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Abstract
Most machine learning tasks can be categorized into classification or regression problems. Regression and classification models
are normally used to extract useful geographic information from observed or measured spatial data, such as land cover classi-
fication, spatial interpolation, and quantitative parameter retrieval. This paper reviews the progress of four advanced machine
learning methods for spatial data handling, namely, support vector machine (SVM)-based kernel learning, semi-supervised and
active learning, ensemble learning, and deep learning. These four machine learning modes are representative because they
improve learning performances from different views, for example, feature space transform and decision function (SVM),
optimized uses of samples (semi-supervised and active learning), and enhanced learning models and capabilities (ensemble
learning and deep learning). For spatial data handling via machine learning that can be improved by the four machine learning
models, three key elements are learning algorithms, training samples, and input features. To apply machine learning methods to
spatial data handling successfully, a four-level strategy is suggested: experimenting and evaluating the applicability, extending
the algorithms by embedding spatial properties, optimizing the parameters for better performance, and enhancing the algorithm
by multiple means. Firstly, the advances of SVM are reviewed to demonstrate the merits of novel machine learning methods for
spatial data, running the line from direct use and comparison with traditional classifiers, and then targeted improvements to
address multiple class problems, to optimize parameters of SVM, and to use spatial and spectral features. To overcome the limits
of small-size training samples, semi-supervised learning and active learning methods are then utilized to deal with insufficient
labeled samples, showing the potential of learning from small-size training samples. Furthermore, considering the poor gener-
alization capacity and instability of machine learning algorithms, ensemble learning is introduced to integrate the advantages of
multiple learners and to enhance the generalization capacity. The typical research lines, including the combination of multiple
classifiers, advanced ensemble classifiers, and spatial interpolation, are presented. Finally, deep learning, one of the most popular
branches of machine learning, is reviewed with specific examples for scene classification and urban structural type recognition
from high-resolution remote sensing images. By this review, it can be concluded that machine learningmethods are very effective
for spatial data handling and have wide application potential in the big data era.
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Introduction

With the rapid progress of spatial data acquisition technolo-
gies such as in remote sensing and geo-sensor networks, more
and more spatial data with image or point formats at different
resolution have been collected. Big Earth Data, or similar
terms including spatial big data, geographic big data, or
spatio-temporal big data, has become a new direction of mul-
tidisciplinary integration (Guo et al. 2017). How to derive
useful geographic and thematic information on a wide range
from limited observed or measured sample data is an essential
challenge for geoinformatics and geospatial-related applica-
tions. Spatial data handling, for example, spatial interpolation,
land cover classification, and quantitative parameter retrieval,
play important roles in extracting useful geographic informa-
tion from observed or measured data (Li et al. 2008; Shi et al.
2012). Traditional mathematical and statistical methods or
models have been widely used for spatial data handling, and
geographic laws and constraints have been introduced into
statistical models, resulting in some new methods for spatial
data processing, for example, geographically weighted regres-
sion (GWR) (Fotheringham et al. 2015) and geographically
and temporally weighted regression (GTWR) (Huang et al.
2010a; Fotheringham et al. 2015).

Machine learning (ML) is an essential theoretic/technical
support for spatial data handling in the era of artificial intelli-
gence and big data. Most of the machine learning tasks can be
categorized into two groups: classification and regression
(Bishop 2006; Ethem 2010). This is true for spatial data han-
dling as well. According to Kanevski et al. (2008, 2009), the
important questions for spatial data analysis and modeling
consist of the development of data-adaptive, nonlinear, robust,
and multivariate models in high-dimensional spaces with
functional generalization capacity. These requirements actual-
ly fall in the scope of machine learning.

Based on the common points of spatial data handling and
machine learning, that is, deriving or recognizing information
on the whole domain based on limited training samples and
specific algorithms, this paper reviews the progress of some
advanced machine learning methods for spatial data handling.
We mainly focus on the spatial data analysis and handling
tasks that can be described by classification and regression
models. For spatial data handling via machine learning, three
key elements are learning algorithm, training samples, and
input features that can be improved by the four machine learn-
ing models. Four representative machine learning methods are
reviewed for spatial data handling in this paper: support vector
machine (SVM) as an effective kernel learning algorithm
based on structural risk minimization criterion, semi-
supervised and active learning to solve small-size training
sample problems, ensemble learning to integrate different al-
gorithms, and deep learning to learn deep features hidden in
the data. The advantages of these four machine learning

methods correspond to the three elements in spatial data
handling.

In order to apply machine learning methods to spatial data
handling successfully, a four-level strategy is adopted, respec-
tively: (1) experimenting and evaluating the applicability, (2)
extending the algorithms by embedding spatial properties, (3)
optimizing the parameters for better performance, and (4) en-
hancing the algorithm by multiple means. Table 1 presents the
structure of this review according to the spatial data handling
tasks and machine learning methods based on this four-level
strategy. Most of the examples come from the authors’ work
in this field but we do summarize some representative publi-
cations from other scholars.

After a brief introduction, “Support Vector Machine for
Classification and Regression: Improvements and
Optimization” summarizes the advances of support vector ma-
chine (SVM) to demonstrate the merits of novel machine
learning algorithms for spatial data. Semi-supervised learning
and active learning with insufficient labeled samples are
reviewed in “Semi-supervised and Active Learning for
Classification with Small-Size Training Samples.”
Furthermore, ensemble learning is employed to integrate the
advantages of multiple learners and enhance the generaliza-
tion capacity in “Ensemble Learning for Improving Unstable
Algorithms.” Deep learning is used for scene classification
and urban structural type recognition from high-resolution
remote sensing images in “Deep Learning for Scene
Classification and Urban Structural Type Recognition.”
Finally, “Conclusions and Prospects” draws the conclusions
and hints some possible perspectives.

