
Neural Differential 

Equations as a Basis for 

Scientific Machine 

Learning
CHRIS RACKAUCKAS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, DEPARTMENT OF MATHEMATICS

UNIVERSITY OF MARYLAND, BALTIMORE, SCHOOL OF PHARMACY, CENTER FOR TRANSLATIONAL MEDICINE

1



The major advances in 
machine learning were due to 
encoding more structure into 
the model 
MORE STRUCTURE = FASTER AND BETTER FITS FROM LESS DATA

2



Convolutional Neural Networks 

Encode (Spatial) Structure

3

A Comprehensive Guide to Convolutional Neural Networks — the ELI5 way, Sumit Saha



Recurrent Neural Networks Encode 

Time Dependency Assumptions

4

Everything you need to know about Recurrent Neural Networks, Prajjwal



Now let’s generalize this idea 
to scientific structures
WHAT’S THE STRUCTURE?

5



Scientific Structure:

X changes as a 

function of (Y,Z,…)

THIS IS JUST A DIFFERENTIAL EQUATION

6



𝑑🐇

𝑑𝑡
= 𝛼🐇 − 𝛽🐇🐺

𝑑🐺

𝑑𝑡
= 𝛿🐇🐺 − 𝛾🐺

Ecology Example: 

Lotka-Volterra Equations

Decreases with 

competition
Increases with 

more food

Exponential 

growth

Gets eaten 

by wolves

7



Developmental Biology Example:

Hindbrain Development

Statistical mechanical principles imply an evolution of:

8

Structure

From

Scientific

Experiments



But what is the 

mathematical structure of 

machine learning?

9



Neural Networks = Function Approximation

 Polynomial: 𝑒𝑥 = 1 +
𝑥

1!
+

𝑥2

2!
+⋯

 Nonlinear: 𝑒𝑥 = 1 +
2 tanh

𝑥

2

1−tanh
𝑥

2

 Neural Network: 𝑒𝑥 ≈ 𝑊3𝜎 𝑊2𝜎 𝑊1𝑥 + 𝑏1 + 𝑏2 + 𝑏3

10



Neural Networks = Nonlinear Regression

 Polynomial: 𝑒𝑥 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑥
2 +⋯

 Nonlinear: 𝑒𝑥 = 1 +
𝑎1 tanh 𝑎2𝑥

𝑎3𝑥−tanh 𝑎4𝑥

 Neural Network: 𝑒𝑥 ≈ 𝑊3𝜎 𝑊2𝜎 𝑊1𝑥 + 𝑏1 + 𝑏2 + 𝑏3. Train the weights (𝑊, 𝑏)

11



Universal 

Approximation 

Theorem

NEURAL NETWORKS 

CAN GET 𝜖 CLOSE TO 
ANY 𝑅𝑛 → 𝑅𝑚

FUNCTION 

12



Other Universal Approximators

 Polynomials: easy but numerically unstable and Runge’s Phenomenon

 Fourier/Chebyshev Series: great if smooth, but Gibb’s Phenomenon. 

 Going to higher dimensions usually isn’t rotationally invariant: mixed derivatives give issues.

 Tensor product spaces

 Sparse Grids

 Radial Basis Functions (RBFs) work well on low dimensional manifolds in high dimensional spaces

Nothing is really a silver bullet for arbitrary functions in high dimensions.

[1] L. N. Trefethen, Cubature, approximation, and isotropy in the hypercube, SIAM Review

[2] https://www.cs.cmu.edu/afs/cs/academic/class/15883-f17/slides/rbf.pdf

13



Neural Networks are 

universal approximators 

which work well in high 

dimensions
NEURAL NETWORKS OVERCOME “THE CURSE OF DIMENSIONALITY”

14



But learning everything from 

scratch is hard!

(Requires “Big Data” and 

lots of compute time)

15



What happens when we 
combine universal 

approximators and scientific 
models?

16



Latent (Neural) 

Differential Equations
NEURAL ORDINARY DIFFERENTIAL EQUATION: 

𝑢′ = 𝑓(𝑢, 𝑝, 𝑡)

LET 𝑓 BE A NEURAL NETWORK

17



Training a neural differential equation

 Solve the differential equation

 Compute the gradient of the solution with respect to the parameters 

defining the neural network

 Adjoint sensitivity analysis

 Differentiable programming

 Update the neural network and repeat

18



Automatically Learning the Model
19



The Neural Differential 
Equation doesn’t learn how to 
predict a timeseries, it learns 
phase space.

