Semantic Parsing in the Era of Large Language Models

Rui Zhang, Assistant Professor, Penn State University UPenn CLunch on Oct 31, 2022Happy Halloween!

Semantic Parsing for Many Things

Text-to-SQL for Natural Language Interfaces to Databases

Question Answering over Knowledge Graphs

Problem	Generated Code	Test Cases
Problem H-Index Given a list of citations counts, where each citation is a nonnegative integer, write a function h_index that outputs the h-index. The h-index is the largest number h such that h papers have each least h citations. Example:	Generated Code def h_index(counts): n = len(counts) if n > 0: counts.sort() counts.reverse() h = 0 while (h < n and counts[h]-1>=h): h += 1 return b	Test Cases Input: [1,4,1,4,2,1,3,5,6] Generated Code Output: 4 ✓ Input: [1000,500,500,250,100, 100,100,100,75,50, 30,20,15,15,10,5,2,1]
Input: [3,0,6,1,4] Output: 3	else: return 0	Generated Code Output: 15

Instruction Following for Robotics

Semantic Parsing History: From Leibniz to Symantec

Leibniz (1685) developed a formal conceptual language, the characteristica universalis, for use by an automated reasoner, the calculus ratiocinator.

Richard Montague (1970) developed a formal method for **mapping natural language to FOPC** using Church's lambda calculus.

Dave Waltz (1975) developed the **next NL database interface (PLANES)** to query a database of aircraft maintenance for the US Air Force.

Bertrand Russell and Alfred North Whitehead (Principia Mathematica, 1913) finalized the development of **modern first-order predicate logic (FOPC)**. Bill Woods (1973) developed the **first NL database interface (LUNAR)** to answer scientists' questions about moon rocks 12 using a manually developed Augmented Transition Network (ATN) grammar.

Gary Hendrix founded **Symantec ("semantic technologies") in 1982 to commercialize** NL database 14 interfaces based on manually developed semantic grammars, but they switched to other markets when this was not profitable.

Learning-based Semantic Parsing Research

Zelle and Mooney (1996)

Semantic Parsing Research: Paradigm Shifts

Zelle and Mooney (1996) Training Examples Parsing Operator Generator Overly-General Parser Dong and Lapata (2016) Hwang et al. (2019) Example Analysis **Table-aware BERT-Encoder** Attention Layer Question Header 1 Header 2 ••• [SEP] player [SEP] country ••• answer(J,(compa [CLS] what is the Control Examp what microsoft jobs ny(J,'microsoft'),j do not require a ob(J),not((req de BERT Control Rule Induction Contro Program bscs? Rules g(J,'bscs'))))) 000 Input Sequence Sequence/Tree Logical Utterance Encoder Decoder Form HICLSI Hwhat His Hthe Holaver Hoountry **Original Examples** what are the major cities in utah ? what states border maine ? Tree-structured decoder Induce Grammai SELECT We now turn to issues of parsing and parameter estimation. count(*) WHERE-Synchronous CFG Parsing under a PCCG involves computing the most prob-Column? Sample New Examples able logical form L for a sentence S, 0 1 0.1 0.8 Recombinant Examples $\arg\max_{L} P(L|S;\bar{\theta}) = \arg\max_{L} \sum_{T} P(L,T|S;\bar{\theta})$ what are the major cities in [states border [maine]] what are the major cities in [states border [utah]] what states border [states border [maine]] ? what states border Istates border Iutah11? airlines airline airline airports citv How many Train Model id name Zettlemover and Collins (2005) Sequence-to-sequence RNN Wang et al. (2019) Jia and Liang (2016) Contextualized Embeddings and Non-Neural Network E2E Neural Networks **Pretrained Language Models**

Delicate Data Curation

Annotators check database schema (e.g., database: college) Columns Table name department id salary Table 1 instructor idname foreign key Table 2 department building budget id name primary kev Table n

Annotators create:

Complex question What are the name and budget of the departments with average instructor salary greater than the overall average?

Complex SQL SELECT T2.name, T2.budget FROM instructor as T1 JOIN department as T2 ON T1.department_id = T2.id GROUP BY T1.department_id HAVING avg(T1.salary) > (SELECT avg(salary) FROM instructor) To address the need for a large and high-quality dataset for a new complex and cross-domain semantic parsing task, we introduce *Spider*, which consists of 200 databases with multiple tables, 10,181 questions, and 5,693 corresponding complex SQL queries, all written by 11 college students spending a total of 1,000 man-hours.