Support Vector Machine for Classification
and Regression: Improvements
and Optimization

Direct Use of SVM for Remote Sensing Image
Classification

SVM is a binary classifier based on Vapnik-Chervonenkis
(VC) dimension theory and minimum structural risk criterion
(Cortes and Vapnik 1995) that is utilized to implicitly map the
raw data into a very high-dimensional space for better separa-
tion using a quadratic optimization approach and kernel func-
tion. The basic problem of binary SVM classification is find-
ing a decision boundary in the kernel space that can maximize
the margins of the decision hyperplane (Boser et al. 1992;
Cortes and Vapnik 1995). The boundary conditions can be
searched using a typical convex optimization problem, which
is usually solved by the sequential minimal optimization
(SMO) algorithm (Platt et al. 2000). SMO algorithm selects
and updates a pair of Lagrange multipliers in each iteration
which meets the Karush-Kuhn-Tucker (KKT) condition.
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To accelerate the convergence of SMO, Keerthi et al.
(2001) and Fan et al. (2005) improved the first-order and
second-order heuristic learning process. Compared with other
statistical learning algorithms, SVM has the advantage on be
less dependent on prior knowledge, greater suitability for
small sample sizes (Chi et al. 2008), greater robustness to
noise (Du et al. 2012a), more powerful generalization capac-
ity, and higher learning efficiency (Ancona et al. 2006).

SVM has been widely used for spatial data processing,
mostly in hyperspectral remote sensing image classification
(Melgani and Bruzzone 2004), object detection (Inglada
2007), and feature selection (Pal and Foody 2010).
Mountrakis et al. (2011) reviewed the contributions of SVM
in the field of remote sensing and concluded that SVM is a
reliable method in the remote sensing community. SVM has
been verified to separate heterogeneous classes with a very
limited number of training set (Hermes et al. 1999). Roli and
Fumera (2001) presented the application of the SVM on the
multi-sensor image classification and discussed the design and
the training phase of the SVM. Experimental results revealed
the advantages of SVM over multi-layer perceptron (MLP)
neural networks and k-NN classifiers. Huang et al. (2002)
compared the performances of the SVM and three other clas-
sifiers in land cover classification, and they showed that kernel
type and parameters affect the decision boundary shape and
thus influence the performance of SVM. The high accuracies
can be ascribed to the capacity of locating an optimal separa-
tion hyperplane.

The properties of the SVM in hyper-dimensional spaces
were evaluated, and the results showed that SVM exhibits
lower sensitivity to the Hughes phenomenon, which brings
an excellent solution to avoid the time-consuming phase in
feature reduction (Melgani and Bruzzone 2004). Moreover,
SVM has made a breakthrough in the field of object detection
using high-resolution remote sensing images (Inglada 2007).
The SVM-based detection method is promoted by geometric
features that describe different geometric properties of several

classes. Pal and Foody (2010) found SVM is sensitive to the
number of features which would encounter the Hughes phe-
nomenon when training on a small-size dataset. Hence, a fea-
ture selection operation is recommended to include with re-
spect to kernel function before a classification analysis, in
which the between-class and within-class information was
utilized to tackle the Hughes phenomenon (Kuo et al. 2013).

Improving SVM for Multi-class Classification Tasks

The two-class classification of traditional SVM brings diffi-
culties while handling spatial data with multiple classes.
Therefore, it is of great significance to extend the traditional
algorithm to multi-class cases. Multi-class strategies can be
grouped into two types: one is constructing and combing sev-
eral binary SVM classifiers and the other is considering all
data in one optimization formulation directly (Hsu and Lin
2002). Here we introduce four popular strategies.

1-Against-All (1-a-a) Strategy N binary SVM classifiers are
constructed in this strategy, each classifier corresponding to
one class. Testing samples are split into N two-class classi-
fiers. The discriminant function of each classifier is carried
out, then the class with the largest discriminant function for
testing data is chosen as the result.

1-Against-1 (1-a-1) Strategy Each of the two classes needs to
be processed by a child SVM classifier, that is, N × (N − 1)/2
SVM classifiers are required. By combining all classifiers,
SVM can determine the class of each pixel through the accu-
mulation of predicting a classification. The disadvantage of
this strategy is that the number of support vectors grows super
linearly with the number of classes.

Decision Directed Acyclic Graph (DDAG) Strategy A DAG is a
finite directed graph whose edges have an orientation and no
directed cycles. The DDAG can be implemented using the

Table 1 The structure and main content of this review paper

Four-level strategy Classification Regression

SVM SSL/AL EL DL SVM EL

Evaluating
applicability

SVM and multi-class SVM SSL/AL for small
size

Rotation forest Scene
classification

Biophysical
parameter retrieval

Ensemble
interpolation

Embedding spatial
properties

Spatial-spectral SVM Spatial-spectral
SSL

Spatial-spectral
RoF

Multi-scale DL SVM with Kriging Spatial partitioning
ensemble

Optimizing
parameters

PSO SVM – DCS-MCS – PSO SVM
LSSVM

–

Enhancing
performance

Multi-kernel SVM
rotation-based SVM

Caps-TripleGAN
SSL

Ensemble ELM Multi-model
DL

Multi-kernel
regression

–

SVM support vector machine, SSL semi-supervised learning, AL active learning, EL ensemble learning, DL deep learning, MCS multiple classifier
system, PSO particle swarm optimization, DCS dynamic classifier selection, LSSVM least square support vector machine
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decision nodes obtained by N × (N − 1)/2 child classifiers of
SVM, where each node excepts one class from all classes. If
the node chose the one class, the other is eliminated. A test
class is evaluated against the decision node that corresponds to
the first and last classes of the list. Therefore, in order to
separate two subgroups, more support vectors are needed,
which increases the time consumption of the training and test-
ing process.

