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f(1) = 0.41421...

3. Test code

4. Publish



But try a few other values...

f(3141592653589793) = 7.451e-9



But try a few other values...

That’s a 16% error!

f(3141592653589793) = 7.451e-9
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Let’s try to be a bit more precise…

  177.24559232…
- 177.24277136…
     .00282006…
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Let’s try to be a bit more precise…

  177.24559 232
- 177.24277 136
     .00282 006

Rounding error

→ .000001% error
→ .000001% error
→ .03% error

Error in output proportional to size of input.
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So, in summary

Code is numerically imprecise

The subtraction is the culprit

Figuring out why was hard
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How can we fix it?

Run with higher precision?
Software floating point is slow.

Add correction terms?
Very hard to do; very error-prone



How can we fix it?

Better idea: rephrase the program

Compute the same thing in a different way.

Somehow get rid of the subtraction
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Implementing this rephrasing

This version has effectively no error.

f(x) = 1/(sqrt(x + 1) + sqrt(x))



Implementing this rephrasing

This version has effectively no error.

But it’s a harder to understand:
Is this computing the right function?

f(x) = 1/(sqrt(x + 1) + sqrt(x))



So, in summary

Problem solved

Algebraic ingenuity required

Fixing it was hard
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How does Casio help?

Diagnosing and fixing precision problems
is hard

Casio automatically…
Computes error
Finds better code

Resulting expression is the same over the reals
but better over the floats



Automatically computing error

Compute exact answers with arbitrary precision

Use program analysis tools
to find bad subexpressions



Automatically improving code

Small database of mathematical identities
e.g. a - a = 0
e.g. a2 - b2 = (a + b) (a - b)

Apply identities to the problem subexpression
recursive goal-directed rewrite

Evaluate resulting code versus exact answer
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Domain Knowledge

Simplification

Inferring branch conditions

Periodicity analysis
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> (improve 
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3)

(λ (x)
  (if (< x 0.0007021373107872404)
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> (improve 
'(λ (x) (- (sqrt (+ x 1)) (sqrt x)))
3)

(λ (x)
  (if (< x 0.0007021373107872404)
    (- (sqrt (+ x 1)) (sqrt x))
    (/ 1 (+ (sqrt x) (sqrt (+ x 1))))))

Improvement by an average of 23.2 bits







Future work

Extracting floating point computation from code

More domain knowledge

Provide explanation of what Casio did

Unsound rewrites


