CaSe

Automatically improving floating point code

Scientists Write Code

Every scientist needs to write code

Analyze data

Simulate models

Control experiments

Scientists Write Code

Every scientist needs to write code

Analyze data

Simulate models

Control experiments

They have little computer science training

1. Come up with mathematical formula

$$f(x) = \sqrt{x+1} - \sqrt{x}$$

1. Come up with mathematical formula

$$f(x) = \sqrt{x+1} - \sqrt{x}$$

2. Write as floating-point code

$$f(x) = sqrt(x + 1) - sqrt(x)$$

$$f(x) = sqrt(x + 1) - sqrt(x)$$

3. Test code

$$f(1) = 0.41421...$$

 $f(1) = 0.41421...$

$$f(x) = sqrt(x + 1) - sqrt(x)$$

3. Test code

$$f(1) = 0.41421...$$

 $f(1) = 0.41421...$

4. Profit

$$f(x) = sqrt(x + 1) - sqrt(x)$$

3. Test code

$$f(1) = 0.41421...$$

 $f(1) = 0.41421...$

4. Profit Publish

But try a few other values...

$$f(3141592653589793) = 7.451e-9$$

 $f(3141592653589793) \approx 8.921 \cdot 10^{-9}$

That's a 16% error!

Outline

Why did this happen?

How can we fix it?

How does Casio help?

Outline

Why did this happen?

How can we fix it?

How does Casio help?

"Because floating-point is imprecise!"

"Because floating-point is imprecise!"

We want something more constructive.

"Because floating-point is imprecise!" We want something more constructive.

"Rounding or something"

"Because floating-point is imprecise!" We want something more constructive.

"Rounding or something"

Let's try to be a bit more precise...

```
177.24559232...
```

- 177.24277136...
 - .00282006...

```
177.24559 232
```

- **177.24277** 136
 - .00282 006

Rounding error

- 177.24559 232
- **177.24277** 136
 - .00282 006

Rounding error

- → .000001% error
 - → .03% error

```
177.24559 232 → .000001% error

- 177.24277 136 → .000001% error

.00282 006 → .03% error
```

Error in *output* related to size of *input*.

The **output** to the subtraction is **small**The **input** to the subtraction is **large**

This means the error will be large.

$$\sqrt{x+1} - \sqrt{x} \approx \frac{1}{2\sqrt{x}}$$

$$\sqrt{x+1} - \sqrt{x} \approx \frac{1}{2\sqrt{x}}$$

$$f(\mathbf{x}) \approx f(x) + \sqrt{x} \cdot \epsilon$$

$$\sqrt{x+1} - \sqrt{x} \approx \frac{1}{2\sqrt{x}}$$

$$f(\mathbf{x}) \approx f(x) + \sqrt{x} \cdot \epsilon$$

$$(f(\mathbf{x}) - f(x)) \approx \sqrt{x} \cdot \epsilon$$

$$\sqrt{x+1} - \sqrt{x} \approx \frac{1}{2\sqrt{x}}$$

$$f(\mathbf{x}) \approx f(x) + \sqrt{x} \cdot \epsilon$$

$$(f(\mathbf{x}) - f(x)) \approx \sqrt{x} \cdot \epsilon \approx 2x f(x) \epsilon$$

$$\sqrt{x+1} - \sqrt{x} \approx \frac{1}{2\sqrt{x}}$$

$$f(\mathbf{x}) \approx f(x) + \sqrt{x} \cdot \epsilon$$

$$(f(\mathbf{x}) - f(x)) \approx \sqrt{x} \cdot \epsilon \approx 2xf(x)\epsilon$$

$$\text{error} \approx 2x\epsilon$$

So, in summary

Code is imprecise

The subtraction is the culprit

Figuring out why was hard

Outline

Why did this happen?

How can we fix it?

How does Casio help?

How can we fix it?

Run with higher precision?

Software floating point is slow.

Add correction terms?

Very hard to do; very error-prone

How can we fix it?

Better idea: rephrase the problem

Compute the same thing in a different way.