Binary Tree StrategyBinary tree classifiers decompose a com-
plex problem into the sub-problems. The original multi-class
is divided into multiple two-class nodes. The binary tree
strategy-based SVM has two representative structures: slant
binary tree SVM (SBTSVM) and the balanced binary tree
SVM (BBTSVM).

A novel binary tree SVM classifier based on the properties
of Jeffries-Matusita (J-M) distance was defined (Du et al.
2012a). In the strategy, the most easily separated classes are
classified firstly, and the derived separability measures are
introduced into the decision tree at the construction phase.
This binary tree SVM (BTSVM) includes two improved al-
gorithms. One is the adaptive binary tree SVM (ABTSVM)
based on J-M distance, and the other is Kullback-Leibler dis-
tance binary tree SVM (KLBTSVM), which uses Kullback-
Leibler distance instead.

Wavelet Kernel and Composite Kernels

SVM is confronted with the bottleneck of kernel parameter
selection. Different kernels have significant differences in
time consumption and classification accuracy. There are a
variety of contributions to the wavelet kernel function for
SVM, such as wavelet SVM (WSVM) (Zhang et al. 2004),
reproducing the wavelet kernel frame (Rakotomamonjy et al.
2005) and least square SVM (Wu and Zhao 2006).

However, most of these studies focused on support vector
regression, and the applications in hyperspectral classification
are not yet mature. To solve this problem, Du and Tan (2010)
proposed a method combining SVM with wavelet analysis to
construct a WSVM classifier, which is based on wavelet ker-
nel functions in reproducing kernel Hilbert space (RKHS).
The wavelet kernel in RKHS is one kind of multidimensional
wavelet function that can approximate arbitrary nonlinear
functions. The significance of semiparametric estimation is
proposed in this work. Experiments with ROSIS data were
carried out using Haar, Daubechies, Coiflets, and Symlets as
wavelet kernel SVM function, respectively. And the results
reveal that WSVM is more effective than the RBF kernel
SVM, SAM, and MDC. The Coiflet kernel WSM obtains
the best performance, which possesses the maximal number
of vanishing shifted scaling moments.

To address the combination of spectral-spatial features in
hyperspectral images,Marconcini et al. (2009) defined a novel

composite classifier based on SVM, whose composite kernel
functions effectively considered spectral information and
spatial content. Tan and Du (2011) proposed a method of
applying SVM classif iers with different kernels.
Experimental results show that adopting more sophisticated
cross-kernel approaches can obtain better performance, and
the wavelet texture has the potential on hyperspectral image
classification.

Fang et al. (2015) adopted the superpixel and a fixed-size
region to present SC-MK algorithm, in which the size and
shape of the superpixel can be adjusted adaptively according
to the spatial structures. In addition, multiple kernels are uti-
lized in SC-MK for spectral-spatial feature exploitation within
and among superpixels. Experimental results reveal the supe-
riority in terms of both quantitative metrics and visual quality
on the classification map.

Gu et al. (2016) proposed amultiple kernel learning (MKL)
framework to incorporate spectral and spatial features for
hyperspectral image classification, namely multiple-
structure-element nonlinear MKL (MultiSE-NMKL). The
combination of MultiSE and base kernels can explore the
similarity information generated by different kernels, which
is of great significance to improve the discriminability.

Wang et al. (2016) proposed a discriminative multiple ker-
nel learning (DMKL) method for spectral image classifica-
tion, which aims at learning the optimal combined kernel by
maximizing separability in reproduction kernel Hilbert space.
DMKL achieves themaximum separability by finding the best
projective direction. One of DMKL’s variants conducts Fisher
criterion (FC) to find the optimal projective direction, namely
DMKLFC, and the other uses maximum margin criterion
(MMC), titled DMKLMMC. All the basic kernels are
projected to form a distinct combined kernel after learning
the projective direction, which has the following advantages:
(1) improve the classification performance without any con-
straints for basic kernel selection; (2) the competitive scale of
spatial filters can be selected by sorting the corresponding
weights; and (3) the computational burden is reduced by fewer
support vectors.

Xia et al. 2015proposed an ensemble method, rotation-
based SVM (RoSVM) that combines SVMs andmultiple clas-
sifier systems (MCSs). Diverse SVM classification results are
generated using random feature selection and data transforma-
tion in RoSVM, in which the hyper-parameters are chosen
carefully for different datasets.

Tan and Du (2010) explored the accuracy of multi-kernel
SVM with morphological profiles, which is carried out to
obtain several principal components (PCs) from the
hyperspectral data, then the morphological profile is
established for each of the PCs and is integrated as one mor-
phological profile.

Moreover, some hybrid machine learning methods have
been explored, such as the spatial-spectral feature-based
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hybrid model of convolutional neural network (CNN) and
SVM (Leng et al. 2016). In summary, multi-kernel methods
succeeded in taking advantage of both the spatial and spectral
information.

