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Abstract
Existing approaches to nonrigid structure from motion assume that the instanta-
neous 3D shape of a deforming object is a linear combination of basis shapes,
which have to be estimated anew for each video sequence. In contrast, we pro-
pose that the evolving 3D structure be described by a linear combination of basis
trajectories. The principal advantage of this approach is that we do not need to
estimate any basis vectors during computation. We show that generic bases over
trajectories, such as the Discrete Cosine Transform (DCT) basis, can be used to
compactly describe most real motions. This results in a significant reduction in
unknowns, and corresponding stability in estimation. We report empirical per-
formance, quantitatively using motion capture data, and qualitatively on several
video sequences exhibiting nonrigid motions including piece-wise rigid motion,
partially nonrigid motion (such as a facial expression), and highly nonrigid motion
(such as a person dancing).

1 Introduction
Nonrigid structure from motion is the process of recovering the time varying 3D coordinates of
points on a deforming object from their 2D locations in an image sequence. Factorization ap-
proaches, first proposed for recovering rigid structure by Tomasi and Kanade in [1], were extended
to handle nonrigidity in the seminal paper by Bregler et al. in [2]. The key idea in [2] is that ob-
served shapes can be represented as a linear combination of a compact set of basis shapes. Each
instantaneous structure, such as the mouth of a smiling actor shown in Figure 1(a), is expressed
as a point in the linear space of shapes spanned by the shape basis. A number of approaches that
develop the use of shape basis have subsequently been proposed, including [3, 4, 5]. Since the space
of spatial deformations is highly object specific, the shape basis need to be estimated anew for each
video sequence. The shape basis of a mouth smiling, for instance, cannot be recycled to compactly
represent a person walking.

In this paper, we posit that representing nonrigid structure as a combination of basis shapes is one
of two ways of looking at the space-time structure induced by P points seen across F frames. In-
stead of a shape space representation, we propose looking across time, representing the time-varying
structure of a nonrigid object as a linear combination of a set of basis trajectories, as illustrated in
Figure 1(b). The principal advantage of taking this “lateral” approach arises from the fact that com-
pact representation in trajectory space is better motivated physically than compact representation in
shape space. To see this, consider a deformable object being acted upon by a force. The extent
of its deformation is limited by the force that can be applied. Hence, a tree swaying in the wind
or a person walking cannot arbitrarily and randomly deform; the trajectories of their points are a
function of the speed of the wind and the flexing of muscles respectively. Deformations are, there-
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Figure 1: 3D points on a smiling mouth: a comparison of shape and trajectory space. (a) In approaches that
represent the time varying structure in shape space, all 3D points observed at one time instant are projected onto
a single point in the shape space. S1, S2, · · · , Sk each represent a shape basis vector. (b) In our approach, we
represent the time varying structure in trajectory space, where a 3D point’s trajectory over time is projected to
a single point in the trajectory space. θ1, θ2, · · · , θk each represent a trajectory basis vector. P points observed
across F frames are expressed as F projected points in shape space and P points in trajectory space.

fore, constrained by the physical limits of actuation to remain incremental, not random, across time.
Since this property is, to a large degree, ubiquitous, basis can be defined in trajectory that are object
independent.

We show that while the inherent representative power of both shape and trajectory projections of
structure data are equal (a duality exists), the significant reduction in number of unknowns that
results from knowing the basis apriori allows us to handle much more nonrigidity of deformation
than state of the art methods, like [4] and [5]. In fact, most previous results consider deformations
which have a large rigid component, such as talking-head videos or the motion of a swimming
shark. To the best of our knowledge, we are the first to show reasonable reconstructions of highly
nonrigid motions from a single video sequence without making object specific assumptions. For all
results, we use the same trajectory basis, the Discrete Cosine Transform (DCT) basis, underlining
the generic nature of the trajectory space representation. A useful byproduct of this approach is
that structure is automatically compressed for compact transmission without the need for post facto
compression or the overhead transmission of object specific basis.