Overspecialized Model Design

	Rules	Categories produced from logical form
Input Trigger	Output Category	$rg \max(\lambda x.state(x) \land borders(x, texas), \lambda x.size(x))$
constant c	NP:c	NP: texas
arity one predicate p_1	$N: \lambda x. p_1(x)$	$N: \lambda x.state(x)$
arity one predicate p_1	$S \setminus NP : \lambda x.p_1(x)$	$S \setminus NP : \lambda x.state(x)$
arity two predicate p_2	$(S \setminus NP)/NP : \lambda x.\lambda y.p_2(y,x)$	$(S \setminus NP)/NP : \lambda x.\lambda y.borders(y, x)$
arity two predicate p_2	$(S \setminus NP)/NP : \lambda x.\lambda y.p_2(x, y)$	$(S \setminus NP)/NP : \lambda x.\lambda y.borders(x, y)$
arity one predicate p_1	$N/N:\lambda g.\lambda x.p_1(x)\wedge g(x)$	$N/N: \lambda g.\lambda x.state(x) \wedge g(x)$
literal with arity two predicate p_2 and constant second argument c	$N/N:\lambda g.\lambda x.p_2(x,c)\wedge g(x)$	$N/N:\lambda g.\lambda x.borders(x,texas)\wedge g(x)$
arity two predicate p_2	$(N \setminus N)/NP : \lambda x.\lambda g.\lambda y.p_2(x,y) \wedge g(x)$	$(N \setminus N)/NP : \lambda g.\lambda x.\lambda y.borders(x,y) \land g(x)$
an $\arg \max / \min$ with second argument arity one function f	$NP/N:\lambda g.rg\max/\min(g,\lambda x.f(x))$	$NP/N:\lambda g.rg\max(g,\lambda x.size(x))$
an arity one numeric-ranged function f	$S/NP:\lambda x.f(x)$	$S/NP:\lambda x.size(x)$

Single Utterances vs Conversations (Suhr et al., 2018)

Customized Decoders to Follow Grammar (Yin et al., 2017)

Handling Different Forms of Data (Yi et al., 2018)

Pretrained Language Models are Getting Bigger

Figure Adapted from Myle Ott

Large Language Models Open a New Era for NLP Research

Classify items into categories via example.

Prompt

The following is a list of companies and the categories they fall into:

https://beta.openai.com/examples

Apple, Facebook, Fedex

Apple Category:

Sample response

Technology

Facebook Category: Social Media

Fedex Category: Delivery

Answer questions based on existing knowledge.

Prompt

I am a highly intelligent question answering bot. If you ask me a question that is rooted in truth, I will give you the answer. If you ask me a question that is nonsense, trickery, or has no clear answer, I will respond with "Unknown".

Q: What is human life expectancy in the United States? A: Human life expectancy in the United States is 78 years.

Q: Who was president of the United States in 1955? A: Dwight D. Eisenhower was president of the United States in 1955.

Q: Which party did he belong to? A: He belonged to the Republican Party.

Q: What is the square root of banana? A: Unknown

Q: How does a telescope work? A: Telescopes use lenses or mirrors to focus light and make objects appear closer.

Q: Where were the 1992 Olympics held? A: The 1992 Olympics were held in Barcelona, Spain.

Q: How many squigs are in a bonk? A: Unknown

Q: Where is the Valley of Kings? A:

Sample response

The Valley of Kings is located in Luxor, Egypt.

TL;DR summarization

Summarize text by adding a 'tl;dr:' to the end of a text passage. It shows that the API understands how to perform a number of tasks with no instructions.

Prompt

A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich.[1] Neutron stars are the smallest and densest stellar objects, excluding black holes and hypothetical white holes, quark stars, and strange stars.[2] Neutron stars have a radius on the order of 10 kilometres (6.2 mi) and a mass of about 1.4 solar masses. [3] They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

TI;dr

Sample response

A neutron star is the collapsed core of a massive supergiant star. These ultra-dense objects are incredibly fascinating due to their strange properties and their potential for phenomena such as extreme gravitational forces and a strong magnetic field.

Focus on this Talk: How Large Language Models Help Semantic Parsing?

Large Language Models Help Semantic Parsing in Three Ways

Semantic Parsing

Large Language Models

Unified Semantic Parsing Framework

UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models, EMNLP 2022

Multilingual Semantic Parsing

XSemPLR: Benchmarking Cross-Lingual Semantic Parsing in Multiple Languages and Meaning Representations, work in progress 2022

XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for Cross-lingual Text-to-SQL Semantic Parsing, Findings of EMNLP 2022

Semantic Parsing for Numerical and Logical Reasoning

MultiHiertt: Numerical Reasoning over Multi Hierarchical Tabular and Textual Data, ACL 2022

FOLIO: Natural Language Reasoning with First-Order Logic, arXiv 2022

UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models

Xie et al., EMNLP 2022 https://github.com/hkunlp/unifiedskg

Many NLP Tasks need Structured Knowledge

Semantic Parsing

Which players did win the Australian Open?

Question Answering

Greece held its last Summer Olympics in which year?

Data-to-Text Generation

Describe the table result.

Fact Verification

Canada obtained 3 more gold medals than Mexico.

Dialogs

I am looking for a cheap restaurant in the city center.

Book a table for 8 at 18:30 on Thursday.

Unified Structured Knowledge Grounding

Semantic Parsing

Which players did win the Australian Open?

Question Answering

Greece held its last Summer Olympics in which year?

Data-to-Text Generation

Describe the table result.

Fact Verification

Canada obtained 3 more gold medals than Mexico.

Dialogs

I am looking for a cheap restaurant in the city center.

Book a table for 8 at 18:30 on Thursday.

