Neural Ditfferential
Equations as a Basis for

Scientific Machine
Learning

CHRIS RACKAUCKAS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MARYLAND, BALTIMORE, SCHOOL OF PHARMACY, CENTER FOR TRANSLATIONAL MEDICINE

The major advances in
machine learning were due to

encoding more sfructure Into
the model

MORE STRUCTURE = FASTER AND BETTER FITS FROM LESS DATA

Convolutional Neural Networks

Encode (Spatial) Structure

T

g — TRUCK

— VAN

3

sELL T T LT
RS EREE

T

J 7 /
W 4 [l [[] — BICYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COFNUF:JE.ETED SOFTMAX
R — Fa Y J
FEATURE LEARNING CLASSIFICATION

A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way, Sumit Saha

Recurrent Neural Networks Encode

Time Dependency Assumptions

®)
!
A
6

))
0o
b ©

Everything you need to know about Recurrent Neural Networks, Prajjwal

)
:
6

@—>—@

Now let’s generalize this idea
fo scientific structures

WHAT'S THE STRUCTURE®?

Scientific Structure:
X changes as

function of (Y,Z,...)

THIS IS JUST A DIFFERENTIAL EQUATION

Ecology Example:

Lotka-Volterra Equations

d ﬁ The Lotka-Volterra Equations: Model of Rabbits and Wolves

ash — B & — o

dt Exponential Gets eaten

d @ growth by wolves

Sk} — vk

dt Increases with Decreases with
more food competition

2

Developmental Biology Example:

Hindbrain Development

Statistical mechanical principles imply an evolution of:

d[RAout] = (18 - b[RAaut] + IC|:f‘7:“£1i'r1,])'f;"t:

a[RA — RAR]
w + [RA — RAR

d[RA;,] = (b[RAom] + 6[RA — BP] — (y[BP] ++ - c) [RAm]) dt + odW,,

Structure d[RA — BP] = (y[BP][RA,,] + A[BP][RA — RAR] — (6 + v[RAR])[RA — BP])dt,
From d[RA — RAR] = (v[RA — BP][RAR] — A[BP][RA — RAR])dt,
Scientific

Experiments d[RAR] = ({ — v[RA — BP][RAR] + A[BP][RA — RAR] — r[RAR))dt,

d[BP] = (a — A[BP][RA — RAR] — y[BP][RA,,] + (8 + V[RAR])[RA — BP] — u[BP])dt,

But what is the

mathemartical structure of
machine learning?

10

Neural Networks = Function Approximation

. . x . x?
» Polynomial:e* =1 to 5t

2 tanh(g)
1—tanh(§)

» Nonlinear:e* =1+

» Neural Network: e* = Wso(W,o(Wyx + by) + b,) + bs

Neural Networks = Nonlinear Regression

» Polynomial: e* = a; + ayx + azx? + -

a4 tanh(a,x)

» Nonlinear:e* =1+
azx—tanh(asx)

» Neural Network: e* = Wso(W,ao(W;x + by) + b,) + bs. Train the weights (W, b)

Universal

NEURAL NETWORKS

HERGE | Approximation

FUNCTION

Theorem

» Polynomials: easy but numerically unstable and Runge’'s Phenomenon

» Fourier/Chebysheyv Series: great if smooth, but Gibb's Phenomenon.

» Going to higher dimensions usually isn't rotationally invariant: mixed derivatives give issues.
» Tensor product spaces
» Sparse Grids

» Radial Basis Functions (RBFs) work well on low dimensional manifolds in high dimensional spaces

Nothing is really a silver bullet for arbitrary functions in high dimensions.

[1] L. N. Trefethen, Cubature, approximation, and isotropy in the hypercube, SIAM Review
[2] https://www.cs.cmu.edu/afs/cs/academic/class/15883-f17/slides/rof.pdf

Neural Networks are
universal approximators

which work well In high
dimensions

NEURAL NETWORKS OVERCOME “THE CURSE OF DIMENSIONALITY"

But learning everything from
scratch is hard!

