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a b s t r a c t 

The research of stereoscopic video quality assessment (SVQA) plays an important role for promoting the

development of stereoscopic video system. Existing SVQA metrics rely on hand-crafted features, which is

inaccurate and time-consuming because of the diversity and complexity of stereoscopic video distortion.

This paper introduces a 3D convolutional neural networks (CNN) based SVQA framework that can model

not only local spatio-temporal information but also global temporal information with cubic difference

video patches as input. First, instead of using hand-crafted features, we design a 3D CNN architecture

to automatically and effectively capture local spatio-temporal features. Then we employ a quality score

fusion strategy considering global temporal clues to obtain final video-level predicted score. Extensive

experiments conducted on two public stereoscopic video quality datasets show that the proposed method

correlates highly with human perception and outperforms state-of-the-art methods by a large margin. We

also show that our 3D CNN features have more desirable property for SVQA than hand-crafted features

in previous methods, and our 3D CNN features together with support vector regression (SVR) can further

boost the performance. In addition, with no complex preprocessing and GPU acceleration, our proposed

method is demonstrated computationally efficient and easy to use.
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. Introduction

Nowadays, a large number of stereoscopic videos are created for

arious fields such as entertainment and education. Highly associ-

ted with the users’ Quality of Experience (QoE), visual quality is a

undamental yet complex characteristic of a stereoscopic video that

ay suffer varying degrees of damage in the successive stages of

tereoscopic video production, including processing, compression,

ransmission and display. Hence, the research of stereoscopic video

uality assessment (SVQA) plays an important role in the develop-

ent of stereoscopic video systems. In order to reach higher ef-

ciency and feasibility, unattended and automatic objective SVQA

ethods instead of subjective methods are in great demand. 

Depending on the amount of pristine video information avail-

ble, the objective SVQA methods can fall into three types: full-

eference (FR), reduced-reference (RR) and no-reference (NR). NR

ethods can assess the quality of tested stereoscopic videos with-

ut any information from reference content, while FR methods

nd NR methods require pristine video or its partial information.
∗ Corresponding author.

E-mail address: luwen@xidian.edu.cn (W. Lu).

a  

[  

s  
nfortunately, considering that reference video is unavailable in

ost practical applications, only the NR methods have potential

o satisfy the actual requirement. As a result, our work focuses on

ore appealing and challenging NR methods, and tries to propose

 new general-purpose NR framework for SVQA. 

Considering the development of NR metrics [1,2] , we can find

hat most of them have similar frameworks, which can be gener-

lly divided into two steps: (1) extracts features that can reflect

isual quality based on relatively perceptual models; (2) maps the

btained feature vectors to subjective quality scores by learning

egression models. But in real-world scenarios, because of the di-

ersity and complexity of video distortions, it is very difficult to

dentify what features are sensitive and robust to all sorts of dis-

ortions. Therefore, simply utilizing a group of artificially designed

eatures to represent video quality results in inaccurate assess-

ents and high computational costs. 

Recently, it is a well-known fact that deep learning models, es-

ecially convolutional neural networks (CNN), have achieved great

uccess in many challenge computer vision tasks, such as im-

ge classification [3,4] , object detection [5,6] , video classification

7,8] and video action recognition [9,10] . CNN is a biologically in-

pired architecture consisting of a stack of convolutional layers

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.04.072&domain=pdf
mailto:luwen@xidian.edu.cn
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and pooling layers, automatically extracting a hierarchy of power-

ful features from row data. Lately, CNN also demonstrated its su-

periority for image quality assessment (IQA) and stereoscopic im-

age quality assessment (SIQA). Kang et al. [11] and Zhang et al.

[12] proposed two CNN based NR metrics to realize effective qual-

ity assessment of 2D images and stereoscopic images, respectively.

In this work, we attempt to explore a CNN based stereo-

scopic video quality assessment metric. Apparently, a straightfor-

ward manner inspired by previous CNN based IQA/SIQA models is

to regard stereoscopic video frames as stereoscopic pairs and em-

ploy CNN at the frame level sequentially. Nevertheless, such an im-

age based method cannot yield superior performance due to ne-

glect of the motion information contained in the adjacent video

frames. To address this problem, we construct a 3D CNN archi-

tecture to learn spatio-temporal features for NR SVQA task, which

is able to adequately encapsulate information related to stereo-

scopic video quality. The experimental results demonstrate that

our method significantly outperforms the cutting-edge methods. In

summary, our key contributions are as follows: 

• We present a 3D CNN based framework for SVQA, which is able

to model local spatio-temporal information but also global tem-

poral information with cubic difference video patches as input.

To the best of our knowledge, we are the pioneers to exploit

the 3D CNN to evaluate the quality of stereoscopic video.

• After our 3D CNN architecture effectively capturing local spatio-

temporal features, we design a quality score fusion strategy

considering global temporal clues to pool patch-level quality

scores into video-level quality score. Through a large number

of extensive experiments, our proposed method achieves the

best performance to date on both two challenging stereoscopic

video quality databases and outperforms current best perform-

ing methods by a large margin.

• Our proposed framework takes cubic difference video patches

as input and does not rely on any complex preprocessing such

as optical flow and gradients, so it is computationally effi-

cient and applicable in real applications compared with previ-

ous methods.

The rest of this paper is structured as follows: we first review

the works related to our method in Section 2 . Section 3 details

proposed method. The experimental results and some analysis of

key issues of the proposed method are shown in Section 4 . Finally

we conclude our work in Section 5 . 