20



Direct Learning of ODEs from data:

Lotka-Volterra from 16 data points

David Koplow (@DavidKoplow)

x

y

The cyclic phase space is learned, 

allowing correct extrapolation in time

21



Latent (Neural) Stochastic 

Differential Equations
𝑑𝑢 = 𝑓 𝑢, 𝑝, 𝑡 𝑑𝑡 + 𝑔 𝑢, 𝑝, 𝑡 𝑑𝑊𝑡

LET 𝑓 AND 𝑔 BE A NEURAL NETWORK

22



Neural SDEs: Dynamical Extrapolation 

with Constrained Variation

 If the number of rabbits ever 

gets too high, then the 

number of wolves increases 

which brings it back down.

 Learning the dynamical 

system makes it learn these 

feedback effects, which 

constrains the output to by 

physical and extrapolate 

variance as well

23



While using this as a full training 

method is great… 

The real power comes from 

incorporating known structure 

into the ML framework

(Mixed Neural Differential Equation)

24



Mix Neural Networks Into DiffEqs!

𝑑𝑥

𝑑𝑡
=

𝑑𝑦

𝑑𝑡
= 𝑝1𝑦 + 𝑝2𝑥

Fit the “mixed neural differential equation” 

using the same method!

25



ML-Assisted Model Discovery

The chemical reactions imply an evolution of:

?

?

?

? ?

Data

?

26



Biologically-Informed Neural Network

NN(2)

NN(3)

NN(4)

?

Data
Find neural networks so the model matches the data

27



Interpretability of 

Neural Differential Equations

Analyze the 

Jacobian/Hessian 

28



Nonlinear Optimal Control as a 

Mixed Neural ODE

 𝑥′ = 𝑓(𝑥 𝑡 , 𝑢 𝑡 , 𝑡)

 Minimize 𝐽 = Φ 𝑥 𝑡0 , 𝑡0, 𝑥 𝑡𝑓 , 𝑡𝑓 + 𝑡0׬
𝑡𝑓 𝐿 𝑥 𝑡 , 𝑢 𝑡 , 𝑡 𝑑𝑡

 Example: 𝑥(𝑡) is the location of an automated drone, 𝑢 𝑡 is the controller, 

find what the controller should be such that the vehicle goes to the right 

place for the least energy.

 Neural ODE Approach: Make 𝑢(𝑡) be a neural network. Find the neural 

network s.t. 𝑥 𝑡 correctly evolves

29



Neural PDEs for Acceleration: 

Automated Quasilinear Approximations

 Boussinesq Equations (Navier-Stokes) are used in 
climate models

 People attempt to solve this by “parameterizing”, i.e. 
getting a 1-dimensional approximation through 
averaging:

where 𝑤′𝑐′ is unknown.

 Instead of picking a form for 𝑤′𝑐′(the current 
method), replace it with a neural network and learn it 
from small scale simulations! Discretize. Result: Neural 
ODE.

30



There seems to be a 

pattern going on here…
ARE OTHER RECENT BREAKTHROUGHS ALSO NEURAL DIFFERENTIAL EQUATIONS?

31



Solving 1000 dimensional PDEs: 

Hamilton-Jacobi-Bellman, Nonlinear 

Black-Scholes

 Semilinear Parabolic Form (Diffusion-Advection 
Equations, Hamilton-Jacobi-Bellman, Black-Scholes)

 Make (𝜎𝑇∇u) 𝑡, 𝑋 a neural network.

 Solve the resulting SDEs and learn 𝜎𝑇∇u via:

Simplified:

 Transform it into a Backwards SDE: a stochastic 
boundary value problem. The unknown is a function!

 Learn the unknown function via neural network.

 Once learned, the PDE solution is known.

Solving high-dimensional partial differential equations 

using deep learning, 2018, PNAS, Han, Jentzen, E

32



Stochastic RNN Formulation

33



But this method can be represented as 

a neural SDE

 That method is the fixed time-step Euler-Maruyama method on

 As a neural SDE, we can solve with higher order (less neural network 
evaluations), adaptivity, etc.

34



Physics-informed neural networks: A deep learning 

framework for solving forward and inverse problems 

involving nonlinear partial differential equations

 M.Raissi, P.Perdikaris, & G.E.Karniadakis

 “neural networks that are trained to solve supervised learning tasks while 

respecting any given laws of physics described by general 

nonlinear partial differential equations”

35



The Discrete PINN Method

 General nonlinear partial differential equation: 𝑢𝑡 + 𝑁 𝑢 = 0

 Discretize with Runge-Kutta:

 Make your neural networks be:

 As a prior, train the neural network to be the PDE’s solution, then match to 

data.

36



Discrete PINN as a 

Neural Differential Equation

 𝑢𝑡 + 𝑁 𝑢 + = 0 where the neural network 𝑁𝑁 is initialized to zero.

