Tool is available now and is priced dte-dicensing basis , ranging from $8,000 for a single use$0,000 for

a multiuser project site .

Design recovery tools read existing code and translateéatdefinitions and structured diagrams .
Essentially , design recovery tools read existing code mrtslate it into the language in which CASE is conversantfinitiens and

structured diagrams .

Figure 9.1: Two examples of compressed sentences from thBais corpus. The com-
pressed version and the original sentence are given.

We randomly select a single compression for each unique&seatin order to create an
unambiguous training set. Examples from this data set aengn Figure 9.1.

Formally, sentence compression aims to shorten a sentereer; ...z, into a sub-
stringy = y1 . . . ym, Wherey; € {z1,...,z,}. We define the functiod (i) € {1,...,n}
that maps wordy; in the compression to the index of the word in the originalteece.
Finally we include the constraint(i) < I(i + 1), which forces each word im to occur
at most once in the compressignand in the correct relative order. Compressions are

evaluated on three criteria,

1. Grammaticality: Compressed sentences should be graoamat
2. Importance: How much of the important information is ire¢@ from the original.

3. Compression rate: How much compression took place. A cesspn rate 065%

means the compressed sentendis the length of the original.

Typically grammaticality and importance are traded offrwciompression rate. The
longer our compressions, the less likely we are to removertapt words or phrases cru-
cial to maintaining grammaticality and the intended megnin

This chapter is organized as follows: Section 9.1 discupsegous approaches to
sentence compression. In particular, we discuss the aatyasitand disadvantages of the

models of Knight and Marcu [76]. In Section 9.2 we presentsatiininative large-margin

123

model for sentence compression, including an efficient diegpalgorithm for searching
the space of compressions. Most importantly, we show howti@et a rich feature set
that includes surface-level bigram features of the conggesentence, dropped words and
phrases from the original sentence, and features over depew structures produced by
the English parser described in this work. We argue thatrtbisfeature set allows the
model to accurately learn which words and phrases shoulddppdd and which should
remain in the compression. Section 9.3 presents an expaahevaluation of our model
compared to a model of Knight and Marcu. Furthermore, we aispirically display the

importance of the dependency features in producing googuoessions.

9.1 Previous Work

Knight and Marcu [76] first tackled this problem by presegtingenerative noisy-channel
model and a discriminative tree-to-tree decision tree mod&e noisy-channel model de-
fines the problem as finding the compressed sentence withhmaxconditional probabil-
ity

y = argmax P(y|x) = argmax P(x|y)P(y)
y y

P(y) is the source model, which is a PCFG plus bigram language indtlec|y) is the
channel model, the probability that the long sentence isxgaresion of the compressed
sentence. To calculate the channel model, both the origimélcompressed versions of
every sentence in the training set are assigned a phrasguse tree. Given a tree for a
long sentence: and compressed sentengethe channel probability is the product of the
probability for each transformation required if the treedds to expand to the tree far.
The tree-to-tree decision tree model looks to rewrite tee torx into a tree fory. The
model uses a shift-reduce-drop parsing algorithm thatsstéth the sequence of words in

a and the corresponding tree. The algorithm then eitherssfgfinsiders new words and

124

subtrees fore), reduces (combines subtrees framnto possibly new tree constructions)
or drops (drops words and subtrees frajnon each step of the algorithm. A decision tree
model is trained on a set of indicative features for each tff@ction in the parser. These
models are then combined in a greedy global search algotdtfiimd a single compression.

Though both models of Knight and Marcu perform quite welkktllo have their short-
comings. The noisy-channel model uses a source model thainged on uncompressed
sentences, even though the source model is meant to repthseprobability of com-
pressed sentences. The channel model requires alignesl tpaes for both compressed
and uncompressed sentences in the training set in ordelcidata probability estimates.
These parses are provided from a parsing model trained oof oleimain data (the WSJ),
which can result in parse trees with many mistakes for bathotiiginal and compressed
versions. This makes alignment difficult and the channebabdity estimates unreliable
as a result. On the other hand, the decision tree model doesiyon the trees to align and
instead simply learns a tree-to-tree transformation mtmwlebmpress sentences. The pri-
mary problem with this model is that most of the model featwercode properties related
to including or dropping constituents from the tree with me@&ding of bigram or trigram
surface features to promote grammaticality. As a resudtnlodel will sometimes return
very short and ungrammatical compressions.

Both models rely heavily on the output of a noisy parser tawate probability esti-
mates for the compression. We argue in the next sectiondbatly, parse trees should be
treated solely as a source of evidence when making compredscisions to be balanced
with other evidence such as that provided by the words thimese

Recently Turner and Charniak [146] presented supervisedami-supervised versions
of the Knight and Marcu noisy-channel model. The resultiggtams typically return in-
formative and grammatical sentences, however, they dothe &iost of compression rate.

Riezler et al. [114] present a discriminative sentence cesgwor over the output of an LFG

125

parser that is a packed representation of possible conipnassThis model is highly re-
lated to the system we present here. However, unlike Riezk#t, we do not let the output
of an out of domain trained parser to guide our search. Idstea will simply search

the entire space of compressions and use syntactic infanmas one form of evidence to

discriminate between good and bad compressions.

9.2 Sentence Compression Model

For the rest of this section we uge= z; ...z, to indicate an uncompressed sentence and
Yy =1 ...y, acompressed version af i.e., eachy, indicates the position iw of the
word in the compression. We always pad the sentence with dustant and end words,
x1 = -START- andr,, = -END-, which are always included in the compressed versien (
Y1 = xp andy,, = x,,).

In this section we described a discriminative online leagrapproach to sentence com-
pression, the core of which is a decoding algorithm thatcdess the entire space of com-

pressions. Let the score of a compresgydor a sentence: as

s(z,y)
In particular, we are going to factor this score using a frster Markov assumption on the
words in thecompressedentence
lyl

Jj=2

Finally, we define the score function to be the dot productvbenh a high dimensional

126

feature representation and a corresponding weight vector

lyl

s(z,y) = ZW e, 1 = 1), 1(7))

Note that this factorization will allow us to define featumeer two adjacent words in the
compression as well as the words in-between that were dddppe the original sentence
to create the compression. We will show in Section 9.2.2 hsfactorization also allows
us to include features on dropped phrases and subtrees tthmaldependency and/or a
phrase-structure parse of the original sentence. Notétase features are meant to capture
the same information in both the source and channel moddtigiht and Marcu [76].
However, here they are merely treated as evidence for tlogiisative learner, which
will set the weight of each feature relative to the other §ilaly overlapping) features to

optimize the models accuracy on the observed data.

9.2.1 Decoding

We define a dynamic programming talilé:] which represents the highest score for any

compression that ends at wargfor sentencec. We define a recurrence as follows

C[1] = 0.0

Cli] = max;<; C[j] + s(x, j, i) fori > 1

It is easy to show that'[n| represents the score of the best compression for sentence
(whose length is) under the first-order score factorization we made. We cawghis

by induction. If we assume that[j] is the highest scoring compression that ends at word
zj, for all j < i, thenC]i] must also be the highest scoring compression ending at word

x; since it represents the max combination over all high sgashorter compressions plus

127

the score of extending the compression to the current wdrds,Isincer,, is by definition
in every compressed version ®f(see above), then it must be the case @] stores the
score of the best compression. This table can be filled|(it?).

This algorithm is really an extension of Viterbi to the caskew scores factor over
dynamic substrings of the text [118, 90]. As such, we can as&pointers to reconstruct
the highest scoring compression as well as stankidrest decoding algorithms.

This decoding algorithm is dynamic with respect to compoessate. That is, the al-
gorithm will return the highest scoring compression retgssl of length. This may seem
problematic since longer compressions might contributeentmthe score (since they con-
tain more bigrams) and thus be preferred. However, in Se@i® we define a rich feature
set, including features on words dropped from the compoagkiat will help disfavor com-
pressions that drop very few words since this is rarely see¢hd training data. In fact, it
turns out that our learned compressions have a compresgi®wery similar to the gold
standard.

That said, there are some instances when a static compreageas preferred. A user
may specifically want 25% compression rate for all sentences. This is not a problem for
our decoding algorithm. We simply augment the dynamic @ogning table and calculate
Cé][r], which is the score of the best compression of lengthat ends at word;. This

table can be filled in as follows

C[1][1] = 0.0
C[][r] = —ccforr > 1

Cli][r] = max;<; Cj][r — 1] + s(=, j,7) fori > 1

Thus, if we require a specific compression rate, we simplerdene the number of words

r that satisfy this rate and calculaén][r]. The new complexity i£) (n?r).

128

9.2.2 Features

So far we have defined the score of a compression as well asodidgalgorithm that
searches the entire space of compressions to find the onéigitast score. This all relies
on a score factorization over adjacent words in the comjmess(x, I(j — 1),1(j)) =
w-f(x, I(7—1),1(7)). In Section 2 we describe an online large-margin methocdfaming
w. Here we present the feature representatian/(; — 1), I(j)) for a pair of adjacent

words in the compression. These features were selected erebogment data set.

Word/POS Features

The first set of features are over adjacent wayds andy; in the compression. These
include the part-of-speech (POS) bigrams for the pair, (b8 Bf each word individually,
and the POS context (bigram and trigram) of the most recemtl Weing added to the
compressiony,. These features are meant to indicate likely words to ireindhe com-
pression as well as some level of grammaticality, e.g., thecant POS features “JJ&VB”
would get a low weight since we rarely see an adjective folldwy a verb. We also add a
feature indicating ify;_; andy, were actually adjacent in the original sentence or not and
we conjoin this feature with the above POS features. We havéennluded any bi-lexical
features because experiments on the development datadghmatéexical information was
too sparse and led to overfitting. Instead we rely on the acguof POS tags to provide
enough evidence.

Next we added features over every dropped word in the oligerstence betweey}_;
andy;, if there were any. These include the POS of each dropped, wedPOS of the
dropped words conjoined with the POS @f ; andy;. If the dropped word is a verb,
we add a feature indicating the actual verb (this is for commerbs like “is”, which

are typically in compressions). Finally we add the POS odrfgigram and trigram) of

129

root,

N
S

ony afterg
N ~
Mary, Ralph, Tuesday lunchy
S\
VP\
‘ PP\ PP\
A A T
NNP VBD NNP IN NNP IN NN

I I I | I
Mary, salvxé Ralph, ol14 Tuesday afters lunch;

Figure 9.2: An example dependency tree from the dependearsgipand phrase structure
tree from the Charniak parser [16]. In this example we wanadd features from the
trees for the case wheRalphandafter become adjacent in the compression, i.e., we are
dropping the phrasen Tuesday
each dropped word. These features represent common daréstcs of words that can or
should be dropped from the original sentence in the comedegsrsion (e.g. adjectives
and adverbs). We also add a feature indicating whether thyeped word is a negation
(e.g., not, never, etc.).

We also have a set of features to represent brackets in thewhkich are common
in the data set. The first measures if all the dropped wordsd®ety; _, andy; have a
mismatched or inconsistent bracketing. The second meadutiee left and right-most
dropped words are themselves both brackets. These featuresin handy for examples

like, The Associated Press (AP) reported the starigere the compressed versioriTise

Associated Press reported the stohyformation within brackets is often redundant.

Syntactic Features

The previous set of features are meant to encode common R&tothat are commonly

retained or dropped from the original sentence during cesgion. However, they do

130

so without a larger picture of the function of each word in #emtence. For instance,
dropping verbs is not that uncommon - a relative clause fiaimce may be dropped during
compression. However, dropping the main verb in the sertemancommon, since that
verb and its arguments typically encode most of the infolonadteing conveyed.

An obvious solution to this problem is to include feature®roa syntactic analysis
of the sentence. To do this we parse every sentence twice, with the dependency
parser described in this work and once with the Charniak gghstructure parser [16].
These parsers have been trained out of domain on the Penn &&daifk and as a result
contain noise. However, we are merely going to use them ati@ul sources of features.
We call thissoft syntactic evidencgince the syntactic trees are not used as a strict gold-
standard in our model but just as more evidence for or agaeusicular compressions.
The learning algorithm will set the feature weights acaogty depending on each features
discriminative power. It is not novel to use soft syntactiatiures in this way, as it has been
done for many problems in language processing. However,tr@sssthis aspect of our
model due to the history of compression systems using syotaxovide hard structural
constraints on the output. In Section 9.3 we empiricallypldig the importance of the
dependency features derived from our parser.

Let us consider the sentenge= Mary saw Ralph on Tuesday after lunehith corre-
sponding parses given in Figure 9.2. In particular, let ussater the feature representation
f(x,3,6), i.e., the feature representation of makRaiphandafter adjacent in the compres-
sion and dropping the prepositional phraseTuesdayThe first set of features we consider
are over dependency trees. For every dropped word we adtLad@adicating the POS of
the word’s head in the tree. For example, if the dropped vgdndad igoot, then it is the
main verb of the sentence and typically should not be droppédalso add a conjunction
feature of the POS tag of the word being dropped and the PO bkad as well as a

feature indicating for each word being dropped whether & isaf node in the tree. We

131

also add the same features for the two adjacent words, bgiimg that they are part of
the compression.

For the phrase-structure features, we find every node inrdeethat spans a piece of
dropped text and is not a descendant in the tree of anothensyanode, in the example
this is the PP governingn TuesdayWe then add features indicating the context from which
this node was dropped. For example we add a feature spegifiyat a PP was dropped
which was the modifier of a VP. We also add a feature indicatiag a PP was dropped
which was the left sibling of another PP, etc. Ideally, focle@roduction in the tree we
would like to add a feature indicating every node that wapped, e.g. “VP-VBD NP
PP PP= VP—VBD NP PP”. However, we cannot necessarily calculate trasuiee since
the extent of the production might be well beyond the locaitert of first-order feature
factorization. Furthermore, since the training set is salgrthese features are likely to be

observed too few times.

Feature Set Summary

In this section we have described a rich feature set oveceadjavords in the compressed
sentence, dropped words and phrases from the originalszntend properties of syntactic
trees of the original sentence. Note that these featuresirymays mimic the informa-
tion already present in the noisy-channel and decisiom4tnedels of Knight and Marcu
[76]. Our bigram features encode properties that indicath good and bad words to be
adjacent in the compressed sentence. This is similar inogerfo the source model from
the noisy-channel system. However, in that system, theceauodel is trained on uncom-
pressed sentences and thus is not as representative pldigehm features for compressed
sentences, which is really what we desire.

Our feature set also encodes dropped words and phraseglthitoeiproperties of the

words themselves and through properties of their syntaetation to the rest of the sen-

132

tence in a parse tree. These features represent likelygshta®e dropped in the compres-
sion and are thus similar in nature to the channel model intli®y-channel system as well
as the features in the tree-to-tree decision tree systemvetdsr, we use these syntactic
constraints asoft evidencén our model. That is, they represent just another layer of ev
idence to be considered during training when setting patensieThus, if the parses have
too much noise, the learning algorithm can lower the wei@ti®parse features since they
are unlikely to be useful discriminators on the trainingadakhis differs from the models
of Knight and Marcu [76] and Riezler et al. [114], which trelaé noisy parses as gold-
standard when calculating probability estimates or whemckéng the space of possible
compressions.

An important distinction we should make is the notiorsapportedsersusunsupported
features [120]. Supported features are those that are dhd@old standard compressions
in the training. For instance, the bigram feature “NN&VB”IMbe supported since there
is most likely a compression that contains a adjacent nodrvarb. However, the feature
“JJ&VB” will not be supported since an adjacent adjectivel aerb most likely will not
be observed in any valid compression. Our model includeteatures, including those
that are unsupported. The advantage of this is that the noadelearn negative weights
for features that are indicative of bad compressions. Thist difficult to do since most

features are POS based and the feature set size even whbs#l features is only 78,923.

9.2.3 Learning

Having defined a feature encoding and decoding algorithen Jakt step is to learn the
feature weightsv. We do this using the MIRA as described in Chapter 2. kHsest

compressions can easily be calculated by extending theddegralgorithm with standard
Viterbi k-best techniques. On the development data, we found:that0 provided the best

performance, though varyirigdid not have a major impact overall. Furthermore we found

133

Compression Rate| Grammaticality | Importance

Human 53.3% 496+ 0.2 3.91+1.0

Decision-Tree (K&M2000) 57.2% 430+ 1.4 3.60+ 1.3
This work 58.1% 461+ 0.8 4.03+ 1.0

Table 9.1: Sentence compression results.

that after only 3-5 training epochs performance on the agreknt data was maximized.

9.3 Experiments

We use the same experimental methodology as Knight and M&étuWe provide every
compression to four judges and ask them to evaluate eacloogeaimnmaticality and im-
portance on a scale from 1 to 5. For each of the 32 sentencag itest set we ask the
judges to evaluate three systems: human annotated, theatettiee model of Knight and
Marcu and our system. The judges were told all three comjoressvere automatically
generated and the order in which they were presented wasmandhosen for each sen-
tence. We compared our system to the decision tree modelighKand Marcu instead of
the noisy-channel model since both performed nearly asiwéheir evaluation, and the
compression rate of the decision tree model is nearer toysters (around 57-58%). The
noisy-channel model typically returned longer comprassio

Results are shown in Table 9.1. We present the average seoaralbjudges as well as
the standard deviation. The evaluation for the decisiom $yesstem of Knight and Marcu
is strikingly similar to the original evaluation in their wo This provides strong evidence
that the evaluation criteria in both cases were very similar

Table 9.1 shows that all models had similar compressioes ratth humans preferring
to compress a little more aggressively. Not surprisingiig,iluman compressions are prac-
tically all grammatical. A quick scan of the evaluations\wkdhat the few ungrammatical

human compressions were for a sentence that was not gracaimatthe first place. Of

134

greater interest is that the compressions of our systenypieatly more grammatical than
the decision tree model of Knight and Marcu.

When looking at importance, we see that our system actua#lg the best — even better
than humans. The most likely reason for this is that our mogtalns longer sentences and

is thus less likely to prune away important information. Ewample, consider the sentence

The chemical etching process used for glare protectionféctye and will help if your office has

the fluorescent-light overkill that’s typical in offices

The human compression wé&dare protection is effectivavhereas our model compressed
the sentence tbhe chemical etching process used for glare protectiorfectye

A primary reason that our model does better than the decissermodel of Knight and
Marcu is that on a handful of sentences, the decision tregooesaions were a single word
or noun phrase. For such sentences, the evaluators typiat#d the compression a 1 for
both grammaticality and importance. In contrast, our masfer failed in such drastic
ways and always output something reasonable. This is digahith the standard deviation
of the two systems.

Though these results are promising, more large scale enpets are required to really
ascertain the significance of the performance increasallydee could sample multiple
training/testing splits and use all sentences in the data sgaluate the systems. However,
since these systems require human evaluation we did notthavene or the resources to

conduct these experiments.

9.3.1 Some Examples

Here we aim to give the reader a flavor of some common outpartstine different models.
Three examples are given in Table 9.3.1. The first shows twpesties. First of all, the

decision tree model completely breaks and just returnsglesimoun-phrase. Our system

135

Full Sentence

Human
Decision Tree
This work

Full Sentence
Human
Decision Tree
This work

Full Sentence
Human

Decision Tree
This work

The first new product , ATF Protype , is a line of digital posisictypefaces that will be sold in packages of
up to six fonts .

ATF Protype is a line of digital postscript typefaces thalt i sold in packages of up to six fonts .

The first new product .

ATF Protype is a line of digital postscript typefaces willd&@ld in packages of up to six fonts .

Finally , another advantage of broadband is distance .
Another advantage is distance .

Another advantage of broadband is distance .
Another advantage is distance .

The source code , which is available for C , Fortran , ADA andDtH can be compiled and executed on the same
system or ported to other target platforms .

The source code is available for C , Fortran , ADA and VHDL .

The source code is available for C .

The source code can be compiled and executed on the samm sysperted to other target platforms .

Table 9.2: Example compressions for the evaluation data.

performs fairly well, although it leaves out the complenmzgrtof the relative clause. This

actually occurred in a few examples and appears to be the coosnhon problem of our

model. A post-processing rule should eliminate this.

The second example displays a case in which our system arftuthan system are

grammatical, but the removal of a prepositional phrasestthe resulting meaning of the

sentence. In fact, without the knowledge that the sentenceferring tobroadband the

compressions are meaningless. This appears to be a haotbdemr— determining which

prepositional phrases can be dropped and which cannot.

The final, and more interesting, example presents two véfgrdnt compressions by

the human and our automatic system. Here, the human kepelgte/e clause relating

what languages the source code is available in, but drogpgedain verb phrase of the
sentence. Our model preferred to retain the main verb plaredelrop the relative clause.
This is most likely due to the fact that dropping the main vebase of a sentence is much
less likely in the training data than dropping a relativauska Two out of four evaluators

preferred the compression returned by our system and tlee ot rated them equal.

136

9.3.2 Importance of Dependency Features
Bi-grams versus Syntax

Table 9.3 compares the outputs of two systems. The sty Bigram is the sentence
compression system describe in this chapter without anasyeatures (either dependency
or phrase-based). The secoNdrmal is exactly the sentence compressor described in this
chapter. We show examples for which the outputs of the sydiffared significantly (i.e.,
10 out of 32 sentences). Clearly, and not surprisingly, yiséesn is benefitting from syntax.
The best example is the final one for the senteheesource code , which is available for c,
fortran, ada and vhdl, can be compiled and executed on the sgstem or ported to other
target platforms Here the bigram only system outpadla can be compiled and executed
on the same system or ported to other target platforfiis is obviously unacceptable
sinceadais really part of a noun conjunction phrase within a preposithat modifies the
availability of the source code. However, this informateamnot be encoded in the bigram
only system and as a result, it outputs a meaningless cosipngghough grammatical).
Another interesting example is the sentemdthough it bears the ibm name, it syn-
thesizer circuitry is identical to that of a yamaha fb-01, @pplar eight-voice synthesizer
module The bi-gram only model spits out a very grammatical congioggthe ibm cir-
cuitry is identical to that of a yamaha fb-OHowever, the semantics of the compression
are different from the original, making this compressiomptetely meaningless. On the
other hand, the full system outputscuitry is identical to that of a yamaha fb-0IThis
sentence is slightly ungrammatical and appears to be mgigsiarmation. However, we
can see that the original sentence itself is not grammadiwgiis missing information, due

to an unresolved pronoun.

137

Full Sentence| standard fonts include courier , line printer (a sans sadéf) , times roman and prestige elite .
Only Bigram | standard fonts include , line printer , times roman and geslite .
Normal standard fonts include courier , line printer , times romadh prestige elite .

Full Sentence| with three exabyte drives , it is priced at $17,850 .
Only Bigram | with three is priced at $17,850 .
Normal it is priced at $17,850 .

Full Sentence| the chemical etching process used for glare protectiorfestafe and will help if your office has the
fluorescent-light overkill that 's typical in offices .

Only Bigram | the chemical etching process used for glare protection .

Normal the chemical etching process used for glare protectiorfestafe .

Full Sentence| apparel makers use them to design clothes and to quicklypeodnd deliver the best-selling garments .
Only Bigram | clothes and to produce and deliver the best-selling gasnent
Normal apparel makers use to design clothes and to produce anérdiesbest-selling garments .

Full Sentence| microsoft alone has lost one-third of its market value .
Only Bigram | microsoft has lost one-third of market value .
Normal microsoft alone has lost one-third of its market value .

Full Sentence| although it bears the ibm name , it synthesizer circuitrgéntiical to that of a yamaha fb-01 , a popular
eight-voice synthesizer module .

Only Bigram | the ibm circuitry is identical to that of a yamaha fb-01 .

Normal circuitry is identical to that of a yamaha fb-01 .

Full Sentence| working in the score is not an intuitive process ; it takestafgractice .
Only Bigram | working in the score is an intuitive process .
Normal working in the score is not an intuitive process .

Full Sentence| the utilities will be bundled with quickdex ii in a $90 paclagalled super quickdex , which is expected to ship
in late summer .

Only Bigram | the utilities will be bundled with quickdex ii in a quickdex .

Normal the utilities will be bundled with quickdex ii in a $90 pacleagalled super quickdex .

Full Sentence| establishing external (to the application) reference fillmvs controlled and timely access to all reference
data (master files) , regardless of location or applicat@md, enhance data integrity .