2. Related work

2.1. Conventional Stereoscopic video quality assessment 

SVQA is a significant but intractable task in computer vision,

attracting more and more attention in recent years. As a re-

sult, various methods were proposed for this subject. Initially, re-

searchers expected to accomplish the evaluation of stereoscopic

video quality using 2D IQA metrics or 2D video quality assess-

ment (VQA) metrics, proposed Peak Signal to Noise Ratio (PSNR)

based method [13] , Structural Similarity Index Metric (SSIM) based

method [14] and VQM based method [15] . In this case, 2D metrics

were performed on two views of stereoscopic video separately, and

then averaged to integrate the final quality score. However, since

the depth information and temporal information of stereoscopic

video were not considered sufficiently, the aforementioned meth-

ods failed to obtain convincing results. As a consequence, some

methods were proposed to measure the 3D video perceptual qual-

ity by applying both 2D and 3D information extracted from stereo-

scopic video. For example, Malekmohamadi et al. [16] proposed a

RR method that encoded spatial neighboring information from gray

level co-occurrence matrices for both color and depth sections. In
17] , left-right views quality metric and depth perception metric

ere designed and pooled into SVQA score. More concretely, left-

ight views quality was assessed based on significant pixels and

ust noticeable distortion model, while depth perception quality

valuated by deploying three-dimensional wavelet transform. Re-

ently, some approaches exploiting the human visual system (HVS)

odel began to emerge, showing more reliable performance. Tak-

ng the temporal characteristics of video and binocular perception

n HVS into account, a RR SVQA method was proposed by Yu et al.

18] . In [19] , Galkandage et al. presented a FR SVQA method built

n a HVS model incorporating the phenomena of binocular sup-

ression and recurrent excitation. Despite of these achievements,

ll of the above methods are FR or NR methods without practical

alue and few NR methods were presented. In our previous work

20] , a NR SVQA metric was proposed for the first time, which

ointly focused on the spatial information, the temporal informa-

ion and the inter-frame spatiotemporal information employing lo-

al binary patterns statistical features and local flow statistical fea-

ures. Overall, whether based on 2D metrics or HVS model, most

f the existing SVQA methods rely on artificially designed features

hat can represent stereoscopic video quality, which is inflexible

and time-consuming.

.2. Neural network based visual content quality assessment 

There were many early works applying neural networks to vi-

ual content quality assessment. In [21] , Li et al. developed a NR

QA algorithm that deployed a general regression neural network

GRNN) with perceptual features including phase congruency, en-

ropy and the image gradients as input. Chetouani et al. [22] used

 neural network to combine multiple distortion-specific NR IQA

easures. In [23] , a machine learning method was presented for

valuating blocking artifacts in JPEG images and a SVR model is

dopted to learn the underlying relations between features and

erceived blocking artifacts. However, these methods require ar-

ificially designed features and only adopted shallow neural net-

orks with only one or two hidden layers to learn the regression

unction. 

.3. Deep learning based visual content quality assessment 

With remarkable success deep learning models have achieved

n various computer vision tasks, a few deep learning based vi-

ual content quality assessment methods have shown remarkable

erformance. On the one hand, some researchers explored deep

earning models to transform lower-level features into more ab-

tract and higher-level representations for visual quality. For exam-

le, Tang et al. [24] constructed a semi-supervised rectifier neural

etwork to blindly measure 2D image quality. A deep belief net-

ork (DBN) [25] of three layers was adopted to provide a high-

evel feature representations of LBIQ features [26] , and the final

uality was predicted with Gaussian Process regression. Ghadi-

aram and Bovik [27] proposed natural-scene-statistics-based per-

eptual image features with a DBN to tackle the difficult problem

f blindly image quality assessment on authentically distorted im-

ges. Hou et al. [28] proposed a NR IQA model to learn qualitative

valuations by using a four-layer discriminative deep model, which

s pre-trained with DBN and discriminatively fine-tuned by back-

ropagation. Shao et al. [29] trained two separate 2D deep neural

etworks (DNN) from 2D monocular images and cyclopean images

o evaluate the quality of stereoscopic image. In [30] , a NR VQA

pproach based on 3D shearlet transform and 1D CNN was con-

tructed, and high-level spatiotemporal features were produced by

erforming 1D CNN on the simple features directly extracted from

ideos. 
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On the other hand, only a few researchers tried to apply 2D

NN on IQA/SIQA task without using hand-crafted features, which

ook raw visual content as input and incorporated feature learn-

ng into the training process. In [11] , Kang et al. pioneered a CNN

ased 2D IQA method to integrate feature extraction and regres-

ion into one optimization process. The experiment demonstrated

hat the proposed CNN can learn the local structures which are

ensitive to human perception and representative for perceptual

uality evaluation. Inspired by this work, Zhang et al. [12] designed

wo different CNNs with different inputs, namely one-column CNN

ith only the image patch from the difference image as input, and

hree-column CNN with the image patches from left-view image,

ight-view image, and difference image as the input. 

.4. Video analysis using convolutional neural networks 

In last years, CNNs have made a series of significant break-

hroughs on image recognition, a lot of powerful CNN architectures

3,31,32] were created for image feature learning. Driven by the

uccess in 2D image processing tasks, CNN has also been utilized

or video analysis. Karpathy et al. [33] presented several methods

or extending the connectivity of CNN to capture the spatiotem-

oral information, which showed that CNN can generate strong

mprovement over hand-crafted features. Simonyan and Zisserman

34] proposed a two stream CNN network for video classification.

ne network analyzed the spatial information while the second

nalyzed multi-frame dense optical flow. Jain et al. [35] articu-

ated human pose estimation in videos using a CNN architecture,

hich incorporated both color and motion features. However, only

D convolution and 2D pooling operations were adopted in these

pproaches, which cannot naturally make use of the motion infor-

ation in the network. 

