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I Summary of proposed research

Machine learning is a major driving force behind the current data science, while its full potential
in unveiling structure-function relationships of biomolecular systems is yet to be reached. Due
to the entanglement of geometric complexity and biological complexity in three-dimensional (3D)
biomolecular data sets, there is no competitive deep learning algorithm for predicting protein-
ligand binding affinities and protein stability changes upon mutation. Persistent homology, a
relatively new branch of algebraic topology, has emerged as a new strategy for data analysis.
However, current persistent homology does not have a competitive edge in protein classification
over other conventional techniques due to its oversimplification of biological information.11,59 In
this whitepaper, we propose element specific persistent homology (ESPH) to retain crucial biological
information in the topological simplification. We further integrate ESPH and machine learning to
reveal hidden structure-function relationships of biomolecules.

Preliminary studies indicate that the proposed approach significantly outperforms existing methods
in the predictions of protein-ligand binding affinities and protein stability changes upon mutation.
In fact, the proposed approach has given rise to the best binding free energy prediction in recent
world-wide Grand Challenge 2 competition in drug design. The remaining challenges that hinder
the current predictions of protein-ligand binding affinities and mutation impacts are due to the
involvement of multiple ligands, membrane-ligand interaction, ligand binding influenced mutations,
and membrane influenced mutations. These challenges are tackled by carefully designed topological
learning strategies. The proposed research will dramatically advance the state-of-the-art predictions
of protein-ligand binding affinities and protein stability changes upon mutation established by the
PIs.

II Significance and innovation

Significance The driving force behind the current transition from qualitative, phenomenological
and descriptive biology to quantitative, analytical and predictive biology is theoretical modeling
and computational algorithms, which have their roots in mathematics, statistics, and computer
science. Indeed, mathematical theories, statistical methods and computer science algorithms un-
derpin quantitative and predictive biological sciences. However, many biophysical models have
been built with too much structural or geometric detail and lead to an excessively large num-
ber of degrees of freedom, while most topological methods, including persistent homology, suffer
from too much reduction in geometric and/or biological information. Element specific persistent
homology proposed in this work has the ability to bridge the gap between traditional geometry
and classical topology for data analysis. Built upon our recent work on the topological analysis
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of biomolcules,11–13,68,74,93,95–101 the PIs propose to develop a host of groundbreaking topologi-
cal learning strategies by integrating element specific persistent homology and machine learning
to reveal the hidden structure-function relationships in biomolecules. The establishment of new
topological learning strategies has direct applications in the quantitative predictions of biomarkers
and their variations, such as mass, concentration, pKa, pH, solubility, partition coefficient, toxicity,
solvation free energies, binding affinities of protein-ligand, protein-protein and protein-DNA/RNA
interactions, and kinetics. These predictions are crucial to the understanding of biochemical pro-
cesses in the cell such as gene transcription, translation and regulation, which are core subject
of research in the various omics fields such as transcriptomics, proteomics, metabolomics, and
particularly structural and functional genomics.

Innovation The novelties of the proposed research are as follows:
First, synergistic fusion of element specific persistent homology and machine learning is intro-

duced to improve the state-of-the-art predictions of protein-ligand binding affinities and protein
mutation impacts. Preliminary studies have demonstrated that topological learning strategies out-
perform all existing methods in the field on massive and diverse data sets.

Second, topology based convolutional deep learning architecture has been proposed for the first
time as a novel approach to 3D biomolecular data. This approach will lead to a new paradigm
for revealing structure-function relationships from various very large 3D macromolecular data sets.
This new formulation has a rich biophysical origin as well as a rigorous mathematical foundation.

Finally, in addition to the promising preliminary results illustrating the power of the proposed
new strategy, the PI proposes the development of unique databases and robust online servers for
both protein-ligand binding and protein mutation impact predictions. This development provides
the assurance for advancing computational biophysics and disseminating the research findings to the
general community of biological sciences. In addition to the promising and extensive preliminary
results illustrating the power of this new approach, extensive validation and application have been
proposed to ensure that this methodology yields robust and powerful tools for molecular biology,
computational biophysics, and structural and functional genomics.

It is believed that the proposed topological learning strategies are transformative:
First, the proposed topological learning strategy will bring a surge in similar approaches in 3D

biomolecular data predictions in the near future.
Second, to reduce the data complexity, new topology based machine learning approaches can

be applied to other fields, such as biochemistry, material science and drug design.
Third, the proposed topological learning strategy will open new directions and research top-

ics in abstract/pure/applied mathematics and computer science to explore optimal mathematical
abstractions of complex data sets.
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