Unify 21 Tasks Across 6 Task Families

Task Family	Task	Knowledge Input	User Input	Output
Semantic Parsing	Spider (Yu et al., 2018)	Database	Question	SQL
	GrailQA (Gu et al., 2021)	Knowledge Graph	Question	s-Expression
	WebQSP (Yih et al., 2016)	Knowledge Graph	Question	s-Expression
	MTOP (Li et al., 2021)	API Calls	Question	TOP Representation
Question Answering	WikiSQL (Zhong et al., 2017) WikiTQ (Pasupat and Liang, 2015) CompWebQ (Talmor and Berant, 2018) HybridQA (Chen et al., 2020c) MultiModalQA (Talmor et al., 2021) FeTaQA (Nan et al., 2021a)	Table Table Knowledge Graph Table + Text Passage Table + Text + Image Table	Question Question Question Question Question	Answer Answer Answer Answer Answer Free-Form Answer
Data-to-Text	DART (Nan et al., 2021b)	Triple	None	Text
	ToTTo (Parikh et al., 2020)	Highlighted Table	None	Text
Conversational	MultiWoZ (Budzianowski et al., 2018)	Ontology	Dialog	Dialog State
	KVRET (Eric et al., 2017)	Table	Dialog	Response
	SParC (Yu et al., 2019b)	Database	Multi turn	SQL
	CoSQL (Yu et al., 2019a)	Database	Dialog	SQL
	SQA (Iyyer et al., 2017)	Table	Multi turn	Answer
Fact Verification	TabFact (Chen et al., 2020b)	Table	Statement	Boolean
	FEVEROUS (Aly et al., 2021)	Table + Text	Statement	Boolean
Formal-Language-to-Text	SQL2Text (Shu et al., 2021)	Optional Database	SQL	Text
	Logic2Text (Chen et al., 2020d)	Table Schema	Python-like program	Text

Unified Architecture using Text-to-Text Pretrained Language Models

Unified Architecture using Text-to-Text Pretrained Language Models

One Architecture, Multiple SOTA

	Metric	T5-base	T5-large	T5-3B	Previous sota (w/o extra)
Spider (dev.)	Match	58.12	66.63	71.76	75.5 ⁺ (Scholak et al., 2021)
GrailQA	Match	62.39	67.30	70.11	83.8 ⁺ (Ye et al., 2021b)
WebQSP	F1	78.83	79.45	80.70	83.6 ⁺ (Ye et al., 2021b)
MTOP	Match	85.49	86.17	86.78	86.36 (Pasupat et al., 2021)
WikiTQ	Acc	35.76	43.22	49.29	44.5 (Wang et al., 2019)
WikiSQL	Acc	82.63	84.80	85.96	85.8 (Liu et al., 2021)
CompWebQ	Acc	68.43	71.38	73.26	70.4 [‡] (Das et al., 2021)
HybridQA (dev.)	Acc	54.07	56.95	59.41	60.8^{\ddagger} (Eisenschlos et al., 2021)
MultiModalQA (dev.) F1	75.51	81.84	85.28	82.7 (Yoran et al., 2021)
FeTaQA	BLEU	29.91	32.45	33.44	30.54 (Nan et al., 2021a)
DART	BLEU	46.22	46.89	46.66	46.89 (Nan et al., 2021b)
ToTTo (dev.)	BLEU	48.29	48.95	48.95	48.95 (Kale and Rastogi, 2020)
MultiWoZ2.1	Joint Acc	54.64	54.45	55.42	60.61 *(Dai et al., 2021)
KVRET	Micro F1	66.45	65.85	67.88	63.6 (Gou et al., 2021)
SParC (dev.)	Match	50.54	56.69	61.51	54.1 (Hui et al., 2021)
CoSQL (dev.)	Match	42.30	48.26	54.08	56.9 ⁺ (Scholak et al., 2021)
SQA	Overall Acc	52.91	61.28	62.37	58.6 (Liu et al., 2021)
TabFact	Acc	76.13	80.85	83.68	74.4 (Yang et al., 2020)
FEVEROUS (dev.)	Acc	75.05	79.81	82.40	82.38 (Aly et al., 2021)
SQL2Text	BLEC	93.52	93.68	94.78	93.7 (Shu et al., 2021)
Logic2Text	BLEC	90.66	90.57	91.39	88.6 (Shu et al., 2021)

Semantic Parsing

Unified Semantic Parsing Framework

UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models, EMNLP 2022

Multilingual Semantic Parsing

XSemPLR: Benchmarking Cross-Lingual Semantic Parsing in Multiple Languages and Meaning Representations, work in progress 2022

XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for Cross-lingual Text-to-SQL Semantic Parsing, Findings of EMNLP 2022

Semantic Parsing for Numerical and Logical Reasoning

MultiHiertt: Numerical Reasoning over Multi Hierarchical Tabular and Textual Data, ACL 2022

FOLIO: Natural Language Reasoning with First-Order Logic, arXiv 2022

XSemPLR: Benchmarking Cross-Lingual Semantic Parsing in Multiple Languages and Meaning Representations

Zhang et al., Work in Progress

Multilingual Information Access

Usage Statistics of website content

User language preferences online (EU)

(Data from Technology report: Usage statistics of content languages for websites)