In this work, we extend 2D CNN to 3D CNN to remain and

ropagate temporal information across the network, which is well-

uited for SVQA task. There have been some exploration of 3D CNN

n numerous research topics. For instance, in [36] , a novel 3D CNN

rchitecture was proposed for human action recognition, imple-

enting data representations from both spatial and temporal di-

ensions. Besides, Tran et al. [37] designed and trained 3D CNN

odels on large video datasets, which were demonstrated effective

or several video analysis tasks including action recognition and

cene recognition. In [38] , a 3D CNN based discrimination model

as developed to participate in the detection of cerebral microb-

eeds, sufficiently representing the spatial contextual information

nd hierarchically extracting high-level features. As evidenced by

hese previous works, CNN in 3D fashion is a promising solution

o tackle video analysis problems. 

. Proposed method

As illustrated in Fig. 1 , we construct a no-reference stereoscopic

ideo quality assessment framework built on 3D CNN, which is

ble to adequately encapsulate local spatiotemporal information

nd global temporal information. Specifically, a 3D CNN architec-

ure is devised to extract local spatiotemporal information while

 quality score fusion strategy considering global temporal clues is

dopted to obtain final video-level predicted scores. In this section,

e describe the key components of the proposed framework, in-

luding data preprocessing, 3D CNN architecture and quality score

usion. 

.1. Data preprocessing 

.1.1. Difference video 

Stereoscopic video consists of two 2D videos with disparity,

hich incorporates more visual information than ordinary 2D
mage and video. Therefore, to measure the perceived quality of

D video, we should consider the non-intuitive interaction of sev-

ral complicated visual factors, including video content quality and

epth perception. In our previous work [39–41] , the difference im-

ge calculated from left and right views has been demonstrated

o retain stereoscopic perception information, which can be used

o represent the quality of stereoscopic image. Additionally, Ma

t al. [42] concluded that the difference image is more valuable

han the left and right views in SIQA task. Similarly, we evaluate

tereoscopic video quality by conducting our 3D CNN on the differ-

nce video rather than directly on the left and right views in this

ork. One reason is that the difference video incorporates video

ontent together with depth perception information, which is suit-

ble as raw data for further analysis of stereoscopic video quality.

nother reason is that applying the difference video is applicable

or stereo video analysis with massive data due to its low compu-

ational complexity. Suppose V L and V R denote left and right views

f stereoscopic video and the value of the difference video D L at

osition ( x, y, z ) is computed as: 

 L (x, y, z) = | V L (x, y, z) − V R (x, y, z) | (1)

ig. 2 shows individual frames sampled form two difference videos

ith different quality. Comparing Fig. 2 (a) and (b), it can be no-

iced that the difference video captures contour information cou-

led with depth information, and can represent the stereoscopic

ideo quality. 

.1.2. Dataset augmentation 

Note that training effective deep learning models requires a

arge number of labeled data. However, unlike visual recognition

ubjects, the amount of data in existing stereoscopic video quality

atasets is limited. As a result, in order to make our deep learning

odel generalize better, we first need to tackle the basic problem

f efficient data scarcity before applying CNN to our task. 

For many deep learning tasks, dataset augmentation is com-

leted through creating new fake data with transformations like

ranslating, rotating or scaling. Unfortunately, we cannot adopt

hese transformations for SVQA dataset augmentation because they

ay influence the quality of stereoscopic video. In this work, we

ropose an applicable dataset augmentation scheme for SVQA task.

he raw video is split in both spatial and temporal dimensions, re-

ulting in numerous low-resolution short video cubes. Specifically,

he size of each cubic video patch is set as 10 × 32 × 32, namely 10

rames with a resolution of 32 × 32. In this design, 32 × 32 rectan-

le boxes are cropped at the same position of 10 sequential frames,

enerating cubes with visual perception information. Then we are

equired to label these resulting cubes in order to obtain valid data

or training. Based on the assumption that the quality degradation

s homogeneous throughout the whole stereoscopic video, each

ideo cube is annotated with a quality score consistent with the

ubjective score of the entire video, thus expanding the amount

f efficient data, which satisfies the demand of CNN for data. The

xperiment in Section 4 verifies the correctness of our assumption.

Video analysis and processing are always time-consuming and

ostly. However, there is high redundancy in video data. Thereby,

o make our obtained data more efficient, we need to reduce re-

undancy while increasing the amount of data. In this work, a sub-

ampling strategy in all dimensions of video is adopted to reduce

edundancy. Specifically, we slide a 32 × 32 box with a stride of

2 to crop the whole video in spacial dimension and select frames

ith a stride of 8 in temporal dimension. As a result, we obtain a

ubic video patch set for each video as follows: 

 cubic = 

[
SP (1) , SP (2) , . . . , SP (i ) , . . . , SP (I) 

]
(2)



64@3*3*2

3D  
Convolu�on

64@3*3*3

3D  
Max Pooling

3D  
Convolu�on

3D  
Max Pooling

128@3*3*2 128@8*8*2

Neurons

512

Quality
Score
Fusion

4*510*32*32*10

Input Video Cubes

Cube-level
Scores

Video-level
Scores

Fig. 1. The architecture of the 3D CNN based SVQA framework. A video is divided into numerous cubic patches and each cubic patch is fed to our 3D CNN to complete

cube-level prediction. Finally, we employed a quality score fusion strategy to obtain final video-level perceptual quality score. Our 3D CNN architecture consists of two 3D

convolution layers, two 3D pooling layers and two fully-connected layers. Detailed descriptions are given in the text.