2 Related work
If deformation of a 3D scene is unconstrained, the structure observed in each image would be in-
dependent of those in other images. In this case, recovering structure from motion is ill-posed,
equivalent to finding 3D structure from a single 2D image at each time instant. To make nonrigid
structure recovery tractable, some consistency in the deformation of structure has to be imposed.
One early measure of consistency that was applied assumes that the scene consists of multiple rigid
objects which are moving independently [6, 7, 8]. However, the first general solution to the problem
of nonrigid structure recovery was introduced by Bregler et al. in [2], approximating the structure at
each time instant as a linear combination of basis shapes. They recovered the structure, the shape ba-
sis and the camera rotations simultaneously, by exploiting orthonormality constraints of the rotation
matrices. Xiao et al. [4] showed that these orthonormality constraints alone lead to ambiguity in the
solution, and introduced additional constraints to remove ambiguity. In [9] Xiao et al. proposed a
rank deficient basis. Other extensions of the work by Bregler et al. include [10] which improved the
numerical stability of the estimation process and [3] which introduced a Gaussian prior on the shape
coefficients. Common to all of these approaches is that results are shown on objects which have a
significant number of points that move rigidly, such as faces. Some approaches, such as [11] make
explicit use of this fact to initialize rotation matrices, while others favor such sequences for stability
in estimation.

In contrast to this entire corpus of work, which approximate structure by a shape basis, we propose a
new representation of time varying structure, as a collection of trajectories. We not only demonstrate
that a compact trajectory space can be defined, but also that the basis of this trajectory space can
be pre-defined, removing a large number of unknowns from the estimation process altogether. The
duality of spatial and temporal representations has been hinted at earlier in literature. Shashua [12]
discusses the duality of the joint image space and the joint point space in the context of multiview
geometry. Zelnik-Manor and Irani [13] have exploited a similar duality for an alternate approach to
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Figure 2: As described in Equation 3, each trajectory is represented as a linear combination of k predefined
basis trajectories. In this paper, we use DCT basis to compactly represent trajectories.

segmenting video sequences. Ours is the first paper to use this dual representation in the structure
from motion problem, and to note that a generic basis can be defined in trajectory space which
compactly represents most real trajectories.

3 Representing Nonrigid Structure
The structure at a time instant t can be represented by arranging the 3D locations of the P points in
a matrix S(t) ∈ R3×P ,

S(t) =

[
Xt1 XtP

Yt1 · · · YtP

Zt1 ZtP

]
.

The complete time varying structure can be represented by concatenating these instantaneous struc-
tures as S3F×P = [S(1)T S(2)T · · · S(F )T ]T . In [2], each instantaneous shape matrix S(t) is
approximated as a linear combination of basis shapes,

S(t) =
∑

j

cj(t)Sj , (1)

where Sj ∈ R3×P is a basis shape and cj(t) is the coefficient of that basis shape. If the set of
observed structures can be compactly expressed in terms of k such basis shapes, S has a rank of at
most 3k. This rank constraint can be restated by rearrangement of S as the following rank k matrix,

S∗ =




X11 · · · X1P Y11 · · · Y1P Z11 · · · Z1P

...
...

...
...

...
...

XF1 · · · XFP YF1 · · · YFP ZF1 · · · ZFP


 . (2)

The row space of this matrix corresponds to the shape space. Since the row and column space of a
matrix are of equal dimension, it follows that the columns of S∗ are also spanned by k vectors. We
call the column space of this matrix the trajectory space and note that it enjoys a dual relationship
with the shape space. Specifically, if the time varying shape of an object can be expressed by a
minimum of k shape basis, then there exist exactly k trajectory basis vectors that can represent the
same time varying shape.

To represent the time varying structure in terms of trajectory basis, we consider the structure
as a set of trajectories, T (i) = [Tx(i)T Ty(i)T Tz(i)T ]T , (see Figure 1(b)) where Tx(i) =
[X1i, · · · , XFi]T , Ty(i) = [Y1i, · · · , YFi]T , Tz(i) = [Z1i, · · · , ZFi]T are the x, y, and z coordinates
of the ith trajectory. As illustrated in Figure 2, we describe each trajectory as a linear combination
of basis trajectory,

Tx(i) =
k∑

j=1

axj(i)θj , Ty(i) =
k∑

j=1

ayj(i)θj , Tz(i) =
k∑

j=1

azj(i)θj , (3)

where θj ∈ RF is a trajectory basis vector and axj(i), ayj(i) and azj(i) are the coefficients corre-
sponding to that basis vector. The time varying structure matrix can then be factorized into an inverse
projection matrix and coefficient matrix as S3F×P = Θ3F×3kA3k×P , where A = [AT

x AT
y AT

z ]T
and

Ax =




ax1(1) · · · ax1(P )
...