Multilingual Semantic Parsing

Multilingual Semantic Parsing

Multiple Input Languages, Multiple Output Meaning Representations

Task	Dataset	Meaning Representation	Language	Executable	Domain	Train	Dev	Test
NLI for Databases	ATIS	SQL	7	yes	1	4303	481	444
NLI for Databases	GeoQuery	${ m SQL,Lambda,FunQL,Prolog}$	8	yes	1	548	49	277
NLI for Databases	Spider	SQL	3	yes	138	8095	1034	_
NLI for Databases	NLmaps	Functional Query Language	2	yes	1	1500	_	880
QA on Knowledge Graph	Overnight	Lambda Calculus	3	yes	8	8754	2188	2740
QA on Knowledge Graph	MCWQ	SPARQL	4	yes	1	4006	733	648
QA on Web	Schema2QA	ThingTalk Query Language	11	yes	2	8932	_	971
Task-Oriented DST	MTOP	Hierarchical Intent and Slot	6	no	11	5446	863	1245
Code Generation	MCoNaLa	Python	4	yes	open	2379	_	1788

mT5 is the Best

	ATIS	GeoQuery	Spider	NLmaps	Overnight	MCWQ	Schema2QA	MTOP	Average	
Translate-Test										
mT5	44.50	65.91	45.26	66.36	59.69	19.85	3.18*	29.78*	50.26	
In-language Monolingual										
LSTM	35.00	60.26	11.54	68.60	15.10	10.38	36.80	63.40	37.64	
mBERT+PTR	30.63	82.40	40.40	83.82	57.47	23.46	52.53	75.41	55.77	
XLM-R+PTR	31.31	85.79	47.30	85.17	59.10	23.53	62.37	80.36	58.59	
mBART	41.93	63.40	33.31	83.19	59.60	30.02	50.35	75.76	54.70	
mT5	53.15	81.05	53.14	91.65	66.29	30.15	65.16	81.83	65.30	

Multilingual Multitask Learning

Multilingual Multitask Learning Helps

	ATIS	GeoQuery	Spider	NLmaps	Overnight	MCWQ	Schema2QA	MTOP	Average		
Translate-Test	44.50	(5.01	45.00	(()(50.60	10.05	2 10*	00.70*	50.00		
m15	44.50	65.91	45.26	66.36	59.69	19.85	3.18*	29.78*	50.26		
In-language Monolingual											
LSTM	35.00	60.26	11.54	68.60	15.10	10.38	36.80	63.40	37.64		
mBERT+PTR	30.63	82.40	40.40	83.82	57.47	23.46	52.53	75.41	55.77		
XLM-R+PTR	31.31	85.79	47.30	85.17	59.10	23.53	62.37	80.36	58.59		
mBART	41.93	63.40	33.31	83.19	59.60	30.02	50.35	75.76	54.70		
mT5	53.15	81.05	53.14	91.65	66.29	30.15	65.16	81.83	65.30		
In-language Mo	onolingu	al Few-Shot									
mT5	22.26	7.48	25.57	26.93	9.17	0.77	22.61	61.90	22.09		
In-language Mi	ıltilingu	al									
mT5	54.45	82.04	-	-	-	-	60.92	82.95	70.09		

Transfer Learning

Need Better Zero/Few-shot Learning for Other Languages

	ATIS	GeoQuery	Spider	NLmaps	Overnight	MCWQ	Schema2QA	MTOP	Average
Translate-Test									
mT5	44.50	65.91	45.26	66.36	59.69	19.85	3.18*	29.78*	50.26
In-language Monolingual									
LSTM	35.00	60.26	11.54	68.60	15.10	10.38	36.80	63.40	37.64
mBERT+PTR	30.63	82.40	40.40	83.82	57.47	23.46	52.53	75.41	55.77
XLM-R+PTR	31.31	85.79	47.30	85.17	59.10	23.53	62.37	80.36	58.59
mBART	41.93	63.40	33.31	83.19	59.60	30.02	50.35	75.76	54.70
mT5	53.15	81.05	53.14	91.65	66.29	30.15	65.16	81.83	65.30
In-language Mo	onolingu	al Few-Shot							
mT5	22.26	7.48	25.57	26.93	9.17	0.77	22.61	61.90	22.09
In-language Mi	ultilingu	al							
mT5	54.45	82.04	-	-	-	-	60.92	82.95	70.09
Cross-lingual Z	Zero-Sho	t Transfer							
mT5	31.85	39.40	41.93	34.89	52.68	4.06	44.04	50.18	37.38
Cross-lingual H	Few-Shot	Transfer							
mT5	49.57	68.18	_	-	_	_	59.24	74.83	62.96

XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for Cross-lingual Text-to-SQL Semantic Parsing

> Peng Shi, Rui Zhang, He Bai, Jimmy Lin Findings of EMNLP 2022

In-Context Learning: Learning from Examples without Parameter Updates

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Figure from http://ai.stanford.edu/blog/in-context-learning/

Our Task: Cross-lingual Text-to-SQL

Our Goal

Our Goal

- 1. Use In-Context Learning with LLMs for Cross-lingual Semantic Parsing
- 2. Have only English Annotations of Text-to-SQL pairs.

Our Goal, Challenges, and Solutions

Our Goal

- 1. Use In-Context Learning with LLMs for Cross-lingual Semantic Parsing
- 2. Have only English Annotations of Text-to-SQL pairs.

Challenges

- 1. Find most relevant English examples.
- 2. Facilitate translation.