Fig. 2. (a) 150 th frame of a reference stereoscopic video (MOS = 4.75) and the corresponding difference frame. (b) 150 th frame of a distorted stereoscopic video (MOS = 

1.10) and the corresponding difference frame.
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M1 
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⎞
⎟⎟⎟⎠ (3)

where C is a 10 × 32 × 32 cubic patch and SP ( i ) denotes the i th

segment in temporal dimension. Ultimately, we build a training

set consisting of 204,0 0 0 video cubes base on NAMA3DS1-

COSPAD1 database [43] , which is 2040 times larger than the orig-

inal database. Our data preprocessing successfully lay the founda-

tion for the training of our deep learning models. 

3.2. 3D convolutional neural networks 

Generally, typical CNN architecture stacks multiple convolution

layers and pooling layers alternatively to process the input signal,

and then implements the mapping between features and objec-

tive in the fully-connected layer. In 2D CNN, convolution operation

and pooling operation are employed in spatial dimension merely,

which is not suitable for the process of video streams with both

spatial and temporal information. To this end, we extend 2D CNN
o 3D CNN for SVQA task by virtue of carrying out 3D convolution

nd 3D pooling on the cubic video patches. Next we will describe

D convolution operation, 3D pooling operation and our 3D CNN

rchitecture. 

.2.1. 3D convolution 

Convolution employed at the convolutional layers in CNN is

 special linear operation between input data and several kernel

unctions to produce feature maps. On this basis, 3D convolution

s completed by convolving 3D convolution kernel with the cubic

atches composed of multiple adjacent frames to ensure that the

emporal information is preserved and abstracted across the net-

ork, which is formally expressed in an element-wise form: 

 

l 
ki (x, y, z) =

∑ 

r

∑ 

p

∑ 

q

h 

l−1 
k 

(x − p, y − q, z − r ) W 

l 
i (p, q, r ) (4)

here k denotes the index of the feature map in the (l − 1) layer

onnected to the current convolution kernel, h l−1 
k

represents k th

D feature map in (l − 1) th layer, W 

l 
i 

is i th 3D convolution kernel

n l th layer that convolves over the h l−1 
k

. After convolution com-

leted, an additive bias term and an nonlinear activation func-

ion are performed to get the final feature map. Formally, the i th



Input image
2D feature map

(a) The workflow of 2D convolution

Input frames

3D feature volume

(b) The workflow of 3D convolution

Fig. 3. Comparison of (a) 2D and (b) 3D convolutions. 2D convolution slides the

2D convolution kernels on spatial dimension whereas 3D convolution slides the 3D

convolution kernels on both spatial dimension and temporal dimension. In 3D con- 

volution, each location of the 3D feature maps are connected with several adjacent

input frames, which preserves temporal information of input frames.
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Table 1

Configurations of the proposed 3D CNN architecture.

Layer Kernel sze Stride Output size Feature maps

Input − 1 10 × 32 × 32 1

C1 2 × 3 × 3 1 9 × 30 × 30 64

S1 3 × 3 × 3 1 3 × 10 × 10 64

C2 2 × 3 × 3 1 2 × 8 × 8 128

S2 2 × 8 × 8 1 1 × 1 × 1 128
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eature map in the l th layer is given as 

 

l 
i = f

(∑ 

k

v l ki + b li

)
(5) 

here b l 
i 

is the additive bias term, f ( · ) is the nonlinear activation

unction, such as sigmoid function, hyperbolic tangent function and

ectified linear function. The comparison of 2D convolution and 3D

onvolution is shown in Fig. 3 . 

.2.2. 3D pooling 

In addition to the convolution layer, the pooling layer is also

 main component of typical CNN, which sub-sampling the fea-

ure map transmitted from the convolution layer based on the lo-

al correlation principle. The pooling operation outputs the sum-

ary statistic of adjacent units at a certain location of feature map,

hereby reduce the amount of data while retaining valuable infor-

ation. For example, the max pooling operation [44] reports the

aximum value within a rectangular neighborhood of feature map.

imilarly, we apply 3D pooling to produce invariance to transla-

ion over both spatial and temporal dimensions of the cubic video

atches. Taking max pooling as an example, 3D pooling operation

s formulated as 

 

l 
i (x, y, z) = max 

m,n, j
h 

l 
k (x + m, y + n, z + j) (6)

.2.3. 3D CNN architecture 

Based on the 3D convolution and 3D pooling elaborated above,

e construct a 3D CNN architecture to automatically and effec-

ively capture local spatiotemporal features for SVQA task. In the-

ry, the deeper model has greater capacity, which means it can ac-

omplish more complex tasks but requires more data at the same

ime. Although dataset augmentation scheme is applied, available

alid data for SVQA task is so scarce that the complex model is

asy to fall into over-fitting. Hence, the proposed network has a

imple yet effective architecture with a total of six layers, includ-

ng two 3D convolution layers C1, C2, two 3D pooling layers S1, S2

nd two fully-connected layers FC1, FC2. After data preprocessing,

e consider numerous 10 × 32 × 32 (10 in the temporal dimension

nd 32 × 32 in the spatial dimension) cubic video patches as in-

uts to the 3D CNN model. For each convolution kernel, we fix
he spatial receptive field to 3 × 3 according to the findings in 2D