Only Bigram | all reference data and enhance data integrity .

Normal establishing external reference files allows controlled @mhance data integrity .

Full Sentence| the source code , which is available for c, fortran , ada am vtan be compiled and executed on the same
system or ported to other target platforms .

Only Bigram | ada can be compiled and executed on the same system or podtet target platforms .

Normal the source code can be compiled and executed on the samm sygperted to other target platforms .

Table 9.3: Compression system comparison with and withgntestic features.

138

Only Dependency Features

One interesting question is the effect of phrase-strudaatires on compression accuracy.
If the addition of these features changes performancefiigntly, it is an argument for
the necessity of phrase-based parsing over just labelezhdepcies. We trained two sys-
tems. One used only labeled dependency features and theustid both dependencies
and phrase-structure features (i.e., the normal systeh® rdsulting systems differed in 6
sentences, shown in Table 9Mormalis the system with both dependencies and phrase-
structure features, arido Phrase-Structurases just labeled dependency features.

For the most part the differences between the two systensnaaé. In Table 9.4, the
second, third, fourth and sixth sentences differ little.tHe first sentencepany debug-
ging features , including user-defined break points andaldd-watching and message-
watching windows , have been adddte normal system outputs a good compressi@any
debugging features have been add@dhe dependency only system outputs a grammati-
cal sentencanany debugging features and variable-watching and messagehing win-
dows have been adddubwever, the sentence implies thatiable-watching and message-
watching windowsre distinct entities from debugging features, when in flaey are ex-
amples of debugging features. In the fifth sentence, therdipey based parser leaves out
one of the verbs in this multi-clause sentence. This may leetduhe feature indicating
whether a verb is not the main verb in the sentence. Thisreasuwsually on for rela-
tive clauses, which can often be dropped in the compres3ibus, this feature may have
caused the drop of the second verb in the multi-clause sesteimce by convention, the
first verb in a verb-conjunction phrase is considered thelhea

These results suggest, at least for sentence compredsiialbeled dependencies en-
code sufficient information for accurate compression sgstelt would be an interesting
future study to compare the difference in performance oélied dependencies against

phrase-structure representations on a variety of langoEgessing problems to determine

139

Full Sentence many debugging features , including user-defined breakpaimd variable-watching and
message-watching windows , have been added .
No Phrase-Structure many debugging features and variable-watching and messgaiphing windows have been added .

Normal many debugging features have been added .

Full Sentence microsoft alone has lost one-third of its market value .

No Phrase-Structure microsoft has lost one-third of its market value .

Normal microsoft alone has lost one-third of its market value .

Full Sentence the sas screen is divided into three sections : one for \grfitograms , one for the system 's response as

it executes the program , and a third for output tables andsha
No Phrase-Structure the sas screen is divided into three sections .
Normal the sas screen is divided into three .

Full Sentence the scamp module , designed and built by unisys and basediateaprocess , contains the entire 48-bit
a-series processor .

No Phrase-Structurg the scamp module contains the entire 48-bit a-series pgoces

Normal the scamp designed and built by unisys contains the entit@t48series processor .

Full Sentence it implements the common cryptographic architecture afef®fa comprehensive set of security products
that allow users to implement end-to-end secure systenhsilivit components .
No Phrase-Structure it implements the common cryptographic architecture.

Normal it implements the common cryptographic architecture afef®fn comprehensive set of security products .
Full Sentence the discounted package for the sparcserver 470 is price8928@0 , down from the regular $107,795 .

No Phrase-Structure the discounted package for the 470 is priced at $89,900 .

Normal the discounted package is priced at $89,900 .

Table 9.4: Compression system comparison with and withlrgge-structure features.

which representation is appropriate for what situations.

9.4 Summary of Chapter

In this chapter we have described a new system for sentemspression. The key con-
tribution to this work is that it is a practical example whighows the applicability of our
English parser. In particular, we have argued that featowesthe output of our parser are
imperative for accurate compression and even contain nidisé anformation provided by
a phrase-based parser.

When compared to previous work on sentence compressiansysiem has several
advantages. First of all, its discriminative nature allawgo use a rich dependent feature
set and to optimize a function directly related to comp@saccuracy during training, both

of which have been shown to be beneficial for other problemsthErmore, the system

140

does not rely on the syntactic parses of the sentences tolatgrobability estimates.

Instead, this information is incorporated as just anothanfof evidence to be considered
during training. This is advantageous because these maestgined on out of domain data
and often contain mistakes. These syntactic features aikable even with an aggressive

first-order Markov factorization required for efficient @ménce.

141

Chapter 10

Discussion

10.1 Comparison to Recent Work

In the dependency parsing community there has been mucht izee related work. Sagae
and Lavie [117] use the maximum spanning tree algorithmsgmted here in a new voted
parsing system. The idea is very simple: if one hadifferent parsers each producing
a single best dependency parse, then one can define the $eaehcedge as the number
of parsers that believed that edge was in the correct parsiglthis score function it is
possible to find the highest scoring tree. The power behiisdriethod is that it guarantees
that graphs satisfying the tree constraint will be returdadthermore, weighted votes can
easily be determined on a held-out set of data.

The work of Corston-Oliver et al. [32] used the maximum spagriree framework
presented in this work in conjunction with Bayes-Point maeh, which is an easy to
implement but memory inefficient learning algorithm. Ongoortant aspect of that work
is that they reimplemented our parsing framework and repaddentical results, resulting
in an independent verification of many of the claims presthere. Corston-Oliver et al.

plan on using their parser to assist in the translation ofrd&ioft technical documents to

142

other languages.

One interesting area of research not previously mentiongteiwork of Klein [75] and
Smith and Eisner [128] on unsupervised dependency parKieg and Manning provide
a model that uses co-occurrence information coupled witkuaktinformation between
words at possible phrasal boundaries, both of which canloaleted from unlabeled data.
Smith and Eisner present a general unsupervised appro&ipisage learning callezbn-
trastive estimatiomnd present very promising results for dependency parsing.

There has also been new work discriminative phrase-stigtarsing. In particular
the work of Shen and Joshi [121] extends the discriminatieeemental parsing frame-
work of Collins and Roark [30] to a LTAG formalism called LTASlim. They present
highly accurate results for English. Their parsing framewdeing in the TAG family,
allows for the modeling of long-distance dependencies had hon-projectivity. Further-
more, the lexical nature of their formalism allows them tdrast dependencies on top
of phrase-structure. The work of Turian and Melamed [144] tesent a discrimina-
tive classifier-based parser, which is one of the first disicrative phrase-based parsers
to outperform a generative baseline without the explicé agthe baseline parser (e.g.,
to re-rank or for parameter initialization). The work of Kaad Collins [77] use hidden
variables within a discriminative re-ranking frameworldaihow such models can improve
parser performance.

One new direction in parsing is self-training methods of Nb=Ry et al. [88, 89]. This
method works by taking a discriminative re-ranked parserning it on millions of new
sentences, and retraining a generative parser. The ideaaitempt to alleviate sparsity
of the original supervised model by learning parameters avarger set of training data
(albeit noisy). This method was shown to improve both in dioraa well as out of domain

parser performance.

143

10.1.1 CoNLL 2006

At the Conference on Natural Language Learning (CoNLL) iB&QL7 groups submitted
parsing systems, which were used to parse 13 different &gegu[13]. The goal of the
experiment was to test various parsing models on a divets# sgnguages with varying
amounts of training data. Of all the systems submitted, wwerhost represented parsing
frameworks were those of Nivre and his colleagues [105, &8d]Jthe models described in
this work. These systems also performed the best empyricethe experiments.

Other systems were based on the work of Yamada and Matsudiig, fvine parsing
algorithms [46], linear integer programming inferencentaques and conversions to CFG

parsing.

10.2 Future Work

We highlight some areas of future research in this sectiohis Tist is not exhaustive,
merely just a sample of the most promising next directionsigroving and applying the

parsing models described here.

Integrated Part-of-Speech Tagging

As noted in Chapter 6 one of the major sources of errors asdipgal errors resulting in
noisy part-of-speech tags at test time. The obvious sa@iubtahis is to learn to tag and
parse in tandem. However, this would result in an increasenmplexity by a multiplicative

factor cubic in the number of tags. We attempted to minimiie factor by limiting the

number of possible tags per token to 2. The resulting parssrskghtly more accurate
than the original, but has yet to bridge the gap between peence with gold standard
tags.

However, other solutions might exist. For example, the wafrldbaume and Marcu

144

[39] on learning as search optimization. In this work a gahsemework was given for
learning relative to approximate and even greedy inferahgarithms. One might expect
such a framework to be beneficial when searching the joirtespbpart-of-speech tags and
dependency structures. Another option is to train a POSetagging a dependency parsing
loss function. That is, when determining the loss of a paldicincorrect tag sequence, we
could calculate the number of dependency errors that tageseg would give rise to in a
parsing systems, then update parameters relative to g88s Tane hope is that the resulting

tagger would be less likely to cause a dependency parserke efeors.

Richer Feature Space

During the course of constructing the parsers of this workersive tests over various
feature combinations were conducted for English. The tieguleature classes were then
use across a plethora of languages with very good resultsvetdw, it is reasonable to
suspect that language specific feature sets will greatlyomgthe performance of the
parser when extended to other languages. The fact thatesimpiphological features

improved parsing performance of highly inflected languagsports this belief.

Applications

In Chapter 9 we integrated our dependency parser into arsent®mpression module to
empirically show its applicability to real world problemBhis is a rather limited example
and a major area of future work is to integrate the parsersritbesi here into new and old
NLP applications. In particular, problems such as textughigment, relation extraction
and translation often require a predicate-argument reptagon of a sentence to accurately

process it.

145

Further Languages

Though we have shown in this work that discriminative spagniee parsing generalizes
well across languages, it is always interesting to testhi@othesis on new languages,
and in particular, those languages with little annotatetdueces. One question is how to
bootstrap annotated resources in different languagespmwe parsing performance in a
resource-poor language, which is similar to domain adeptal here has been limited but

promising work along these lines in the past [68].

Semi-Supervised Dependency Parsing

The recent work of Klein [75] and Smith and Eisner [128] ragsestions of whether these
methods can be combined with the parsers in this work in a-sepervised way. One
simple technique might be to train an unsupervised parserlarge set of unlabeled data,
and use the output of this parser as features in our supdrmiselel. It is unlikely such
an approach would work for due to the already large size ofaheled English data set.
However, this method might prove successful at improvingea for languages with much
smaller labeled resources.

In addition, the work of Ando and Zhang [3] on semi-superdidescriminative learn-
ing might be applied to dependency parsing. In that workuslods of labeled training
examples are automatically generated from unlabeled siath, ads the word to the right
of the current word a verh?Predictors are trained for each of these problems and their
feature spaces are used to map inputs to a low dimensiorrabeation that is indicative
of good features for common sequence classification prabldimis system reported very
significant improvements on standard sequence classiiicesks. The extension of these

models to parsing would be an exciting area of research.

146

Domain Adaptation

In Chapter 7 we argued that discriminative parsing modele laasimple mechanism for
adapting out of domain parsers when limited amounts of inaordata is available —
the feature set. This is acceptalifieannotated data does exist, which is not usually the
case. Augmenting the feature space or backing off to unsigeer parsing systems will
be required to adapt the parser when no annotated data laldeai The work of Lease
and Charniak [81] address this, however, they still assupneesannotated resources in
the new domain (i.e., entity and part-of-speech taggergceRt work by McColosky et
al. [89] show that a self-training technique [88] can hel@tapt statistical parsers when
no annotated resources are available in the new domain.

Another new approach to domain adaptation that assumedptethdata in the new
domain is the work of Blitzer et al. [8]. That work uses larggl@ctions of in and out of
domain unlabeled data to induce feature correspondencessattie two domains. The-
oretically, these features are meaningful in both domambswaill help an out of domain
classifier generalize better to new domains. Blitzer etrasgnt results for part-of-speech
tagging and subsequently use that tagger to improve biaralgorsing with a WSJ parser.
However, it is still an open problem of whether such featuweespondences could be

learned directly for parsing.

147

Chapter 11

Summary of Thesis

This chapter summarizes the methods, results and conctughat have been presented
during the course of this work. Each discussed item is onepooment of the primary
argument, that isjiscriminative training algorithms and maximum spanniregtinference
algorithms combine to provide a highly accurate depend@acging framework that works

across languages and is easily extensible

1. In Chapter 2 we first showed that discriminatively traimeoldels for structure out-
puts can be achieved through the use of highly efficient acdrate online large-
margin techniques. These learning algorithms comparedaiyp to current state-
of-the-art discriminative models such as conditional aandields [80] and M net-
works [137]. A major advantage of the particular learningoaithm used (MIRA)
is that parameter updates are based only on inferencer(sititde-best ok-best),
which essentially abstracts away learning to allow us taisoon defining efficient
inference algorithms for searching the output space. Tprghabilistic inference
techniques such as forward-backward, inside-outside ogima distribution calcu-

lations need no longer concern us.

2. The core of the work was presented in Chapter 3. Here, theger contributions

148

were made. First, by factoring the score of a dependencyebydbre of its edges, we
showed that tractable inference is possible for both ptijeand non-projective de-
pendency trees by appealing to maximum spanning tree #igwsi This result is the
first that provides an exact inference algorithm for nonjgmtive structure’s In fact,
the worst-case run-time complexity for non-projectiveetres actually better than
the case of projective tree®(n?) vs. O(n?)). The second major contribution was
to extend the maximum spanning tree parsing frameworkwallp scores to incor-
porate features over pairs of edges in the tree. With thisnskbn, parsing remained
polynomial for the projective case, but became NP-hardifemon-projective case.
This result essentially shows that only under single edgedb&ctorization can non-
projective parsing be obtained tractably. Any attempt temet scores or constraints
beyond a single edge and the problem makes the problem NP-f@overcome this,
we defined a simple approximation that was experimentaligated in Chapter 4.
Finally, we defined a rich feature set that contained featoxer the words occur-
ring in the dependency relation, but more importantly, dess occurring over the
words surrounding and between them. These features (ashwas sn Chapter 6)

are crucial to achieving state-of-the-art performancé aispanning tree parser.

3. Chapter 4 contains a set of detailed experiments runhimgarsing models on En-
glish, Czech and Chinese data sets. It is shown that therpgrsavide state-of-
the-art performance across all languages. In particullasvismg scores over pairs
of edges and introducing non-projective edges increasdsrpgence significantly.
It was also shown that these models can easily be extenddidwofar labeled de-
pendency graphs through either joint or two-stage labelmgoth cases the models
perform very well for English. However, two-stage labelisgmuch more com-

putationally efficient, which led to its use in later expeeimbs from Chapter 5. In

1This result was discovered independently in Ribarov [112]

149

Chapter 6, we analyzed our English parser both in terms ofeand in terms of
the feature space. We showed that the parser tends to makearoparsing errors
on prepositions, conjunctions and multi-verb sentencase &@ea of future work is
to define new features to handle these specific constructiénglish parsing per-
formance was also broken down by part-of-speech errorggises length and errors
due to the online nature of learning. One interesting rasuliat as sentence length
grows, root attachment accuracy scales relative to ovacalliracy. It was argued
that this was a result of using exact search without any pgior greedy parse de-
cisions. In the second part of Chapter 6 we analyzed thereapace. The primary
result is that context features are much more important $o-dirder parsing mod-
els than second-order parsing models. This indicateslilbeattfeatures are in many
ways simulating higher-order parsing decisions and hegxpdain the powerful per-
formance of the aggressive edge based factorization mddiehlly, we attempted
feature selection and showed that the simplest method} cothoff, performed bet-

ter than information gain.

. One of the more exciting aspects of the models presentd#dsinvork is their lan-
guage generality. In Chapter 5 we presented parsing rdeulig diverse languages
using a single learning method and no language specific erh@nts. These results
are competitive across all 14 languages (see Buckholz Et3j). Furthermore, we
displayed that these discriminative parsing models ardyeadensible by defining
new features on derived morphological information for hyghflected languages.
These features improved accuracy by 1-3% absolute for thageages. Due to the
discriminative nature of the learning technique, addaideatures are easily incor-
porated. In contrast, generative models usually requiveleeels of back-off to be
designed to overcome sparsity. In Chapter 6 we presenteigfaabialysis of com-

mon parsing errors across languages and attempted torekparariability in parser

150

performance across languages. In particular, we showégénser variability can
mostly be explained through properties of the data inclgdientence length, lexi-
cal sparsity and invalid i.i.d. assumptions between thiaitrg and test sets. These

results lend weight to our argument that the parsers aretidaguage independent.

. In Chapter 7 we further showed the extensibility of disgniative parsing models
by incorporating features over auxiliary classifiers. Tegrove the performance of
our English WSJ parser we incorporated features over thisidas of the Collins
[25] and Charniak [16] parsing models. Including theseue=t improved parsing
accuracy t093.2%, which is significantly higher than the accuracy of any sngl
individual model. Adding features based on the output ofile@ry classifiers also
improved parser performance for out of domain data. We stawat training a
parser on a small amount of biomedical training data candp@fgiantly improved
by incorporating features over the output of a WSJ parseis 3imple technique
should help to quickly create state-of-the-art parsing e®fbr domains in which

little training data is available.

. One advantageous aspect of inference-based onlinerigasrits robustness to ap-
proximate inference [30, 39], due to the fact that paramsedes set relative to infer-
ence. Thus, if inference is approximate, then model parrmern be set to offset
common errors introduced due to search approximationss fEaiture is important
considering our second-order non-projective parsing isdgproximate. We fur-
ther displayed this advantage by building a model to parsergédependency graphs
that do not necessarily satisfy the tree constraint. It kaslargued [67] that non-tree
graphs are appropriate for secondary modifiers resultorg fielative clause or verb
conjunctions. Unfortunately, producing high scoring ricee dependency graphs

can be shown to be NP-hard, thus we devised an approximatethtg to find them.

151

This model was tested empirically on a set of Danish deperydgraphs and showed

improved performance over the tree based models.

. The final contribution of this work was to show that the degency models created
here could be used in a standard NLP task. We chose to looktate® compression.
First, we defined a search algorithm that allowed us to setarclugh the space of
compressions efficiently, while at the same time allowingle introduction of rele-
vant dependency information. Using this inference algamitve trained a model and
presented empirical results showing state-of-the-afopmance on a small data set.
Furthermore, we argued (through the output of the systeathtlost of the necessary
information for creating accurate compressions is costain labeled dependency
graphs, and that phrase-structure information does noifigigntly improve perfor-
mance. Finally, we showed that if dependency informatiaroisused, the output of

the sentence compressor suffered greatly.

152

Appendix A

English Head Percolation Rules

These are the head percolation rules used to convert theTPeabank to depedencies in
this work, based on those in [151]. For each non-terminaltf@nleft of each rule) we
start searching from the right or left (r or I) for the first @lent, then the second, etc. If
elements are seperated by a bar, then we search for any déthergs. These rules are run
recursively until pre-terminal nodes are reached and thogeal items become the head
of the phrase.

NP POS| NN| NNP| NNPS| NNS NX JJR CD JJ JJS RB QP NP

r
ADIP r NNS QP NN \$ ADVP JJ VBN VBG ADJP JJR NP JJS DT FW RBR RBS SBAR RB
ADVP | RB RBR RBS FWADVP TO CD JJR JJ IN NP JJS NN

CONJP | CCRBIN

FRAG |

I NTJ r

LST I LS:

NAC r NN| NNS| NNP| NNPS NP NAC EX \'$ CD QP PRP VBG JJ JJS JJR ADIP FW
PP I IN TO VBG VBN RP FW

PRN r

PRT I RP

P r \$ INNNS NNJJ RB DT CD NCD QP JJR JJS

RRC | VP NP ADVP ADJP PP

S r TOIN VP S SBAR ADJP UCP NP

SBAR r VHNP VHPP WHADVP WHADJP IN DT S SQ SI NV SBAR FRAG

SBARQ r SQ S SINV SBARQ FRAG

SINV r VBZ VBD VBP VB MD VP S SINV ADJP NP

SQ r VBZ VBD VBP VB MD VP SQ

ucpP |

VP I VBD VBN MD VBZ VB VBG VBP VP ADJP NN NNS NP

WHADJP r CC WRB JJ ADJP

153

CC WRB

VDT WP WP\ $ WHADIP WHPP WHINP

IN TO FW

POS| NN| NNP| NNPS| NNS NX JJR CD JJ JJS RB QP NP

154

Appendix B

Feature Example

Here we show a concrete example of the feature represemtdtan edge in a dependency
tree. The tree is given below and the edge of interest is therdéency between the main
verb hit and its argument headed prepositisith. We use simplified part-of-speech tags

for illustrative purposes only.

root,RT
hit,V

John,N ball,N with,P
the,f)/ bat,N

the,D

f(i, 5) for the edge (hit,with)
Basic Features

z;-word="hit", x;-pos="V", z;-word="with”, z;-pos="P"
x;-pos="V”", z;-word="with”, x;-pos="P”

x;-word="hit", x;-word="with”, z;-pos="P”

X -WOI‘d:“hit"' wi_p08=“V"’ wj-DOSZ“P"

155

x;-word="hit", z;-pos="V", z;-word="with”
x;-word="hit", x;-word="with”

x;-pos="V", z;-pos="P"

x;-word="hit", z;-pos="V"

xj-word="with”, z;-pos="P”

x;-word="hit”

z;-pos="“V”"

xj-word="with”

x;-Pos=“P”

Extended Features

x;-pos="V", b-pos="D", z ;-pos="P”

z;-pos="V", b-pos="N", z;-pos="P”

z;-pos="V", z;-pos+1="D", x;-pos-1="N", z ;-pos="P”
x;-p0os="V", z;-p0os-1="N", x;-pos="P”"

x;-pos="V", z;-pos+1="D", z;-pos="P”

;-p0S-1="N", ;-p0S="V", ;-p0s-1="N", x;-pos="P"

x;-pos="V”", z;-p0s-1="N", z ;-pos="P”

x;-p0s-1="N", z;-pos="V", z,;-pos="P”"

x;-pos="V", z;-pos+1="D", x;-pos="P”, z;-pos+1="D"
x;-pos="V", x;-pos="P", x;-pos+1="D"

x;-pos="V", z;-pos+1="D", z;-pos="P”

2i-P0S-1="N", 2;-pos="V", z;-pOS="P", z;-pos+1="D"
z;-pos="V", x;-pos="P", x;-pos+1="D"

2;-p0s-1="N", ;-pos="V", x;-p0os="P"

156

Note that sincéit andwith are not longer than 5 characters we do not have any additional

5-gram back-off features. If, however, the verb wasashegwe could have the feature,
x;-word:5="smash”;z;-word="with”

along with other 5-gram back-off features.
All features are also conjoined with the direction of attaeimt and the distance be-

tween the words. So, in addition to the feature,
x;-word="hit", x;-word="with”
the system would also have the feature,
x;-word="hit", z;-word="with”, dir=R, dist=3

to indicate that the modifiewith is 3 words to the right of the heddt. Distances were

calculated into buckets with thresholds of 1, 2, 3, 4, 5 and 10

B.1 Second-Order Features

If we consider the second-order edge, (hit,ball,with) wé add the following features,

f(i, k, j):

Second-Order Features
x;-p0os="V", 11-pos="N", z,;-pos="P”"
2,-pos="N", x;-pos="P”
x-word="pall’, z;-pos="P”
z-pos="“N", z;j-word="with”

xp-word="ball", z;-word="with”

157

The features are again conjoined with attachment direc®mell as distance between
the siblings unlike the first-order features, which useatisé to head. The distances are

bucketed as before. For instance, the representation woukain the following feature
2,-pos="N", z;-pos="P”, dir=R, dist=1

For the cases when a word is the first left/right modifier ofach¢he feature representation
encodes this. For instance, if we consider the second odigs, €hit,-,ball), we add the

features:

Second-Order Features

x;-p0os="V", 11-pos="N", z,;-pos="N"
xp-pos=“first-RHS-POS”"z ;-pos="N"
xp-word="first-RHS”, z ;-pos="N"
x-pos="first-RHS-POS"z ;-word="with”

xp-word="first-RHS”, x ;-word="with”

158

Appendix C

Detailed Experimental Results

Tables in this appendix were produced using the CoNLL 20@@ezhtask [13] evaluation

script (http://nextens.uvt.nl/"conll/software.html).