(Requires “Big Data” and
lots of compute time)

What happens when we
combine universal

approximators and scienftific
modelse

Latent (Neural)

Differential Equations

NEURAL ORDINARY DIFFERENTIAL EQUATION:

u' = f(upt)
LET f BE A NEURAL NETWORK

Training a neural differential equation

» Solve the differenfial equation

» Compute the gradient of the solution with respect to the parameters
defining the neural network

» Adjoint sensitivity analysis
» Differentiable programming

» Update the neural network and repeat

Automatically Learning the Model

ew Juno Selection Find
neliral_ode.jl

using DiffEqFlux, OrdinaryDiffEq, Flux, Plots

u@ = Float32[2.; ©.]; datasize = 3@

tspan = (©.0f0,1.5f0)

function trueODEfunc(du,u,p,t)
true_A = [-0.1 2.0; -2.0 -0.1]
du .= ((u.”3)'true_A)'

t = range(tspan[1],tspan[2],length=datasize)
prob = ODEProblem(trueODEfunc,u®,tspan)
ode_data = Array(solve(prob,Tsit5(),saveat=t))

dudt = Chain(x -» x.73,
Dense(2,75,tanh),
Dense(75,2))
n_ode(x) = neural_ode(dudt,x,tspan,AutoTsit5(Rosenbrock23(autodiff=false)),saveat=t,reltol=1e-7,abstol=1e-9)
function predict_n_ode()
n_ode(u@)

loss_n_ode() = sum(abs2,ode_data .- predict_n_ode())

Iterators.repeated((), 200)
function ()
play(loss_n_ode()); cur_pred = Flux.data(predict_n_ode())
= scatter(t,ode_data[1,:],label="data",legend=:bottomright); scatter!(pl,t,cur_pred[1,:],label="prediction™)
= scatter(t,ode_data[2,:],label="data",legend=:top); scatter!(p2,t,cur_pred[2,:],label="prediction™)
display(plot(pl,p2,layout=(2,1)))

Flux.train!(loss_n_ode, Flux.params(dudt), data, Nesterov(@.8e05), cb = cb)

REPL

neural_odejl 1:46

The Neural Differential
Equation doesn’t learn how to

oredict a timeseries, It learns
pohase space.

Direct Learning of ODEs from data:

Lotka-Volterra from 16 data points

David Koplow (@DavidKoplow)

10 / /4____5:&*\
//// Ao A \\\ s [eom
5| //////”"’”"& A ol) e | ® peditin
/ / A A) Rf /
/ ¥ |¥ ¥ T " _ la 35 - 5
y 0 ‘/j “ Z l v 3y X > > Z 7 /
\ \ NS NN ™ P S ;; 3.0 - S :
o N NN
\,.__—.,"“J—H//// 25|
\\\\, g
ST w.——*—'—"’”’"////// ¢
10 \ ———— ____‘,_#__'-’""// 20 o . : 8 :
i 5 0 : i0 15 0 i 2 3
X The cyclic phase space is learned,

allowing correct extrapolation in fime

Latent (Neural) Stochastic

Differential Equations

du = f(u,p,t)dt + g(u,p, t)dW;
LET f AND g BE A NEURAL NETWORK

Neural SDEs: Dynamical Extrapolation

with Constrained Variation

» |If the number of rabbits ever
gefts too high, then the
number of wolves increases
which brings it back down.

» Learning the dynamical
system makes it learn these
feedback effects, which
constrains the output to by
physical and extrapolate
variance as well

1
= O = kL I

Neural SDE: Before Training

.l..l sae® O0eopooa

0.00 025 0.50 0.75 1.00
Neural SDE: After Training

0.00 025 0.50 075 1.00
Time

While using this as a full training
method is great...
The real power comes from

Incorporating known structure

INTo the ML frarmnr

(Mixed Neural

ework

Differen

lal Equation)

Mix Neural Networks Into DiffEgs!

DiffEgqFlux, Flux, OrdinaryDiffEq

ue (Float32[@.8; ©.8])

tspan = (@.0f0,25.0f0) dx
ann ((2,10,tanh), —_— = g%ﬁ
Ccllt
pl Flux (DiffEqFlux __2{ _
p2 = Float32[-2.0,1.1] dt P1Y t D2X
p3 ([p1;p2])
ps Flux (p3,u@)
dudt_(du,u,p,t) Fit the “mixed neural differential equation”
. using the same method!