NN [31] that small receptive fields of 3 × 3 convolution kernels

ield best results. Then we vary and search the temporal depth

f the 3D convolution kernels according to our experiments. As

 result, the two 3D convolutional layers have filters with a ker-

el size of 2 × 3 × 3. With C1 and C2 layers, multiple 3D feature

aps are hierarchically generated to represent the stereoscopic

ideo. After each convolution layer, a 3D max-pooling layer per-

orms sub-sampling on 3D feature maps, which reduces the reso-

ution of feature maps in spatial and temporal dimensions simulta-

eously. Specifically, the kernel sizes of two 3D max-pooling layers

re 3 × 3 × 3 and 2 × 8 × 8, respectively. Finally, the proposed net-

ork ends with two fully-connected layers: FC1 contains 512 neu-

ons to flatten 3D feature maps into a 512-D feature vector and FC2

nly contains 1 neuron to predict a cube-level score corresponding

o the quality of input cubic video patches. In summary, our net-

ork settings are shown in Table 1 . 

We train the model using SGD optimizer with a minibatch size

f 128 and apply a Nesterov momentum of 0.9. The learning rate

s initialized to 0.001. The final network has 215361 parameters to-

ally and all the trainable parameters in this model are initialized

andomly and trained by the online error back-propagation algo-

ithm as described in [45] . The rectifier linear unit(ReLU) [46] is

tilized for the non-linear activation function in the C and FC

ayers. 

In order to avoid over-fitting, we use dropout strategy [47] in

he fully-connected layers to drop the input units with a fraction

f 0.5, and adopt a objective function consisting of the original cost

unction and a regularization term as follows: 

in 

θ

1 

N 

N ∑ 

i =1

( f (x i ) − y i ) 
2 + λ|| θ || 2F (7)

here y i and f ( x i ) denote ground-truth quality score and predicted

core, respectively. λ is the regularization parameter. Furthermore, 

atch normalization is used between each convolution and follow-

ng activation to accelerate network training. 

.3. Quality score fusion 

After the train-test process of our 3D CNN model, we can ac-

uire the predicted score of each input cubic patch split from test-

ng stereoscopic video. In order to obtain video-level quality score

ffectively, we em ploy a quality score fusion strategy considering

lobal temporal information. First, average pooling is utilized to

ntegrate the cube-level scores in the spatial dimension. Thereby,

ach video gets a score set { S 1 , S 2 , . . . , S i , S I } and S i represents the

uality of the i th segment in each stereoscopic video. To model

lobal temporal information, we compute the weight of each seg-

ent based on the motion intensity. For efficiency, a simple way

o acquire motion intensity is defined as: 

 = 

∑ 

x,y,t

[ V (x, y, t) − V (x, y, t − 1)] 2 (8)

upposed I i denotes the motion intensity of the i th segment

f stereoscopic video in temporal dimension, the corresponding



(a) Barrier gate (b) Basket (c) Boxers (d) Hall (e) Lab

(f) News report (g) Phone call (h) Soccer (i) Tree branches (j) Umbrella

Fig. 4. The 100th frames of ten reference stereo videos in the NAMA3DS1-COSPAD1 stereo video database (only right views are shown).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2

Overall performance comparison on NAMA3DS1-COSPAD1.

NAMA3DS1-COSPAD1 database

Algorithm PLCC SROCC KROCC RMSE

PSNR 0.6699 0.6470 0.4800 0.8433

SSIM 0.7664 0.7492 0.54 4 4 0.7296

PQM [49] 0.6340 0.6006 0.4391 0.8784

PHVS-3D [50] 0.5480 0.5146 0.3572 0.9501

SFD [51] 0.5965 0.5896 0.4025 0.9117

3D-STS [52] 0.6417 0.6214 0.4544 0.9067

Feng [48] 0.6503 0.6229 0.4575 0.8629

Yang et al [20] 0.8949 0.8552 0.6913 0.4929

MNSVQM [53] 0.8545 0.8394 0.6439 0.4538

BSVQE [54] 0.9239 0.9086 0.7622 0.3754

Image-based method 1 0.9145 0.9082 0.7107 0.3908

Image-based method 2 0.9012 0.8985 0.7225 0.4056

3D CNN 0.9316 0.9046 0.7533 0.4161

3D CNN + SVR 0.9478 0.9231 0.7883 0.3514
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weight of the i th segment is formulated as: 

w i = 

I i ∑ N 
i I i 

(9)

Finally, we aggregate the video-level predicted score as follows: 

F = 

∑ 

i

w i S i (10)

where S i is the quality score of the i th segment averaged from cu-

bic patches in spatial dimension. Note that we adopt a score fusion

method in temporal dimension based on motion intensity rather

than using the simple average fusion, which incorporates global

temporal information and models the affect of motion intensity on

stereoscopic video quality. 

4. Result and discussion

In this section, we first introduce the stereoscopic video

databases and evaluation metrics used in the experiment. Then

the effectiveness of the proposed method is validated on these

databases. Furthermore, we treat our model as a feature extractor

and reveal that our 3D CNN features have more desirable prop-

erty for SVQA than hand-crafted features. Next we verify the cor-

rectness of the hypothesis that the quality degradation is homo-

geneous throughout the stereoscopic video. Finally, our proposed

method is demonstrated computationally efficient compared with

previous methods. 