Table 2 summarizes the overall accuracy (OA) and kappa
coefficients of some typical multiple kernel SVMs for remote
sensing images.

Optimizing SVM Parameters by Particle Swarm
Optimization (PSO)

SVM has a tendency to over-fit since one needs to determine
the involved kernel and penalty parameter, greatly limiting the
applications of SVM. Therefore, cross-validation (CV)
(Hastie et al. 2009), genetic algorithm (GA) (Frohlich et al.
2003), and PSO (Kennedy et al. 2001) have been widely used
for parameter optimizing of SVM. PSO is a biological intelli-
gent algorithm, in which the particle adjusts its speed and
direction following the optimal particle. Relevant research
have proved that PSO is a good choice to enhance the perfor-
mance of SVM for hyperspectral image classification (Xue
et al. 2014, 2015).

Table 3 reports the classification accuracies obtained by
different features and classifiers on the University of Pavia
ROSIS hyperspectral image. According to the table, the pro-
posed harmonic analysis based on SVM optimized by PSO
(HA-PSO-SVM)method obtains the highest overall accuracy,
with an OA of 93.4%. Figure 1 shows the classification maps,
the “bare soil” region presents a great variation among these
classification maps obtained by different methods, which
caused by the fact that the region is highly mixed by various
surface objects.

Spatial-Spectral Classification by SVM

Spectral-spatial classification has been well developed in the
remote sensing community during the last decade (Fauvel
et al. 2012). Advances of the spectral-spatial classification
are triggered by such methods as structural filtering (Camps-
Valls et al. 2006), random field (Zhong and Wang 2010; Li
et al. 2011b), image segmentation (Tarabalka et al. 2010a, b),
mathematical morphology (Fauvel et al. 2008; Dalla Mura

et al. 2010; Ghamisi et al. 2016), sparse representation
(Chen et al. 2011), and deep convolutional neural networks
(Romero et al. 2015). Those approaches revealed the powerful
potential of combining spatial and spectral information for
remote sensing image classification.

Among many spectral-spatial classification methods, inte-
grating image separation with classification is a new trend in
the literature, where images can be represented with piecewise
smooth (content) and texture components by the exhaustively
sparse representation-based splitting scheme. A morphologi-
cal component analysis (MCA)-based image separation ap-
proach was proposed by Starck et al. (2005), and the separated
components are represented by the transformed coefficients.
Xue et al. (2015) designed a new scheme for spectral-spatial
classification of hyperspectral images. In the proposed meth-
od, a sparse representation is introduced into MCA.
Moreover, the Curvelet and Gabor transform are carried out
to generate the content and texture dictionaries. Then, a sparse
unmixing by variable splitting and augmented Lagrangian
(SUnSAL) algorithm is adopted for the image separation
based on sparse representation. To reduce the computational
complexity and retain the spectral information, dimensionality
reduction is performed before applying MCA on the input
data. The proposed approach for spatial and spectral feature
extraction is then combined with an SVM classifier.

Table 4 reports the classification accuracies obtained by
different spatial-spectral classification methods. As reported
in Table 4, the proposed morphological component analysis-
based image separation (MCASUnSAL) integrated withMNF
features and the SVM classifier (M2S3VM) obtained the
highest classification accuracy with an OA of 99.01%, which
is 5% higher than the baselinemethod. Classificationmaps are
shown in Fig. 2, and M2S3VM produced more smooth and
accurate classification results compared with other
counterparts.

Support Vector Machine for Regression and Spatial
Interpolation

In addition to remote sensing image classification, kernel-
based SVM models are also widely used in quantitative pa-
rameter retrieval from soil spectroscopy (Vohland et al. 2011),

Table 2 The OAs and kappa
coefficients obtained by SVM
using different kernels

Methods OA Kappa

multi-SVM (Tan and Du 2010) (10% of the labeled samples) 91.05 0.9027

SC-MK (Fang et al. 2015) (200 samples/class) 99.22 0.99

RoSVM-RPB (Xia et al. 2015) (10% of the labeled samples) 77.53 –

MultiSE-NMKL (Gu et al. 2016) (3% training samples) 95.16 –

DMKL-FC (Wang et al. 2016) (50 samples/class) 97.13 –

Xue’s method (Xue et al. 2015) (5% of the labeled samples) 99.01 0.987
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which can effectively solve the nonlinear problem with high
performance. At the same time, in the field of predicting soil
organic matter content and clay content, SVM also shows
great potential (Rossel and Behrens 2010; Nawar et al.
2016). Tan et al. (2018) presented an improved estimation
model, CARS-PLS-SVM, to tackle the nonlinear problem in
multiple sites based on SVM. The proposed model can be
applied to both feature extraction and small sample learning,
with obvious reduction of computational load and field work
costs.

A review of support vector machine regression (also name-
ly support vector regression, SVR) for quantitative retrieval
and parameter estimation from remote sensing data was con-
ducted by Mountrakis et al. (2011), covering the retrieval of
biophysical parameter, chlorophyll concentration, evapotrans-
piration, land and sea surface temperatures, ocean primary
productivity by using general support vector machine, rele-
vance vector machine as a variant of SVMs, automatic param-
eter optimization method for SVM regression, and least
squares SVM (LS-SVM).

Li et al. (2011a) analyzed the applications of machine
learning methods to spatial interpolation of environmental
variables, mainly compared the performance of SVM and ran-
dom forest (RF) with traditional spatial interpolation methods
including ordinary kriging (OK) and inverse distance squared
(IDS), and combined them together to form SVMOK and
SVMIDS for mud content estimation. The study has opened
an alternative source of methods for spatial interpolation of
environmental properties.