DiffEqFlux (ann,p[1:41])(u)[1]
p[end-1]*y + p[end]*x

(dudt_,ue,tspan,p3)
predict_adjoint()
(p3,prob, (),ue=u@,saveat=0.0:0.1:25.0)

loss_adjoint() (abs2,x-1 X O))
Flux (loss_adjoint, ps, Iterators (), 10),

ML-Assisted Model Discovery

Diffusion
l The chemical reactions imply an evolution of:

d[RAout] = (18 - b[RAaut] + IC|:E‘-)“£1i'n,])'f;"t:

d[RA;,] = (b[ﬂAm] + 6§[RA — BP] — (y[BP] +n+ € — c) [RAm]) dt + adW,,
d[RA — BP] = (y[BP][RA;,] + A[BP][RA — RAR] — 2 dt,
d[RA—RAR] = 2 — A[BP][RA — RAR])dt,
d[RAR] = 2 dt,

d[BP] = (a — A[BP][RA — RAR] — y[BP][RA,,] + (8 + V[RAR])[RA — BP] — u[BP])dt,

RA Relative Abundance

o
=

Biologically-Informed Neural Network

Find neural networks so the model matches the data

d[RAout] = (18 - b[RAaut] + C[RAin])dt:

d[RA;,] = (b[RAM] + 6[RA — BP] — (y[BP] +n+ E@H — c) [RAm]) dt + adW,,

d[RA — BP] = (y[BP][RAy,] + A[BP][RA — RAR] — @ﬁ dt,
d[RA — RAR] = @ — A[BP][RA — RAR])dt,
d[RAR] = @H dt,

d[BP] = (a — A[BP][RA — RAR] — y[BP][RA,,] + (8 + V[RAR])[RA — BP] — u[BP])dt,

Interpretabllity of

Neural Differential EQuations

] l Diffusion

Analyze the
Jacobian/Hessian

@ Input Layer) Hidden Layer @ Output Layer

Nonlinear Optimal Control as a

Mixed Neural ODE

> x' = f(x(®),u),t)
> Minimize J = ®(x(t,), to, x(tr), tr) + fttOfL(x(t),u(t), t)dt
» Example: x(t) is the location of an automated drone, u(t) is the conftroller,

find what the controller should be such that the vehicle goes to the right
place for the least energy.

» Neural ODE Approach: Make u(t) be a neural network. Find the neural
network s.t. x(t) correctly evolves

Neural PDEs for Acceleration:

Automated Quasilinear Approximations

» Boussinesqg Equations (Navier-Stokes) are used in
climate models

V.u=20
Jdu 2 A
EJF(U.V)UZ—V})JrPrV u—+ bhZ
db

4 u-Vbh=V2h+Fe
dt

People attempt to solve this by “parameterizing”, i.e.
getting a T-dimensional approximation through

averaging:

>

,d¢

d Jd ——
(6?1‘ +uV— Vz) - a—zn-“'c’ = —w -

where w'c’ is unknown.

» Instead of picking a form for w'c’(the current
method), replace it with a neural network and learn it

from small scale simulations! Discretize. Result; Neural
ODE.

There seems 1o be a
pattern going on here...

ARE OTHER RECENT BREAKTHROUGHS ALSO NEURAL DIFFERENTIAL EQUATIONS®

Solving 1000 dimensional PDEs: 32

Hamilton-Jacobi-Bellman, Nonlinear
Black-Scholes

» Semilinear Parabolic Form (Diffusion-Advection Simplified:
Equations, Hamilton-Jacobi-Bellman, Black-Scholes)

» Transform it into a Backwards SDE: a stochastic
du 1 . boundary value problem. The unknown is a function!
m(t,x) - STr (aa (t..r)(He&s‘;u)(!.I))%—Vu(l,r)';1(t.1)

+ (b u(t,2),07 (t,2)Vult,2)) =0 i » Learn the unknown function via neural network.
» Once learned, the PDE solution is known.
Then the solution of Eq. 1 satisfies the following BSDE (cf., e.g.,
refs. 8 and 9):
u(t, Xy) —u(0, Xo)

— /{f(s. X.,u(s, X.), 0" (s, X,) Vu(s, X,)) ds

0 (3]
K /l[vu(,-, X)) T a(s, X,) dW..
> Make (a7Vu)(& X) a neural nefwork. Solving high-dimensional partial differential equations
» Solve the resulting SDEs and learn ¢7Vu via: using deep learning, 2018, PNAS, Han, Jentzen, E

1(0) =E [|9(Xex) — & ({ X Josasn, { Weoznen)]

Fig. 4.

corresponds to a subnetwork at time t. b, .