4.1. Stereoscopic video database 

In our work, we utilize the NAMA3DS1-COSPAD1 stereoscopic

video quality database [43] and the stereoscopic video quality

database in [48] (we name it QI-SVQA for simplicity) to evaluate

the performance of our proposed method. 

4.1.1. NAMA3DS1-COSPAD1 stereoscopic video quality database 

The NAMA3DS1-COSPAD1 database consists of 10 original

stereoscopic videos with a resolution of 1080 × 1920 at 25 fps and

100 symmetrically distorted stereoscopic videos derived from the

original videos. There are five types of distortion considered in this

database, including H.264/AVC, JPEG 20 0 0, reduction of resolution,

image sharpening and downsampling & sharpening. The mean opin-

ion scores (MOS) ranging from 1 to 5 is adopted to indicate the

subjective quality of stereoscopic video, and higher MOS means

better subjective quality. The first frames of ten original videos are

summarized in Fig. 4 . 

4.1.2. QI-SVQA database 

The QI-SVQA database is in the format of uncompressed YUV

4:2:0, which has 9 original videos and 450 symmetric or asym-

metric distorted videos that are divided into two distortion type:
aussblur and H.264. The frame rate of all videos in this database

s 25 fps while the resolution and the number of frames are di-

erse. Similarly, the MOS accessible in the database also varies

rom 1 (bad) to 5 (excellent). 

.2. Overall performance evaluation 

Four commonly used measures are applied to quantitatively

valuate the effectiveness of the proposed method: Pearson lin-

ar correlation coefficient (PLCC), Spearman rank correlation coef-

cient (SROCC), Kendall rank-order correlation coefficient (KROCC)

nd Root mean squared error (RMSE). The PLCC assesses the lin-

arity of an IQA index, while the SROCC measures its monotonic-

ty. The objective scores are passed through the five-parametric

onlinear regression before computing PLCC and SROCC for map-

ing to DMOS or MOS space. When the objective score and the

ubjective score are exactly matched, PLCC = SROCC = KROCC = 1 ,

MSE = 0. 

In this subsection, we evaluate our 3D CNN based SVQA method

n abovementioned NAMA3DS1-COSPAD1 and QI-SVQA database,

nd compare its effectiveness with the best performing methods.

n order to guarantee the reliability of the test results, we conduct

he train-test process 100 times and adopt median value as the

nal performance evaluation results. Each time we picked 60% of

he dataset as training set, 20% as the validation set and the re-

aining 20% as test set. The overall performance of the proposed

ethod on two databases and comparison are reported in Tables 2

nd 3 , respectively. The best performance across all the methods

re highlighted in boldface. 

Notably, our proposed method yields competitive results, which

s significantly outperformed than all previous SVQA methods in-

luding FR and NR models. Compared with current best performing



Table 3

Overall performance comparison on QI-SVQA database.

QI-SVQA database

Algorithm PLCC SROCC KROCC RMSE

PSNR 0.8496 0.8637 0.6832 0.5122

SSIM 0.8185 0.8281 0.6418 0.5580

PQM [49] 0.7852 0.8165 0.6365 0.6158

PHVS-3D [50] 0.7082 0.7195 0.5353 0.7021

SFD [51] 0.6483 0.6633 0.5021 0.7571

3D-STS [52] 0.8311 0.8338 0.6553 0.5520

Feng [48] 0.8415 0.8379 0.6650 0.5372

Yang et al [20] 0.9208 0.9175 0.7730 0.3709

MNSVQM [53] 0.8823 0.8573 0.7039 0.4073

BSVQE [54] 0.9394 0.9387 0.7963 0.3543

Image-based method 1 0.9166 0.9051 0.7259 0.3891

Image-based method 2 0.8978 0.8856 0.7012 0.3908

3D CNN 0.9318 0.9284 0.7848 0.3586

3D CNN + SVR 0.9503 0.9426 0.8038 0.3333
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Table 4

The contribution analysis of each component on NAMA3DS1-COSPAD1

database.

3D CNN Score Fusion SVR NAMA3DS1-COSPAD1

PLCC SROCC KROCC RMSE

√ × × 0.9216 0.9046 0.7533 0.4161√ √ × 0.9374 0.9144 0.7592 0.4120√ × √ 

0.9410 0.9182 0.7650 0.3910√ √ √ 

0.9478 0.9231 0.7883 0.3614

Table 5

The contribution analysis of each component on QI-SVQA database.

3D CNN Score Fusion SVR QI-SVQA

PLCC SROCC KROCC RMSE

√ × × 0.9318 0.9284 0.7848 0.3586√ √ × 0.9362 0.9335 0.7892 0.3521√ × √ 

0.9465 0.9395 0.7954 0.3485√ √ √ 

0.9503 0.9426 0.8038 0.3333
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ethod, we observe absolute performance gains of around 0.02 for

LCC, SROCC, KROCC and RMSE on NAMA3DS1-COSPAD1 database.

nd although QI-SVQA database has both symmetrically and asym-

etrically distorted stereoscopic videos, we also acquire absolute

erformance gains of around 0.01 for PLCC, SROCC, KROCC and

MSE. These desirable experimental results demonstrate that our

D CNN based architecture is an efficient and robust solution for

valuating the quality of whether symmetrically or asymmetrically

istorted stereoscopic videos, as it has capability to capture local

patiotemporal information and global temporal information auto-

atically in a data driven way. 