In terms of spatial interpolation, the models of support
vector regression can also be used for DSM generation from
point could. For example, Shi et al. (2009) used LSSVM ap-
proach to generate digital surface model (DSM) from LiDAR
point could data, and LS-SVM was concluded to be more
effective in terms of noise reduction, computational efficien-
cy, and accuracy in DSM generation.

Semi-supervised and Active Learning
for Classification with Small-Size Training
Samples

Spatial data handling is often confronted with the challenges
of limited, even insufficient labeled training samples, and
semi-supervised and active learning strategies are quite effec-
tive in tackling small-size training sample problems.

Semi-supervised Learning for Hyperspectral Image
Classification

Semi-supervised learning originated from self-training, a clas-
sification algorithm based on unlabeled samples proposed by
Scudder (1965). With the development of natural languageTa
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processing, semi-supervised learning has become a research
hotspot in machine learning (Zhu and Goldberg 2009).
Standard semi-supervised learning algorithms include multi-
view learning (Yu et al. 2012; Gulp et al. 2009), self-learning
(Dópido et al. 2013; Tuia et al. 2009), co-training (Samiappan
and Moorhead 2015; Blum and Mitchell 1998), graph-based
approaches (Bai et al. 2012), and transductive support vector
machines (TSVM) (Chen et al. 2003).

Semi-supervised learning has recently attracted consider-
able attention in the field of hyperspectral remote sensing
image analysis. Dópido et al. (2012) exploited active learning
for unlabeled samples’ selection. Wang et al. (2015) proposed
a methodology on the basis of spatial-spectral label propaga-
tion. Xia et al. (2014b) extended semi-supervised probabilistic
principal component analysis, semi-supervised local fisher

discriminant analysis, and semi-supervised dimensionality re-
duction with pairwise constraints to hyperspectral image for
feature extraction. In Tan’s (2015) research, class labels of
selected unlabeled samples are determined by combining spa-
tial neighborhood information.

Meanwhile, Blum and Mitchell (1998) developed co-train-
ing, which has been widely used in semi-supervised learning.
This algorithm requires two sufficient and redundant views,
which cannot be achieved for hyperspectral imagery. Then,
Goldman and Zhou (2000) proposed statistical co-training,
employing two different learning algorithms on the basis of
a single view. Zhou and Goldman (2004) proposed democrat-
ic co-training that contributes to label the selected unlabeled
samples and to produce the final hypothesis using a cross-
validation technique which is quite time-consuming. To solve

Table 4 Accuracies obtained by
different spectral-spatial classifi-
cation methods for the ROSIS
University of Pavia dataset (Xue
et al. 2015)

Class No. of
samples

Classification methods

Train Test SVM M2S3VM LORSAL-
MLL

MPM-LBP

Asphalt 332 6299 94.51 ± 0.14 98.51 ± 0.33 98.03 ± 0.52 98.13 ± 0.73

Meadows 932 17,717 97.17 ± 0.16 99.81 ± 0.08 99.89 ± 0.06 99.74 ± 0.17

Gravel 105 1994 82.94 ± 0.88 96.52 ± 0.83 79.18 ± 6.29 81.57 ± 1.94

Trees 153 2911 96.12 ± 97.88 ± 0.31 96.11 ± 0.97 96.56 ± 1.11

Painted metal
sheets

67 1278 99.41 ± 0.23 99.92 ± 0.03 99.30 ± 0.33 99.06 ± 0.42

Bare soil 251 4778 91.06 ± 0.48 99.88 ± 0.09 99.53 ± 0.27 98.23 ± 1.01

Bitumen 67 1263 87.26 ± 0.63 99.09 ± 0.13 92.07 ± 4.12 92.92 ± 2.64

Self-blocking
bricks

184 3498 88.32 ± 0.61 96.74 ± 0.84 95.45 ± 0.94 96.77 ± 0.61

Shadows 47 900 99.94 ± 0.04 97.70 ± 0.74 99.71 ± 0.27 99.84 ± 0.10

Average
accuracy

– – 92.97 ± 0.19 98.53 ± 0.13 95.56 ± 1.15 95.56 ± 0.41

Overall
accuracy

– – 94.33 ± 0.19 99.01 ± 0.14 97.75 ± 0.48 97.71 ± 0.20

k statistic – – 0.925 ± 0.003 0.987 ± 0.002 0.970 ± 0.006 0.970 ± 0.003

Time (s) – – 437.96 2568.81 35.75 1084.94

(a) HA (93.4%) (b) MNF (92.1%) (c) PCA (91.0%) (d) ICA (89.1%) (e) RAW (93.1%)

Fig. 1 Classification maps obtained by PSO optimized SVM for the ROSIS University of Pavia dataset based on different input features (Xue et al.
2014). a HA (93.4%). b MNF (92.1%). c PCA (91.0%). d ICA (89.1%). e RAW (93.1%)
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this problem, Zhou and Li (2005) developed tri-training which
neither requires the instance space to be described with suffi-
cient and redundant views nor imposes any constraints on
supervised learning algorithms, and has broader applicability
compared with previous co-training algorithms.