...
axk(1) · · · axk(P )


 ,Θ =




θT
1

θT
1

θT
1

...
θT

F

θT
F

θT
F




, (4)
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Here θi represents a truncated basis for transformation from coefficient space to original space. The
principal benefit of the trajectory space representation is that a basis can be pre-defined that can
compactly approximate most real trajectories. A number of bases such as the Hadamard Transform
basis, the Discrete Fourier Transform basis, and the Discrete Wavelet Transform basis can all com-
pactly represent trajectories in an object independent way. In this paper, we use the Discrete Cosine
Transform basis set to generate Θ (shown in Figure 2) for all reconstructions results shown. The
efficacy of the DCT basis has been demonstrated for compressing motion capture data, [14], and has
been effective in our experiments as well.

4 Nonrigid Structure and Motion Factorization
The measured 2D trajectories are contained in a 2F × P measurement matrix W, containing the
location of P image points across F frames,

W =




u11 . . . u1P

v11 . . . v1P

...
...

uF1 . . . uFP

vF1 . . . vFP


 .

This measurement matrix can be decomposed as W = RS where R is a 2F × 3F matrix,

R =




R1

. . .
RF


 ,

and Rt is a 2× 3 orthographic projection matrix. In the previous section we showed that S = ΘA,
as a result we can further factorize W as

W = RΘA = ΛA, (5)

where Λ = RΘ. Since Λ is a 3F × 3k matrix, the rank of matrix W will be at most 3k. This is a
dual property to the rank constraint defined by [2]. We can use SVD to factorize W as,

W = Λ̂Â.

In general, the matrix Λ̂ and Â will not be equal to Λ and A respectively, because the above factor-
ization is not unique. For any invertible 3k × 3k matrix Q, Λ̂Q and Q−1A are also valid factoriza-
tions. Therefore, to recover metric structure we need to estimate the rectification matrix Q such that
the following equations hold true,

Λ = Λ̂Q, A = Q−1Â. (6)

5 Metric Upgrade
The problem of recovering the rotation and structure is reduced to estimating the rectification matrix
Q. The elements of matrix Λ are,

Λ =




r1
1θT

1 r1
2θT

1 r1
3θT

1

r1
4θT

1 r1
5θT

1 r1
6θT

1

...
rF
1 θT

F rF
2 θT

F rF
3 θT

F

rF
4 θT

F rF
5 θT

F rF
6 θT

F




.

Instead of estimating the whole matrix Q, to rectify Λ̂ and Â it is sufficient to estimate only three
columns of Q. Let us define Q||| to be the first, K + 1st and 2K + 1st columns of the matrix Q.
From Equation 6, if we just use Q||| instead of Q, we get

Λ̂Q||| =




θ1,1R1

...
θF,1RF


 . (7)
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Figure 3: Effect of increasing camera motion on reconstruction stability. Reconstruction stability
is measured in terms of condition number of matrix ΛT Λ with different values of k and different
values of F . Synthetic rotations were generated by revolving the camera around the z-axis and
camera motion was measured in terms of the angle the camera moved per frame.

This equation shows that the unknowns in matrix Q||| can be found by exploiting the fact that Ri

is a truncated rotation matrix (as was done in [1]). Specifically, if Λ̂2i−1:2i denotes the two rows of
matrix Λ̂ at positions 2i− 1 and 2i, then we have

Λ̂2i−1:2iQ|||QT
|||Λ̂

T
2i−1:2i = θ2

i,1I2×2, (8)

where I2×2 is an identity matrix, giving three indepedent constraints for each image i. Therefore
for F frames, we have 3F constraints and 9k unknowns in Q|||. Hence at least 3k non-degenerate
images are required to estimate Q|||. Once Q||| has been computed, using a nonlinear minimization
routine (e.g. Levenberg Marquardt), we can estimate the rotation matrices, and therefore R, using
Equation 7.