 Discretize using a fixed timestep Runge-Kutta method

This makes it clear how to generalize…

 Other PDE discretizations

 Adaptive solver

 Methods other than Runge-Kutta

37



Neural Networks 
mixed with 

scientific models 
tend to give 

Neural Differential 
Equations, which:

 ALLOW FOR AUTOMATICALLY LEARNING 

MODELS, USING KNOWN EQUATIONS AS A 

PRIOR

 SOLVE OPTIMAL CONTROL PROBLEMS

 ACCELERATE THE SOLUTION OF PDES

 SOLVE PDES WHICH WERE PREVIOUSLY 

UNSOLVABLE

38



Scientific Machine Learning 
requires efficient solution of 
Neural Differential Equations

39



DiffEqFlux.jl

The first (mixed) Neural Differential Equation solver. Supports:

 Neural ODEs

 Neural SDEs (SDDEs)

 Neural DAEs

 Neural DDEs

 Stiff Equations

 Hybrid Equations

 Adjoints via reverse-mode AD and adjoint sensitivity analysis

40



DiffEqFlux.jl uses code generation 
to make Flux.jl neural networks 

compose with the 
DifferentialEquations.jl solvers

ALL OF THE FEATURES ARE AVAILABLE

41



Some DifferentialEquations.jl Features

 MPI+GPU Compatibility

 Implicit, IMEX, multirate, symplectic, exponential integrators, etc.

 Adaptive high order methods for stochastic differential equations

 Stiff state-dependent delay differential equation discontinuity tracking

 Mix in Gillespie simulation (Continuous-Time Markov Chains)

 Automatic sparsity detection and optimization

 Arbitrary code injection through callbacks

And it’s routinely benchmarks as one of the fastest libraries in most categories

42



DiffEqFlux.jl has the bells and whistles to 

solve “real” problems

Neural ODE with batching on the GPU (without internal data transfers) with high order adaptive 

implicit ODE solvers for stiff equations using matrix-free Newton-Krylov via preconditioned GMRES 

and trained using checkpointed adjoint equations.

43



Conclusion: 

ML can be 

improved by 

using scientific 

knowledge

 ML with scientific knowledge is 

Neural Differential Equations

 DiffEqFlux.jl is the only Neural 

Differential Equation solver, and it 

has the bells and whistles to 

handle large stiff stochastic delay 

equations

44



Do you want to research numerical 

differential equations and Scientific ML?

 Looking for collaborators for Julia-wide scientific ecosystem development grants

 Students are welcome! Contact me for Google Summer of Code, Julia Seasons of 

Contributions, or Pumas development. No Julia experience is required. Just jump 

right into the chat channels (https://gitter.im/JuliaDiffEq/Lobby) and we can find 

you an appropriate project.

 https://julialang.org/soc/ideas-page

 If you’re a hobbyist… join our chats! Fit models! Stop by the MIT Julia Lab!

45

https://gitter.im/JuliaDiffEq/Lobby
https://julialang.org/soc/ideas-page


Appendix

46



Automatic Differentiation in a nutshell

 Numerical differentiation is numerically bad because you’re dividing by a 

small number. Can this be avoided?

 Early idea: instead of using a real-valued difference, when 𝑓 is real-valued 

but complex analytic, use the following identity:

𝑓′ 𝑥 ≈ ℑ
𝑓 𝑥 + 𝑖ℎ

ℎ
.

 Claim: the numerical stability of this algorithm matches that of 𝑓

 Automatic differentiation then scales this idea to multiple dimensions

 One implementation: use Dual numbers x = 𝑎 + 𝑏𝜖 where 𝜖2 = 0 (smooth 

infinitesimal arithmetic). Define 𝑓 𝑥 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑏𝜖 (chain rule).

47



Differentiable Programming: Derivative 

Calculations as Non-standard 

Interpretation

 Claim: if you recompiled your entire program to do Dual arithmetic, then 

the output of your program is a Dual number which computes both the 

original value and derivative simultaneously (to machine accuracy).

 As described, this is known as operator overloading forward-mode 

automatic differentiation (AD). There are also computational graph and 

AST-based AD implementations. In addition, there are “adjoint” or reverse-

mode automatic differentiation which specifically produce gradients of 

cost functions with better scaling properties

 “Backpropogation” of neural networks is simple reverse-mode AD on 

some neural network program.

48



Analytical Solutions (Sensitivity Analysis) 

VS AD (Adjoints)

 General conclusion: AD already is more efficient than traditional sensitivity analysis 
techniques until you get to 100 parameters (PDEs) where continuous adjoint sensitivity 
analysis still shines. 

 Mixing analytical solutions and AD is currently the best.

 More work to be done on reverse-mode AD to get the scaling advantage with less 
overhead. Tracing-based AD (Jax, PyTorch, Flux, etc.) is unable to scale on these 
problems due to scalar options in nonlinear code. 

 Source-to-source AD (Zygote) doesn’t have these issues, so it’s our next goal.

49