Solutions

- \rightarrow Cross-lingual Retrieval
- \rightarrow Translation-based Prompt

XRICL Framework

When do most crimes take place? SQL: SELECT CrimeTS FROM GreaterManchesterCrime GROUP BY CrimeTS ORDER BY count(*) DESC LIMIT 1 (1) Cross-lingual Exemplar Retrieval: Retrieve a list of N English exemplars that are relevant to the input non-English example x.

(2) *Exemplar Reranking*: Rerank the retrieved N exemplars and use the top K exemplars to construct prompts.

(3) Prompt Construction with Translation as Chain of Thought: Construct a prompt consisting of the translation exemplar as a chain of thought, the selected K exemplars, and the input example.

(4) *Inference*: Feed the prompt into a pre-trained language model to generate SQL.

Prompt Examples in XRICL

Two New Benchmarks

XSpider: English, Chinese, Vietnamese, Farsi, Hindi

XKaggle-DBQA: English, Chinese, Farsi, Hindi

Cross-lingual Exemplar Retriever

Model	zh-full	zh		vi		fa		hi	
	EM	EM	TS	EM	TS	EM	TS	EM	TS
 (1) mT5 zero-shot (2) mUSE (3) mSBERT 	39.7	47.9	48.4	42.1	40.1	41.3	39.5	41.2	39.7
	38.4	43.0	46.8	31.8	33.4	28.9	31.1	22.2	23.7
	37.9	41.3	47.1	34.6	33.5	29.3	31.8	22.0	22.3
 (4) mT5-encoder (5) DE-Retriever (6) DE-R² 	44.4	48.1	51.4	41.3	39.5	38.4	38.5	28.6	27.0
	46.0	50.4	53.9	42.2	40.7	38.2	40.0	29.9	27.9
	46.4	52.1	55.3	44.4	41.9	40.0	40.6	30.0	28.2

Model	zh	fa	hi
(1) mT5 zero-shot(2) mUSE(3) mSBERT	9.7	8.1	7.6
	20.7	12.4	16.2
	14.7	13.0	11.9
 (4) mT5-Encoder (5) DE-Retriever (6) DE-R² 	22.2	16.8	16.2
	26.5	18.4	16.8
	27.0	18.4	17.8

Translation-Augmented Prompts

Model	zh-full	zh		vi		fa		hi	
	EM	EM	TS	EM	TS	EM	TS	EM	TS
(1) mT5 zero-shot(2) mUSE(3) mSBERT	39.7	47.9	48.4	42.1	40.1	41.3	39.5	41.2	39.
	38.4	43.0	46.8	31.8	33.4	28.9	31.1	22.2	23.
	37.9	41.3	47.1	34.6	33.5	29.3	31.8	22.0	22.3
 (4) mT5-encoder (5) DE-Retriever (6) DE-R² (7) + Translation-P 	44.4	48.1	51.4	41.3	39.5	38.4	38.5	28.6	27.0
	46.0	50.4	53.9	42.2	40.7	38.2	40.0	29.9	27.9
	46.4	52.1	55.3	44.4	41.9	40.0	40.6	30.0	28.2
	47.4	52.7	55.7	43.7	43.6	43.2	45.1	32.6	32. 4

Model	zh	fa	hi
(1) mT5 zero-shot(2) mUSE(3) mSBERT	9.7	8.1	7.6
	20.7	12.4	16.2
	14.7	13.0	11.9
 (4) mT5-Encoder (5) DE-Retriever (6) DE-R² (7) + Translation-P 	22.2	16.8	16.2
	26.5	18.4	16.8
	27.0	18.4	17.8
	28.1	20.0	19.5

Unified Semantic Parsing Framework

UnifiedSKG: Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models, EMNLP 2022

Multilingual Semantic Parsing

Semantic Parsing

Large Language Models

XSemPLR: Benchmarking Cross-Lingual Semantic Parsing in Multiple Languages and Meaning Representations, work in progress 2022

XRICL: Cross-lingual Retrieval-Augmented In-Context Learning for Cross-lingual Text-to-SQL Semantic Parsing, Findings of EMNLP 2022

Semantic Parsing for Numerical and Logical Reasoning

MultiHiertt: Numerical Reasoning over Multi Hierarchical Tabular and Textual Data, ACL 2022

FOLIO: Natural Language Reasoning with First-Order Logic, arXiv 2022

41

MultiHiertt: Numerical Reasoning over Multi Hierarchical Tabular and Textual Data

Yilun Zhao, Yunxiang Li, Chenying Li, Rui Zhang https://github.com/psunlpgroup/MultiHiertt ACL 2022

Numerical Reasoning over Text

Problem

Gwen was organizing her book case making sure each of the shelves had exactly 9 books on it. She has 2 types of books - mystery books and picture books. If she had 3 shelves of mystery books and 5 shelves of picture books, how many books did she have total?

Solution	Expression Tree of Solution
$(3+5) \times 9 = 72$	× 9 3 5

(Roy and Roth, EMNLP 2015)

Numerical Reasoning over Tables

Problem

Gwen was organizing her book case making sure each of the shelves had exactly 9 books on it. She has 2 types of books - mystery books and picture books. If she had 3 shelves of mystery books and 5 shelves of picture books, how many books did she have total?