Once R is known, it can be multiplied with the (known) DCT basis matrix Θ3F×3K to recover
the matrix Λ2F×3K = R2F×3F Θ3F×3K . The coefficients can then be estimated by solving the
following overconstrained linear system of equations,

Λ2F×3KÂ3K×P = W2F×P . (9)

6 Results
The proposed algorithm has been validated quantitatively on motion capture data over different
actions and qualitatively on video data. We have tested the approach extensively on highly nonrigid
human motion like volleyball digs, handstands, karate moves and dancing. Figure 4 shows a few
sample reconstructions of different actors. As mentioned earlier, we choose DCT as the basis for
the trajectory space. In subsequent experiments, we compare our approach with [5] and [9] (we use
code kindly provided by the respective authors). The results, data and the code used to produce the
results are all shared at http://cvlab.lums.edu.pk/nrsfm.

In nonrigid structure from motion, the key relationship that determines successful reconstruction
is the one between the degree of deformation of the object, measured by the number of basis k
required to approximate it and the degree of camera motion. To test the relationship between k,
camera motion and reconstruction stability, we constructed Λ matrices using different values of k
and synthetic rotations around the z-axis, at various magnitudes of motion per frame. In Figure 3,
the reconstruction stability, measured by the condition number of ΛT Λ, is shown as k is varied
between 2 and 6, for 200, 400, and 800 frames (at different angular velocities per frame). The plots
confirm intuition: the smaller the degree of object deformation and the larger the camera motion,
the more stable reconstruction tends to be.

For quantitative evaluation of reconstruction accuracy we used the drink, pickup, yoga, stretch,
and dance actions from the CMU Mocap database, and the shark dataset of [3]. Multiple rigid
body data was generated by simulation of points on rigidly moving cubes. We generated synthetic
camera rotations and projected 3D data using these rotations to get image observations. The camera
rotation for the Mocap datasets was 5 degrees per frame and 2 degrees per frame for the multi-body
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Figure 4: Simultaneous reconstruction accuracy for three actors. The X-coordinate trajectories for three
different points on the actors is shown. The approximation error introduced by DCT projection has a smoothing
impact on the reconstruction. Red lines indicate ground truth data and blue lines indicate reconstructed data.
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Figure 5: The dance sequence from the CMU mocap database. The black dots are the ground truth points
while the gray circles are the reconstructions by the three methods respectively.

sequence. We did not rotate the camera for the dance and shark sequences, since the object itself was
rotating in these sequences. In obtaining the results discussed below, k was chosen to provide the
best reconstructions, the value varying between 2 and 13 depending on the length of the sequence
and the nonrigidity of motion. We normalize the structure, so that the average standard deviation
of the structure matrix S becomes equal to unity (to make comparison of error across datasets more
meaningful).

Table 1 shows a quantitative comparison of our method with the shape basis approach of Torresani
et al. [5] and Xiao and Kanade [9]. This table shows both the camera rotation estimation error and
structure reconstruction error. The estimated structure is valid up to a 3D rotation and translation
and the estimated rotations also have a 3D rotation ambiguity. We therefore align them for error
measurement. Procrustes analysis was used for aligning camera rotations and the 3D structure. The
error measure for camera rotations was the average Frobenius norm difference between the original
camera rotation and the estimated camera rotation. For structure evaluation we compute the per
frame mean squared error between original 3D points and the estimated 3D points.

Finally, to test the proposed approach on real data, we used a face sequence from the PIE dataset,
a sequence from the movie “The Matrix”, a sequence capturing two rigidly moving cubes and a
sequence of a toy dinosaur moving nonrigidly. For the last three sequences, the image points were
tracked in a semi-automatic manner, using the approach proposed in [15] with manual correction.
We show the resulting reconstructions in Figure 6, and compare against the reconstructions obtained
from Torresani et al. [5] and Xiao and Kanade [9].
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Table 1: The quantitative comparison of proposed algorithm with the techniques described in Xiao and Kanade
[9] and Torresani et al. [5]. The Erot is the average Frobenius difference between original rotations and aligned
estimated rotations, and E∆ is the average distance between original 3D points and aligned reconstructed points

Trajectory Bases Torresani’s EM-Gaussian Xiao’s Shape Bases
Datset Erot E∆ Erot E∆ Erot E∆