Tan et al. (2014) developed a semi-supervised SVM for the
hyperspectral image classification, namely S2SVMSE, which
use the segmentation algorithm to extract spatial information
for unlabeled sample selection. In this work, the unlabeled
samples are the most similar to the labeled ones, and then
the candidate set of unlabeled samples is enlarged by utilizing
the mean shift-based segmentation result. Tan et al. (2016)
further proposed a semi-supervised tri-training algorithm,
namely TT_AL_MSH_MKE, in which three measures of di-
versity, i.e., the disagreement metric, the double-fault mea-
sure, and the correlation coefficient, are carried out for the
combination of the optimal classifiers. An active learning
method is utilized to select unlabeled samples. Experimental
r e su l t s w i th the ROSIS da t a demons t r a t e tha t
TT_AL_MSH_MKE has satisfactory performance.

Recently, based on regularized local discriminant embed-
ding (RLDE), Ou et al. (2019) proposed a novel tri-training
algorithm. To solve the problems of over-fitting and singular
values, RLDE is used for the extraction of optimal features.
Then, an active learning process is carried out to select the
most informative samples as the candidate set. Experimental
results prove that RLDE can obtain the highest classification
accuracy and requires the smallest feature information
dimension.

Wang et al. (2019) proposed a semi-supervised learning
algorithm based on a deep generative model (Caps-
TripleGAN). Generative adversarial network (GANs) has pro-
vided a new pathway for sample generation by the use of an
adversarial process to perform a semi-supervised learning task
in remote sensing classification. Experimental results demon-
strate that the reliable generator in TripleGAN can improve

the performance of the capsule network. Table 5 summarizes
the OA and kappa coefficients of different semi-supervised
approaches for remote sensing images.

Active Learning Applications to Remote Sensing
Image Classification

Labeling sample is always the first step in a supervised remote
sensing image classification task. Unfortunately, the collec-
tion of appropriate training sets is not an easy task. To practi-
cally deal with this problem, active learning (AL) has been
introduced in recent years, with the aim of utilizing the infor-
mation available from unlabeled data (Tuia et al. 2009). The
protocol to label the originally unlabeled data in AL is usually
handled by user according to uncertainty, diversity, or/and
representative measures (Samat et al. 2015). Specifically, un-
certainty measures include margin sampling (MS), multi-class
level uncertainty (MCLU) (Demir et al. 2010), entropy query
by committee (EQC) (Mamitsuka 1998), and breaking ties
(BT) (Luo et al. 2005). And the diversity criterion includes
angle-based diversity (ABC), clustering-based diversity
(CBD), and enhanced CBD (ECBD) (Demir et al. 2010;
Tuia et al. 2011). The representative measures can be found
in Huang et al. (2010b) and Samat et al. (2016a, b).

Different from these probability techniques, the possibility
approach is an uncertainty analysis tool with imprecise prob-
abilities, commonly used to deal with vagueness and impreci-
sion about information. Therefore, it has great potential for
solving vagueness and imprecision issues in querying unla-
beled samples in AL.

In fuzzy logic theory, aggregation operators are gen-
erally used for aggregating fuzzy sets and fuzzy rela-
tions. In a multi-class active learning (MCAL) scenario,
if the possibility memberships of unlabeled samples are
treated as fuzzy sets, then the aggregation operators in
fuzzy logic could be used as the informat ive

(a) SVM (94.33%) (b) M2S3VM (99.01%) (c) LORSAL-MLL (97.75%) (d) MPM-LBP (97.71%)

Fig. 2 Classification maps obtained by different spectral-spatial classification methods for the ROSIS University of Pavia dataset (Xue et al. 2015)
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measurements to evaluate the informativeness of these
samples (Wang et al. 2015). Motivated by the previous
statements, the fuzzy 2-order ambiguity (F2OA)
(Frélicot et al. 2004) and fuzzy C-order ambiguity
(FCOA) were proposed to evaluate the classification
risk of samples. However, the difference possibility
memberships calculation adopted in FCOA can be easily
degraded into nonlinear weight function. To solve this
issue, Samat et al. proposed a modified FCOA
(MFCOA) by following the rule of minimum differ-
ences equal to maximum uncertainty in a multi-class
scenario and incorporating the normalization of class
frequency values to enhance uncertainty measures of
unlabeled samples (Samat et al. 2016a, b). Figure 3
depicts the learning curves for all different AL heuris-
tics applied to spectral-spatial features of the ROSIS
University dataset. Table 6 reports the average OA and
kappa coefficient at the 28th iteration step (to better
show the improvements from MCA and MFCOA
purpose).

According to the results in Fig. 3, it can be observed
that the fundamental possibility approaches CA and
FCOA are capable of reaching the upper OA values,
with respect to the standard BT, MS, and MCLU. And
FCOA shows better learning rates (see the learning
curves in green vs. those in magenta in Fig. 3).
Furthermore, if we compare the results from the original
CA and FCOA approaches, MCA and MFCOA improve
with a higher average and lower standard deviation
(green vs. cyan, and magenta vs. yellow). For instance,
MFCOA reached 96.34% OA at the 28th query with
198 labeled samples for ROSIS Univ. data.

Based on the experiments, it can be stated that:

1. CA and FCOA are capable of reaching the same accuracy
of a fully trained SVM with a much smaller training set,
and FCOA performs better than CA.

2. With respect to the original CA and FCOA, MCA and
MFCOA provide better learning rates and higher classifi-
cation accuracy values.