Somehow get rid of the subtraction

$$\sqrt{x+1} - \sqrt{x}$$

$$\sqrt{x+1} - \sqrt{x} = (\sqrt{x+1} - \sqrt{x}) \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$

$$\sqrt{x+1} - \sqrt{x} = (\sqrt{x+1} - \sqrt{x}) \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$
$$= \frac{\sqrt{x+1}^2 - \sqrt{x}^2}{\sqrt{x+1} + \sqrt{x}}$$

$$\sqrt{x+1} - \sqrt{x} = (\sqrt{x+1} - \sqrt{x}) \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{\sqrt{x+1}^2 - \sqrt{x}^2}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}}$$

$$\sqrt{x+1} - \sqrt{x} = (\sqrt{x+1} - \sqrt{x}) \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{\sqrt{x+1}^2 - \sqrt{x}^2}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

$$\sqrt{x+1} - \sqrt{x} = (\sqrt{x+1} - \sqrt{x}) \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{\sqrt{x+1}^2 - \sqrt{x}^2}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

Implementing this rephrasing

$$f(x) = 1/(sqrt(x + 1) + sqrt(x))$$

We've transformed the minus into a plus.

Implementing this rephrasing

$$f(x) = 1/(sqrt(x + 1) + sqrt(x))$$

We've transformed the minus into a plus. This version has effectively no error.

Implementing this rephrasing

$$f(x) = 1/(sqrt(x + 1) + sqrt(x))$$

We've transformed the minus into a plus. This version has effectively no error.

But it's a bit confusing:

Is this computing the right function?

So, in summary

Problem solved

Algebra required

Fixing it was hard

Outline

Why did this happen?

How can we fix it?

How does Casio help?

How does Casio help?

Diagnosing and fixing were both hard

How does Casio help?

Diagnosing and fixing were both hard

Casio automatically...

Computes error

Finds better code

Automatically computing error

Compute exact answers with arbitrary precision

Use program analysis tools to find the problem

Automatically improving code

Small database of mathematical identities e.g. $a^2 - b^2 = (a + b) (a - b)$

Apply identities to the problem subexpression

Evaluate resulting code versus exact answer


```
> (improve '(\lambda (x) (- (sqrt (+ x 1)) (sqrt x))) 3)
```

```
> (improve '(\lambda (x) (- (sqrt (+ x 1)) (sqrt x))) 3) (\lambda (x) (/ 1 (+ (sqrt x) (sqrt (+ x 1)))))
```

```
> (improve '(\lambda (x) (- (sqrt (+ x 1)) (sqrt x))) 3) (\lambda (x) (/ 1 (+ (sqrt x) (sqrt (+ x 1)))))
Improvement by an average of 20.3 bits of precision
```

```
> (improve '(\lambda (x) (- (sqrt (+ x 1)) (sqrt x))) 3)
(\lambda (x) (/ 1 (+ (sqrt x) (sqrt (+ x 1)))))
Improvement by an average of 20.3 bits of precision
> (improve '(\lambda (x) (- (/ 1 x) (/ 1 (+ x 1)))) 3)
```

 $(\lambda (x) (/ 1 (* x (+ x 1))))$ Improvement by an average of 21.2 bits of precision

```
> (improve '(\lambda (x) (- (sqrt (+ x 1)) (sqrt x))) 3) (\lambda (x) (/ 1 (+ (sqrt x) (sqrt (+ x 1)))))

Improvement by an average of 20.3 bits of precision

> (improve '(\lambda (x) (- (/ 1 x) (/ 1 (+ x 1)))) 3) (\lambda (x) (/ 1 (* x (+ x 1))))

Improvement by an average of 21.2 bits of precision
```

 $> (improve '(\lambda (x) (- x (sqrt (+ (sqr x) 1)))) 3)$

Improvement by an average of 17.3 bits of precision

 $(\lambda (x) (/ -1 (+ x (sqrt (+ (sqr x) 1)))))$

Future work

Subtler precision problems

$$\frac{e^x-1}{x}$$

Future work

Subtler precision problems

$$\frac{e^x-1}{x}$$

Extracting floating point computation from code

Future work

Subtler precision problems

$$\frac{e^x-1}{x}$$

Extracting floating point computation from code

Provide explanation of what Casio did