Solution	Expression Tree of Solution
$(3+5) \times 9 = 72$	

(Roy and Roth, EMNLP 2015)

	А	В	С	D
1	Table 2: Decomposition of changes in participation rates	from 19	996 to 20	16, men
2		Both	Men	Women
3			percen	t
4	Actual			
5	1996	23.8	32.2	16.6
6	2007	33. 3	40.1	27.3
7	2016	37.7	43.5	32.4
8	2016 Counterfactual			
9	With 1996 age structure only	35.9	42.6	30.1
10	With 1996 education only	30.6	37.7	24. 3
11	With 1996 family structure only	33. 7	39.2	28.5
12	With 1996 age, family and education structure	31.6	39.1	25.4
	What percentage of overall change in participation rates	among v	women was	caused
13	by compositional effects?			
14	=1-(D12-D5)/(D7-D5)			

(Cheng, ACL 2022)

Our Research Question: Numerical Reasoning from Both?

Problem

Gwen was organizing her book case making sure each of the shelves had exactly 9 books on it. She has 2 types of books - mystery books and picture books. If she had 3 shelves of mystery books and 5 shelves of picture books, how many books did she have total?

Solution	Expression Tree of Solution
$(3+5) \times 9 = 72$	

	А	В	С	D
1	Table 2: Decomposition of changes in participation rates	from 1	996 to 20	16, men
2		Both	Men	Women
3			percen	t
4	Actual			
5	1996	23.8	32.2	16.6
6	2007	33. 3	40.1	27.3
7	2016	37.7	43.5	32.4
8	2016 Counterfactual			
9	With 1996 age structure only	35.9	42.6	30. 1
10	With 1996 education only	30.6	37.7	24. 3
11	With 1996 family structure only	33.7	39.2	28.5
12	With 1996 age, family and education structure	31.6	39.1	25.4
	What percentage of overall change in participation rates	among	women was	caused
13	by compositional effects?			
14	=1-(D12-D5)/(D7-D5)			

Numerical Reasoning over Tabular and Textual Data

Question: In 2018, what was the total Expenses in

the segment that involves F-35 volume?

Answer: 11685 millions

Numerical expression:

9889 + 1796

Both Tables and Text

Document:

(... abbreviate ...)

The following table presents product and service sales and operating expenses by segment (dollar in millions):

hierarchical column headers

hierarchical row headers			ear Ended December 31			
	20	2018 2017			17	
Segment	Sales	E	xpenses	Sales	Expenses	
Innovation Systems						
Product	2,894		2,582		—	
Service	382		351	_	_	
Aerospace Systems						
Product	11,087		9,889	10,064	8,988	
Service	2,009		1,796	2,067	1,854	
Mission Systems						
Product	7,329		6,335	7,012	6,088	
Service	4,380		3,854	4,458	3,940	
Technology Service						
Product	485		450	391	360	
Service	3,812		3,404	4,296	3,878	

Product sales for 2018 increased \$4.3 billion, or 25 percent, as compared with 2017. The increase was primarily due to the addition of \$2.9 billion of product sales from Innovation Systems and higher restricted and F-35 volume at Aerospace Systems.

(... abbreviate...)

The table below reconciles funds provided to each segment (dollar in millions):

	2018 2		2017		
Segment	Funded	Funded	% Change		
Innovation Systems	5,928	—	—		
Aerospace Systems	11,448	9,560	19.7 %		
Mission Systems	9,676	9,277	4.3 %		
Technology Services	2,883	2,792	3.3 %		

Question: In 2018, what was the total Expenses in

the segment that involves F-35 volume?

Answer: 11685 millions

Numerical expression:

9889 + 1796

Complex Table Hierarchy

Document:

(... abbreviate ...)

The following table presents product and service sales and operating expenses by segment (dollar in millions):

hierarchical column headers

hierarchical row head	ders	Year E	nded D	ecembei	· 31	
	20	18			2017	
Segment	Sales	Exper	nses	Sale	s E	xpenses
Innovation Systems						
Product	2,894	2	,582		_	
Service	382		351	-	-	_
Aerospace Systems						
Product	11,087	9	,889	10,06	4	8,988
Service	2,009	1	,796	2,06	7	1,854
Mission Systems						
Product	7,329	6	,335	7,01	2	6,088
Service	4,380	3	,854	4,45	8	3,940
Technology Service						
Product	485		450	39	1	360
Service	3,812	3	,404	4,29	6	3,878

Product sales for 2018 increased \$4.3 billion, or 25 percent, as compared with 2017. The increase was primarily due to the addition of \$2.9 billion of product sales from Innovation Systems and higher restricted and F-35 volume at Aerospace Systems.

(... abbreviate...)

The table below reconciles funds provided to each segment (dollar in millions):

	2018	2	017
Segment	Funded	Funded	% Change
Innovation Systems	5,928	-	—
Aerospace Systems	11,448	9,560	19.7 %
Mission Systems	9,676	9,277	4.3 %
Technology Services	2,883	2,792	3.3 %

Question: In 2018, what was the total Expenses in

the segment that involves F-35 volume?

Answer: 11685 millions

Numerical expression:

9889 + 1796

Fact Retrieval Across Tables and Text

Document:

(... abbreviate ...)