3. The performance of CA, MCA, FCOA, and MFCOA are
further improved by exploiting diversity criteria.

Ensemble Learning for Improving Unstable
Algorithms

Basics of Ensemble Learning

In the pattern recognition field, there is no classifier that can
always achieve the best result. However, better performance
might be achieved through ensemble learning (EL) when
compared to a single classifier. Different from other learning
machine techniques, ensemble learning constructs many sub-
learners to find practical solutions for a specific problem. The
final solution is generated by integrating partial solutions from
sub-learners (Kuncheva 2002). In recent years, ensemble
learning has been gaining popularity in various fields, espe-
cially in the big data era (Al-Jarrah et al. 2015), such as com-
puter vision (Renda et al. 2019), medical and remote sensing
applications (Du et al. 2012a, b; Kumar et al. 2016), due to the
ability to provide better and stable performance.

With its superiorities of simplicity and effectiveness,
ensemble learning has become one of the crucial
problem-solving techniques in image and signal process-
ing. Furthermore, the following motivations are also
attracted to select ensemble learning (Kuncheva 2002):
(1) to avoid determining the initial parameters of each
learning machine, (2) to inject the randomness to the
learning process and produce the various outputs of
each learning machine, which is beneficial for the en-
semble, and (3) to use complementary learning machine
to improve dynamic adaption and flexibility.

In ensemble learning, an individual learning machine is
treated as the base learner. Diversity and accuracy of the base
learner are the two essential components in ensemble learning.
A powerful ensemble learning system should include the high
accuracy of base learners as well as the high diversity within
the ensemble. Following the steps of machine learning,

Table 5 The OAs and kappa
coefficients obtained by different
semi-supervised approaches

Methods OA Kappa

SS-LPSVM (Wang et al. 2014) 75.88% –

S2SVMSE (Tan et al. 2014) 90.94% 0.878

MLR + KNN + SNI (Tan et al. 2015) 85.47% 0.8038

TT_AL_MSH_MKE (Tan et al. 2016) 85.03% 0.8314

Caps-TripleGAN (Wang et al. 2019) (5% of training samples) 93.58% 0.9047

RLDE_tri_training (Ou et al. 2019) 98.39% 0.978

Dópido’s method (Dópido et al. 2013) 84.08% 0.795

Bai’s method (Bai et al. 2012) (15 samples/class) 82.85% 0.7806

The default number of initial training samples per class is 10
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diversity could be enforced by the manipulation of training
instance, input features, and learning machines.

Combination of Multiple Classifiers for Remote
Sensing Classification

Multiple classifier systems (MCSs) have been proved to be an
effective solution in improving recognition performance (Su

et al. 2014; Fauvel et al. 2013; Du et al. 2012). Specifically,
fusion-based and selection-based methods are widely used to
integrate the classifiers. For fusion-based method, it can adopt
base classifiers in parallel and combine the results to achieve
consensus (Woods et al. 1997). To improve the performance
of classification, individual error of each classifier is required
to form an ensemble system (Tumer and Ghosh 1996), which
is difficult to achieve. For selection-based method, it directly

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 Learning curves for
FMCLU, MS, BT, and MCLU
with various diversity criteria (a, e
none; b, f ABD; c, g CBD; d, h
ECBD) for ROSIS Pavia Univ.
data. Each curve shows the
average (a–d) or standard
deviation (SD) (e–h) values of the
OA plotted against the increasing
size of the training sets over ten
runs of the AL algorithms
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chooses the classifier with the best performance from an en-
semble of classifiers for a given pattern (Giacinto and Roli
1997). Moreover, if one classifier in an ensemble strongly
dominates others, selection-based methods have superior per-
formance over fusion-based methods (Kuncheva 2002).

There are usually two types of selection-based methods,
which include static classifier selection (SCS) and dynamic
classifier selection (DCS). The difference is that the best clas-
sifier selected by SCS is for all patterns, while the classifier
chosen by DCS only best suits for the single pattern to ensure
a reasonable classification result (Ko et al. 2008). Most re-
search tries to utilize spectral information of hyperspectral
images for classifier combination (Smits 2002; Didaci et al.
2005). Recently, spatial information (Tarabalka et al. 2010a;
Benediktsson et al. 2005, 2007) has attracted more interests.
However, spatial and spectral information are just used as data
sources of the classifier inmost DCS-related work. In practice,
pixels are spatially related; in other words, it is highly proba-
ble that two adjacent pixels belong to the same class.
Therefore, considering both spectral and spatial information
can improve hyperspectral imagery classification accuracy
significantly.

Su et al. (2014) proposed a novel dynamic classifier
ensemble method by combining spectral and volumetric
textural features. Spatial and spectral information are used
to determine the label when the classified pixels’ percent-
age of unlabeled pixels’ neighborhood meets the specific
threshold. Pixels where all member classifiers agree are
assigned labels directly according to the classification re-
sult of each member classifier. For any remained pixels,
the proportion of labeled pixels in an L × L window (e.g.,
L = 5) around the unlabeled pixels is calculated. If the pro-
portion exceeds the threshold (set as 70%) (Riitters et al.
2009), which means the spatial information of the current
pixel is strong enough to assign a label to the current pixel.
Meanwhile, minimum estimated abundance covariance
(MEAC)-based band selection and the volumetric gray-
level co-occurrence matrix (VGLCM) model are used to
extract spatial and spectral features for dynamic classifier
ensembles.

In the experiments, DCS-LCA method is used for compar-
ison, whose goal is to estimate each individual classifier’s
accuracy in local regions surrounding a test sample and use
the decision of the most locally accurate classifier. Local ac-
curacy is estimated according to output classes. DCS involve
SVMwith Gaussian and RBF kernel is used as the classifiers,
also KNN, and Diagquadratic classifiers are employed in the
experiments. For texture extraction, the best box size to de-
scribe the dataset is 9 × 9 × 9 for VGLCM. In the experiment,
the extracted textural features are combined with the original
dataset, 5 PCs, and 15 selected bands using the MEAC algo-
rithm. The classification results are reported in Table 7. We
can see that the proposed method outperforms other methods.