In addition, we also compare our method with image-based

ethods and the corresponding experimental results are shown in

ables 2 and 3 . There are two image-based methods we have tried.

he first one only takes the difference image of each frame as the

nput of 2D CNN while the second one takes left and right views

f each frame as input. In the second method, we set up two 2D

NN branches to encode the left view input and the right view in-

ut as representation vectors, then we concatenate these vectors

nto final representation of each frame. These results demonstrate

he superiority of the proposed 3D CNN based method compared

o the straightforward method based on 2D CNN. 

We also present scatter plots of predicted quality scores by

roposed method against the corresponding MOS values on two

atabases in Fig. 5 (a)– (b). These scatter plots illustrate that the

bjective scores obtained by our method have a good linear corre-

ation with the subjective score. 

.3. 3D CNN video descriptor 

In this subsection, we use our 3D CNN model as a feature ex-

ractor. In such a use case, the last fully-connected layer FC2 is re-

oved and 512-D activations of the penultimate layer FC1 is ex-

racted as features to represent each input cubic video patches.

hen we aggregate these cube-level features to a video-level rep-

esentation using L1 - norm. As a result, a 512-D feature vector is

earned for each stereoscopic video by our 3D CNN model. For the

ake of verifying the discrimination capability of our 3D CNN video

escriptor, we embed these high dimensional feature vectors to 2D

pace utilizing the t-SNE toolbox [55] . Fig. 6 qualitatively visualizes

nd compares the capability of our 3D CNN features and the hand-

rafted features extracted from the very recent state-of-the-art NR

VQA method [20] . Yang et al. [20] proposed a SVQA method by

odeling the binocular perception effect in multi-views, including

patial domain, temporal domain and the spatial-temporal domain,

hich extracts texture analysis features by associating the curvelet

ransform and local binary pattern have been used in the analysis
f distortion on the spatial and spatial-temporal domain. As illus-

rated in Fig. 6 , our 3D CNN features are semantically separable

ompared with artificially designed features, which indicates that

ur learned features are more effective than artificially designed

eatures used in previous methods for SVQA. 

Additionally, the 3D CNN representations are passed to a sup-

ort vector regressor (SVR) instead of fully connected Multi-Layer

erceptron (MLP) for quality prediction. As shown in Fig. 5 (c)–(d),

he predicted scores of 3D CNN feature extractor combined with

VR have better correlation with the MOS of testing set than using

D CNN only. First, the learning algorithm of MLP is based on the

mpirical Risk Minimization, which attempts to minimize the er-

ors by the back-propagation algorithm in the training set. So MLP

ften converges on local minima rather than global minima. Fur-

hermore, SVR aims to minimize the generalization errors on the

nseen data with a fixed distribution for the training set, by using

he Structural Risk Minimization principle. Therefore, the general-

zation ability of MLP is lower than that of SVR. These results re-

onfirm the fact that our 3D CNN feature extractor is superior to

he artificially designed feature extractors. 

.4. The contribution analysis of each component 

Our framework is made up of three components including 3D

NN, quality score fusion and SVR, where 3D CNN is the major

art and the other two are the auxiliary parts. We now investigate

he significance of each component and analyze their contribution

ia a comparison experiment. In our experiment, different combi-

ations of these components are conducted on SVQA datasets for

iscussion. Tables 4 and 5 show the performance evaluation re-

ults when using each combination for predicting video quality.

he symbol 
√ 

and × in the first three columns of Tables 4 and

 indicate whether the corresponding component is used or not.

pecifically, the symbol × in the column “Score Fusion Strategy”

eans adopting average fusion strategy instead of our proposed fu-

ion strategy, and the symbol × in the column “SVR” means using

lP instead of SVR to complete regression. For example, the meth-

ds described in the first row of Tables 4 and 5 obtain patch-level

core by 3D CNN representations with MLP and adopt average fu-

ion strategy to pool the scores of cubic video patches into video-

evel score. It is clearly observed that the combination adopting all

hree components yields best performance. Meanwhile, our quality

core fusion strategy considering global temporal clues are verified

omplementary to 3D CNN, and 3D CNN features in combination

ith SVR can further improve the performance. 
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Fig. 5. Predicted MOS versus subjective MOS on two databases. (a) Scatter plot on NAMA3DS1-COSPAD1. (b) Scatter plot on QI-SVQA. (c) Performance comparison of 3D

CNN and 3D CNN combined with SVR on the same data in NAMA3DS1-COSPAD1 database. (d) Performance comparison of 3D CNN and 3D CNN combined with SVR on the

same data in QI-SVQA database.

(a) Hand-crafted features extracted from

the very recent SVQA method

(b) Features learned by our 3D CNN model

Fig. 6. Feature embedding visualizations of state-of-the-art NR SVQA method [20] and our 3D CNN method on NAMA3DS1-COSPAD1 by t-SNE toolbox [55] . (a) Hand-crafted

features extracted from the very recent state-of-the-art SVQA method. (b) Features extracted by our 3D CNN model. After dimensionality reduction, the feature vector of

each stereoscopic video is visualized as a point and different colors represent different quality levels. We divide video quality into 4 grades in all.
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4.5. Local quality evaluation 

After produced from raw videos, numerous small cubic patches

are labeled with a quality score consistent with the entire video.

We can do this because we hypothesize the quality degrades ho-

mogeneously throughout the whole stereoscopic video. Next we
s  
ill experimentally prove that the small cubic patches have a con-

istent quality condition with the entire video. 