H(IUern} — H{flanj]

T /—"ﬁ
UFH{T{I- Xu) — Vu(n, X, }J—*

— H{fj.x;:} —
(Viul2, X,,) —
hf’ h;"
T.
) t
hy hy
t t
—— X, — X ——p
— W, =W, | — W, =W, —
=1 t=n

—— ““\'—hxr.__,) ——— HU;\'. X;_\.}
— |Vl X) ——
H
h.“r—l
+
t
}II,',.._I
t
—_— X, e X,,
—_—lW, W | —l wrx - wr.w.d
I= In-) =1y

lllustration of the network architecture for solving semilinear parabolic PDEs with H hidden layers for each subnetwork and N time intervals.
The whole network has (H+ 1)(N — 1) layers in total that involve free parameters to be optimized simultaneously. Each column for t =1, t2, ..., th_1
c h:}‘ are the intermediate neurons in the subnetwork at timet=t,forn=1,2,... . N—-1.

But this method can be represented as

a neural SDE

» That method is the fixed time-step Euler-Maruyama method on
dXt :M(t, Xt)dt + O'(t, Xt)th,
dU, =f(t, Xy, Uy, ot (t, X)) Vu(t, Xy))dt

CEEe T

» As a neural SDE, we can solve with higher order (less neural network
evaluations), adaptivity, etc.

Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems
involving nonlinear partial differential equations

» M.Raissi, P.Perdikaris, & G.E.Karniadakis

» ‘“neural networks that are trained to solve supervised learning tasks while
respecting any given laws of physics described by general
nonlinear partial differential equations”

General nonlinear partial differential equation: u; + N(u) =0

Discretize with Runge-Kutta:
utt =" — Aty e Nut] =1, q
u™ = ut — ALY BN

Make your neural networks be:

[(@), ... u2 (@), uly ()]

As a prior, train the neural network to be the PDE’s solution, then match to
data.

Discrete PINN as a

Neural Differential Equation

» u; + N(u)+ g@» = 0 where the neural network NN is initialized to zero.

» Discretize using a fixed timestep Runge-Kutta method
This makes it clear how to generalize...
» Other PDE discretizations

» Adaptive solver
» Methods other than Runge-Kutta

Neural Networks
mixed with
scientific models

tend to give
Neural Differential
Equations, which:

» ALLOW FOR AUTOMATICALLY LEARNING
MODELS, USING KNOWN EQUATIONS AS A
PRIOR

» SOLVE OPTIMAL CONTROL PROBLEMS
» ACCELERATE THE SOLUTION OF PDES

» SOLVE PDES WHICH WERE PREVIOUSLY
UNSOLVABLE

Scientific Machine Learning

requires efficient solution of
Neural Differential Equations

DitfEgFlux.ji

The first (mixed) Neural Differential EQuation solver. Supports:
Neural ODEs
Neural SDEs (SDDEs)
Neural DAEs
Neural DDEs
Stiff EQuations
Hybrid Equations
Adjoints via reverse-mode AD and adjoint sensifivity analysis

DIffEgFIux.|l uses code generation
to make Flux.Jl neural networks
compose with the

DifferentialEquations.jl solvers

ALL OF THE FEATURES ARE AVAILABLE

Some DitferentialEquations.|l Features

MPI+GPU Compatibility

Implicit, IMEX, multirate, symplectic, exponential integrators, etc.
Adaptive high order methods for stochastic differential equations

Stiff state-dependent delay differential equation discontinuity tfracking

Mix in Gillespie simulation (Contfinuous-Time Markov Chains)

vV v v v v Y

Automatic sparsity detection and optimization
» Arbitrary code injection through callbacks

And it's routinely benchmarks as one of the fastest libraries in most categories

43

DitfEgFlux.jl has the bells and whistles to
solve “real’” problems

Neural ODE with batching on the GPU (without internal data transfers) with high order adaptive
implicit ODE solvers for stiff equations using matrix-free Newton-Krylov via preconditioned GMRES

and frained using checkpointed adjoint equations.

