CaS₂

Automatically improving floating point code

Scientists Write Code

Every scientist needs to write code

Analyze data

Simulate models

Control experiments

Scientists Write Code

Every scientist needs to write code

Analyze data

Simulate models

Control experiments

They have little computer science training

1. Come up with mathematical formula

$$f(x) = \sqrt{x+1} - \sqrt{x}$$

1. Come up with mathematical formula

$$f(x) = \sqrt{x+1} - \sqrt{x}$$

2. Write as floating-point code

$$f(x) = sqrt(x + 1) - sqrt(x)$$

$$f(x) = sqrt(x + 1) - sqrt(x)$$

3. Test code

$$f(1) = 0.41421...$$

$$f(1) = 0.41421\dots$$

$$f(x) = sqrt(x + 1) - sqrt(x)$$

3. Test code

$$f(1) = 0.41421...$$

$$f(1) = 0.41421\dots$$

4. Publish

But try a few other values...

f(3141592653589793) = 7.451e-9

 $\overline{f(3141592653589793)} \approx 8.921 \cdot 10^{-9}$

But try a few other values...

f(3141592653589793) = 7.451e-9

$$f(3141592653589793) \approx 8.921 \cdot 10^{-9}$$

That's a 16% error!

Outline

Why did this happen?

How can we fix it?

How does Casio help?

Outline

Why did this happen?

How can we fix it?

How does Casio help?

"Because floating-point is imprecise!"

"Because floating-point is imprecise!"

We want something more constructive.

"Because floating-point is imprecise!"

We want something more constructive.

"Rounding"

"Because floating-point is imprecise!"

We want something more constructive.

"Rounding"

Let's try to be a bit more precise...

```
177.24559232...
```

- 177.24277136...

.00282006...

```
177.24559 232
- 177.24277 136
.00282 006
```

Rounding error

- 177.24559 232
- 177.24277 136 → .000001% error

- \rightarrow .000001% error
- .00282 006 → .03% error

Rounding error

```
177.24559 232
```

- \rightarrow .000001% error
- 177.24277 136 → .000001% error
 - .00282 006 → .03% error

Rounding error

Error in *output* proportional to size of *input*.

$$\sqrt{x+1} - \sqrt{x} \approx \frac{1}{2\sqrt{x}}$$

$$\sqrt{x+1} - \sqrt{x} \approx \frac{1}{2\sqrt{x}}$$

$$f(\mathbf{x}) \approx f(x) + \sqrt{x} \cdot \epsilon$$

$$\sqrt{x+1} - \sqrt{x} \approx \frac{1}{2\sqrt{x}}$$

$$f(\mathbf{x}) \approx f(x) + \sqrt{x} \cdot \epsilon$$

$$(f(\mathbf{x}) - f(x)) \approx \sqrt{x} \cdot \epsilon \approx 2xf(x)\epsilon$$

$$\sqrt{x+1} - \sqrt{x} \approx \frac{1}{2\sqrt{x}}$$

$$f(\mathbf{x}) \approx f(x) + \sqrt{x} \cdot \epsilon$$

$$(f(\mathbf{x}) - f(x)) \approx \sqrt{x} \cdot \epsilon \approx 2xf(x)\epsilon$$

$$\text{error} \approx 2x\epsilon$$

So, in summary

Code is numerically imprecise

The subtraction is the culprit

Figuring out why was hard

Outline

Why did this happen?

How can we fix it?

How does Casio help?

How can we fix it?

Run with higher precision?

Software floating point is slow.

Add correction terms?

Very hard to do; very error-prone

How can we fix it?

Better idea: rephrase the program

Compute the same thing in a different way.

Somehow get rid of the subtraction

$$\sqrt{x+1} - \sqrt{x}$$

$$\sqrt{x+1} - \sqrt{x} = (\sqrt{x+1} - \sqrt{x}) \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$

$$\sqrt{x+1} - \sqrt{x} = (\sqrt{x+1} - \sqrt{x}) \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$
$$= \frac{\sqrt{x+1}^2 - \sqrt{x}^2}{\sqrt{x+1} + \sqrt{x}}$$

$$\sqrt{x+1} - \sqrt{x} = (\sqrt{x+1} - \sqrt{x}) \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{\sqrt{x+1}^2 - \sqrt{x}^2}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}}$$

$$\sqrt{x+1} - \sqrt{x} = (\sqrt{x+1} - \sqrt{x}) \frac{\sqrt{x+1} + \sqrt{x}}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{\sqrt{x+1}^2 - \sqrt{x}^2}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}}$$

$$= \frac{1}{\sqrt{x+1} + \sqrt{x}}$$

Implementing this rephrasing

$$f(x) = 1/(sqrt(x + 1) + sqrt(x))$$

This version has effectively no error.

Implementing this rephrasing

$$f(x) = 1/(sqrt(x + 1) + sqrt(x))$$

This version has effectively no error.

But it's a harder to understand:

Is this computing the right function?

So, in summary

Problem solved

Algebraic ingenuity required

Fixing it was hard

Outline

Why did this happen?

How can we fix it?

How does Casio help?

How does Casio help?

Diagnosing and fixing precision problems is hard

How does Casio help?

Diagnosing and fixing precision problems is hard

Casio automatically...

Computes error

Finds better code

How does Casio help?

Diagnosing and fixing precision problems is hard

Casio automatically...

Computes error

Finds better code

Resulting expression is the same over the reals but better over the floats

Automatically computing error

Compute exact answers with arbitrary precision

Use program analysis tools to find bad subexpressions

Automatically improving code

Small database of mathematical identities

e.g.
$$a - a = 0$$

e.g.
$$a^2 - b^2 = (a + b) (a - b)$$

Apply identities to the problem subexpression recursive goal-directed rewrite

Evaluate resulting code versus exact answer

Domain Knowledge

Simplification

Inferring branch conditions

Periodicity analysis

```
> (improve
'(\lambda (x) (- (sqrt (+ x 1)) (sqrt x)))
3)
```

```
> (improve
    '(\(\lambda\) (x) (- (sqrt (+ x 1)) (sqrt x)))
    3)

(\(\lambda\) (x)
    (if (< x 0.0007021373107872404)
        (- (sqrt (+ x 1)) (sqrt x))
        (/ 1 (+ (sqrt x) (sqrt (+ x 1))))))</pre>
```

```
> (improve
    '(\lambda (x) (- (sqrt (+ x 1)) (sqrt x)))
    3)

(\lambda (x)
    (if (< x 0.0007021373107872404)
        (- (sqrt (+ x 1)) (sqrt x))
        (/ 1 (+ (sqrt x) (sqrt (+ x 1))))))</pre>
```

Improvement by an average of 23.2 bits

Future work

Extracting floating point computation from code

More domain knowledge

Provide explanation of what Casio did

Unsound rewrites