DRINK 5.63E-03 2.46E-02 0.2906 0.33973 0.3359 3.5240
PICKUP 1.55E-01 9.21E-02 0.4277 0.40781 0.4687 3.3721
YOGA 1.05E-01 1.32E-01 0.8089 0.80961 1.2014 7.4841

STRETCH 5.78E-02 8.16E-02 0.7594 1.1113 0.9489 4.2381
MULTIRIGID 1.33E-08 2.04E-02 0.1718 1.4359 0.0806 6.2389

DANCE NA 1.01E-01 NA 0.9839 NA 5.0423
SHARK NA 7.27E-02 NA 0.1199 NA 5.1137

7 Conclusion
We describe an algorithm to reconstruct nonrigid structure of an object from 2D trajectories of
points across a video sequence. Unlike earlier approaches that require an object-specific shape basis
to be estimated for each new video sequence, we demonstrate that a generic trajectory basis can
be defined that can compactly represent the motion of a wide variety of real deformations. Results
are shown using the DCT basis to recover structures of piece-wise rigid motion, facial expressions,
actors dancing, walking, and doing yoga. Our experiments show that there is a relationship between
camera motion, degree of object deformation, and reconstruction stability. We observe that as the
motion of the camera increases with respect to the degree of deformation, the reconstruction stability
increases. Future directions of research include experimenting with different unitary transform bases
to verify that DCT basis are, in fact, the best generic basis to use, and developing a synergistic
approach to use both shape and trajectory bases concurrently.

8 Acknowledgements
This research was partially supported by a grant from the Higher Education Commission of Pakistan.
The authors would like to acknowledge Fernando De La Torre for useful discussions. We further
thank J. Xiao, L. Agapito, I. Matthews and L. Torresani for making their code or data available to
us. The motion capture data used in this project was obtained from http://mocap.cs.cmu.edu.

References

[1] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A fac-
torization method. IJCV, 9:137–154, 1992.

[2] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3D shape from image
streams. CVPR, 2:690–696, 2000.

[3] L. Torresani, A. Hertzmann, and C. Bregler. Learning non-rigid 3D shape from 2D motion.
NIPS, 2005.

[4] J. Xiao, J. Chai, and T. Kanade. A closed form solution to non-rigid shape and motion recovery.
IJCV, 67:233–246, 2006.

[5] L. Torresani, A. Hertzmann, and C. Bregler. Nonrigid structure-from motion: Estimating shape
and motion with hierarchical priors. PAMI, 30(5):878–892, May 2008.

[6] J.P. Costeira and T. Kanade. A multibody factorization method for independently moving
objects. IJCV, 49:159–179, 1998.

[7] M. Han and T. Kanade. Reconstruction of a scene with multiple linearly moving objects. IJCV,
59:285–300, 2004.

[8] A. Gruber and Y. Weiss. Multibody factorization with uncertainity and missing data using the
EM algorithm. CVPR, 1:707–714, 2004.

[9] J. Xiao and T. Kanade. Non-rigid shape and motion recovery: Degenerate deformations.
CVPR, 1:668–675, 2004.

7



Trajectory
Basis

Torresani et al.
[5]

Xiao et al.
[9]

Trajectory
Basis

Torresani et al.
[5]

Xiao et al.
[9]

Trajectory
Basis

Torresani et al.
[5]

Xiao et al.
[9]

Trajectory
Basis

Torresani et al.
[5]

Xiao et al.
[9]

Figure 6: Results on Dinosaur, Matrix, PIE face, and Cubes sequences. k was set to 12, 3, 2, and 2 respectively.

[10] M. Brand. Morphable 3D models from video. CVPR, 2:456, 2001.
[11] A. Del Bue, F.Smeraldi, and L. Agapito. Non-rigid structure from motion using ranklet-based

tracking and non-linear optimization. IVC, pages 297–310, 2007.
[12] Amnon Shashua. Trilinear tensor: The fundamental construct of multiple-view geometry and

its applications. AFPAC, 1997.
[13] Lihi Zelnik-Manor and Michal Irani. Temporal factorization vs. spatial factorization. ECCV,

2004.
[14] O. Arikan. Compression of motion capture databases. ACM Trans. on Graphics, 2006.
[15] A. Datta, Y. Sheikh, and T. Kanade. Linear motion estimation for systems of articulated planes.

CVPR, 2008.

8