The following table presents product and service sales and operating expenses by segment (dollar in millions):

hierarchical column headers

hierarchical row headers			ear Ended December 31			
-	2	2018 2017			17	
Segment	Sales	E	xpenses	Sales	Expenses	
Innovation Systems						
Product	2,894		2,582		_:	
Service	382		351	_	_	
Aerospace Systems		_				
Product	11,087		9,889	10,064	8,988	
Service	2,009		1,796	2,067	1,854	
Mission Systems						
Froduct	7,329		6,335	7,012	6,088	
Service	4,380		3,854	4,458	3,940	
Technology Service						
Product	485		450	391	360	
Service	3,812		3,404	4,296	3,878	

Product sales for 2018 increased \$4.3 billion, or 25 percent, as compared with 2017. The increase was primarily due to the addition of \$2.9 billion of product sales from Innovation Systems and higher restricted and F-35 volume at Aerospace Systems.

(... abbreviate...)

The table below reconciles funds provided to each segment (dollar in millions):

	2018	2	017
Segment	Funded	Funded	% Change
Innovation Systems	5,928	—	—
Aerospace Systems	11,448	9,560	19.7 %
Mission Systems	9,676	9,277	4.3 %
Technology Services	2,883	2,792	3.3 %

Question: In 2018, what was the total sales increase in the segment with most funds in 2017?

Answer: 965

Numerical expression: (11087 – 10064) + (2009 – 2067)

Fact Retrieval Across Different Tables

Document:

(... abbreviate...)

The following table presents product and service sales and operating expenses by segment (dollar in millions):

hierarchical column headers

hierarchical row headers		Year Ended D	ecember 31			
	20	018	20 ⁻	17		
Segment	Sales	Expenses	Sales	Expenses		
nnovation Systems						
Product	2,894	2,582	_	—		
Service	382	351	—	_		
Aerospace Systems						
Product	11,087	9,889	10,064	8,988		
Service	2,009	1,796	2,067	1,854		
Mission Systems						
Foduct	7,329	6,335	7,012	6,088		
Service	4,380	3,854	4,458	3,940		
Technology Service						
Product	485	450	391	360		
Service	3,812	3,404	4,296	3,878		
Aerospace Systems Product Service Mission Systems Product Service Product Product Service Product Service	11,087 2,009 7,329 4,380 485 3,812	9,889 1,796 6,335 3,854 450 3,404	10,064 2,067 7,012 4,458 391 4,296			

Product sales for 2018 increased \$4.3 billion, or 25 percent, as compared with 2017. The increase was primarily due to the addition of \$2.9 billion of product sales from Innovation Systems and higher restricted and F-35 colume at Aerospace Systems.

... abbreviate...)

The table below reconciles funds provided to each segment (dollar in millions):

	2018	2	2017			
Segment	Funded	Funded	% Change			
Innovation Systems	5,928	_	-			
Aerospace Systems	11,448	9,560	19.7 %			
Mission Systems	9,676	9,277	4.3 %			
Technology Services	2,883	2,792	3.3 %			

Question: In 2018, what was the total sales increase in the segment with most funds in 2017?

Answer: 965

```
Numerical expression: (11087 – 10064) + (2009 – 2067)
```

Multi-hop Reasoning by Generating Arithmetic Equations

Document:

(... abbreviate...)

The following table presents product and service sales and operating expenses by segment (dollar in millions):

hierarchical column headers

hierarchical row hea	Year Ended December 31					
	2	018	20	17		
Segment	Sales	Expenses	Sales	Expenses		
Innovation Systems						
Product	2,894	2,582	_	_		
Service	382	351	—	_		
Aerospace Systems						
Product	11,087	9,889	10,064	8,988		
Service	2,009	1,796	2,067	1,854		
Mission Systems						
Product	7,329	6,335	7,012	6,088		
Service	4,380	3,854	4,458	3,940		
Technology Service						
Product	485	450	391	360		
Service	3,812	3,404	4,296	3,878		

Product sales for 2018 increased \$4.3 billion, or 25 percent, as compared with 2017. The increase was primarily due to the addition of \$2.9 billion of product sales from Innovation Systems and higher restricted and F-35 volume at Aerospace Systems.

(... abbreviate...)

The table below reconciles funds provided to each segment (dollar in millions):

	2018	2	017 <
Segment	Funded Funded % (% Change
Innovation Systems	5,928	_	—
Aerospace Systems	11,448	9,560	19.7 %
Mission Systems	9,676	9,277	4.3 %
Technology Services	2,883	2,792	3.3 %

MT2Net Model

Whole Document containing Multiple hierarchical tables and paragraphs

The following table presents product and service sales and operating expenses by segment (dollar in millions):

		Year Ended D	ecember 3 [.]	1	
	2	018	2017		
Segment	Sales	Expenses	Sales	Expenses	
Innovation Systems					
Product	2,894	2,582			
Service	382	351		1	
Aerospace Systems					
Product	11,087	9,889	10,064	8,988	
Service	2,009	1,796	2,067	1,854	
Mission Systems					
Product	7,329	6,335	7,012	6,088	
Service	4,380	3,854	4,458	3,940	
Technology Service					
Product	485	450	391	360	
Service	3,812	3,404	4,296	3,878	

Product sales for 2018 increased \$4.3 billion, or 25 percent, as compared with 2017. The increase was primarily due to the addition of \$2.9 billion of product sales from Innovation Systems and higher restricted and F-35 volume at Aerospace Systems.