C.1 Arabic

Label ed attachnent score: 3339 / 4990 » 100 = 66.91 %
Unl abel ed attachnent score: 3959 / 4990 * 100 = 79.34 %
Label accuracy score: 3967 / 4990 * 100 = 79.50 %

Eval uation of the results in arabic.proj.pred

vs. gold standard arabic_PADT_test.conll:

Legend: '.S - the beginning of a sentence, '.E - the end of a sentence

Nunber of non-scoring tokens: 383

The overall accuracy and its distribution over CPOSTAGs

----------- L S S e S e S
Accur acy | words | right | % | right | % | both | %
| | head | | dep | | right |
----------- B T
total | 4990 | 3959 | 79%]| 3967 | 79%| 3339 | 67%
----------- B T
| 2007 | 1775 | 88%]| 1462 | 73%| 1363 | 68%
| 800 | 493 | 62% | 737 | 92%| 467 | 58%
| 432 | 395 | 91%| 404 | 94%| 376 | 87%

159

v | 417 | 295 | 71%| 331 | 79%| 258 | 62%
c | 392 | 250 | 64%| 314 | 80%| 233 | 59%
s | 349 | 298| 85%| 290 | 83%| 261 | 75%
z | 192 | 162 | 84%| 139 | 72%| 124 | 65%
F | 143 | 116 | 81%| 121 | 85%| 112 | 78%
X | 140 | 107 | 76%] 99 | 71%] 86 | 61%
D | 74 | 38 | 51%]| 42| 57%]| 33| 45%
Q | 42 | 29 | 69%| 27 | 64%]| 25 | 60%
- | 1] 1] 100% | 1] 100% | 1] 100%
| | 1] 0] 0%] 0] 0% 0] 0%
----------- S

The overall error rate and its distribution over CPOSTAGs

----------- L S S e ek SRR R
Error | words | head | % | dep | % | both | %
Rat e | | err | | err | | wong |
----------- L S S e ek SRR R
total | 4990 | 1031 | 21%| 1023 | 21%| 403 | 8%
----------- L S S e ek SRR R
N | 2007 | 232 | 12%| 545 | 27%| 133 | 7%
P | 800 | 307 | 38%| 63 | 8% | 37 | 5%
A | 432 | 37 | 9% | 28 | 6% | 9 | 2%
\ | 417 | 122 | 29%| 86 | 21%]| 49 | 12%
C | 392 | 142 | 36% | 78 | 20%| 61 | 16%
S | 349 | 51 | 15%)| 59 | 17%| 22 6%
z | 192 | 30 | 16%| 53 | 28%)| 15| 8%
F | 143 | 27 | 19% | 22| 15%)| 18 | 13%
X | 140 | 33 | 24%| 41| 29%| 20| 14%
D | 74 | 36 | 49% | 32| 43%| 27 | 36%
Q | 42 | 13| 31%)| 15 | 36%)| 11| 26%
- | 1] 0| 0% | 0| 0% | 0| 0%
| | 1] 1] 100% | 1] 100% | 1] 100%
----------- B T g

Precision and recal | of DEPREL

---------------- R e e i R
deprel | gold | correct | system| recall (% | precision (%
---------------- R e e i R
Adv | 378 | 181 | 349 | 47.88 | 51.86
AdvAt r | 7| 0| 0| 0.00 | NaN
Ante | 7| 0| 0| 0.00 | NaN
Apos | 10 | 2| 2| 20.00 | 100. 00
Atr | 1930 | 1751 | 2130 | 90.73 | 82.21
At r Adv | 7| 0| 4 | 0.00 | 0. 00
AtrAtr | 3| 0| 0| 0.00 | NaN
At r Obj | 1 0| 0| 0.00 | NaN
AtV | 50| 18 | 26 | 36.00 | 69. 23
AuxC | 102 | 88 | 115 | 86.27 | 76.52
AuxXE | 33| 15 | 26 | 45.45 | 57.69

160

AuxG | 1] 0 | 0] 0.00 | NaN

AuxM | 76| 71 | 76 | 93.42 | 93.42
AuxP | 767 | 733 | 773 | 95.57 | 94.83
AuxY | 324 | 233 | 285 | 71.91 | 81.75
Coor d | o171 | 140 | 187 | 81.87 | 74.87
ExD |71 37 | 44 | 52.11 | 84. 09
bj | 520 | 297 | 482 | 57.12 | 61. 62
Pnom | 19| 0| 4 0.00 | 0. 00
Pred | 172 | 147 | 168 | 85.47 | 87.50
PredE | 1] 1| 2| 100. 00 | 50. 00
PredP | 1] 0 | 0] 0.00 | NaN
Ref | 3| 1| 1] 33.33 | 100. 00
Sb | 336 | 252 | 316 | 75.00 | 79.75

Precision and recal | of DEPREL + ATTACHVENT

---------------- R e e S
deprel | gold | correct | system| recall (% | precision (%
---------------- R e e i R
Adv | 378 | 173 | 349 | 45.77 | 49.57
AdvAt r | 7| 0| 0| 0.00 | NaN
Ante | 7| 0| 0| 0.00 | NaN
Apos | 10 | 1] 2| 10.00 | 50. 00
Atr | 1930 | 1605 | 2130 | 83.16 | 75.35
At r Adv | 7| 0| 4 | 0.00 | 0. 00
AtTALT | 3| 0| 0| 0.00 | NaN
At r Obj | 1 0| 0| 0.00 | NaN
AtV | 50| 17 | 26 | 34.00 | 65. 38
AuxC | 102 | 71 | 115 | 69. 61 | 61.74
AUXE | 33 10 | 26 | 30.30 | 38. 46
AUxXG | 1] 0| 0| 0.00 | NaN
AuxM | 76 | 70 | 76 | 92.11 | 92.11
AuxP | 767 | 462 | 773 | 60. 23 | 59.77
AuxyY | 324 | 197 | 285 | 60. 80 | 69. 12
Coord | 171 | 86 | 187 | 50.29 | 45.99
ExD | 71 | 35 | 44 | 49.30 | 79.55
j | 520 | 261 | 482 | 50.19 | 54.15
Pnom | 19 | 0| 4 0.00 | 0.00
Pred | 172 | 121 | 168 | 70.35 | 72.02
PredE | 1 1] 2| 100. 00 | 50. 00
PredP | 1] 0| 0| 0.00 | NaN
Ref | 3| 1] 1] 33.33 | 100. 00
Sh | 336 | 228 | 316 | 67.86 | 72.15

Precision and recall of binned HEAD direction

---------------- T o
direction | gold | correct | system| recall (% | precision (%
---------------- R e e S
to_root | 295 | 247 | 280 | 83.73 | 88. 21
left | 4157 | 4035 | 4233 | 97.07 | 95.32

right | 538 | 356 | 477 | 66.17 | 74.63
sel f | 0| 0| 0| NaN | NaN

Precision and recal |l of binned HEAD di stance

---------------- R e e i S
di stance | gold | correct | system| recall (% | precision (%
---------------- R e e i S
to_root | 295 | 247 | 280 | 83.73 | 88. 21
1 | 3081 | 2897 | 3176 | 94.03 | 91.22
2 | 637 | 437 | 639 | 68. 60 | 68. 39
3-6 | 626 | 402 | 637 | 64.22 | 63.11
7-. .. | 351 | 158 | 258 | 45.01 | 61.24

C.2 Bulgarian

Label ed attachnent score: 4390 / 5013 * 100 = 87.57 %
Unl abel ed attachnent score: 4614 / 5013 * 100 = 92.04 %
Label accuracy score: 4547 | 5013 * 100 = 90.70 %

Eval uation of the results in bulgarian.proj.pred

vs. gold standard bul gari an_bul treebank_test.conll:

Legend: '.S - the beginning of a sentence, '.E - the end of a sentence

Nunber of non-scoring tokens: 921

The overal |l accuracy and its distribution over CPOSTAGs

----------- L S S e S e S
Accur acy | words | right | % | right | % | both | %
| | head | | dep | | right |

----------- B T
total | 5013 | 4614 | 92%| 4547 | 91%| 4390 | 88%
----------- B T
N | 1566 | 1476 | 94%| 1426 | 91%| 1386 | 89%
\% | 831 | 773 | 93% | 786 | 95% | 766 | 92%
R | 827 | 701 | 85% | 655 | 79%| 620 | 75%
P | 469 | 438 | 93%| 435 | 93%| 426 | 91%
A | 436 | 425 | 97%)| 427 | 98%| 423 | 97%
C | 274 | 232 | 85%| 268 | 98%| 230 | 84%
T | 223 | 209 | 94%| 204 | 91%| 200 | 90%
D | 170 | 148 | 87%| 141 | 83%]| 134 | 79%
M | 147 | 142 | 97%| 136 | 93%]| 136 | 93%
H | 70 | 70 | 100% | 69 | 99%| 69 | 99%
----------- B T

162

The overall error rate and its distribution over CPOSTAGs

----------- B T
Error | words | head | % | dep | % | both | %

Rat e | | err | | err | | wong |

----------- L S S e S e S
total | 5013 | 399 | 8%| 466 | 9%| 242 | 5%
----------- L S S e ek SRR R

N | 1566 | 90 | 6% 140 | 9%| 50| 3%

\ | 831 | 58 | 7% | 45 | 5% | 38 | 5%

R | 827 | 126 | 15%| 172 | 21%| 91 | 11%

P | 469 | 31 | 7% | 34 | 7% | 22 | 5%

A | 436 | 11 | 3% | 9 | 2% | 7| 2%

C | 274 | 42 | 15% | 6 | 2% | 4 | 1%

T | 223 | 14 6% 19 9%| 10 | 4%

D | 170 | 22| 13%)| 29 | 17%)| 15| 9%

M | 147 | 5] 3% 1] 7% 5] 3%

H | 70 | 0] 0% 1] 1%]| 0] 0%
----------- L S S e S e S
Precision and recal | of DEPREL

---------------- S
deprel | gold | correct | system]| recall (% | precision (%
---------------- R e e i S
ROOT | 398 | 387 | 398 | 97.24 | 97.24
adj unct | 347 | 237 | 319 | 68.30 | 74.29
clitic | 84 77 | 77 | 91.67 | 100. 00
conp | 483 | 449 | 481 | 92.96 | 93.35
conj | 184 | 183 | 183 | 99. 46 | 100. 00
conjarg | 208 | 186 | 199 | 89.42 | 93. 47
i ndobj | 128 | 86 | 124 | 67.19 | 69. 35
mar ked | 91 | 90 | 95 | 98.90 | 94.74
mod | 1299 | 1232 | 1370 | 94. 84 | 89.93
obj | 218 | 172 | 217 | 78.90 | 79. 26
pragadj unct | 64 | 41 | 48 | 64.06 | 85.42
prepconp | 831 | 821 | 828 | 98.80 | 99. 15
subj | 405 | 348 | 408 | 85.93 | 85. 29
xadj unct | 55| 48 | 56 | 87.27 | 85. 71
xconp | 131 | 121 | 127 | 92.37 | 95. 28
xmod | 71 56 | 64 | 78.87 | 87.50
Xpr epconp | 4 | 4 | 5 | 100. 00 | 80. 00
xsubj | 12 | 9 | 14 | 75.00 | 64. 29
Precision and recall of DEPREL + ATTACHVENT

---------------- R e e i S
deprel | gold | correct | system| recall (% | precision (%
---------------- R e e i S
ROOT | 398 | 387 | 398 | 97.24 | 97.24

adj unct | 347 | 227 | 319 | 65.42 | 71.16
clitic | 84 | 76 | 77 | 90. 48 | 98. 70
conp | 483 | 444 | 481 | 91.93 | 92.31
conj | 184 | 153 | 183 | 83.15 | 83.61
conjarg | 208 | 150 | 199 | 72.12 | 75. 38
i ndobj | 128 | 84 | 124 | 65.62 | 67.74
mar ked | 91| 90 | 95 | 98.90 | 94.74
mod | 1299 | 1188 | 1370 | 91. 45 | 86. 72
obj | 218 | 172 | 217 | 78.90 | 79.26
pragadj unct | 64 | 37 | 48 | 57.81 | 77.08
pr epconp | 831] 821 | 828 | 98.80 | 99. 15
subj | 405 | 339 | 408 | 83.70 | 83.09
xadj unct | 55 | 43 | 56 | 78.18 | 76.79
xconp | 131 | 119 | 127 | 90. 84 | 93.70
xmod | 71 | 47 | 64 | 66. 20 | 73. 44
Xprepconp | 4 | 4 | 5| 100. 00 | 80. 00
xsubj | 12 | 9| 14 | 75.00 | 64.29
Precision and recal |l of binned HEAD direction
---------------- T
direction | gold | correct | system| recall (% | precision (%
---------------- T
to_root | 398 | 387 | 398 | 97.24 | 97. 24
left | 3196 | 3156 | 3200 | 98.75 | 98. 62
right | 1419 | 1376 | 1415 | 96.97 | 97.24
sel f | 0| 0| 0| NaN | NaN
Precision and recal |l of binned HEAD di stance
---------------- T o
di stance | gold | correct | system| recall (% | precision (%
---------------- T o
to_root | 398 | 387 | 398 | 97.24 | 97.24
1 | 2630 | 2566 | 2664 | 97.57 | 96. 32
2 | 926 | 862 | 914 | 93.09 | 94.31
3-6 | 796 | 687 | 795 | 86.31 | 86. 42
7-. | 263 | 197 | 242 | 74.90 | 81. 40
C.3 Chinese
Label ed attachnent score: 4269 / 4970 » 100 = 85.90 %
Unl abel ed attachnent score: 4526 / 4970 » 100 = 91.07 %
Label accuracy score: 4385 / 4970 * 100 = 88.23 %
Eval uation of the results in chinese.proj.pred

164

vs. gold standard chinese_sinica_test.conll:
Legend: '.S - the beginning of a sentence, '.E - the end of a sentence
Nunber of non-scoring tokens: 42
The overall accuracy and its distribution over CPOSTAGs
----------- L S S e ek SRR R
Accur acy | words | right | % | right | % | both | %

| | head | | dep | | right |
----------- B T g
total | 4970 | 4526 | 91%| 4385 | 88%| 4269 | 86%
----------- B T
N | 2021 | 1829 | 90%| 1786 | 88%| 1746 | 86%
\% | 1210 | 1082 | 89%| 1080 | 89%| 1064 | 88%
D | 505 | 489 | 97%| 504 | 100%| 488 | 97%
DE | 407 | 389 | 96%| 309 | 76%| 301 | 74%
P | 251 | 231 | 92%| 201 | 80%] 195 | 78%
C | 170 | 155 | 91%| 151 | 89% | 148 | 87%
DM | 148 | 128 | 86%)| 122 | 82%| 116 | 78%
Ne | 129 | 114 | 88%| 117 | 91%| 105 | 81%
Ng | 81 | 66 | 81%| 68 | 84%]| 63 | 78%
A | 32 | 29 | 91%| 31| 97%| 29 | 91%
T | 16 | 14 | 88%| 16 | 100% | 14| 88%
----------- B T g
The overall error rate and its distribution over CPOSTAGs
----------- L S S e ek SRR R
Error | words | head | % | dep | % | both | %
Rat e | | err | | err | | wong |
----------- B T g
total | 4970 | 444 | 9% | 585 | 12%| 328 | 7%
----------- B T g
N | 2021 | 192 | 10%| 235 | 12%| 152 | 8%
\Y | 1210 | 128 | 11%| 130 | 11%| 112 | 9%
D | 505 | 16| 3%]| 1] 0%| 0] 0%
DE | 407 | 18| 4% 98 | 24%| 0] 2%
P | 251 | 20 8%)| 50 | 20%| 14| 6%
C | 170 | 15 9% 19 | 11%| 121 7%
DM | 148 | 20 | 14%| 26| 18%| 14 9%
Ne | 129 | 15 | 12%| 12 | 9% | 3| 2%
Ng | 81 | 15 | 19%| 13 | 16%]| 10 | 12%
A | 32 | 3| 9% | 1] 3% | 1] 3%
T | 16 | 2| 12%| 0| 0% | 0| 0%
----------- B T
Precision and recal | of DEPREL
---------------- R e e i S

deprel | gold | correct | system

recall (9% | precision (%

---------------- T
DUMWY | 320 | 289 | 325 | 90.31 | 88.92
DUMWY1 | 78 | 73 | 75 | 93.59 | 97.33
DUMMY2 | 96 | 87 | 98 | 90.62 | 88.78
Head | 29| 13 | 25 | 44.83 | 52.00
ROOT | 864 | 812 | 864 | 93.98 | 93.98
addi tion | 18 | 17 | 17 | 94. 44 | 100. 00
agent | 128 | 108 | 147 | 84.38 | 73.47
apposi tion | 42 | 37 | 41 | 88.10 | 90. 24
aspect | 39 | 39 | 39 | 100. 00 | 100. 00
benef act or | 8 | 6 | 6 | 75.00 | 100. 00
causer | 10 | 3| 4 | 30.00 | 75. 00
conpani on | 15 | 14 | 18 | 93.33 | 77.78
conpari son | 10 | 9 | 12 | 90. 00 | 75. 00
conpl enent | 63 | 44 | 62 | 69.84 | 70.97
concessi on | 7| 7| 7 100. 00 | 100. 00
condi tion | 16 | 7 15 | 43.75 | 46. 67
contrast | 22 | 20 | 22 | 90.91 | 90.91
conversi on | 2| 1| 1] 50.00 | 100. 00
degr ee | 67| 67 | 68 | 100. 00 | 98.53
deixi s | 5| 5| 5| 100. 00 | 100. 00
deontics | 54 | 54 | 54 | 100. 00 | 100. 00
duration | 4 | 1] 3| 25.00 | 33.33
epi stenics | 42 | 42 | 42 | 100. 00 | 100. 00
eval uation | 89 | 89 | 89 | 100. 00 | 100. 00
experiencer | 18 | 17 | 17 | 94.44 | 100. 00
frequency | 7 2| 4 | 28.57 | 50. 00
goal | 354 | 301 | 351 | 85.03 | 85.75
head | 333 | 297 | 340 | 89.19 | 87.35
hypot hesi s | 12 | 12 | 12 | 100. 00 | 100. 00
i nstrunent | 6 | 4 | 5| 66. 67 | 80. 00
| ocation | 77 | 53 | 68 | 68.83 | 77.94
manner | 96 | 72 | 79 | 75.00 | 91.14
negation | 43 | 43 | 43 | 100. 00 | 100. 00
noni nal | 31 | 27 | 28 | 87.10 | 96. 43
particle | 16 | 16 | 16 | 100. 00 | 100. 00
possessor | 36 | 5| 9 | 13.89 | 55. 56
predication | 62 | 15 | 27 | 24.19 | 55. 56
property | 849 | 799 | 940 | 94.11 | 85. 00
pur pose | 1] 1| 1] 100. 00 | 100. 00
quantifier | 220 | 193 | 208 | 87.73 | 92.79
quantity | 63| 59 | 63 | 93.65 | 93.65
range | 178 | 167 | 177 | 93.82 | 94. 35
reason | 16 | 15 | 18 | 93.75 | 83.33
reci pi ent | 1| 0 | 0| 0.00 | NaN
restriction | 6 | 6 | 6 | 100. 00 | 100. 00
resul t | 11 | 10 | 14 | 90.91 | 71.43
source | 0| 0| 1| NaN | 0.00
standard | 1] 1] 1] 100. 00 | 100. 00
target | 12 | 10 | 12 | 83.33 | 83.33
t hene | 334 | 281 | 339 | 84.13 | 82.89
tine | 144 | 133 | 144 | 92.36 | 92.36

166

topic | 13 | 0| 5| 0.00 | 0.00
what ever | 2| 2| 3| 100. 00 | 66. 67

Precision and recal | of DEPREL + ATTACHVENT

---------------- R e e i S
deprel | gold | correct | system| recall (% | precision (%
---------------- R e e i S
DUMWY | 320 | 288 | 325 | 90. 00 | 88. 62
DUMWY1 | 78 | 73 | 75 | 93.59 | 97.33
DUMWY2 | 96 | 87 | 98 | 90. 62 | 88.78
Head | 29 | 13 | 25 | 44.83 | 52.00
ROOT | 864 | 812 | 864 | 93.98 | 93.98
addi tion | 18 | 17 | 17 | 94. 44 | 100. 00
agent | 128 | 106 | 147 | 82.81 | 72.11
apposi tion | 42 | 37 | 41 | 88.10 | 90. 24
aspect | 39| 39 | 39 | 100. 00 | 100. 00
benef act or | 8 | 6 | 6 | 75.00 | 100. 00
causer | 10 | 3| 4 | 30.00 | 75. 00
conpani on | 15 | 14 | 18 | 93.33 | 77.78
conpari son | 10 | 8 | 12 | 80. 00 | 66.67
conpl enent | 63 | 42 | 62 | 66.67 | 67.74
concessi on | 7| 7| 7| 100. 00 | 100. 00
condi tion | 16 | 7| 15 | 43.75 | 46. 67
contrast | 22 | 19 | 22 | 86.36 | 86. 36
conversi on | 2| 1| 1] 50.00 | 100. 00
degree | 67| 66 | 68 | 98.51 | 97.06
deixis | 5 | 5 | 5 | 100. 00 | 100. 00
deontics | 54| 54 | 54 | 100. 00 | 100. 00
duration | 4 | 1| 3] 25.00 | 33.33
epi stem cs | 42 | 39 | 42 | 92.86 | 92. 86
eval uation | 89 | 84 | 89 | 94.38 | 94. 38
experiencer | 18 | 17 | 17 | 94.44 | 100. 00
frequency | 7| 2| 4 | 28.57 | 50. 00
goal | 354 | 295 | 351 | 83.33 | 84.05
head | 333 295 | 340 | 88.59 | 86. 76
hypot hesi s | 12 | 11 | 12 | 91. 67 | 91. 67
i nstrunent | 6 | 4 | 5| 66. 67 | 80. 00
| ocation |77 51 | 68 | 66.23 | 75. 00
manner | 96 | 72 | 79 | 75.00 | 91. 14
negation | 43 | 42 | 43 | 97.67 | 97. 67
nomi nal | 31 26 | 28 | 83.87 | 92.86
particle | 16 | 14 | 16 | 87.50 | 87.50
possessor | 36 | 5| 9 | 13.89 | 55.56
predication | 62 | 14 | 27 | 22.58 | 51.85
property | 849 | 746 | 940 | 87.87 | 79. 36
pur pose | 1| 1] 1| 100. 00 | 100. 00
quantifier | 220 | 175 | 208 | 79.55 | 84.13
quantity | 63 56 | 63 | 88.89 | 88. 89
range | 178 | 165 | 177 | 92.70 | 93.22
reason | 16 | 15 | 18 | 93.75 | 83.33
reci pi ent | 1] 0| 0| 0.00 | NaN

167

restriction | 6 | 6 | 6 |

resul t | 11 | 10 | 14 |

source | 0| 0| 1]

st andard | 1| 1] 1|

target | 12 | 9 | 12 |

t hene | 334 | 277 | 339

time | 144 | 130 | 144

topic | 13 | 0| 5|

what ever | 2| 2| 3]

Precision and recall of binned HEAD direction

---------------- L e S

direction | gold | correct | system| recall

---------------- Bk o

to_root | 864 | 812 | 864 |

left | 1172 | 1069 | 1166

right | 2934 | 2833 | 2940

sel f | 0| 0| 0|

Precision and recall of binned HEAD di stance

---------------- L e S

di stance | gold | correct | system| recall

---------------- Bk o

to_root | 864 | 812 | 864 |

1 | 2332 | 2247 | 2375

2 | 792 | 715 | 797

3-6 | 843 | 728 | 815

7-. | 139 | 108 | 119
C.4 Czech

Label ed attachnment score: 4009 / 5000 * 100 =

Unl abel ed attachnent score: 4365 / 5000 * 100 =

Label accuracy score: 4336 / 5000 * 100 =

100. 00 | 100. 00
90.91 | 71.43
NaN | 0.00
100. 00 | 100. 00
75.00 | 75. 00
82.93 | 81.71
90. 28 | 90. 28
0.00 | 0.00
100. 00 | 66. 67
_______ oo
(% | precision (%
_______ e
93.98 | 93. 98
91.21 | 91.68
96.56 | 96. 36
NaN | NaN
_______ oo
(% | precision (%
_______ e
93.98 | 93. 98
96. 36 | 94.61
90. 28 | 89.71
86.36 | 89. 33
77.70 | 90. 76
80.18 %
87.30 %
86.72 %

Eval uation of the results in czech. nonproj.pred

vs. gold standard czech_pdt_test.conll:

Legend: '.S - the beginning of a sentence, '.E

853

Nunber of non-scoring tokens:

The overall

- the end of a sentence

accuracy and its distribution over CPOSTAGs

168

The overal |

Precision and recal |

At r Adv
AtrAtr

[[B [B [— Homem o -
| words | right | % | right | % | both | %
| | head | | dep | | right |
[[B [B [— Homem o -
| 5000 | 4365 | 87%| 4336 | 87%| 4009 | 80%
L L Fommmm - L Fommmm - L Fommmm
| 1748 | 1573 | 90%| 1431 | 82%| 1364 | 78%
| 708 | 591 | 83%| 562 | 79%| 540 | 76%
| 692 | 668 | 97%| 667 | 96%| 658 | 95%
| 598 | 473 | 79%| 593 | 99%| 470 | 79%
| 404 | 386 | 96% | 353 | 87%| 346 | 86%
| 336 | 274 | 82%| 291 | 87%| 257 | 76%
| 321 | 242 | 75% | 292 | 91%| 238 | 74%
| 159 | 129 | 81%| 118 | 74%| 109 | 69%
| 34 | 29 | 85%]| 29 | 85%]| 27 | 79%
L L Hommmm - L Hommmm - Hommmmm Fommmm
error rate and its distribution over CPOSTAGs
L L Hommmm - L Hommmm - Hommmmm Fommmm
| words | head | % | dep | % | both | %
| | err | | err | | wong |
[[B [B [— B
| 5000 | 635 | 13%| 664 | 13%| 308 | 6%
[[B [B [— B
| 1748 | 175 | 10%| 317 | 18%] 108 | 6%
| 708 | 117 | 17%)| 146 | 21%| 95 | 13%
| 692 | 24| 3% 25 | 4% 15| 2%
| 598 | 125 | 21%| 5] 1%| 21 0%
| 404 | 18| 4% 51| 13%| 1] 3%
| 336 | 62 | 18%| 45 | 13%)| 28 8%
| 321 | 79 | 25%| 29 | 9% | 25 | 8%
| 159 | 30 | 19%| 41 | 26%| 21| 13%
| 34 | 5| 15%| 5| 15%| 3| 9%
[[B [B [— B
of DEPREL

----- B S e e S

| gold | correct | system| recall (% | precisi
----- B S e e S

| 576 | 474 | 567 | 82.29 |

| 6 | 0| 0] 0.00 |

| 6 | 0| 3| 0.00 |

| 39 | 13 | 32 | 33.33 |

| 71 1| 2 14.29 |

| 3| 2| 4 | 66.67 |

| 1] 1] 1] 100. 00 |

| 1514 | 1441 | 1563 | 95.18 |

| 9 | 0| 0| 0.00 |

| 4 0| 0| 0.00 |

169

on (%

50.
50.
100.
92.