We pick out several stereoscopic videos distorted in differ-

nt degradation levels of same distortion type from NAMA3DS1-

OSPAD1 database, and these videos do not participate in the

raining stage. First, we divide each stereoscopic video into three

egments vertically in spatial dimension and splice the segments



Fig. 7. Spatially and temporally synthetic stereoscopic video examples and the visualization of corresponding local quality predicted scores. The first raw shows synthetic

stereoscopic videos generated by splicing video segments distorted in three different degradation levels of (a) JPEG20 0 0 (b) JPEG20 0 0 (c) H.264 (d) H.264. (a) and (c) are

synthesized in spatial dimension while (b) and (d) are synthesized in temporal dimension. The second row shows corresponding quality maps and brighter pixels indicate

higher quality.

Table 6

The performance comparison with different patch size on NAMA3DS1-COSPAD1 dataset.

Patch size 16 24 32 48 64 128 256

PLCC 0.9340 0.9429 0.9478 0.9467 0.9483 0.9480 0.9470

SROCC 0.9224 0.9228 0.9231 0.9237 0.9238 0.9225 0.9227
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Table 7

The runtime analysis on NAMA3DS1-COSPAD1 dataset.

Method Usage Runtime(h) Test time per video(s)

Yang et al. [20] CPU 117.5 250

Yang et al. [20] GPU 29.4 63

MNSVQM [53] CPU 67.9 45

BSVQE [54] CPU 15.4 18

Proposed method GPU 2.6 2
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istorted in different levels to generate a spatially synthetic stereo-

copic video. Then the similar process is carried out in temporal

imension to obtain temporally synthetic stereoscopic video. Next,

ur trained 3D CNN based SVQA method conducts on both spa-

ially and temporally synthetic stereoscopic videos to implement

uality evaluation. The estimated quality scores of all cubic patches

re normalized into [0,255] and then visualized in a quality map.

ig. 7 presents the predicted quality map of both spatially and

emporally synthetic stereoscopic video distorted in JPEG 20 0 0 and

.264. It is clearly observed that proposed method has discrimina-

ion capability to evaluate the quality of local cubic patches, and

he quality degrades homogeneously throughout the whole stereo-

copic video. These results provide a much more reliable basis for

ur data preprocessing. 

In addition, to observe how the patch size affects the over-

ll performance, we conduct a comparative experiment on the

AMA3DS1-COSPAD1 dataset and the experimental results are

hown in Table 6 . To guarantee that the number of patches

er video remains roughly the same when patch size varies,

e adopted overlap sampling with fixed sampling stride. As

able 6 shows, as the size of the block increases, there is a

ery slight fluctuation and no significant improvement in perfor-

ance. However, using larger video patches will spend more time

hen do convolution operations. Therefore, the configuration of

he patch size is still 32 × 32 in spatial dimension. 

.6. Runtime analysis 

In addition to accuracy, efficiency is also an important crite-

ion to measure a SVQA algorithm. We develop our 3D CNN model

y using the python deep learning library Keras on a PC with a

ingle 3.2 GHz CPU and a single GTX1080 GPU. With no com-

lex preprocessing and GPU acceleration, our proposed method is

emonstrated computationally efficient. We measure the runtime

f our proposed method and compare it with Yang [20] , MNSVQM

53] and BSVQE [54] , which are the only three NR SVQA models

roposed as far as we know. Yang et al. [20] constructed a quality

valuator based on optical flow that is a time-consuming opera-

ion. For effective com parison, two im plementations are adopted

n our experiment to compute the optical flow: CPU implemen-

ation in Matlab and GPU implementation in OpenCV. MNSVQM
xtracted statistical features such as generalized Gaussian distribu-

ion (GGD), asymmetric GGD, spatial entropy, spectral entropy as-

ociated with two views, and spectral entropy related to depth per-

eption of stereoscopic video. In BSVQE, the binocular summation

nd difference operations are integrated together with the fusion

atural scene statistic measurement and the ARDE measurement

o reveal the key influence from texture and disparity. As a result,

he runtime of these methods for the whole NAMA3DS1-COSPAD1

ataset is reported in Table 7 . It can be clearly observed that our

ethod is far more efficient than the three NR methods above.

herefore, the proposed method is not only effective but also ef-

cient, which is a more feasible solution for real-time application

f SVQA. 

. Conclusion

In this paper, we have presented a NR SVQA framework based

n 3D CNN, which can effectively model not only local spatiotem-

oral information but also global temporal information with cubic

ifference video patches as input. In the framework, we first design

 3D CNN architecture to automatically capture local spatiotempo-

al features instead of using hand-crafted features and then em-

loy a quality score fusion strategy considering global temporal

lues to obtain final video-level predicted scores. Extensive ex-

eriments on two challenging stereoscopic video databases have

hown that our proposed method correlates highly with human

erception and significantly outperforms state-of-the-art methods. 

n addition, with no complex preprocessing and GPU acceleration,

ur proposed method is demonstrated computationally efficient

ompared with previous methods. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite deep learning based methods have achieved great suc-

cess in many challenge tasks, few network architectures are pro-

posed to evaluate the quality of visual information, especially the

quality of stereoscopic video. Our work in this paper explores 3D

CNN to evaluate the quality of stereoscopic video for the first

time. In the future, we will continue to focus on developing deep

learning models for SVQA task. Moreover, we plan to establish a

large SVQA dataset to address the problem of labeled data scarcity,

which definitely meets the needs of deep learning models. 
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