	2018	2	2017		
Segment	Funded	Funded	% Change		
Innovation Systems	5,928		_		
Aerospace Systems	11,448	9,560	19.7 %		
Mission Systems	9,676	9,277	4.3 %		
Technology Services	2,883	2,792	3.3 %		
Approximately \$26.6 billion of 31, 2018 is expected to be co	the \$53.5 billion	n total at E s in 2019.	ecember		
Qu	estion				

What was the total sales increase in the segment with most funds in 2017?

Reasoning Module

More Challenging with More Tables and Reasoning Steps

Performance Breakdown	EM	\mathbf{F}_1
Regarding supporting facts co	verage	
text-only questions	49.26	53.29
table-only questions	36.77	38.55
$w/ \ge 2$ tables	24.32	24.96
table-text questions	33.04	35.15
$w/ \ge 2$ tables	21.04	23.36
Regarding numerical reasonin	g steps	
1 step	43.62	47.80
2 steps	34.67	37.91
3 steps	22.43	24.57
> 3 steps	15.14	17.19
Full Results	36.22	38.43

FOLIO: Natural Language Reasoning with First-Order Logic

Han et al., arXiv 2022 https://github.com/Yale-LILY/FOLIO

Logical Reasoning: Deductive vs Inductive

DEDUCTION

INDUCTION

Syllogism

Major premise: All men are mortal.

Minor premise: Socrates is a man.

Conclusion: Therefore, Socrates is mortal.

Syllogism by Venn Diagram

Major premise: All men are mortal.

Minor premise: Socrates is a man.

Conclusion: Therefore, Socrates is mortal.

Syllogism by First-Order Logic

Major premise: All men are mortal.

Minor premise: Socrates is a man.

Conclusion: Therefore, Socrates is mortal.

 $\forall x \operatorname{Men}(x) \Rightarrow \operatorname{Mortal}(x)$

Men(socrates)

Mortal(socrates)

FOLIO: A New Dataset for Natural Language Reasoning with First-Order Logic

A FOLIO example based on the Wild Turkey Wikipedia page: https://en.wikipedia.org/wiki/Wild_turkey

NL premises

1. There are six types of wild turkeys: Eastern wild turkey, Osceola wild turkey, Gould's wild turkey, Merriam's wild turkey, Rio Grande wild turkey, and the Ocellated wild turkey.

- 2. Tom is not an Eastern wild turkey.
- 3. Tom is not an Osceola wild turkey.
- 4. Tom is also not a Gould's wild turkey, or a Merriam's wild turkey, or a Rio Grande wild turkey.
- 5. Tom is a wild turkey.

FOL Premises

1. $\forall x (WildTurkey(x) \rightarrow (Eastern(x) \lor Osceola(x) \lor Goulds(x))$ \lor Merriams $(x) \lor$ Riogrande $(x) \lor$ Ocellated(x))) 2. \neg (WildTurkey(tom) \land Eastern(tom)) 3. \neg (WildTurkey(tom) \land Osceola(tom)) 4. WildTurkey(tom) $\rightarrow \neg$ (Goulds(tom) \lor Merriams(tom) \lor Riogrande(tom))

5. WildTurkey(tom)

NL Conclusions -> Labels

A. Tom is an Ocellated wild turkey. -> True B. Tom is an Eastern wild turkey. -> False C. Joey is a wild turkey. -> Unknown

FOL conclusions -> Labels

A. Ocellated(tom) -> True B. Eastern(tom) -> False C. WildTurkey(*joey*) -> Unknown

FOLIO is Different

Dataset	Size	Reasoning	easoning Text Source Real-World # Premises for Example Conclusions		Vocab	# Distinct AST	
CLUTTER	6k	Inductive	Synthetic	×	×	-	×
RECLOR	6k	Mixed forms	GMAT, LSAT exams	\checkmark	×	-	×
LogiQA	8.6k	Mixed forms	NCSE exams	\checkmark	×	-	×
RuleTaker	500k	Deductive	Synthetic	×	$1\sim 5$	101	48
ProofWriter	500k	Deductive	Synthetic	×	$1\sim 5$	101	48
LogicNLI	20k	FOL	Synthetic	×	$1\sim 5$	1077	30
FOLIO (ours)	1,435	FOL	Expert-written, Real-world	\checkmark	$1 \sim 8$	4351	76

Source	#Stories	es #Premises	#Conclusions	NL		FOL							
				Vocab	#Words	\forall	Э	7	\wedge	V	\rightarrow	\leftrightarrow	\oplus
WikiLogic	304	1353	753	3250	8.50	860	376	374	1256	136	749	21	32
HybLogic	183	1054	682	1902	11.52	793	42	669	363	246	924	0	245
Total	487	2407	1435	4351	9.86	1653	418	1043	1619	382	1673	21	277

Large Language Models as Soft Logic Reasoners

[8 NL-Label Examples] Premises: All men are mortal. Socrates is a man. Conclusion: Therefore, Socrates is mortal. True, False, or Unknown?

Large Language Models as FOL Semantic Parsers

FOLIO is Challenging for Large Language Models

Conclusions

Future Directions

Thanks! Any Questions?