Atr_Ap | 0] 0| 4 NaN | 0. 00

Atr_Co | 134 | 81 | 134 | 60. 45 | 60. 45
Atr_Pa | 2| 0] 0| 0.00 | NaN
Atv | 10| 6 | 8 | 60. 00 | 75. 00
At vV | 2 0] 1] 0.00 | 0.00
Atv_Co | 2 0] 0| 0.00 | NaN
AuxC | 101 | 100 | 103 | 99.01 | 97.09
AuxO | 1] 0] 2 0.00 | 0. 00
AuxP | 610 | 608 | 614 | 99.67 | 99. 02
AuxR | 23] 12 | 17 | 52.17 | 70. 59
AuxT | 63| 58 | 74 | 92.06 | 78.38
AuxV | 82| 76 | 82 | 92.68 | 92. 68
AuxY | 52| 39 | a4 | 75.00 | 88. 64
AuxZ | 106 | 93 | 108 | 87.74 | 86. 11
Coor d | 157 | 146 | 161 | 92.99 | 90. 68
Coor d_Ap | 1] 0] 2 0.00 | 0.00
Coor d_Co |11 6 | 10 | 54.55 | 60. 00
ExD | 59| a4 | 56 | 74.58 | 78.57
ExD_Ap |17 | 4 6 | 23.53 | 66.67
ExD_Co | 64| 31 | 74 | 48.44 | 41. 89
ExD_Pa | 14| 10 | 13 | 71.43 | 76.92
) | 426 | 362 | 434 | 84.98 | 83. 41
j _Ap | 7 5| 8 | 71.43 | 62. 50
j _Co | 48 | 14 | 54 | 29.17 | 25.93
j _Pa | 2| 0] 0| 0.00 | NaN
Pnom |71 56 | 66 | 78.87 | 84. 85
Pnom Co | 4| 2 5 50.00 | 40. 00
Pred | 242 | 219 | 243 | 90.50 | 90. 12
Pred_Co | 113 | 80 | 105 | 70.80 | 76. 19
Pred_Pa | 7 3| 5 42.86 | 60. 00
sb | 360 | 326 | 346 | 90.56 | 94.22
Sb_Ap | 14| 1] 4| 7.14 | 25.00
Sb_Co | 30| 22 | 45 | 73.33 | 48. 89

Precision and recall of DEPREL + ATTACHVENT

---------------- R e e S
deprel | gold | correct | system| recall (% | precision (%

---------------- R e e i R
Adv | 576 | 450 | 567 | 78.12 | 79.37
AdVAt r | 6 | 0| 0| 0.00 | NaN
Adv_Ap | 6 | 0| 3| 0.00 | 0.00
Adv_Co | 39 | 13 | 32 | 33.33 | 40. 62
Adv_Pa | 7| 1] 2| 14.29 | 50. 00
Apos | 3| 0| 4 | 0.00 | 0. 00
Apos_Co | 1] 1] 1] 100. 00 | 100. 00
Atr | 1514 | 1397 | 1563 | 92.27 | 89.38
At r Adv | 9 | 0| 0| 0.00 | NaN
AtTALT | 4 0| 0| 0.00 | NaN
Atr_Ap | 0| 0| 4 NaN | 0.00
Atr_Co | 134 | 73 | 134 | 54.48 | 54.48
Atr_Pa | 2| 0| 0| 0.00 | NaN

170

Atv

At vV
Atv_Co
AuxC
AuxO
AuxP
AuxR
AuxT
AuxV
AuxY
AuxZ
Coord
Coor d_Ap
Coor d_Co
ExD
ExD_Ap
ExD_Co
ExD _Pa
Obj

Obj _Ap
Obj _Co
Obj _Pa
Pnom
Pnom Co
Pred
Pred_Co
Pred_Pa
Sh
Sh_Ap
Sh_Co

Precision and recal |

Precision and recal |

| 101 |

| 610
| 23 |
| 63 |
| 82 |
| 52 |
| 106

| 157

[11
[59
|17
| 64
|14
| 426 |
| 48]

[

| 242
| 113

| 360
| 14 |

of

| gold |

| gold |

92

483

12

57

75

37

79

106

44

24

353

13

55

218
72

300

21

310
2422
1944

0

correct

2364
899
752
186

103

614
17

74

82

a4
108
161

10
56 |

74 |

13 |

434

54 |

66 |

243
105

346

45 |

349
2567
2084

0|

60.

o o

91.

79.
52.
90.
91.
71.
74.
67.

36.
74.
23.
37.
64.
82.
71.
27.

77.
50.
90.
63.
28.
83.

70.

87
94
93

of binned HEAD di stance

00
.00
.00
09
.00
18
17
48
46
15
53
52
.00
36
58
53
50
29
86
43
08
.00
46
00
08
72
57
33
.14
00

.57
.76
.01
NaN

| 75
| 0

| 89.

| 78.
| 70.
| 77.
| 91.
| 84.
| 73.
| 65.

| 40.
| 78.
| 66.
| 32.
| 69.
| 81.
| 62.
| 24.

| 83.
| 40.
| 89.
| 68.
| 40.
| 86.
| 25.

| precision

| 88
| 94
| 93

| precision

171

.00
.00

32
.00
66
59
03
46
09
15
84
.00
00
57
67
43
23
34
50
07

33
00
71
57
00
71
00
.67

.83
.35
.28

C.5 Danish

Label ed attachnent score: 4248 / 5010 » 100 = 84.79 %
Unl abel ed attachnent score: 4538 / 5010 * 100 = 90.58 %
Label accuracy score: 4470 / 5010 * 100 = 89.22 %

Eval uation of the results in danish.nonproj.pred

vs. gold standard dani sh_ddt_test.conll:

Legend: '.S - the beginning of a sentence, '.E - the end of a sentence

Nunber of non-scoring tokens: 842

The overall accuracy and its distribution over CPOSTAGs
----------- B T
Accur acy | words | right | % | right | % | both | %

| | head | | dep | | right |
----------- B T
total | 5010 | 4538 | 91%| 4470 | 89%| 4248 | 85%
----------- L S S e S e S
N | 1386 | 1291 | 93%| 1258 | 91%| 1234 | 89%

| 954 | 898 | 94%| 884 | 93%| 864 | 91%
P | 624 | 599 | 96%| 581 | 93%| 576 | 92%
sP | 602 | 477 | 79%| 455 | 76%| 388 | 64%
A | 518 | 471 | 91%| 462 | 89%| 444 | 86%
RG | 394 | 356 | 90% | 351 | 89%| 326 | 83%
C | 324 | 267 | 82%| 306 | 94%| 257 | 79%
u | 172 | 155 | 90% | 154 | 90% | 145 | 84%
X | 32 | 20 | 62%]| 18 | 56%| 13 | 41%
1 | 4| 4| 100% | 1] 25%]| 1] 25%
----------- L S S e S e S
The overall error rate and its distribution over CPOSTAGs
----------- B T
Error | words | head | % | dep | % | both | %
Rat e | | err | | err | | wong |
----------- B T
total | 5010 | 472 | 9% | 540 | 11%| 250 | 5%
----------- L S S e S e S
N | 1386 | 95 | 7%| 128 | 9%| 71| 5%

| 954 | 56 | 6% 70 7% 36| 4%
P | 624 | 25 | 4% 43 | 7% 20 3%
sP | 602 | 125 | 21%)| 147 | 24%| 58 | 10%
A | 518 | 47 | 9% 56 | 11%)| 29 6%
RG | 394 | 38 | 10%| 43 | 11%| 13 | 3%
C | 324 | 57 | 18%| 18 | 6% | 8 | 2%
U | 172 | 17 | 10%| 18 | 10%| 8 | 5%
X | 32 | 12 | 38%| 14 | 44%| 71 22%

Precision and recal | of DEPREL

---------------- R e e i S
deprel | gold | correct | system| recall (% | precision (%

---------------- R e e i S
<dobj > | 2 0| 0| 0.00 | NaN
<mod> | 8 | 0| 1] 0.00 | 0. 00
<pr ed> | 2| 0| 1] 0.00 | 0. 00
<subj : pobj > | 1| 0| 0| 0.00 | NaN
<subj > | 2| 0| 0| 0.00 | NaN
<xpl > | 0| 0| 1] NaN | 0. 00
ROOT | 323 | 307 | 322 | 95.05 | 95. 34
aobj | 6 | 0| 2| 0.00 | 0.00
appa | 15 | 8 | 14 | 53.33 | 57.14
appr | 13 | 5 | 8 | 38.46 | 62. 50
avobj | 15 | 5 | 5 | 33.33 | 100. 00
conj | 239 | 208 | 242 | 87.03 | 85. 95
coord | 156 | 155 | 158 | 99.36 | 98. 10
dobj | 321 | 294 | 350 | 91.59 | 84. 00
err | 1] 0| 3| 0.00 | 0. 00
expl | 23 | 20 | 22 | 86. 96 | 90.91
i obj | 10 | 5| 6 | 50. 00 | 83.33
list | 13 | 2| 8 | 15.38 | 25.00
| obj | 63| 44 | 59 | 69.84 | 74.58
mod | 1028 | 885 | 1003 | 86.09 | 88. 24
nodp | 2| 0| 4 0.00 | 0.00
name | 1] 0| 5 | 0.00 | 0.00
namef | 90 | 84 | 92 | 93.33 | 91. 30
namel | 5| 2| 5| 40.00 | 40. 00
nobj | 989 | 961 | 1005 | 97.17 | 95. 62
numm | 2| 1] 1] 50. 00 | 100. 00
obl | 1] 1] 3| 100. 00 | 33.33
part | 8 | 5| 7| 62.50 | 71.43
pobj | 277 | 230 | 310 | 83.03 | 74.19
possd | 112 | 102 | 109 | 91. 07 | 93.58
pred | 151 | 113 | 142 | 74.83 | 79.58
qobj | 37 30 | 33 | 81.08 | 90.91
rel | 68| 62 | 76 | 91.18 | 81.58
subj | 558 | 514 | 558 | 92.11 | 92.11
title | 9 | 8 | 11 | 88.89 | 72.73
tobj | 14 4| 5 | 28.57 | 80. 00
vobj | 424 | 410 | 427 | 96. 70 | 96. 02
voc | 2| 0| 1] 0.00 | 0. 00
xpl | 14 | 3| 8 | 21.43 | 37.50
xt op | 5| 2| 3| 40.00 | 66. 67

Precision and recal| of DEPREL + ATTACHVENT

173

deprel | gold | correct | system]| recall (% | precision (%
---------------- S
<dobj > | 2| 0| 0| 0.00 | NaN
<nod> | 8 | 0| 1] 0.00 | 0.00
<pr ed> | 2| 0| 1 0.00 | 0.00
<subj : pobj > | 1] 0| 0| 0.00 | NaN
<subj > | 2| 0| 0| 0.00 | NaN
<xpl > | 0| 0| 1] NaN | 0.00
ROOT | 323 | 307 | 322 | 95.05 | 95. 34
aobj | 6 | 0| 2| 0.00 | 0.00
appa | 15 | 8 | 14 | 53.33 | 57.14
appr | 13 | 5| 8 | 38.46 | 62. 50
avobj | 15 | 5| 5| 33.33 | 100. 00
conj | 239 | 201 | 242 | 84.10 | 83. 06
coord | 156 | 114 | 158 | 73.08 | 72.15
dobj | 321 | 287 | 350 | 89. 41 | 82. 00
err | 1] 0| 3| 0.00 | 0.00
expl | 23 | 20 | 22 | 86. 96 | 90.91
i obj | 10 | 5 | 6 | 50. 00 | 83.33
list | 13 | 2| 8 | 15.38 | 25. 00
| obj | 63 | 44 | 59 | 69. 84 | 74.58
mod | 1028 | 768 | 1003 | 74.71 | 76.57
modp | 2| 0| 4 0.00 | 0.00
name | 1] 0| 5| 0.00 | 0.00
namef | 90 | 83 | 92 | 92.22 | 90. 22
nanel | 5 | 2| 5 | 40.00 | 40. 00
nobj | 989 | 950 | 1005 | 96. 06 | 94.53
nunm | 2| 1] 1] 50. 00 | 100. 00
obl | 1 1] 3| 100. 00 | 33.33
part | 8 | 5 | 7 62.50 | 71.43
pobj | 277 | 216 | 310 | 77.98 | 69. 68
possd | 112 | 95 | 109 | 84.82 | 87.16
pred | 151 | 112 | 142 | 74.17 | 78.87
qobj | 37 | 30 | 33 | 81.08 | 90. 91
rel | 68 | 51 | 76 | 75.00 | 67.11
subj | 558 | 513 | 558 | 91.94 | 91.94
title | 9 | 8 | 11 | 88.89 | 72.73
t obj | 14 | 4| 5 | 28.57 | 80. 00
vobj | 424 | 406 | 427 | 95.75 | 95. 08
voc | 2| 0| 1 0.00 | 0.00
xpl | 14 | 3| 8 | 21.43 | 37.50
xt op | 5 | 2| 3| 40.00 | 66. 67

Precision and recall of binned HEAD direction

---------------- S
direction | gold | correct | system| recall (% | precision (%

---------------- R e e i S
to_root | 323 | 307 | 322 | 95. 05 | 95. 34
left | 3707 | 3649 | 3721 | 98. 44 | 98. 07
right | 980 | 910 | 967 | 92.86 | 94.11

sel f | 0| 0| 0| NaN | NaN

Precision and recall of binned HEAD di stance

---------------- R e e S
di stance | gold | correct | system| recall (% | precision (%
---------------- R e e i S
to_root | 323 | 307 | 322 | 95.05 | 95. 34
1 | 2893 | 2807 | 2958 | 97.03 | 94. 90
2 | 858 | 777 | 846 | 90.56 | 91. 84
3-6 | 705 | 575 | 674 | 81.56 | 85.31
7-. .. | 231 | 168 | 210 | 72.73 | 80. 00

C.6 Dutch

Label ed attachnent score: 3958 / 4998 » 100 = 79.19 %
Unl abel ed attachnent score: 4177 / 4998 * 100 = 83.57 %
Label accuracy score: 4193 / 4998 * 100 = 83.89 %

Eval uation of the results in dutch.nonproj.pred

vs. gold standard dutch_al pino_test.conll:

Legend: '.S - the beginning of a sentence, '.E - the end of a sentence

Nunber of non-scoring tokens: 587

The overal |l accuracy and its distribution over CPOSTAGs

----------- L S S e S e S
Accur acy | words | right | % | right | % | both | %
| | head | | dep | | right |

----------- B T
total | 4998 | 4177 | 84%| 4193 | 84%| 3958 | 79%
----------- B T
N | 1374 | 1143 | 83%| 1105 | 80%| 1074 | 78%
\ | 849 | 738 | 87%| 727 | 86%| 720 | 85%
Prep | 674 | 543 | 81%| 563 | 84%| 487 | 72%
Art | 615 | 583 | 95%| 608 | 99%| 582 | 95%
Adj | 350 | 326 | 93%| 326 | 93%| 317 | 91%
Conj | 306 | 178 | 58%)| 182 | 59%| 158 | 52%
Adv | 287 | 233 | 81%| 252 | 88%| 219 | 76%
Pron | 256 | 231 | 90% | 217 | 85%| 209 | 82%
MAU | 141 | 104 | 74% | 121 | 86%]| 103 | 73%
Num | 129 | 83 | 64%| 78 | 60%| 75 | 58%
Punc | 12 | 12 | 100% | 12 | 100% | 12 | 100%
M sc | 4 | 3| 75%| 2| 50%)| 2| 50%

I nt | 1] 0| 0% | 0| 0% | 0| 0%

175

The overall error rate and its distribution over CPOSTAGs

----------- L S S e ek SRR R
Error | words | head | % | dep | % | both | %
Rat e | | err | | err | | wrong
----------- L S S e S e S
total | 4998 | 821 | 16%| 805 | 16%| 586 | 12%
----------- B T
N | 1374 | 231 | 17%]| 269 | 20%| 200 | 15%
\ | 849 | 111 | 13%| 122 | 14%| 104 | 12%
Prep | 674 | 131 | 19%| 111 | 16%]| 55 | 8%
Art | 615 | 32 | 5% | 7| 1% | 6 | 1%
Adj | 350 | 24| 7% 24| 7% 15 | 4%
Conj | 306 | 128 | 42%)| 124 | 41%| 104 | 34%
Adv | 287 | 54 | 19% | 35 | 12%)| 21 7%
Pron | 256 | 25| 10% | 39 | 15%| 171 7%
MAU | 141 | 37 | 26%| 20 | 14%)| 19 | 13%
Num | 129 | 46 | 36% | 51 | 40%| 43 | 33%
Punc | 12 | 0| 0% | 0| 0% | 0| 0%
M sc | 4 | 1] 25%| 2| 50%)| 1] 25%
I nt | 1] 1] 100% | 1] 100% | 1] 100%
----------- B T

Precision and recal | of DEPREL

---------------- R e e i S
deprel | gold | correct | system| recall (% | precision (%
---------------- R e e i S
ROOT | 514 | 366 | 424 | 71.21 | 86. 32
app | 75 | 28 | 77 | 37.33 | 36. 36
body | 153 | 124 | 150 | 81.05 | 82.67
cnj | 535 | 427 | 526 | 79.81 | 81.18
crd | 4 | 2| 6 | 50. 00 | 33.33
det | 761 | 743 | 778 | 97.63 | 95. 50
hdf | 3| 3| 4 100. 00 | 75. 00
I d | 23] 12 | 22 | 52.17 | 54.55
me | 3| 1] 2| 33.33 | 50. 00
mod | 1255 | 1137 | 1339 | 90. 60 | 84.91
obconp | 9 | 8 | 8 | 88.89 | 100. 00
obj 1 | 823 | 716 | 864 | 87.00 | 82.87
obj 2 | 8 | 2| 5| 25.00 | 40. 00
pc | 101 | 48 | 68 | 47.52 | 70.59
pobj 1 | 2| 2| 3| 100. 00 | 66. 67
predc | 91 | 56 | 78 | 61.54 | 71.79
predm | 8 | 2| 6 | 25.00 | 33.33
punct | 17 | 12 | 12 | 70.59 | 100. 00
se | 3| 3| 4 100. 00 | 75. 00
su | 306 | 240 | 303 | 78.43 | 79.21
sup | 4 2| 4 50. 00 | 50. 00

176

svp

vc

Precision and recal

obconp
obj 1
obj 2
pc
pobj 1
predc
predm
punct
se

su
sup
svp

veC

Preci sion and recal

Precision and recal

to_root
1
2

| 42 | 32
| 258 | 227
of DEPREL +
Fommmm - R
| gold | correct
Fommmm - R
| 514 | 366
| 75 | 27
| 153 | 123
| 535 | 413
| 4 | 2
| 761 | 717
| 3] 3
| 23 | 12
| 3] 1
| 1255 | 981
| 9 | 7
| 823 | 699
| 8 | 2
| 101 | 45
| 2| 2
| 91 | 55
| 8 | 1
| 17 | 12
| 3] 3
| 306 | 230
| 4] 2
| 42 32
| 258 | 223

B L R,
| gold | correct

Fommmm - R
| 514 | 366
| 2336 | 2163
| 2148 | 1974
| 0] 0

B L R,
| gold | correct

Fommmm - R
| 514 | 366
| 2366 | 2231
| 903 | 792

| 37 |
278 |

ATTACHVENT

| 424

| 77|

| 150 |

| 526 |

| 778 |

| 22 |

| 1339

| 864

| 68 |

| 78 |

| 12 |

| 303

| 37 |
| 278

[+
| system|
Fommmm +
| 424

| 2411

| 2163

| 0

[+
| system|
Fommmma +
| 424 |
| 2445

| 922

76. 19
87.98

71.
36.
80.
77.
50.
94.
100.

21
00
39
20
00
22
00
52.17
33.33
78. 17
77.78
84.
25.
44.
100.
60.
12.

70.

93
00
55
00
44
50
59
100. 00
75.16
50. 00
76.19

86. 43

of binned HEAD direction

(%A

recal |

71.21
92.59
91. 90

NaN

of binned HEAD di stance

(%

recal |

| 86. 49
| 81. 65

| 86.
| 35.
| 82.
| 78.
| 33.
| 92.
| 75.
| 54.
| 50.
| 73.
| 87.
| 80.
| 40.
| 66.
| 66.
| 70.
| 16.
| 100.
| 75.
| 75.
| 50.
| 86.
| 80.

