
Automatically improving floating point code

Every scientist needs to write code
Analyze data
Simulate models
Control experiments

Scientists Write Code

Every scientist needs to write code
Analyze data
Simulate models
Control experiments

They have little computer science training

Scientists Write Code

How scientific code is written

1. Come up with mathematical formula

How scientific code is written

1. Come up with mathematical formula

f(x) ≔ sqrt(x + 1) - sqrt(x)

2. Write as floating-point code

How scientific code is written

f(x) ≔ sqrt(x + 1) - sqrt(x)

f(1) = 0.41421...

3. Test code

How scientific code is written

f(x) ≔ sqrt(x + 1) - sqrt(x)

f(1) = 0.41421...

3. Test code

4. Publish

But try a few other values...

f(3141592653589793) = 7.451e-9

But try a few other values...

That’s a 16% error!

f(3141592653589793) = 7.451e-9

Outline

Why did this happen?

How can we fix it?

How does Casio help?

Outline

Why did this happen?

How can we fix it?

How does Casio help?

Why did this happen?

“Because floating-point is imprecise!”

Why did this happen?

We want something more constructive.

“Because floating-point is imprecise!”

Why did this happen?

We want something more constructive.

“Rounding”

“Because floating-point is imprecise!”

Why did this happen?

We want something more constructive.

Let’s try to be a bit more precise…

“Rounding”

“Because floating-point is imprecise!”

Let’s try to be a bit more precise…

 177.24559232…
- 177.24277136…
 .00282006…

Let’s try to be a bit more precise…

 177.24559 232
- 177.24277 136
 .00282 006

Rounding error

Let’s try to be a bit more precise…

 177.24559 232
- 177.24277 136
 .00282 006

Rounding error

→ .000001% error
→ .000001% error
→ .03% error

Let’s try to be a bit more precise…

 177.24559 232
- 177.24277 136
 .00282 006

Rounding error

→ .000001% error
→ .000001% error
→ .03% error

Error in output proportional to size of input.

For our example

For our example

For our example

For our example

So, in summary

Code is numerically imprecise

The subtraction is the culprit

Figuring out why was hard

Outline

Why did this happen?

How can we fix it?

How does Casio help?

How can we fix it?

Run with higher precision?
Software floating point is slow.

Add correction terms?
Very hard to do; very error-prone

How can we fix it?

Better idea: rephrase the program

Compute the same thing in a different way.

Somehow get rid of the subtraction

One way of rephrasing it

One way of rephrasing it

One way of rephrasing it

One way of rephrasing it

One way of rephrasing it

Implementing this rephrasing

This version has effectively no error.

f(x) = 1/(sqrt(x + 1) + sqrt(x))

Implementing this rephrasing

This version has effectively no error.

But it’s a harder to understand:
Is this computing the right function?

f(x) = 1/(sqrt(x + 1) + sqrt(x))

So, in summary

Problem solved

Algebraic ingenuity required

Fixing it was hard

Outline

Why did this happen?

How can we fix it?

How does Casio help?

How does Casio help?

Diagnosing and fixing precision problems
is hard

How does Casio help?

Diagnosing and fixing precision problems
is hard

Casio automatically…
Computes error
Finds better code

How does Casio help?

Diagnosing and fixing precision problems
is hard

Casio automatically…
Computes error
Finds better code

Resulting expression is the same over the reals
but better over the floats

Automatically computing error

Compute exact answers with arbitrary precision

Use program analysis tools
to find bad subexpressions

Automatically improving code

Small database of mathematical identities
e.g. a - a = 0
e.g. a2 - b2 = (a + b) (a - b)

Apply identities to the problem subexpression
recursive goal-directed rewrite

Evaluate resulting code versus exact answer

Inner Loop

Equation

Input
Distribution

Inner Loop

Equation

Input
Distribution

Exact
Output

Computed
Output

Arbitrary
Precision

Inner Loop

Equation

Input
Distribution

Exact
Output

Computed
Output

Bad
Subexpressions

Arbitrary
Precision

Program
Analysis

Inner Loop

Equation

Input
Distribution

Exact
Output

Computed
Output

Bad
Subexpressions

Candidate
Programs

Rewrite
Database

Arbitrary
Precision

Program
Analysis

Rewrite
Generation

Inner Loop

Equation

Input
Distribution

Exact
Output

Computed
Output

Bad
Subexpressions

Best
Candidates

Candidate
Programs

Arbitrary
Precision

Program
Analysis

Rewrite
Generation

Ranking

Rewrite
Database

Domain Knowledge

Simplification

Inferring branch conditions

Periodicity analysis

> (improve
'(λ (x) (- (sqrt (+ x 1)) (sqrt x)))
3)

> (improve
'(λ (x) (- (sqrt (+ x 1)) (sqrt x)))
3)

(λ (x)
 (if (< x 0.0007021373107872404)
 (- (sqrt (+ x 1)) (sqrt x))
 (/ 1 (+ (sqrt x) (sqrt (+ x 1))))))

> (improve
'(λ (x) (- (sqrt (+ x 1)) (sqrt x)))
3)

(λ (x)
 (if (< x 0.0007021373107872404)
 (- (sqrt (+ x 1)) (sqrt x))
 (/ 1 (+ (sqrt x) (sqrt (+ x 1))))))

Improvement by an average of 23.2 bits

Future work

Extracting floating point computation from code

More domain knowledge

Provide explanation of what Casio did

Unsound rewrites