using OrdinaryDiffEq, Flux, DiffEqFlux, DiffEqOperators, CuArrays
Float32[2.; ©.]| >gpu
Float32.((0.0f0,25.010))
Chain(Dense(2,50,tanh),Dense(56,2)) >gpu
p = DiffEqFlux.destructure(dudt)
dudt_(du,u: :TrackedArray,p,t) u DiffEqFlux.restructure(dudt,p)(u)
dudt_(du,u: :AbstractArray,p,t) u Flux.data(DiffEqFlux.restructure(dudt,p)(u))
ff - ODEFunction(dudt_,jac_prototype - JacVecOperator(dudt_ ,x))
prob - ODEProblem(ff,x,tspan,p)
diffeq_adjoint(p,prob,KenCarp4(linsolve-LinSolveGMRES());u@-x,
saveat-0.0:0.1:25.0,backsolve-false)

Conclusion:
ML can be

improved by
using scientific
knowledge

ML with scientific knowledge is
Neural Differential EQuations

DitfEgFlux.jl is the only Neural
Differential EQuation solver, and it
has the bells and whistles to
handle large stiff stochastic delay
equations

Do you want to research numerical

differential equations and Scientific ML?

» Looking for collaborators for Julia-wide scientific ecosystem development grants

» Students are welcome! Contact me for Google Summer of Code, Julia Seasons of
Contributions, or Pumas development. No Julia experience is required. Just jump
right into the chat channels (hifps://aitter.im/JuliaDIiffEg/Lobby) and we can find
you an appropriate project.

» hitps://julialang.org/soc/ideas-page

» If you're a hobbyist... join our chats! Fit models! Stop by the MIT Julia Lab!

https://gitter.im/JuliaDiffEq/Lobby
https://julialang.org/soc/ideas-page

Appendix

Numerical differentiation is numerically bad because you're dividing by a
small number. Can this be avoidede

Early idea: instead of using a real-valued difference, when f is real-valued
but complex analyftic, use the following identity:

£l ~ c:s{f(x;“ ih)}_

Claim: the numerical stability of this algorithm matches that of f
Automatic differentiation then scales this idea to multiple dimensions

One implementation: use Dual numbers x = a + be where €2 = 0 (smooth
infinitesimal arithmetic). Define f(x) = f(a) + f'(a)be (chain rule).

Ditferentiable Programming: Derivative

Calculations as Non-standard
Inferpretation

(x+2'e)+(y+ve)=axz+y+ (2 +9)e
(x+2'e) - (y+ye)=zytayetyret+2'ye® =2y + (29 +y2')e

» Claim:if you recompiled your entire program to do Dual arithmetic, then
the output of your program is a Dual number which computes both the
original value and derivative simultaneously (to machine accuracy).

» As described, this is known as operator overloading forward-mode
automatic differentiation (AD). There are also computational graph and
AST-based AD implementations. In addifion, there are “adjoint” or reverse-
mode automatic differentiation which specifically produce gradients of
cost functions with better scaling properties

» “Backpropogation” of neural networks is simple reverse-mode AD on
some neural network program.

49

Analytical Solutions (Sensitivity Analysis)

VS AD (Adjoints)

A Comparison of Automatic Differentiation and Continuous
Sensitivity Analysis for Derivatives of Differential Equation Solutions

Christopher Rackauckas, Yingbo Ma, Vaibhav Dixit., % (g—u) — r;—fr;i - ?f
Xingjian Guo, Mike Innes, Jarrett Revels, o veep o
Joakim Nyberg. Vijay Ivaturi d* 2® af (u(t),p.t)

dt du

» General conclusion: AD already is more efficient than traditional sensitivity analysis
techniques until you get to 100 parameters (PDEs) where continuous adjoint sensitivity
analysis still shines.

» Mixing analytical solutions and AD is currently the best.

» More work fo be done on reverse-mode AD fo get the scaling advantage with less
overhead. Tracing-based AD (Jax, PyTorch, Flux, etc.) is unable to scale on these
problems due to scalar options in nonlinear code.

» Source-to-source AD (Zygote) doesn’t have these issues, so it's our next goal.