32
06
00
52
33
16
00
55
00
26
50
90
00
18
67
51
67
00
00
91
00
49
22

| precision (%
| 86. 32
| 89.71
| 91.26

| precision (%
| 86. 32
| 91.25
| 85. 90

3-6 | 888 | 701 | 895 | 78.94 | 78.32
7. | 327 | 226 | 312 | 69.11 | 72. 44

C.7 English

Label ed attachnent score: 44552 / 49847 » 100 = 89.38 %
Unl abel ed attachnent score: 45578 / 49847 » 100 = 91.44 %
Label accuracy score: 46984 |/ 49847 x 100 = 94.26 %

Eval uation of the results in /scratch/ryantm m ne/ parsers/ol d_parsers/conll_| ab/ eng_out/new. out

vs. gold standard ../data/english/ptb/test/conll_english.txt:

Legend: '.S - the beginning of a sentence, '.E - the end of a sentence

Nunber of non-scoring tokens: 6837

The overal |l accuracy and its distribution over CPOSTAGs

----------- L S S e S e S
Accur acy | words | right | % | right | % | both | %
| | head | | dep | | right |

----------- B T
total | 49847 | 45578 | 91% | 46984 | 94%| 44552 | 89%
----------- B T
NN | 7536 | 6974 | 93%| 6995 | 93%| 6790 | 90%
IN | 5934 | 5039 | 85%]| 5645 | 95%| 4884 | 82%
NNP | 5500 | 5215 | 95%| 5270 | 96%| 5126 | 93%
DT | 4834 | 4692 | 97%| 4790 | 99%| 4672 | 97%
JJ | 3663 | 3439 | 94%| 3424 | 93%| 3322 | 91%
NNS | 3561 | 3264 | 92%| 3293 | 92%| 3193 | 90%
RB | 1991 | 1661 | 83%| 1668 | 84%| 1517 | 76%
cb | 1943 | 1792 | 92%| 1862 | 96%| 1776 | 91%
VBD | 1814 | 1695 | 93%| 1722 | 95%| 1689 | 93%
VB | 1549 | 1446 | 93%| 1454 | 94%| 1412 | 91%
cc | 1291 | 1092 | 85%]| 1284 | 99%| 1091 | 85%
TO | 1240 | 1151 | 93%| 1209 | 98%| 1147 | 92%
VBZ | 1239 | 1126 | 91%| 1140 | 92%| 1110 | 90%
VBN | 1190 | 1092 | 92%| 1086 | 91%| 1046 | 88%
PRP | 1050 | 1032 | 98%| 1035 | 99%| 1027 | 98%
VBG | 856 | 722 | 84%| 749 | 88%| 693 | 81%
VBP | 811 | 727 | 90%| 731 | 90%| 710 | 88%
VD | 583 | 530 | 91%| 547 | 94%| 525 | 90%
c | 531 | 426 | 80% | 531 | 100% | 426 | 80%
PRP$ | 511 | 494 | 97%| 511 | 100% | 494 | 97%
PCs | 504 | 484 | 96% | 496 | 98% | 483 | 96%
$ | 376 | 342 | 91%| 343 | 91%| 336 | 89%
WoT | 276 | 234 | 85%| 268 | 97%| 233 | 84%
JIR | 190 | 151 | 79%| 147 | 77%| 138 | 73%

The overal |

NNP
DT
JJ
NNS

VBD

| 130
| 128
| 118
| 112
| 107
| 58
| 27
| 21
| 21
| 10

error rate and

| 49847

| 504
| 376
| 276
| 190
| 132
| 130
| 128

142
224
297
330
151
119
103
199
89
113
98
18
134
84
53
105
17
20
34
42
39
36

10

73% |
99% |
92% |
95% |
85% |
79% |
97% |
89% |
81% |
81% |
50% |
50% |
50% |

0% |

its distribution

9% |

7% |
15% |
50 |
3% |
6% |
8% |
17% |
8% |
7% |
7% |
15% |
7% |
9% |
8% |
206 |
16% |
10% |
9% |
20% |
3% |
4% |
9% |
15% |
21% |
27% |
1% |
8% |
5% |

33

43

25
13

2863

93% |
81% |
90% |
95% |
94% |
80% |
100% |
96% |
100% |
95% |
80% |
25% |
100% |
0% |

over CPCSTAGs

6% |

16% |
4% |
5% |
6% |
1% |
2% |
8% |
9% |
1% |

12% |

10% |
6% |
0% |
0% |
2% |
9% |
3% |

23% |
7% |

19% |

10% |
5% |

1837

27

30

a N RO

70%
81%
88%
94%
83%
71%
97%
89%
81%
81%
50%
25%
50%

0%

we | 112 | 17 | 15%| 7| 6% | 5| 4%

RBR | 107 | 22 | 21%| 21 | 20%| 12 | 11%

EX | 58 | 2| 3% | 0| 0% | 0| 0%

RBS | 27 | 3 11%| 1] 4% | 1] 4%

PDT | 21 | 41 19%)| 0] 0% 0] 0%

WPS$ | 21 | 41 19%| 1] 5% 1] 5%

UH | 10 | 5] 50%)| 2] 20%)| 2] 20%

FwW | 4| 2| 50%)| 3| 75%)| 2| 50%

LS | 4| 2| 50%)| 0] 0%]| 0] 0%

, | 2| 2| 100% | 2| 100% | 2 | 100%
----------- B T
Precision and recal | of DEPREL

---------------- R e e i R
deprel | gold | correct | system| recall (% | precision (%
---------------- R e e i R
ADJIP | 732 | 519 | 636 | 70.90 | 81. 60
ADVP | 1166 | 1003 | 1178 | 86.02 | 85. 14
CONJP | 21 7 12 | 33.33 | 58.33
DEP | 19010 | 18572 | 19178 | 97.70 | 96. 84
FRAG | 19 | 2| 11 | 10.53 | 18.18
I NTJ | 10 | 8 | 11 | 80.00 | 72.73
LST | 4 | 4 | 5| 100. 00 | 80. 00
NAC | 30 | 18 | 22 | 60. 00 | 81.82
NP | 7225 | 6779 | 7196 | 93.83 | 94.21
NP- OBJ | 1974 | 1768 | 2006 | 89.56 | 88. 14
NP- PRD | 344 | 290 | 365 | 84.30 | 79. 45
NP- SBJ | 4097 | 3848 | 4039 | 93.92 | 95. 27
NX | 44| 4| 9 | 9.09 | 44. 44
PP | 5429 | 5318 | 5532 | 97.96 | 96.13
PRN | 140 | 90 | 119 | 64.29 | 75. 63
PRT | 159 | 105 | 133 | 66.04 | 78.95
(0.3 | 187 | 156 | 185 | 83.42 | 84.32
ROOT | 2410 | 2282 | 2411 | 94.69 | 94. 65
RRC | 0| 0| 3| NaN | 0. 00
S | 2773 | 2523 | 2806 | 90.98 | 89.91
SBAR | 1757 | 1537 | 1685 | 87.48 | 91.22
SBARQ | 2| 0| 0| 0.00 | NaN
SI NV | 11 | 2| 3| 18.18 | 66. 67
sQ | 1 0| 2| 0.00 | 0.00
ucpP | 28] 3| 13 | 10.71 | 23.08
VP | 2231 | 2115 | 2248 | 94. 80 | 94. 08
WHADJ P | 0| 0| 2| NaN | 0. 00
WHADVP | 8 | 5| 6 | 62.50 | 83.33
WHNP | 30 | 25 | 28 | 83.33 | 89. 29
WHPP | 0| 0| 2| NaN | 0. 00
X | 5| 1] 1] 20.00 | 100. 00

Precision and recal| of DEPREL + ATTACHVENT

180

FRAG
I NTJ
LST

NP

NP- OBJ
NP- PRD
NP- SBJ

PP
PRN
PRT

RRC

SBAR
SBARQ
SI NV
SQ

VP
VHADJ P
VHADVP
VHNP
VHPP

Precision and recal |

Precision and recal |

to_root

| gold |

732
1166
| 21 |
19010
| 19 |
| 10 |
| 4
| 30|
| 7225
| 1974
| 344
| 4097
| 44 |
| 5429
| 140
| 159
| 187
| 2410

| 2773
| 1757

[11

| 28 |
| 2231

| gold |
| 2410
| 22207

| 25230
| 0|

| gold

| 2410

correct |

498 |
900

5
17803 |

2

5

2

18 |
6447
1744
290
3811

4587 |
73 |
105
154

2282

2386
1333

correct |

2282 |

21394

24436 |
0

correct |

2282 |

system |

636
1178
12 |
19178
11 |
11 |
5
22 |
7196
2006
365
4039

5532
119
133
185

2411

2806
1685

13 |
2248

of binned HEAD direction

system |

2409

22194

25244
0

of binned HEAD di stance

system |

2409

recall (99 |

recall (% |

recall (% |

precision (%
_________ e
68.03 | 78.30
77.19 | 76. 40
23.81 | 41. 67
93.65 | 92. 83
10.53 | 18.18
50.00 | 45. 45
50.00 | 40. 00
60. 00 | 81.82
89.23 | 89.59
88.35 | 86. 94
84.30 | 79.45
93.02 | 94. 36
9.09 | 44. 44
84.49 | 82.92
52.14 | 61. 34
66.04 | 78.95
82.35 | 83.24
94.69 | 94. 65
NaN | 0.00
86.04 | 85. 03
75.87 | 79.11
0.00 | NaN
9.09 | 33.33
0.00 | 0.00
10.71 | 23.08
92.69 | 91.99
NaN | 0.00
62.50 | 83.33
83.33 | 89. 29
NaN | 0.00
20.00 | 100. 00

precision (9

94. 69 | 94.73
96.34 | 96. 40
96. 85 | 96. 80

NaN | NaN

precision (9

1 | 24338 | 23454 | 24425 | 96.37 | 96. 02

2 | 10379 | 9716 | 10475 | 93.61 | 92.75
3-6 | 9224 | 8210 | 9198 | 89.01 | 89.26
7. | 3496 | 2863 | 3340 | 81.89 | 85. 72

C.8 German

Label ed attachnent score: 4374 / 5008 » 100 = 87.34 %
Unl abel ed attachnent score: 4526 / 5008 * 100 = 90.38 %
Label accuracy score: 4613 / 5008 * 100 = 92.11 %

Eval uation of the results in german.nonproj.pred

vs. gold standard german_tiger_test.conll:

Legend: '.S - the beginning of a sentence, '.E - the end of a sentence

Nunber of non-scoring tokens: 686

The overall accuracy and its distribution over CPOSTAGs

----------- B T
Accur acy | words | right | % | right | % | both | %
| | head | | dep | | right |

----------- B T g
total | 5008 | 4526 | 90%| 4613 | 92%| 4374 | 87%
----------- B T g
NN | 1201 | 1093 | 91%| 1067 | 89%| 1041 | 87%
ART | 593 | 584 | 98% | 592 | 100% | 583 | 98%
APPR | 463 | 368 | 79% | 375 | 81%| 340 | 73%
NE | 343 | 323 | 94% | 318 | 93%| 311 | 91%
ADJA | 321 | 311 | 97%| 318 | 99%| 310 | 97%
ADV | 274 | 212 | 7% 264 | 96% | 209 | 76%
WFIN | 227 | 212 | 93%| 210 | 93%| 207 | 91%
VAFI N | 157 | 142 | 90% | 142 | 90% | 137 | 87%
KON | 141 | 114 | 81%| 139 | 99%| 113 | 80%
$(| 123 | 106 | 86% | 122 | 99%| 106 | 86%
ADJID | 116 | 103 | 89% | 108 | 93%| 101 | 87%
APPRART | 109 | 82 | 75%)| 88 | 81%| 78 | 72%
VWPP | 103 | 99 | 96% | 95 | 92%| 94 | 91%
PPER | 90 | 88 | 98%| 82| 91%| 80 | 89%
WI NF | 89 | 82 | 92%| 79 | 89%| 771 87%
CARD | 86 | 77 1 90% | 80 | 93%| 76 | 88%
VMFIN | 62 | 56 | 90% | 57 | 92%]| 55 | 89%
PPCSAT | 49 | 48 | 98% | 48 | 98% | 48 | 98%
KOUs | 48 | 47 | 98% | 47 | 98% | 47 | 98%
PTKNEG | 45 | 33| 73%| 44 | 98% | 33| 73%
PI AT | 40 | 39 | 98%| 39 | 98%| 39 | 98%
PRF | 37 | 36 | 97%]| 35 | 95%| 34 | 92%

PRELS
PTKVZ
Pl S
PROAV
PTKZU
PDS
VAI NF
PDAT
WI ZU
PWAV
FM
KOKOM
PWS
VAPP
TRUNC
Koul
XY
PTKANT
Wi WP
PTKA
VM NF
APPO
APZR
PRELAT
NNE

The overal |

APPR
NE
ADIA
ADV
WFIN
VAFI N
KON

$(

ADID
APPRART
WPP
PPER
WI NF

| 34 33
| 31 31
| 31 26
| 29 26
| 26 26
| 24 21
| 16 16
| 16 16
| 11 9
| 11 10
| 9 8
| 9 8
| 8 5
| 7 7
| 5 5
| 5 5
| 4 4
| 3 3
| 2 2
| 2 2
| 2 2
| 2 2
| 1 1
| 1 1
| 1 1
| 1 1
e eeaas
error rate and

| 463
| 343
| 321
| 274
| 227
| 157
| 141
| 123
| 116
| 109
| 103
| 90
| 89

© N N b

97% |
100% |
84% |
90% |
100% |
88% |
100% |
100% |
82% |
91% |
89% |
89% |
62% |
100% |
100% |
100% |
100% |
100% |
100% |
100% |
100% |
100% |
100% |
100% |
100% |
100% |

33
31
23
27
26
20
16
16

i
[N

P P P P N DNNDN®MNOO NN O © BN

its distribution

10% |

9% |
206 |
21% |
6% |
3% |
23% |
7% |
10% |
19% |
14% |
11% |
25% |
4% |
206 |
8% |
10% |

395

97% | 32
100% | 31
74% | 23
93% | 24
100% | 26
83% | 18
100% | 16
100% | 16
64% | 7
100% | 10
44% | 4
100% | 8
75% | 5
100% | 7
80% | 4
100% | 5
100% | 4
100% | 3
100% | 2
100% | 2
100% | 2
100% | 2
100% | 1
100% | 1
100% | 1
100% | 1
______ P
over CPCSTAGs
______ P
% | both
| wrong
______ U
8% | 243
______ U
11% | 82
0% | 0
19% | 60
7% | 13
1% | 2
4% | 7
7% | 12
10% | 10
1% | 1
1% | 1
7% | 6
19% | 17
8% | 3
9% | 0
11% | 5
7% | 5

94%
100%
74%
83%
100%
75%
100%
100%
64%
91%
44%
89%
62%
100%
80%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

VMFIN | 62 | 6| 10%)| 5| 8% | 4| 6%
PPOSAT | 49 | 1] 2% | 1] 2% | 1] 2%

Kous | 48 | 1] 2% | 1] 2% | 1] 2%
PTKNEG | 45 | 12 | 27%| 1] 2% | 1] 2%

Pl AT | 40 | 1] 2% 1] 2% 1] 2%

PRF | 37 | 1] 3% 21 5% 0] 0%
PRELS | 34 | 1] 3% 1] 3% 0] 0%
PTKVZ | 31 | 0| 0%]| 0] 0% 0] 0%

PIS | 31 | 5] 16%)| 8| 26%)]| 5] 16%

PROAV | 29 | 3 10%)| 21 7% 0] 0%

PTKZU | 26 | 0| 0% | 0| 0% | 0| 0%

PDS | 24 | 3| 12%| 41 17%| 1] 4%

VAI NF | 16 | 0| 0% | 0| 0% | 0| 0%

PDAT | 16 | 0| 0% | 0| 0% | 0| 0%

Wi ZU | 11 | 2| 18%| 4| 36%| 2| 18%

PWAV | 11 | 1] 9%]| 0] 0% 0] 0%

FM | 9| 1] 11%]| 5| 56%)| 1] 11%
KOKOM | 9| 1] 11%]| 0] 0% 0] 0%

PWS | 8 | 3| 38%] 2| 25%| 2| 25%

VAPP | 7 0] 0% 0] 0% 0] 0%
TRUNC | 5| 0] 0% 1] 20%]| 0] 0%

Koul | 5| 0| 0% | 0| 0% | 0| 0%

XY | 4 | 0| 0% | 0| 0% | 0| 0%
PTKANT | 3| 0| 0% | 0| 0% | 0| 0%

Wi WP | 2| 0| 0% | 0| 0% | 0| 0%

PTKA | 2| 0| 0% | 0| 0% | 0| 0%

VM NF | 2| 0] 0% 0] 0% 0] 0%

APPO | 2| 0] 0% 0] 0% 0] 0%

APZR | 1| 0] 0% 0] 0% 0] 0%
PRELAT | 1| 0] 0%] 0] 0% 0] 0%

NNE | 1| 0] 0% 0] 0% 0] 0%

VA NP | 1| 0] 0% 0] 0% 0] 0%
----------- B T
Precision and recal | of DEPREL

---------------- R e e i R
deprel | gold | correct | system| recall (% | precision (%
---------------- R e e i R
AC | 4 4| 4 100. 00 | 100. 00
AG | 150 | 129 | 152 | 86.00 | 84.87
AVB | 0| 0| 1] NaN | 0.00
APP | 21 | 11 | 20 | 52.38 | 55. 00
cc | 6 | 4 | 8 | 66.67 | 50. 00
cb | 129 | 129 | 132 | 100. 00 | 97.73
a | 172 | 148 | 174 | 86. 05 | 85. 06
c™M | 9 | 9 | 9 | 100. 00 | 100. 00
CcP | 52 | 52 | 53 | 100. 00 | 98.11
cve | 2| 1] 2| 50. 00 | 50. 00
DA | 22 11 | 17 | 50. 00 | 64.71
DH | 3| 2| 3| 66.67 | 66. 67
DM | 2| 2| 2| 100. 00 | 100. 00

184

EP |11 9 | 11 | 81.82 | 81.82

Ju |12 10 | 10 | 83.33 | 100. 00
MR | 153 | 114 | 160 | 74.51 | 71.25
MO | 772 | 690 | 755 | 89.38 | 91.39
NG | 44 43 | 44 | 97.73 | 97.73
NK | 1721 | 1692 | 1724 | 98.31 | 98. 14
NVC | 24 23 | 24 | 95.83 | 95. 83
oA | 206 | 175 | 220 | 84.95 | 79.55
A2 | 0] 0| 1] NaN | 0.00
oc | 220 | 210 | 236 | 95. 45 | 88. 98
oP | 46| 22 | 26 | 47.83 | 84. 62
PAR | 10| 4| 4| 40.00 | 100. 00
PD | 62| 46 | 61 | 74.19 | 75. 41
PG | 22 21 | 29 | 95. 45 | 72.41
PH | 1 0| 0| 0.00 | NaN
PM | 27 27 | 27 | 100. 00 | 100. 00
PNC | 67| 65 | 67 | 97.01 | 97.01
PUNC | 122 | 121 | 121 | 99.18 | 100. 00
RC | 36| 36 | 39 | 100. 00 | 92.31
RE | 13 71 9| 53.85 | 77.78
ROOT | 357 | 346 | 357 | 96.92 | 96. 92
RS | 2| 1| 1 50. 00 | 100. 00
SB | 425 | 376 | 423 | 88.47 | 88. 89
SBP | 10| 7 10 | 70.00 | 70. 00
SVP | 31 31 | 31 | 100. 00 | 100. 00
uc | 4| 2| 5 | 50. 00 | 40. 00
\Ve} | 1] 1| 1] 100. 00 | 100. 00
_ | 37 32 | 35 | 86.49 | 91.43

Precision and recal| of DEPREL + ATTACHVENT

---------------- T
deprel | gold | correct | system]| recall (% | precision (%
---------------- T o
AC | 4| 4| 4| 100. 00 | 100. 00
AG | 150 | 123 | 152 | 82.00 | 80.92
AMB | 01 0| 1] NaN | 0.00
APP | 21 8 | 20 | 38.10 | 40. 00
cc | 6 | 4| 8 | 66.67 | 50. 00
cD | 129 | 103 | 132 | 79.84 | 78.03
a | 172 | 128 | 174 | 74.42 | 73.56
(oY | 9 | 8 | 9 | 88.89 | 88. 89
cP | 52| 52 | 53 | 100. 00 | 98. 11
ovc | 2| 1| 2| 50.00 | 50. 00
DA | 22 9 | 17 | 40.91 | 52.94
DH | 3| 2| 3| 66.67 | 66. 67
DM | 2| 2| 2| 100. 00 | 100. 00
EP |11 9 | 11 | 81.82 | 81.82
Ju | 12 | 10 | 10 | 83.33 | 100. 00
MR | 153 | 98 | 160 | 64.05 | 61.25
MO | 772 | 598 | 755 | 77.46 | 79.21
NG | 44 32 | 44 | 72.73 | 72.73

185

NK | 1721 | 1666 | 1724 | 96. 80 | 96. 64
NMC | 24 | 23 | 24 | 95.83 | 95. 83
QA | 206 | 170 | 220 | 82.52 | 77.27
OA2 | 0| 0| 1] NaN | 0. 00
oc | 220 | 206 | 236 | 93.64 | 87.29
o | 46 | 22 | 26 | 47.83 | 84.62
PAR | 10 | 4| 4 40.00 | 100. 00
PD | 62| 45 | 61 | 72.58 | 73.77
PG | 22 19 | 29 | 86.36 | 65.52
PH | 1] 0| 0| 0.00 | NaN
PM | 27 | 27 | 27 | 100. 00 | 100. 00
PNC | 67 | 65 | 67 | 97.01 | 97.01
PUNC | 122 | 105 | 121 | 86.07 | 86.78
RC | 36 | 30 | 39 | 83.33 | 76.92
RE | 13 | 7| 9 | 53.85 | 77.78
ROOT | 357 | 346 | 357 | 96.92 | 96. 92
RS | 2| 1] 1 50. 00 | 100. 00
SB | 425 | 374 | 423 | 88.00 | 88. 42
SBP | 10 | 7 10 | 70.00 | 70. 00
SwP | 31 31 | 31 | 100. 00 | 100. 00
uc | 4 2| 5 | 50. 00 | 40. 00
VO | 1] 1] 1] 100. 00 | 100. 00
_ | 37 | 32 | 35 | 86.49 | 91.43
Precision and recall of binned HEAD direction

---------------- R e e S
direction | gold | correct | system| recall (% | precision (%
---------------- R e e S
to_root | 357 | 346 | 357 | 96.92 | 96. 92
left | 2526 | 2439 | 2557 | 96.56 | 95. 39
right | 2125 | 2006 | 2094 | 94. 40 | 95. 80
sel f | 0| 0| 0| NaN | NaN
Precision and recall of binned HEAD di stance

---------------- R e e i R
di stance | gold | correct | system| recall (% | precision (%
---------------- R e e i R
to_root | 357 | 346 | 357 | 96.92 | 96. 92
1 | 2122 | 2038 | 2137 | 96. 04 | 95.37
2 | 895 | 823 | 888 | 91.96 | 92. 68
3-6 | 1055 | 948 | 1069 | 89.86 | 88. 68
7-. | 579 | 501 | 557 | 86.53 | 89. 95

C.9 Japanese
Label ed attachnent score: 4538 / 5003 * 100 = 90.71 %

186

Unl abel ed attachnent score:

Label accuracy score:

4645 / 5003 * 100 =
4690 / 5003 * 100 =

92.84 %
93.74 %

Eval uation of the results in japanese. nonproj.pred

vs. gold standard japanese_verbnobil _test.conll:
Legend: '.S - the beginning of a sentence, '.E -
Nunber of non-scoring tokens: 708
The overal |l accuracy and its distribution over CPOSTAGs
----------- B T g
Accur acy | words | right | % | right | % | both
| | head | | dep | | right
----------- Bk S e S EEEE SR
total | 5003 | 4645 | 93%| 4690 | 94%| 4538
----------- Bk S e S EEEE SR
| 1045 | 958 | 92%| 965 | 92%| 912
| 1043 | 971 | 93%| 968 | 93%| 939
PS | 505 | 443 | 88% | 460 | 91%| 442
\ | 407 | 377 | 93% | 381 | 94%| 374
PV | 353 | 345 | 98% | 350 | 99%| 345
cb | 297 | 279 | 94% | 278 | 94%| 271
ADV | 252 | 218 | 87%| 237 | 94%| 214
1TJ | 219 | 217 | 99%| 217 | 99%| 217
ADJ | 218 | 208 | 95%| 211 | 97%| 205
NAVE | 203 | 201 99%)| 199 | 98%| 199
CNJ | 138 | 116 | 84%)| 117 | 85%| 116
S | 99 | 94 | 95% | 95 | 96%| 93
VAUX | 87 | 86 | 99%| 86 | 99%| 85
NT | 56 | 54 | 96%| 53 | 95%| 53
VADJ | 41 | 41 | 100% | 41 | 100% | 41
UNI'T | 21 | 21 | 100% | 16 | 76%]| 16
R | 11 | 11 | 100% | 11 | 100% | 11
-- | 6 | 3| 50%)| 3| 50%)]| 3
XXX | 2| 2| 100% | 2| 100% | 2
----------- Bk S e S EEEE SR
The overall error rate and its distribution over CPOSTAGs
----------- B T g
Error | words | head | % | dep | % | both
Rat e | | err | | err | | wrong
----------- B T g
total | 5003 | 358 | 7% | 313 | 6% | 206
----------- Bk S e S EEEE SR
| 1045 | 87 | 8% 80 | 8%| 34
| 1043 | 721 %] 75 7% 43
PS | 505 | 62 | 12%)| 45 | 9% 44

the end of a sentence

100%
76%
100%
50%
100%

\ | 407 | 30 | 7% | 26 | 6% | 23 | 6%

PV | 353 | 8 | 2% | 3| 1% | 3| 1%

cb | 297 | 18 | 6% | 19 | 6% | 11 | 4%

ADV | 252 | 34 | 13%]| 15 | 6% | 11 | 4%

1TJ | 219 | 21 1% 2] 1% 21 1%

ADJ | 218 | 10| 5% 71 3% 41 2%

NAVE | 203 | 21 1% 41 2% 2] 1%

CNJ | 138 | 22| 16%| 21| 15%)| 21| 15%

S | 99 | 5] 5% 41 4% 3] 3%

VAUX | 87 | 1] 1% 1] 1%| 0] 0%

NT | 56 | 2| 4% | 3| 5% | 2| 4%

VADJ | 41 | 0| 0% | 0| 0% | 0| 0%

UNI'T | 21 | 0| 0% | 5| 24%)| 0| 0%

R | 11 | 0| 0% | 0| 0% | 0| 0%

-- | 6 | 3| 50%)| 3| 50%)| 3| 50%

XXX | 2| 0| 0%]| 0] 0% 0] 0%
----------- L S S e ek SRR R
Precision and recal | of DEPREL

---------------- T o
deprel | gold | correct | system]| recall (% | precision (%
---------------- T o
- | 56 | 40 | 43 | 71.43 | 93.02
ADJ | 854 | 706 | 801 | 82.67 | 88. 14
cowp | 2406 | 2367 | 2440 | 98.38 | 97.01
HD | 110 | 102 | 114 | 92.73 | 89. 47
MRK | 436 | 435 | 436 | 99.77 | 99. 77
ROOT | 937 | 865 | 962 | 92.32 | 89. 92
SBJ | 204 | 175 | 207 | 85.78 | 84.54
Precision and recall of DEPREL + ATTACHVENT

---------------- T o
deprel | gold | correct | system]| recall (% | precision (%
---------------- R e e i R
- | 56| 40 | 43 | 71.43 | 93.02
ADJ | 854 | 595 | 801 | 69.67 | 74.28
cowp | 2406 | 2354 | 2440 | 97.84 | 96. 48
HD | 110 | 99 | 114 | 90. 00 | 86. 84
MRK | 436 | 425 | 436 | 97.48 | 97.48
ROOT | 937 | 865 | 962 | 92.32 | 89.92
SBJ | 204 | 160 | 207 | 78.43 | 77.29
Precision and recall of binned HEAD direction

---------------- R e e i R
direction | gold | correct | system| recall (% | precision (%
---------------- R e e S
to_root | 937 | 865 | 962 | 92.32 | 89. 92

left | 417 | 409 | 413 | 98.08 | 99. 03
ri ght | 3649 | 3549 | 3628 | 97.26 | 97.82
sel f | 0] 0| 0] NaN | NaN

Precision and recal |l of binned HEAD di stance

---------------- R e e S
di stance | gold | correct | system| recall (% | precision (%
---------------- R e e i R
to_root | 937 | 865 | 962 | 92.32 | 89.92
1 | 3228 | 3200 | 3273 | 99.13 | 97.77
2 | 270 | 224 | 265 | 82.96 | 84.53
3-6 | 356 | 291 | 357 | 81.74 | 81.51
7-... | 212 | 117 | 146 | 55.19 | 80. 14

C.10 Portuguese

Label ed attachnent score: 4349 / 5009 » 100 = 86.82 %
Unl abel ed attachnent score: 4576 / 5009 * 100 = 91.36 %
Label accuracy score: 4531 / 5009 * 100 = 90.46 %

Eval uation of the results in portuguese.nonproj.pred

vs. gold standard portuguese_bosque_test.conl|:

Legend: '.S - the beginning of a sentence, '.E - the end of a sentence

Nunber of non-scoring tokens: 858

The overal |l accuracy and its distribution over CPOSTAGs

----------- B T
Accur acy | words | right | % | right | % | both | %
| | head | | dep | | right |

----------- B T
total | 5009 | 4576 | 91%| 4531 | 90%| 4349 | 87%
----------- B T
n | 1143 | 1071 | 94%| 1071 | 94%| 1044 | 91%
prp | 898 | 753 | 84% | 716 | 80%| 662 | 74%
art | 780 | 777 | 100% | 778 | 100% | 777 | 100%
v | 732 | 643 | 88% | 629 | 86%| 595 | 81%
prop | 332 | 307 | 92% | 305 | 92%| 289 | 87%
pron | 321 | 313 | 98% | 298 | 93%| 297 | 93%
adv | 248 | 201 | 81%| 203 | 82%| 186 | 75%
adj | 230 | 226 | 98% | 220 | 96% | 219 | 95%
conj | 182 | 152 | 84%| 176 | 97%| 150 | 82%
num | 134 | 126 | 94% | 128 | 96% | 124 | 93%
pp | 9 | 71 78%]| 7] 78%] 6| 67%

189

The overall error rate and its distribution over CPOSTAGs

----------- L S S e ek SRR R
Error | words | head | % | dep | % | both | %

Rat e | | err | | err | | wong |

----------- L S S e S e S
total | 5009 | 433 | 9%| 478 | 10%| 251 | 5%
----------- B T

n | 1143 | 72 | 6% | 72 | 6% | 45 | 4%

prp | 898 | 145 | 16% | 182 | 20%| 91 | 10%

art | 780 | 3] 0% | 2| 0% | 2| 0%

v | 732 | 89 | 12%]| 103 | 14%]| 55 | 8%

prop | 332 | 25| 8% 27| 8%| 9] 3%

pron | 321 | 8 2% 23| 7% 71 2%

adv | 248 | 47 | 19%| 45 | 18%| 30 | 12%

adj | 230 | 41 2% 10| 4% 3] 1%

conj | 182 | 30 | 16%| 6] 3% 41 2%

num | 134 | 8| 6% 6 4% 41 3%

pp | 9 | 2| 22%]| 2| 22%]| 1| 11%
----------- B T
Precision and recal | of DEPREL

---------------- R e e i S
deprel | gold | correct | system| recall (% | precision (%
---------------- R e e i S
>A | 42 31 | 47 | 73.81 | 65. 96
>N | 1043 | 1032 | 1037 | 98. 95 | 99. 52
>pP | 10 | 1] 2| 10.00 | 50. 00
? | 9| 1] 1] 11.11 | 100. 00
A< | 29 | 26 | 39 | 89.66 | 66. 67
ACC | 316 | 288 | 327 | 91.14 | 88. 07
ACC>- PASS | 2| 0| 0| 0.00 | NaN
ADVL | 451 | 349 | 459 | 77.38 | 76.03
ADVO | 8 | 1] 1] 12.50 | 100. 00
ADVS | 20| 5 | 10 | 25.00 | 50. 00
APP | 25 18 | 29 | 72.00 | 62. 07
AUX | 8 | 7 13 | 87.50 | 53.85
AUX< | 2 0] 0] 0.00 | NaN
aT | 166 | 139 | 157 | 83.73 | 88. 54
CIT&ADVL | 2| 0| 0| 0.00 | NaN
co | 127 | 126 | 126 | 99.21 | 100. 00
coM | 2| 0| 0| 0.00 | NaN
DAT | 5| 5| 5| 100. 00 | 100. 00
EXC | 1] 0| 0| 0.00 | NaN
FoC | 4 4| 4 100. 00 | 100. 00
KOWP< | 3 1 2 33.33 | 50. 00
W | 83| 76 | 87 | 91.57 | 87.36
N< | 712 | 675 | 732 | 94.80 | 92.21

190

oc | 8 | 3| 9| 37.50 | 33.33
P | 2 0] 1] 0.00 | 0. 00
P< | 884 | 871 | 884 | 98.53 | 98. 53
PASS |17 | 17 | 20 | 100. 00 | 85. 00
PCIT | 1] 0] 1] 0.00 | 0.00
PIV | 82| 48 | 74 | 58.54 | 64. 86
PW | 2] 0] 0| 0.00 | NaN
PRED |11 5| 5 45.45 | 100. 00
PRT- AUX | 1] 0] 0| 0.00 | NaN
PRT- AUX< | 10| 10 | 14 | 100. 00 | 71. 43
QE | 6 | 0] 3| 0.00 | 0.00
s< | 5| 0] 0| 0.00 | NaN
sc |77 62 | 79 | 80.52 | 78. 48
STA | 249 | 233 | 254 | 93.57 | 91.73
suB | 50| 48 | 54 | 96.00 | 88. 89
SuBJ | 352 | 318 | 354 | 90.34 | 89. 83
TOP | 1] 0] 0| 0.00 | NaN
urT |41 34 | 37 | 82.93 | 91. 89
voc | 1] 0] 0| 0.00 | NaN

Precision and recall of DEPREL + ATTACHVENT

---------------- T
deprel | gold | correct | system]| recall (% | precision (%

---------------- R e e i R
>A | 42 31 | 47 | 73.81 | 65. 96
>N | 1043 | 1031 | 1037 | 98.85 | 99. 42
>p | 10 | 1] 2 10.00 | 50. 00
? | 9 | 1 1] 11.11 | 100. 00
A< | 29 | 26 | 39 | 89. 66 | 66. 67
ACC | 316 | 284 | 327 | 89.87 | 86. 85
ACC>- PASS | 2| 0| 0| 0.00 | NaN
ADVL | 451 | 308 | 459 | 68.29 | 67.10
ADVO | 8 | 1] 1] 12.50 | 100. 00
ADVS | 20 | 4 | 10 | 20.00 | 40. 00
APP | 25 | 11 | 29 | 44.00 | 37.93
AUX | 8 | 7 13 | 87.50 | 53.85
AUX< | 2| 0| 0| 0.00 | NaN
aT | 166 | 111 | 157 | 66.87 | 70.70
CIT&ADVL | 2| 0| 0| 0.00 | NaN
co | 127 | 100 | 126 | 78.74 | 79.37
[ee Y] | 2| 0| 0| 0.00 | NaN
DAT | 5| 5 | 5| 100. 00 | 100. 00
EXC | 1] 0| 0| 0.00 | NaN
FoC | 4| 2| 4| 50. 00 | 50. 00
KOVP< | 3| 0| 2| 0.00 | 0.00
W | 83 | 76 | 87 | 91.57 | 87.36
N< | 712 | 640 | 732 | 89.89 | 87.43
N<PRED | 139 | 72 | 142 | 51.80 | 50. 70
oc | 8 | 3| 9 | 37.50 | 33.33
P | 2| 0| 1] 0.00 | 0.00

191

PASS |17 | 16 | 20 | 94.12 | 80. 00
PCIT | 1] 0| 1] 0.00 | 0. 00
PIV | 82| 48 | 74 | 58.54 | 64. 86
PMW | 2| 0| 0] 0.00 | NaN
PRED |11 4| 5 | 36.36 | 80. 00
PRT- AUX | 1] 0| 0] 0.00 | NaN
PRT- AUX< | 10| 10 | 14 | 100. 00 | 71.43
QUE | 6 | 0| 3 0.00 | 0. 00
s< | 5 | 0| 0] 0.00 | NaN
sc |77 61 | 79 | 79.22 | 77.22
STA | 249 | 232 | 254 | 93.17 | 91.34
suB | 50| 48 | 54 | 96. 00 | 88. 89
SUBJ | 352 | 311 | 354 | 88.35 | 87.85
TP | 1] 0| 0] 0.00 | NaN
urT |41 34 | 37 | 82.93 | 91.89
Voo | 1] 0| 0] 0.00 | NaN

Precision and recal |l of binned HEAD direction

---------------- T
direction | gold | correct | system| recall (% | precision (%
---------------- T
to_root | 288 | 271 | 288 | 94.10 | 94.10
left | 3006 | 2966 | 3003 | 98. 67 | 98.77
right | 1715 | 1680 | 1718 | 97.96 | 97.79
sel f | 0| 0| 0| NaN | NaN

Precision and recal |l of binned HEAD di stance

---------------- T o
di stance | gold | correct | system| recall (% | precision (%
---------------- T o
to_root | 288 | 271 | 288 | 94.10 | 94.10
1 | 2658 | 2610 | 2696 | 98.19 | 96. 81
2 | 1117 | 1059 | 1121 | 94.81 | 94. 47
3-6 | 623 | 512 | 630 | 82.18 | 81.27
7- | 323 | 223 | 274 | 69. 04 | 81.39

C.11 Slovene

Label ed attachnent score: 3675 / 5004 » 100 = 73.44 %
Unl abel ed attachnent score: 4162 / 5004 » 100 = 83.17 %
Label accuracy score: 4129 / 5004 * 100 = 82.51 %

Eval uation of the results in slovene.nonproj.pred

192

vs. gold standard sl ovene_sdt_test.conll:

Legend: '.S - the beginning of a sentence, '.E - the end of a sentence

Nunber of non-scoring tokens: 1386

The overall accuracy and its distribution over CPOSTAGs

----------- L S S e ek SRR R
Accur acy | words | right | % | right | % | both | %
| | head | | dep | | right |
----------- B T g
total | 5004 | 4162 | 83%| 4129 | 83%| 3675 | 73%
----------- B T
Verb | 1483 | 1256 | 85%]| 1229 | 83%| 1138 | 77%
Noun | 994 | 875 | 88%| 740 | 74%| 693 | 70%
Pr onoun | 583 | 517 | 89%| 437 | 75%| 413 | 71%
Conjunction | 448 | 283 | 63%| 408 | 91%| 279 | 62%
Adposition | 419 | 327 | 78%| 415 | 99%| 324 | 77%
Adver b | 399 | 334 | 84%| 339 | 85%| 303 | 76%
Adjective | 395 | 347 | 88%| 346 | 88%| 330 | 84%
Particle | 214 | 168 | 79% | 164 | 77%]| 149 | 70%
Nurer al | 45 | 38 | 84%| 29 | 64%]| 29 | 64%
Interjection | 15 | 8| 53%]| 13 | 87%]| 8| 53%
Abbreviation | 9 | 9 | 100% | 9| 100% | 9 | 100%
----------- B T g

The overall error rate and its distribution over CPOSTAGs

----------- L S S e ek SRR R
Error | words | head | % | dep | % | both | %
Rat e | | err | | err | | wong |
----------- B T g
total | 5004 | 842 | 17%| 875 | 17%| 388 | 8%
----------- B T g
Verb | 1483 | 227 | 15%| 254 | 17%| 136 | 9%
Noun | 994 | 119 | 12%| 254 | 26%| 721 1%
Pr onoun | 583 | 66 | 11%| 146 | 25%| 42 1%
Conjunction | 448 | 165 | 37%]| 40| 9% 36| 8%
Adposition | 419 | 92 | 22%| 41 1% 1] 0%
Adver b | 399 | 65 | 16% | 60 | 15%| 29 1%
Adjective | 395 | 48 | 12%| 49 | 12%)| 32| 8%
Particle | 214 | 46 | 21% | 50 | 23%]| 31| 14%
Nurer al | 45 | 71 16%| 16 | 36%]| 71 16%
Interjection | 15 | 7 47%| 2| 13%| 2| 13%
Abbrevi ation | 9 | 0| 0% | 0| 0% | 0| 0%
----------- B T

Precision and recal | of DEPREL

deprel | gold | correct | system| recall (% | precision (%

---------------- S
Adv | 680 | 552 | 727 | 81.18 | 75.93
AdVAL T |11 0| 2 | 0.00 | 0. 00
Atr | 760 | 658 | 799 | 86.58 | 82.35
At r Adv | 9 | 0| 7 0.00 | 0. 00
AtrAtr | 4 0| 0] 0.00 | NaN
At r Cbj | 1] 0| 0] 0.00 | NaN
Atv | 57| 27 | 39 | 47.37 | 69. 23
AtvV |27 6 | 7 22.22 | 85. 71
AuxC | 234 | 225 | 233 | 96.15 | 96.57
AuxG | 0] 0| 1] NaN | 0. 00
AuxP | 412 | 410 | 411 | 99.51 | 99. 76
AuxR | 2| 0| 1] 0.00 | 0. 00
AuxT | a7 | 37 | 61 | 78.72 | 60. 66
AuxV | 631 | 616 | 645 | 97.62 | 95. 50
AuxX | 0] 0| 1] NaN | 0. 00
AuxY | 154 | 91 | 125 | 59.09 | 72.80
AuxZ | 110 | 91 | 122 | 82.73 | 74.59
Coor d | 174 | 161 | 177 | 92.53 | 90. 96
ExD | 156 | 75 | 141 | 48.08 | 53.19
j | 501 | 367 | 517 | 73.25 | 70. 99
oj At r | 3 0 | 0] 0.00 | NaN
Pnom | 158 | 114 | 172 | 72.15 | 66. 28
Pred | 496 | 430 | 504 | 86. 69 | 85. 32
Sb | 377 | 269 | 312 | 71.35 | 86. 22

Precision and recal | of DEPREL + ATTACHVENT

---------------- R e e i R
deprel | gold | correct | system| recall (% | precision (%
---------------- T o
Adv | 680 | 510 | 727 | 75.00 | 70.15
AdvAL 1 | 11 | 0| 2| 0.00 | 0.00
Atr | 760 | 626 | 799 | 82.37 | 78.35
At r Adv | 9| 0| 7 0.00 | 0.00
AtTALT | 4 0| 0| 0.00 | NaN
At r Obj | 1] 0| 0| 0.00 | NaN
AtV | 57 27 | 39 | 47.37 | 69. 23
At vV | 27 5 | 7 18.52 | 71.43
AuxC | 234 | 161 | 233 | 68.80 | 69. 10
AUXG | 0| 0| 1] NaN | 0.00
AuxP | 412 | 320 | 411 | 77.67 | 77.86
AuxR | 2| 0| 1] 0.00 | 0.00
AuxT | 47 | 36 | 61 | 76.60 | 59. 02
AuxV | 631] 602 | 645 | 95.40 | 93.33
AuxX | 0| 0| 1] NaN | 0.00
AuxY | 154 | 82 | 125 | 53.25 | 65. 60
AuxZ | 110 | 82 | 122 | 74.55 | 67.21
Coord | 174 | 99 | 177 | 56.90 | 55.93
ExD | 156 | 65 | 141 | 41.67 | 46.10
j | 501 | 336 | 517 | 67.07 | 64.99

194

Chj Atr | 3| 0| 0| 0.00 | NaN
Pnom | 158 | 109 | 172 | 68.99 | 63.37
Pred | 496 | 368 | 504 | 74.19 | 73.02
Sh | 377 | 247 | 312 | 65.52 | 79.17
Precision and recal |l of binned HEAD direction

---------------- R e e S
direction | gold | correct | system| recall (% | precision (%
---------------- T
to_root | 392 | 312 | 378 | 79.59 | 82.54
left | 2339 | 2140 | 2327 | 91.49 | 91. 96
right | 2273 | 2085 | 2299 | 91.73 | 90. 69
sel f | 0| 0| 0| NaN | NaN
Precision and recall of binned HEAD di stance

---------------- R e e i R
di stance | gold | correct | system| recall (% | precision (%
---------------- S
to_root | 392 | 312 | 378 | 79.59 | 82.54
1 | 2336 | 2197 | 2375 | 94.05 | 92.51
2 | 1063 | 952 | 1113 | 89.56 | 85.53
3-6 | 976 | 755 | 931 | 77.36 | 81.10
7-. | 237 | 120 | 207 | 50. 63 | 57.97

C.12 Spanish

Label ed attachnent score: 4105 / 4991 » 100 = 82.25 %

Unl abel ed attachnent score: 4295 / 4991 = 100 = 86.05 %

Label accuracy score: 4512 / 4991 * 100 = 90.40 %

Eval uation of the results in spanish.proj.pred

vs. gold standard spani sh_cast3lb_test.conll:

Legend: '.S - the beginning of a sentence, '.E - the end of a sentence
Nunber of non-scoring tokens: 703
The overal |l accuracy and its distribution over CPOSTAGs
----------- B T
Accur acy | words | right | % | right | % | both | %
| | head | | dep | | right |
----------- B T
total | 4991 | 4295 | 86%| 4512 | 90%| 4105 | 82%

195

----------- B T
n | 1310 | 1208 | 92%| 1225 | 94%| 1159 | 88%

d | 856 | 844 | 99% | 855 | 100% | 844 | 99%

s | 815 | 653 | 80% | 665 | 82%| 595 | 73%

v | 695 | 495 | 71%| 586 | 84%| 476 | 68%

a | 415 | 372 | 90%| 396 | 95%| 364 | 88%

c | 350 | 250 | 71%| 327 | 93%| 245 | 70%

p | 277 | 247 | 89%| 231 | 83%| 218 | 79%

r | 224 | 184 | 82%)| 183 | 82%| 166 | 74%

w | 20 | 20 | 100% | 19 | 95%)| 19 | 95%

z | 15 | 12 | 80%| 15 | 100% | 12| 80%

z | 13 | 10 | 77%| 9| 69%)| 7| 54%

i | 1] 0| 0% | 1] 100% | 0| 0%
----------- B T g

The overall error rate and its distribution over CPOSTAGs

----------- L S S e ek SRR R
Error | words | head | % | dep | % | both | %

Rat e | | err | | err | | wong |

----------- B T g
total | 4991 | 696 | 14%| 479 | 10%| 289 | 6%
----------- B T g

n | 1310 | 102 | 8% | 85 | 6% | 36 | 3%

d | 856 | 12 | 1% | 1] 0% | 1] 0%

s | 815 | 162 | 20%)| 150 | 18% | 92 | 11%

v | 695 | 200 | 29%)| 109 | 16% | 90 | 13%

a | 415 | 43 | 10%| 19| 5%]| 1] 3%

c | 350 | 100 | 29%)| 23| 7% 18| 5%

p | 277 | 30 | 11%)| 46 | 17%)| 17] 6%

r | 224 | 40 | 18%| 41| 18%)| 23| 10%

w | 20 | 0| 0% | 1] 5% | 0| 0%

z | 15 | 3 20%| 0| 0% | 0| 0%

z | 13 | 3| 23%| 4| 31%| 1] 8%

i | 1] 1] 100% | 0| 0% | 0| 0%
----------- B T g
Precision and recal | of DEPREL

---------------- R e e i S
deprel | gold | correct | system| recall (% | precision (%
---------------- T o
ATR | 85 | 72 | 86 | 84.71 | 83.72
CAG | 12 | 10 | 15 | 83.33 | 66. 67
cc | 383 | 289 | 417 | 75. 46 | 69. 30
cb | 289 | 205 | 265 | 70.93 | 77.36
CD. Q | 15 | 13 | 14 | 86.67 | 92. 86
a | 47| 32 | 45 | 68.09 | 71.11
CPRED | 2| 0| 0| 0.00 | NaN
CPRED. CD | 6 | 3| 4 50. 00 | 75. 00
CPRED. SUJ | 6 | 3| 3| 50. 00 | 100. 00

196

CREG | 45 | 15 | 23 | 33.33 | 65. 22
ET |17 | 11 | 15 | 64.71 | 73.33
| MPERS | 7 3| 4| 42.86 | 75. 00
MOD | 15 | 9| 9| 60. 00 | 100. 00
NEG | 43| 41 | 42 | 95.35 | 97.62
PASS |17 | 16 | 20 | 94.12 | 80. 00
ROOT | 197 | 172 | 199 | 87.31 | 86. 43
sw | 340 | 278 | 333 | 81.76 | 83. 48
_ | 3465 | 3340 | 3497 | 96.39 | 95.51

Precision and recall of DEPREL + ATTACHVENT

---------------- T
deprel | gold | correct | system]| recall (% | precision (%

---------------- R e e i R
ATR | 85 | 72 | 86 | 84.71 | 83.72
CAG | 12 | 9 | 15 | 75.00 | 60. 00
cc | 383 | 264 | 417 | 68.93 | 63.31
cD | 289 | 190 | 265 | 65.74 | 71.70
. Q | 15 | 13 | 14 | 86.67 | 92.86
a | 47 | 31 | 45 | 65.96 | 68. 89
CPRED | 2| 0| 0| 0.00 | NaN
CPRED. CD | 6 | 3| 4| 50. 00 | 75. 00
CPRED. SUWJ | 6 | 3| 3| 50. 00 | 100. 00
CREG | 45 | 15 | 23 | 33.33 | 65. 22
ET | 17 | 10 | 15 | 58.82 | 66. 67
| MPERS | 7 3| 4 42.86 | 75. 00
MOD | 15 | 8 | 9 | 53.33 | 88. 89
NEG | 43| 40 | 42 | 93.02 | 95. 24
PASS | 17 | 16 | 20 | 94.12 | 80. 00
ROOT | 197 | 172 | 199 | 87.31 | 86. 43
Sw | 340 | 263 | 333 | 77.35 | 78.98
_ | 3465 | 2993 | 3497 | 86.38 | 85. 59

Precision and recall of binned HEAD direction

---------------- R e e i R
direction | gold | correct | system| recall (% | precision (%
---------------- R e e S
to_root | 197 | 172 | 199 | 87.31 | 86. 43
left | 3028 | 2940 | 3030 | 97.09 | 97.03
right | 1766 | 1677 | 1762 | 94. 96 | 95.18
sel f | 0| 0| 0| NaN | NaN

Precision and recall of binned HEAD di stance

di stance | gold | correct | system| recall (% | precision (%

to_root | 197 | 172 | 199 | 87.31 | 86. 43

1 | 2671 | 2576 | 2708 | 96. 44 | 95.13

2 | 979 | 886 | 989 | 90.50 | 89.59
3-6 | 736 | 560 | 722 | 76.09 | 77.56
7. | 408 | 280 | 373 | 68.63 | 75.07

C.13 Swedish

Label ed attachnent score: 4145 / 5021 » 100 = 82.55 %
Unl abel ed attachnent score: 4465 / 5021 = 100 = 88.93 %
Label accuracy score: 4297 /| 5021 = 100 = 85.58 %

Eval uation of the results in swedish. proj.pred

vs. gold standard swedi sh_tal banken05_test.conl|:

Legend: '.S - the beginning of a sentence, '.E - the end of a sentence

Nunber of non-scoring tokens: 635

The overall accuracy and its distribution over CPOSTAGs

----------- B T
Accur acy | words | right | % | right | % | both | %
| | head | | dep | | right |

----------- B T g
total | 5021 | 4465 | 89%| 4297 | 86%| 4145 | 83%
----------- B T g
NN | 1109 | 1008 | 91%)| 994 | 90% | 976 | 88%
PR | 689 | 551 | 80% | 430 | 62%)| 399 | 58%
PO | 620 | 586 | 95% | 582 | 94%| 572 | 92%
w | 455 | 397 | 87%| 384 | 84%| 372 | 82%
AB | 365 | 315 | 86% | 315 | 86%| 282 | 1%
Al | 322 | 302 | 94%| 302 | 94%)| 297 | 92%
WN | 221 | 204 | 92% | 197 | 89%| 193 | 87%
++ | 178 | 166 | 93% | 177 | 99% | 166 | 93%
RO | 145 | 124 | 86% | 112 | 77%]| 110 | 76%
ID | 114 | 113 | 99% | 114 | 100% | 113 | 99%
UK | 111 | 105 | 95% | 111 | 100% | 105 | 95%
PN | 106 | 91 | 86%| 87 | 82%| 86 | 81%
EN | 97 | 94 | 97%| 95 | 98%| 94 | 97%
AV | 70 | 61| 87%)| 54 | T7%)| 53 | 76%
HV | 60 | 45 | 75%| 44 | 73%)| 42 | 70%
(o] | 58 | 50 | 86%| 50 | 86%| 49 | 84%
TP | 53 | 47 | 89% | 45 | 85% | 45 | 85%
M | 45 | 43 | 96% | 45 | 100% | 43 | 96%
AN | 38 | 33| 87%]| 31| 82%| 30 | 79%
FV | 35 | 31| 89%| 32 | 91%| 31| 89%
MN | 35 | 20 | 57%]| 19 | 54%]| 15 | 43%
SV | 32 | 30 | 94% | 28 | 88%| 27 | 84%

BV

2 2

The overall

++

ID
UK
PN
EN
AV

z

™
Y
AN
FV

SV
BV

2 2

| 21 17
| 13 11
| 8 7
| 8 7
| 4 3
| 4 2
| 3 1
| 1 1
| 1 0
e eeaas
error rate and
e
| words head

| err
e eeaas
| 5021 556
e eeaas
| 1109 101
| 689 138
| 620 34
| 455 58
| 365 50
| 322 20
| 221 17
| 178 12
| 145 21
| 114 1
| 111 6
| 106 15
| 97 3
| 70 9
| 60 15
| 58 8
| 53 6
| 45 2
| 38 5
| 35 4
| 35 15
| 32 2
| 21 4
| 13 2
| 8 1
| 8 1
| 4 1
| 4 2
| 3 2
| 1 0
| 1 1
e eeaas

81% |
85% |
88% |
88% |
75% |
50% |
33% |
100% |

0% |

its distribution

11% |
9% |
20% |
5% |
13% |
14% |
6% |
8% |
7% |
14% |
1% |
5% |
14% |
3% |
13% |
25% |
14% |
11% |
4% |
13% |
11% |
43% |
6% |
19% |
15% |
12% |
12% |
25% |
50% |
67% |
0% |
100% |

724
115
259
38
71
50
20
24

33

19

16
16

w N O ® o

[N
o

O B O N O P P W o N

71% | 15| 71%
77% | 10| 77%
88% | 71 88%
88% | 71 88%
100% | 3] 75%
50% | 2| 50%
100% | 1] 33%
0% | 0] 0%
100% | 0] 0%
______ T
over CPOSTAGs
______ oo
% | both | %
| wong |
______ T
14%| 404 | 8%
______ T
10% | 83| 1%
38% | 107 | 16%
6% | 24 | 4%
16% | 46 | 10%
14% | 17 | 5%
6% | 15 | 5%
11% | 13| 6%
1% | 1] 1%
23% | 19 | 13%
0% | 0] 0%
0% | 0] 0%
18% | 14 | 13%
2% | 2| 2%
23% | 8| 11%
27% | 13| 22%
14% | 71 12%
15% | 6| 11%
0% | 0] 0%
18% | 4 11%
9% | 3] 9%
46% | 11| 31%
12% | 1] 3%
29% | 4] 19%
23% | 2] 15%
12% | 1] 12%
12% | 1] 12%
0% | 0| 0%
50% | 2| 50%
0% | 0| 0%
100% | 0] 0%
0% | 0] 0%
______ T

199

Precision and recall of DEPREL

---------------- T
deprel | gold | correct | system| recall (% | precision (%
---------------- R e e i S
+ | 181 | 180 | 181 | 99. 45 | 99. 45
+A | 51 49 | 54 | 96.08 | 90. 74
+F | 49 | 24 | 46 | 48.98 | 52.17
AA | 266 | 155 | 234 | 58.27 | 66. 24
AG | 6 | 5| 9 | 83.33 | 55. 56
AN | 29 | 11 | 25 | 37.93 | 44.00
AT | 234 | 230 | 236 | 98.29 | 97. 46
BS | 1] 0| 2| 0.00 | 0. 00
Ct+ | 12 | 9 | 10 | 75.00 | 90. 00
CA | 41| 35 | 39 | 85.37 | 89. 74
cc | 218 | 203 | 237 | 93.12 | 85. 65
DB | 3| 2| 3| 66.67 | 66. 67
DT | 554 | 533 | 582 | 96.21 | 91.58
EF | 2| 0| 1] 0.00 | 0.00
ES | 15 | 7 8 | 46.67 | 87.50
ET | 341 | 265 | 348 | 77.71 | 76. 15
FS | 16 | 11 | 11 | 68.75 | 100. 00
FV | 2| 0| 0| 0.00 | NaN
HD | 129 | 114 | 122 | 88.37 | 93. 44
1G | 1] 1] 1] 100. 00 | 100. 00
1K | 1] 0| 1] 0.00 | 0.00
I'M | 45| 45 | 45 | 100. 00 | 100. 00
10 | 12 | 7 9 | 58.33 | 77.78
v | 11 | 11 | 11 | 100. 00 | 100. 00
KA | 15 | 7 9 | 46.67 | 77.78
MA | 6 | 5 | 8 | 83.33 | 62.50
Vs | 17 | 8 | 27 | 47.06 | 29.63
NA | 42 | 42 | 43 | 100. 00 | 97. 67
A | 160 | 118 | 211 | 73.75 | 55.92
oo | 284 | 243 | 294 | 85.56 | 82. 65
PA | 677 | 642 | 688 | 94.83 | 93.31
PL | 48| 32 | 39 | 66.67 | 82.05
PT | 19 | 9| 11 | 47.37 | 81.82
RA | 134 | 64 | 107 | 47.76 | 59.81
ROOT | 389 | 359 | 389 | 92.29 | 92.29
sP | 89| 75 | 90 | 84.27 | 83.33
Ss | 507 | 464 | 508 | 91.52 | 91.34
TA | 139 | 77 | 112 | 55.40 | 68.75
UK | 111 | 111 | 111 | 100. 00 | 100. 00
VA | 8 | 7| 7| 87.50 | 100. 00
VG | 135 | 130 | 140 | 96. 30 | 92. 86
VO | 0| 0| 2| NaN | 0. 00
XA | 0| 0| 1] NaN | 0. 00
XT | 3| 3| 3| 100. 00 | 100. 00
XX | 18 | 4| 6 | 22.22 | 66. 67

200

Precision and recall of DEPREL + ATTACHVENT

---------------- T
deprel | gold | correct | system]| recall (% | precision (%
---------------- R e e i S
+ | 181 | 169 | 181 | 93.37 | 93.37
+A | 51 | 45 | 54 | 88.24 | 83. 33
+F | 49 | 18 | 46 | 36.73 | 39.13
AA | 266 | 145 | 234 | 54.51 | 61.97
AG | 6 | 5 | 9 | 83.33 | 55.56
AN | 29| 8 | 25 | 27.59 | 32.00
AT | 234 | 230 | 236 | 98.29 | 97. 46
BS | 1] 0| 2| 0.00 | 0.00
c+ | 12 8 | 10 | 66.67 | 80. 00
CA | 41 25 | 39 | 60.98 | 64. 10
cc | 218 | 179 | 237 | 82.11 | 75.53
DB | 3| 2| 3| 66.67 | 66. 67
DT | 554 | 523 | 582 | 94.40 | 89. 86
EF | 2| 0| 1] 0.00 | 0.00
ES | 15 | 7 8 | 46.67 | 87.50
ET | 341 | 245 | 348 | 71.85 | 70. 40
FS | 16 | 11 | 11 | 68.75 | 100. 00
FV | 2| 0| 0| 0.00 | NaN
HD | 129 | 113 | 122 | 87.60 | 92. 62
1G | 1] 0| 1] 0.00 | 0.00
1K | 1] 0| 1] 0.00 | 0.00
I'M | 45| 43 | 45 | 95.56 | 95.56
10 | 12 | 7 9 | 58.33 | 77.78
v | 11 | 11 | 11 | 100. 00 | 100. 00
KA | 15 | 7 9 | 46.67 | 77.78
MA | 6 | 5 | 8 | 83.33 | 62.50
VB | 17 | 8 | 27 | 47.06 | 29.63
NA | 42 35 | 43 | 83.33 | 81. 40
oA | 160 | 113 | 211 | 70.62 | 53.55
oo | 284 | 239 | 294 | 84.15 | 81.29
PA | 677 | 640 | 688 | 94.53 | 93.02
PL | 48| 32 | 39 | 66.67 | 82.05
PT | 19 | 9| 11 | 47.37 | 81.82
RA | 134 | 53 | 107 | 39.55 | 49.53
ROOT | 389 | 359 | 389 | 92.29 | 92.29
sP | 89 | 75 | 90 | 84.27 | 83.33
Ss | 507 | 459 | 508 | 90.53 | 90. 35
TA | 139 | 73 | 112 | 52.52 | 65.18
UK | 111 | 105 | 111 | 94.59 | 94. 59
VA | 8 | 6 | 7 75.00 | 85. 71
VG | 135 | 128 | 140 | 94.81 | 91. 43
\Ye] | 0] 0| 2| NaN | 0.00
XA I 0| 0| 1] NaN | 0.00
XT | 3| 3 3| 100. 00 | 100. 00
XX | 18 | 2| 6 | 11.11 | 33.33

Precision and recal |l of binned HEAD direction

201

direction | gold | correct | system| recall (% | precision (%

---------------- T
to_root | 389 | 359 | 389 | 92.29 | 92.29
left | 2745 | 2652 | 2748 | 96. 61 | 96.51
right | 1887 | 1797 | 1884 | 95.23 | 95. 38
sel f | 0| 0| 0| NaN | NaN

Precision and recall of binned HEAD di stance

---------------- T o
di stance | gold | correct | system| recall (% | precision (%

---------------- T o
to_root | 389 | 359 | 389 | 92.29 | 92.29
1 | 2512 | 2389 | 2522 | 95.10 | 94.73
2 | 1107 | 1031 | 1130 | 93.13 | 91. 24
3-6 | 803 | 670 | 805 | 83.44 | 83.23
7-... | 210 | 132 | 175 | 62.86 | 75. 43

C.14 Turkish

Label ed attachment score: 3173 / 5021 * 100 = 63.19 %
Unl abel ed attachnent score: 3749 / 5021 » 100 = 74.67 %
Label accuracy score: 3889 / 5021 * 100 = 77.45 %

Eval uation of the results in turkish. proj.pred

vs. gold standard turkish_nmetu_sabanci _test.conll:

Legend: '.S - the beginning of a sentence, '.E - the end of a sentence

Nunber of non-scoring tokens: 2526

The overal |l accuracy and its distribution over CPOSTAGs

----------- B T
Accur acy | words | right | % | right | % | both | %
| | head | | dep | | right |

----------- L S S e ek SRR R
total | 5021 | 3749 | 75%| 3889 | 77%| 3173 | 63%
----------- L S S e ek SRR R
Noun | 2209 | 1565 | 71%| 1491 | 67%| 1186 | 54%
Verb | 891 | 767 | 86% | 753 | 85%| 722 | 81%
Adj | 552 | 440 | 80% | 496 | 90% | 407 | 74%
Adv | 346 | 234 | 68%| 303 | 88%| 215 | 62%
Pron | 297 | 214 | 72%| 221 | 74%| 168 | 57%
Conj | 244 | 175 | 72%| 212 | 87%| 163 | 67%

Det | 213 | 183 | 86%| 178 | 84%| 155 73%

Post p | 146 | 77 | 53%| 132 | 90%| 71 49%

Num | 58 | 46 | 79% | 51 | 88%]| 44 76%

Ques | 40 | 33 | 82%| 37 | 92%| 32 80%

Interj | 25 | 15 | 60% | 15| 60%)| 10 40%
----------- L S S e ek SRR R

The overall error rate and its distribution over CPOSTAGs

----------- B T g

Error | words | head | % | dep | % | both %

Rat e | | err | | err | | wrong

----------- B T g

total | 5021 | 1272 | 25%| 1132 | 23%| 556 11%
----------- L S S e ek SRR R

Noun | 2209 | 644 | 29%| 718 | 33%| 339 15%

Verb | 891 | 124 | 14%)| 138 | 15%| 93 10%

Adj | 552 | 112 | 20%)| 56 | 10%| 23 4%

Adv | 346 | 112 | 32%)| 43 | 12%)| 24 7%

Pron | 297 | 83 | 28%)| 76 | 26%)| 30 10%

Conj | 244 | 69 | 28%| 32 | 13%]| 20 8%

Det | 213 | 30 | 14%| 35| 16%]| 7 3%

Post p | 146 | 69 | 47%| 14 | 10%| 8 5%

Num | 58 | 12 | 21%| 71 12%| 5 9%

Ques | 40 | 7 18%| 3| 7% | 2 5%

Interj | 25 | 10 | 40% | 10 | 40%| 5 20%
----------- L S S e ek SRR R
Precision and recal | of DEPREL

---------------- T o
deprel | gold | correct | system]| recall (% | precision (%
---------------- T o
ABLATI VE. ADJUNCT | 51 | 36 | 64 | 70.59 | 56. 25
APPCSI TI ON | 32 | 2| 8 | 6.25 | 25.00
CLASSI FI ER | 191 | 150 | 245 | 78.53 | 61.22
COLLOCATI ON | 7 0| 0| 0.00 | NaN
COORDI NATI ON | 249 | 180 | 279 | 72.29 | 64.52
DATI VE. ADJUNCT | 178 | 126 | 189 | 70.79 | 66. 67
DETERM NER | 180 | 176 | 213 | 97.78 | 82.63
| NSTRUVENTAL. ADJUNCT | 19 | 4| 20 | 21.05 | 20. 00
I NTENSI FI ER | 103 | 87 | 101 | 84.47 | 86. 14
LOCATI VE. ADJUNCT | 124 | 102 | 136 | 82.26 | 75. 00
MODI FI ER | 1362 | 1103 | 1301 | 80.98 | 84.78
NEGATI VE. PARTI CLE | 17 | 12 | 15 | 70.59 | 80. 00
OBJECT | 1010 | 742 | 974 | 73.47 | 76.18
POSSESSOR | 135 | 109 | 133 | 80.74 | 81.95
QUESTI ON. PARTI CLE | 43 | 37 | 43 | 86. 05 | 86. 05
RELATI VI ZER | 13 | 7 9 | 53.85 | 77.78
ROOT | 659 | 597 | 639 | 90.59 | 93.43
S. MODI FI ER | 76| 43 | 63 | 56.58 | 68. 25

SENTENCE | 25
SUBJECT | 491 |
VOCATI VE | 56

Precision and recal |

---------------- Rk SR
deprel | gold | correct |
---------------- Rk SR
ABLATI VE. ADJUNCT | 51 | 30 |
APPCSI TI ON | 32 | 1]
CLASSI FI ER | 191 | 148 |
COLLOCATI ON | 7| 0|
COORDI NATI ON | 249 | 129 |
DATI VE. ADJUNCT | 178 | 90
DETERM NER | 180 | 154

| NSTRUMVENTAL. ADJUNCT | 19 |

I NTENSI FI ER | 103 | 81
LOCATI VE. ADJUNCT | 124 | 59
MODI FI ER | 1362 | 798
NEGATI VE. PARTI CLE | 17 |

OBJECT | 1010 | 606 |
POSSESSOR | 135 | 109 |
QUESTI ON. PARTI CLE | 43 |

RELATI VI ZER | 13 | 7|
ROOT | 659 | 597
S. MODI FI ER | 76| 34 |
SENTENCE | 25 16
SUBJECT | 491 | 254
VOCATI VE | 56| 13

Precision and recal |

---------------- B
direction | gold | correct |
---------------- Rk SR
to_root | 659 | 597 |
left | 288 | 247

right | 4074 | 4014

sel f | 0| 0|

Precision and recal |

---------------- B
di stance | gold | correct |
---------------- B
to_root | 659 | 597 |
1 | 2187 | 1989
2 | 844 | 556
3-6 | 897 | 577

16 |
340
20 |

12 |

32 |

20
539
30

of DEPREL + ATTACHMVENT

system |

245
0
279
189
213
3
101
136 |
1301 |
15 |
974
133

20

9

of binned HEAD direction

system |

639
291
4091
0

of binned HEAD di stance

recal |

recal |

64. 00
69. 25
35.71 |

(%A |

77.
0. 00
51.
50.
85.

15. 79

78.64
47.58
58. 59

70. 59
60. 00
80. 74

74. 42
53. 85
90. 59
74 |
00 |
73 |
21 |

44.
64.
51.
23.

(A |

90. 59

85.76

98. 53
NaN |

(A |

90. 59
90. 95
65. 88
64.33

204

80. 00
63. 08
66. 67

precision (9

46. 88
12.50
60. 41

46. 24
47. 62
72.30
15. 00
80. 20
43. 38
61. 34
80. 00
62.22
81.95
74.42
77.78
93.43
53.97
80. 00
47.12

43. 33

93.43
84.88
98. 12

93.43
83. 26
65.41
70.37

| 434 | 232 | 323 | 53.46 | 71.83

205

Bibliography

[1] A. Abeille, editor. Treebanks: Building and Using Parsed Corppralume 20 of
Text, Speech and Language Technolojuwer Academic Publishers, Dordrecht,

2003.

[2] S. Afonso, E. Bick, R. Haber, and D. Santos. “Floresta&icjtica”. A treebank
for Portuguese. IfProceedings of the Third International Conference on Laggu

Resources and Evaluation (LRE@pges 1698-1703, 2002.

[3] R.K. Ando and T. Zhang. A high-performance semi-supsadi learning method
for text chunking. InProceedings of the Annual Meeting of the Association for

Computational Linguistics (ACL.2005.

[4] N. B. Atalay, K. Oflazer, and B. Say. The annotation pracisthe Turkish Tree-
bank. InProceedings of the 4th International Workshop on Lingogty Inter-
preteted Corpora (LING)2003.

[5] A.L.Berger, S. A. Della Pietra, and V. J. Della Pietra. Aximum entropy approach

to natural language processirfgomputational Linguistic22(1), 1996.

[6] Dan Bikel. On the Parameter Space of Generative Lexicalized StadldBarsing

Models PhD thesis, University of Pennsylvania, 2004.

[7] D.M. Bikel. Intricacies of Collins parsing modeComputational Linguistic2004.

206

[8] J. Blitzer, R. McDonald, and F. Pereira. Doman adaptatigth structural corre-
spondence learning. Rroceedings of the Empirical Methods in Natural Language

Processing (EMNLR)2006.

[9] A. Bobhmova, J. Haji¢, E. Hajicova, and B. Hladkahd PDT: a 3-level annotation

scenario. In Abeillé [1], chapter 7.

[10] B.E. Boser, I. Guyon, and V. Vapnik. A training algomthfor optimal margin clas-
sifiers. InProceedings COLTpages 144-152, 1992.

[11] S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smithe TIGER treebank.
In Proceedings of the First Workshop on Treebanks and Liniguisteories (TLT)
2002.

[12] L. Breiman. Random forest84achine Learning1(45), 2001.

[13] S. Buchholz, E. Marsi, A. Dubey, and Y. Krymolowski. CbN-X shared task on
multilingual dependency parsing. Proceedings of the Conference on Computa-

tional Natural Language Learning (CoNLL2006.

[14] P. M. Camerini, L. Fratta, and F. Maffioli. Thebest spanning arborescences of a

network. Networks 10(2):91-110, 1980.

[15] Y. Censor and S.A. Zenio$2arallel optimization: theory, algorithms, and applica-

tions Oxford University Press, 1997.

[16] E. Charniak. A maximum-entropy-inspired parser. Piroceedings of the Annual
Meeting of the North American Chapter of the Associationdomputational Lin-

guistics (ACL) 2000.

207

[17] E. Charniak and M. Johnson. Coarse-to-fine n-bestpgiand maxent discrimina-
tive reranking. InProceedings of the Annual Meeting of the Association for giom

tational Linguistics (ACL)2005.
[18] K. Chen and C. Huang. The sinica corpus.

[19] K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang, an®&b. Sinica
Treebank: Design criteria, representational issues aptemmentation. In Abeillé

[1], chapter 13, pages 231-248.

[20] D.M. Chickering, D. Geiger, and D. Heckerman. Learno&yesian networks: The
combination of knowledge and statistical data. Techniagdt MSR-TR-94-09,
Microsoft Research, 1994.

[21] Y.J. Chu and T.H. Liu. On the shortest arborescence afexidd graph.Science
Sinica 14:1396-1400, 1965.

[22] M. Civit, M2 A. Marti, B. Navarro, N. Bufi, B. Fernandez, and R. Marcossues
in the syntactic annotation of Cast3LB. Rroceedings of the 4th International

Workshop on Linguistically Interpreteted Corpora (LIN@PO3.

[23] M. Civit Torruella and M A. Marti Antonin. Design principles for a Spanish tree-
bank. InProceedings of the First Workshop on Treebanks and Linigul$teories

(TLT), 2002.

[24] S. Clark and J.R. Curran. Parsing the WSJ using CCG aginear models. In
Proceedings of the Annual Meeting of the Association for @aational Linguistics

(ACL), 2004.

[25] M. Collins. Head-Driven Statistical Models for Natural Language Pagsi PhD

thesis, University of Pennsylvania, 1999.

208

[26] M. Collins. Discriminative training methods for hidd®&larkov models: Theory and
experiments with perceptron algorithms. Pnoceedings of the Empirical Methods

in Natural Language Processing (EMNLFP002.

[27] M. Collins and J. Brooks. Prepositional phrase attaghirthrough a backed-off

model. InProceedings of the Third Workshop on Very Large Corpa&o5.

[28] M. Collins and N. Duffy. New ranking algorithms for pamng and tagging: Kernels
over discrete structures, and the voted perceptronPrateedings of the Annual

Meeting of the Association for Computational Linguistia€(), 2002.

[29] M. Collins, J. Haji¢, L. Ramshaw, and C. Tillmann. Atsséical parser for Czech. In
Proceedings of the Annual Meeting of the Association for @aational Linguistics

(ACL), 1999.

[30] M. Collins and B. Roark. Incremental parsing with thegaptron algorithm. In
Proceedings of the Annual Meeting of the Association for @aational Linguistics

(ACL), 2004.

[31] T.H. Cormen, C.E. Leiserson, and R.L. Rivesatroduction to Algorithms MIT
Press/McGraw-Hill, 1990.

[32] S. Corston-Oliver, A. Aue, K. Duh, and E. Ringger. Mlittgual dependency pars-
ing using bayes point machines. Pnoceedings of the Joint Conference on Human
Language Technology and North American Chapter of the Aasoic for Compu-
tational Linguistics (HLT/NAACL,)2006.

[33] K. Crammer, O. Dekel, J. Keshat, S. Shalev-Shwartz Mar&inger. Online passive

aggressive algorithmgournal of Machine Learning Resear@006.

209

[34] K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Sin@eiine passive aggressive

algorithms. InProceedings of Neural Information Processing Systems$NED03.

[35] K. Crammer, R. McDonald, and F. Pereira. Scalable langegin online learning

for structured classification, 2005. Unpublished.

[36] K. Crammer and Y. Singer. On the algorithmic impleméiotaof multiclass kernel

based vector machinedournal of Machine Learning Resear@001.

[37] K. Crammer and Y. Singer. Ultraconservative onlinesaithms for multiclass prob-

lems. Journal of Machine Learning Resear003.

[38] A. Culotta and J. Sorensen. Dependency tree kernelsefation extraction. In
Proceedings of the Annual Meeting of the Association for @aational Linguistics

(ACL), 2004.

[39] H. Daumé and D. Marcu. Learning as search optimizatigproximate large mar-
gin methods for structured prediction. Rroceedings of the International Confer-

ence on Machine Learnin@005.

[40] Y. Ding and M. Palmer. Machine translation using prabstic synchronous depen-
dency insertion grammars. Proceedings of the Annual Meeting of the Association

for Computational Linguistics (AC|.2005.

[41] S. Dzeroski, T. Erjavec, N. Ledinek, P. PajasZZbokrtsky, and AZele. Towards a
Slovene dependency treebank Armoceedings of the Fifth International Conference

on Language Resources and Evaluation (LREXDP6.

[42] J. Early.An Efficient Context-Free Parsing AlgorithiRhD thesis, Carnegie Mellon
University, 1968.

210

[43] J. Edmonds. Optimum branching3dournal of Research of the National Bureau of

Standards71B:233-240, 1967.
[44] J. Einarsson. Talbankens skriftsprakskonkorda®#61

[45] J. Eisner. Three new probabilistic models for depewgigrarsing: An exploration.
In Proceedings of the International Conference on Computatibinguistics (COL-

ING), 1996.

[46] J. Eisner and N. Smith. Parsing with soft and hard caists on dependency length.
In Proceedings of the International Workshop on Parsing Tetdgies (IWPT)
2005.

[47] D. Eppstein. Finding the k smallest spanning treend Scandanavian Workshop

on Algorithm Theory1990.

[48] T. Finley and T. Joachims. Supervised clustering withport vector machines. In

Proceedings of the International Conference on Machineahieg, 2005.

[49] R. Florian, H. Hassan, A. Ittycheriah, H. Jing, N. Kamallh, X. Luo, N. Nicolov,
S. Roukos, and T. Zhang. A statistical method for multiliagentity detection and
tracking. InProceedings of the Joint Conference on Human Language d&chn
ogy and North American Chapter of the Association for Comanal Linguistics
(HLT/NAACL) 2004.

[50] G. Forman. An extensive empirical study of feature stb® metrics for text clas-
sification. Journal of Machine Learning Research: Special Issue ona\#e and

Feature Selection(3):1289-1305, 2003.

211

[51] K. Foth, W. Menzel, and I. Schroder. A transformatioased parsing technique
with anytime properties. IRProceedings of the International Workshop on Parsing

Technologies (IWPTR000.

[52] Y. Freund and R.E. Schapire. Large margin classificatising the perceptron algo-

rithm. Machine Learning37(3):277-296, 1999.

[53] H. Gaifman. Dependency systems and phrase-strucysterss. Information and

Control, 1965.

[54] L. Georgiadis. Arborescence optimization problemlvasle by Edmonds’ algo-

rithm. Theoretical Computer Sciencg01:427 — 437, 2003.

[55] D. Gildea. Corpus variation and parser performanc@réceedings of the Empirical

Methods in Natural Language Processing (EMNLE)O01.

[56] J. Hajic. Building a syntactically annotated corpdse Prague dependency tree-

bank.Issues of Valency and Meanirpges 106—132, 1998.

[57] J. Hajic, E. Hajicova, P. Pajas, J. Panevova, P.ISgatl B. Vidova Hladka. The
Prague Dependency Treebank 1.0 CDROM, 2001. Linguistida Bansortium
Cat. No. LDC2001T10.

[58] J. Hajic, O. Smrz, P. Zemanek, Snaidauf, and E. Beska. Prague Arabic Depen-
dency Treebank: Development in data and toolsPioceedings of the NEMLAR
International Conference on Arabic Language Resourceslants pages 110-117,

2004.

[59] K. Hall and V. Névak. Corrective modeling for non-pective dependency pars-
ing. InProceedings of the International Workshop on Parsing Tetigies (IWPT)
2005.

212

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

M. P. Harper and R. A. Helzerman. Extensions to constidépendency parsing for

spoken language processir@omputer Speech and Languad895.

D. G. Hays. Dependency theory: A formalism and some nlagi®ons. Language

40(4):511-525, 1964.

X.He, R. Zemel, and M. Carreira-Perpinan. Multiscaladitional random fields for
image labelling. InProceedings of Conference on Vision and Pattern Recognitio

2004.

J. Henderson. Inducing history representations foatiicoverage statistical parsing.
In Proceedings of the Joint Conference on Human Language o&miyand North
American Chapter of the Association for Computational wistics (HLT/NAACL,)
2003.

J. Henderson and E. Brill. Exploiting diversity in neallanguage processing: Com-
bining parsers. IfProceedings of the Empirical Methods in Natural Language-Pr

cessing (EMNLR)1999.

H. Hirakawa. Semantic dependency analysis methodtjoadese based on optimum
tree search algorithm. IRroceedings of the Pacific Association for Computational

Linguistics 2001.

L. Huang and D. Chiang. Bettérbest parsing. liProceedings of the International

Workshop on Parsing Technologies (IWP2005.
R. Hudson.Word Grammar Blackwell, 1984.

R. Hwa, P. Resnik, A. Weinberg, C. Cabezas, and O. KoBdotstrapping parsers
via syntactic projection across parallel tex@pecial Issue of the Journal of Natural

Language Engineering on Parallel Texisl(3):311-325, 2005.

213

[69] F. Jelinek.Statistical Methods for Speech RecognititfIT Press, 1997.

[70] A.K. Joshi. Tree adjoining grammars: How much conteamsitivity is required to

provide reasonable structural descriptiod&tural Language ParsinglL985.

[71] S. Kahane, A. Nasr, and O Rambow. Pseudo-projectivitgolynomially parsable
non-projective dependency grammar. Aroceedings of the Annual Meeting of the

Association for Computational Linguistics (AC1)998.

[72] R. KasselA comparison of approaches to on-line character handwmittigit recog-

nition. PhD thesis, MIT Spoken Language Systems Group, 1995.

[73] Y. Kawata and J. Bartels. Stylebook for the Japanesebirek in VERBMO-
BIL. Verbmobil-Report 240, Seminar fur Sprachwissenséghniversitat Tubingen,
2000.

[74] M. Kay. Experiments with a powerful parser. Rroceedings 2eme Conference

Internationale sue le Traitement Automatique des Langs|ad67.

[75] D. Klein. The Unsupervised Learning of Natural Language StructiéaD thesis,
Stanford University, 2004.

[76] K. Knightand D. Marcu. Statistical-based summarizati step one: Sentence com-

pression. IrProceedings the American Association of Artificial Intgtihce 2000.

[77] T. Koo and M. Collins. Hidden-variable models for digemative reranking. In
Proceedings of the Joint Conference on Human Language démiyand Empirical

Methods in Natural Language Processing (HLT/EMNLE)05.

[78] M. T. Kromann. Optimaility parsing and local cost furmts in discontinuous gram-
mars. InProceedings of Joint Conference on Formal Grammars and tagh®mat-

ics of Language2001.

214

[79] M. T. Kromann. The Danish Dependency Treebank and thetiying linguistic
theory. InProceedings of the Second Workshop on Treebanks and LiiegLieo-
ries (TLT) 2003.

[80] J. Lafferty, A. McCallum, and F. Pereira. Conditionahdom fields: Probabilistic
models for segmenting and labeling sequence dat®rdoeedings of the Interna-

tional Conference on Machine Learnifg001.

[81] M. Lease and E. Charniak. Parsing biomedical liteeatum Proceedings of the

International Joint Conference on Natural Language Praueg 2005.

[82] D. Lin. Dependency-based evaluation of MINIPAR.Wworkshop on the Evaluation
of Parsing System4998.

[83] D.M. Magerman. Statistical decision-tree models farging. InProceedings of the

Annual Meeting of the Association for Computational Lirsgies (ACL) 1995.

[84] M. Marcus, B. Santorini, and M. Marcinkiewicz. Buildjra large annotated corpus

of English: the Penn Treeban€omputational Linguistigsl9(2):313—-330, 1993.

[85] H. Maruyama. Structural disambiguation with consttagiropagation. IfProceed-
ings of the Annual Meeting of the Association for Computatidinguistics (ACL)
1990.

[86] A. McCallum. Efficiently inducing features of conditial random fields. IrfPro-

ceedings of the Conference on Uncertainty in Artificial ligence 2003.

[87] A. K. McCallum. MALLET: A machine learning for languagmolkit, 2002.

http://mallet.cs.umass.edu.

[88] D. McCloskly, E. Charniak, and M. Johnson. Effectivéf-$mining for parsing. In

Proceedings of the Joint Conference on Human Language ®émiy and North

215

[89]

[90]

[91]

[92]

[93]

[94]

[95]

American Chapter of the Association for Computational istics (HLT/NAACL,)
2006.

D. McCloskly, E. Charniak, and M. Johnson. Reranking aalf-training for parser
adaptation. IfProceedings of the Annual Meeting of the Association for Qdar

tional Linguistics (ACL)2006.

R. McDonald, K. Crammer, and F. Pereira. Flexible teegraentation with struc-
tured multilabel classification. IfProceedings of the Joint Conference on Hu-
man Language Technology and Empirical Methods in NaturaljLeage Processing

(HLT/EMNLP) 2005.

R. McDonald, K. Crammer, and F. Pereira. Online largergm training of depen-
dency parsers. IRroceedings of the Annual Meeting of the Association for @em

tational Linguistics (ACL)2005.

R. McDonald, K. Lerman, and F. Pereira. Multilingualp@@dency analysis with a
two-stage discriminative parser. Rtoceedings of the Conference on Computational

Natural Language Learning (CoNL]2006.

R. McDonald and F. Pereira. Identifying gene and protaentions in text using

conditional random fieldsBMC Bioinformatics6:Supp1(S6), 2005.

R. McDonald and F. Pereira. Online learning of appraatedependency parsing al-
gorithms. InProceedings of the Annual Meeting of the European Amerideapr

of the Association for Computational Linguistics (AC2006.

R. McDonald, F. Pereira, K. Ribarov, and J. Haji¢. Nanojective dependency pars-
ing using spanning tree algorithms. Proceedings of the Joint Conference on Hu-
man Language Technology and Empirical Methods in NaturaljLeage Processing

(HLT/EMNLP) 2005.

216

[96] L.A. Mel&uk. Dependency Syntax: Theory and Practictate University of New
York Press, 1988.

[97] R. Moore. A discriminative framework for bilingual wdalignment. IrProceedings
of the Joint Conference on Human Language Technology andriEaipMethods in

Natural Language Processing (HLT/EMNLR)005.

[98] K.R. Milller, S. Mika, G. Ratsch, K. Tsuda, and B. Siiupf. An introduction to
kernel-based learning algorithm&EE Neural Networksl12(2):181-201, 2001.

[99] B. Navarro, M. Civit, M* A. Marti, R. Marcos, and B. Fernandez. Syntactic, se-
mantic and pragmatic annotation in Cast3LB. Aroceedings of the Workshop on

Shallow Processing of Large Corpora (SProLag)03.
[100] The Nordic Treebank Network. http://w3.msi.vxu-sé/re/research/nt.html.

[101] P. Neuhaus and N. Boker. The complexity of recogniti linguistically adequate
dependency grammars. Rroceedings of the Annual Meeting of the Association for

Computational Linguistics (ACLL1997.

[102] J. Nilsson, J. Hall, and J. Nivre. MAMBA meets TIGER:d®astructing a Swedish
treebank from antiquity. IProceedings of the NODALIDA Special Session on Tree-
banks 2005.

[103] J. Nivre. Dependency grammar and dependency parsieghnical Report MSI
report 05133, Vxj University: School of Mathematics and t8yss Engineering,
2005.

[104] J. Nivre and J. Nilsson. Pseudo-projective depengeacsing. InProceedings of

the Annual Meeting of the Association for Computationabuiistics (ACL) 2005.

217

[105] J. Nivre and M. Scholz. Deterministic dependency ipgrsf english text. InPro-
ceedings of the International Conference on Computatiaimauistics (COLING)

2004.
[106] Joakim Nivre. Penn2malt, 2004. http://w3.msi.ved sivre/research/Penn2Malt.html.

[107] K. Oflazer, B. Say, D. Zeynep Hakkani-Tur, and G. Building a Turkish treebank.
In Abeillé [1], chapter 15.

[108] P. Osenova and K. Simov. BTB-TRO05: BulTreeBank stgleh BulTree-
Bank version 1.0. Bultreebank project technical reportD20 Available at:

http://www.bultreebank.org/TechRep/BTB-TRO05.pdf.
[109] PennBiolE. Mining The Bibliome Project, 2005. httpibie.ldc.upenn.edu/.

[110] A. Ratnaparkhi. A maximum entropy model for part-pesch tagging. IRroceed-
ings of the Empirical Methods in Natural Language ProcegqdiIEMNLP) pages
133-142, 1996.

[111] A. Ratnaparkhi. Learning to parse natural languagh miaximum entropy models.

Machine Learning34:151-175, 1999.

[112] K. Ribarov.Automatic building of a dependency tréthD thesis, Charles University,
2004.

[113] S. Riezler, T. King, R. Kaplan, R. Crouch, J. MaxwelhdaM. Johnson. Parsing
the Wall Street Journal using a lexical-functional grammiad discriminative es-
timation techniques. IfProceedings of the Annual Meeting of the Association for

Computational Linguistics (ACL.2002.

[114] S. Riezler, T. H. King, R. Crouch, and A. Zaenen. Staidd sentence condensa-

tion using ambiguity packing and stochastic disambigumatieethods for lexical-

218

functional grammar. IProceedings of the Joint Conference on Human Language
Technology and North American Chapter of the Associatio€tonputational Lin-

guistics (HLT/NAACL,)2003.

[115] B. Roark, M. Saraclar, M. Collins, and M. Johnson. Dirsénative language model-
ing with conditional random fields and the perceptron altponi In Proceedings of

the Annual Meeting of the Association for Computationabuistics (ACL) 2004.

[116] F. Rosenblatt. The perceptron: A probabilistic modelinformation storage and

organization in the brainPsych. Rey68:386—407, 1958.

[117] K. Sagae and A. Lavie. Parser combination by reparsimgProceedings of the
Joint Conference on Human Language Technology and NortlriéameChapter of

the Association for Computational Linguistics (HLT/NAAC2006.

[118] S. Sarawagi and W. Cohen. Semi-Markov conditionadican fields for information

extraction. InProceedings of Neural Information Processing SystemsSQ\NED04.

[119] P. Sgall, E. Hajicova, and J. Panevovae Meaning of the Sentence in Its Pragmatic

Aspects Reidel, 1986.

[120] F. Sha and F. Pereira. Shallow parsing with conditiomadom fields. InProceed-
ings of the Joint Conference on Human Language TechnolodyNsnth Ameri-
can Chapter of the Association for Computational Linges{HLT/NAACL) pages
213-220, 2003.

[121] L. Shenand A. Joshi. Incremental LTAG parsingPhoceedings of the Joint Confer-
ence on Human Language Technology and Empirical Methodsiarhll Language

Processing (HLT/EMNLRR005.

219

[122] Y. Shinyama, S. Sekine, K. Sudo, and R. Grishman. Aatomparaphrase acquisi-
tion from news articles. IfProceedings of the Human Language Technology Con-

ference (HLT)2002.

[123] K. Simov and P. Osenova. Practical annotation schemari HPSG treebank of
Bulgarian. InProceedings of the 4th International Workshop on Lingaaty In-

terpreteted Corpora (LING)pages 17-24, 2003.

[124] K. Simov, P. Osenova, A. Simov, and M. Kouylekov. Desand implementation
of the Bulgarian HPSG-based treebank.Jburnal of Research on Language and

Computation — Special Issypages 495-522. Kluwer Academic Publishers, 2005.

[125] K. Simov, P. Osenova, and M. Slavcheva. BTB-TR03: BeéBank morphosyntac-
tictagset. BTB-TS version 2.0. Bultreebank project techlrieport, 2004. Available
at: http://'www.bultreebank.org/TechRep/BTB-TRO03.pdf.

[126] K. Simov, G. Popova, and P. Osenova. HPSG-based simteeebank of Bulgar-
ian (BulTreeBank). In A. Wilson, P. Rayson, and T. McEnedjt@&s, A Rainbow
of Corpora: Corpus Linguistics and the Languages of the Wagrhges 135-142.
Lincom-Europa, Munich, 2002.

[127] D. Sleator and D. Temperley. Parsing English with & Inammar. InProceedings
of the International Workshop on Parsing Technologies (TWR993.

[128] N. Smith and J. Eisner. Guiding unsupervised gramma@ugtion using contrastive
estimation. InWorking Notes of the International Joint Conference on fhitl

Intelligence Workshop on Grammatical Inference Applmagi 2005.

[129] O. Smrz, JSnaidauf, and P. Zemanek. Prague Dependency TreebankdbicA
Multi-level annotation of Arabic corpus. IRroceedings of the International Sym-

posium on Processing of Arabipages 147-155, 2002.

220

[130] R. Snow, D. Jurafsky, and A. Y. Ng. Learning syntactattprns for automatic hyper-
nym discovery. InProceedings of Neural Information Processing Systems$)NIP

2004.
[131] M. SteedmanThe Syntactic Proces$/IT Press, 2000.

[132] C. Sutton, C. Pal, and A. McCallum. Reducing weight enichining in struc-
tured discriminative learning. IRroceedings of the Joint Conference on Human
Language Technology and Empirical Methods in Natural Laaggu Processing
(HLT/EMNLP)

[133] R.S. Sutton and A.G. Bartd&reinforcement Learning: An IntroductioMIT Press,
1998.

[134] P. Tapanainen and T. Jarvinen. A non-projective ddpacy parser. IRroceedings

of the 5th Conference on Applied Natural Language Procgsdi®97.
[135] R.E. Tarjan. Finding optimum branchingsetworks 7:25-35, 1977.

[136] B. TaskarlLearning Structured Prediction Models: A Large Margin Apach PhD
thesis, Stanford, 2004.

[137] B. Taskar, C. Guestrin, and D. Koller. Max-margin Mavknetworks. InProceed-

ings of Neural Information Processing Systems (NJR8D3.

[138] B. Taskar, D. Klein, M. Collins, D. Koller, and C. Mamg. Max-margin parsing. In
Proceedings of the Empirical Methods in Natural Languagedessing (EMNLR)
2004.

[139] U. Teleman. Manual ©r grammatisk beskrivning av talad och skriven svenska

(MAMBA), 1974.

221

[140] L. Tesniere Elements de syntaxe structuraiditions Klincksieck, 1959.

[141] E.F. Tjong Kim Sang and S. Buchholz. Introduction te @oNLL-2000 shared task:
Chunking. InProceedings of the Conference on Computational Naturaguage

Learning (CoNLL) 2000.

[142] E.F. Tjong Kim Sang and F. De Meulder. Introductionitie CoNLL-2003 shared
task: Language-independent named entity recognitiorRrdceedings of the Con-

ference on Computational Natural Language Learning (CoNRDO3.

[143] I. Tsochantaridis, T. Hofmann, T. Joachims, and YuAlt Support vector learning
for interdependent and structured output spaceBrdieedings of the International

Conference on Machine Learning004.

[144] J. Turian and D. Melamed. Constituent parsing by diassion. In Proceedings of

the International Workshop on Parsing Technologies (IWRTPS5.

[145] J. Turian and D. Melamed. Advances in discriminatiaesing. InProceedings of

the Annual Meeting of the Association for Computationabuistics (ACL) 2006.

[146] J. Turner and E. Charniak. Supervised and unsupehlesgening for sentence com-
pression. InProceedings of the Annual Meeting of the Association for Qaax

tional Linguistics (ACL)2005.

[147] L. van der Beek, G. Bouma, J. Daciuk, T. Gaustad, R. Mial&. van Noord,
R. Prins, and B. Villada. The Alpino dependency treebankAlfgorithms for Lin-
guistic ProcessingNWO PIONIER progress report 5. 2002.

[148] L. van der Beek, G. Bouma, R. Malouf, and G. van Noorde Alipino dependency
treebank. IMComputational Linguistics in the Netherlands (CLJIKD02.

222

[149] W. Wang and M. P. Harper. A statistical constraint defsncy grammar (CDG)
parser. InWorkshop on Incremental Parsing: Bringing Engineering &whnition

Together (ACL,)2004.

[150] N. Xue, F. Xia, F. Chiou, and M. Palmer. The Penn Chinéssebank: Phrase

structure annotation of a large corpiatural Language Engineerin@004.

[151] H. Yamada and Y. Matsumoto. Statistical dependen&yyais with support vector
machines. IfProceedings of the International Workshop on Parsing Tetdgies

(IWPT), 2003.

[152] D.H. Younger. Recognition and parsing of contexeflenguages in time?. Infor-

mation and Contrql12(4):361-379, 1967.

[153] D. Zelenko, C. Aone, and A. Richardella. Kernel methdar relation extraction.

Journal of Machine Learning Resear@®11083-1106, 2003.

[154] D. Zeman. Parsing with a Statistical Dependency ModdthD thesis, Univerzita
Karlova, Praha, 2004.

223