Rotation Forest and Improvements

Rotation forest (RoF) adopts data transformation and random
subsets, which aims at enhancing diversity within the ensem-
ble and the accuracy of the base classifiers simultaneously.
The main steps are as follows (Rodriguez et al. 2006):

1. Disjoint subsets are formed by randomly splitting the fea-
ture space.

2. Data transformation (e.g., PCA) is utilized to each feature
subset with the sub-training set which is bootstrap select-
ed from the original training samples (75% size).

3. A sparse rotation matrix is created by concatenating the
coefficients of the principal components in each subset.

4. A single base learner (e.g., decision tree) is utilized for
classification based on the new training set reformed by
the sparse rotation matrix.

5. The final result will be obtained by combining the output
of individual base learners.

To improve the performance of rotation forest, several
strategies are involved:

1. Using local data transformation (e.g., locality preserving
project ions, LPP) instead of PCA (Xia et al .
2014a, 2015a).

Table 6 Average overall
accuracy (OA) and kappa coeffi-
cient (κ) values for different AL
methods and diversity criteria ap-
plied to the ROSIS Univ. dataset
(number of labeled samples =
198)

Diversity None ABD CBD ECBD

Statistics OA (%) Kappa OA (%) Kappa OA (%) Kappa OA (%) Kappa

MS 91.99 0.91 94.05 0.93 92.72 0.92 94.96 0.94

BT 96.97 0.97 97.81 0.98 95.16 0.95 97.03 0.97

MCLU 96.71 0.96 97.97 0.98 91.71 0.91 97.70 0.97

CA 91.22 0.90 95.33 0.95 93.05 0.92 95.86 0.95

MCA 93.91 0.93 97.43 0.97 94.79 0.94 97.29 0.97

FCOA 93.37 0.92 97.02 0.97 93.98 0.93 96.75 0.96

MFCOA 96.34 0.96 96.44 0.96 95.61 0.95 97.18 0.97

J geovis spat anal            (2020) 4:13 Page 11 of 25    13 



2. Using fast and reliable base learner (e.g., support vector
machine, random forest), instead of the decision tree (Xia
et al. 2015b).

3. Using more informative features like extended morpho-
logical attribute profiles (EMAPs) instead of spectral in-
formation or regularization methods (e.g., Markov ran-
dom fields, MRFs) (Xia et al. 2015a, b).

Table 8 presents the classification accuracies of rotation
forest and its improved versions in our past work. All the
experiments are conducted by using the standard training
and testing samples of the University of Pavia ROSIS dataset
to make fair comparisons. From Table 8, it can be seen that
RoFs with different base learners (e.g., decision tree, random
forest, and ELM) have shown better performance than other
ensemble classifiers, such as Bagging, AdaBoost, and
Random subspace. Since LPP introduces more diversity than
PCA into the RoF, thus, RoF-LPP outperforms RoF-PCA.
Moreover, with the help of EMAPs and MRFs, RoF-LPP-
MRFs, RoRF-EMAPs, and RoELM-EMAPs have shown sig-
nificant improvements than other classifiers.

Ensemble size and number of features in a subset are the
main parameters of RoF, also regarded as indicators of the
operating complexity. Figure 4 shows a sensitivity analysis
of the two parameters. The accuracies are slightly increased
when the ensemble size increases. Here, we suggest adopting
the medium size (e.g., 20–40) to make a balance with accura-
cy and computational complexity. For ROSIS image, the clas-
sification performances of RoF are decreased when the num-
ber of features in a subset increases. It should be noted that the
changing trend of this parameter is diverse in different partic-
ular applications.

Ensemble Extreme Learning Machines to Enhance
a Weak Classifier

Conventional artificial neural networks (ANNs) are effective
nonlinear ML methods with applications to plenty of fields.
But any successful applications have to face and tackle the
issues of computational inefficiency, network structure

complexity, and over-fitting, and plenty of solutions have
been proposed (Aguiar et al. 2015; Vardhana et al. 2018).
Among those, extreme learning machine (ELM) is one solu-
tion for the bottleneck of the learning speed of single-hidden
layer feed-forward neural networks (SLFNs), by introducing
the Moore-Penrose generalized inverse of matrix technique
(Huang et al. 2006). And in contrast with the algorithms like
BP neural network and SVM, the performance of ELM on
both classification and regression problems is promising.
However, ELM also has some drawbacks that the randomness
of input weights and bias can cause ill-posed problems, which
leads to low performance or even no solution scenario. Thus,
ELM can be used as a weak learner in ensemble learning (EL),
similar to other weak learners as neural networks and decision
tree (Samat et al. 2014; Samat et al. 2015; Du et al. 2014). In
our work, ensemble learning is integrated with ELM and two
implementations of ensemble extreme learning machines
(E2MLs) based on Bagging and Boosting, BagELMs and
BoostELMs, are proposed for hyperspectral image classifica-
tion (Samat et al. 2014).

In Fig. 5, we present the computational costs of the consid-
ered algorithms on the original and the EMP features of
ROSIS Pavia University and Salinas. It can be easily notice-
able that the ELM algorithms are much faster than SVM for
the step of parameter search. However, in general, ELM
methods consumed more time for training and classification.
Nevertheless, for the whole process, ELM methods are faster
than RBF kernel-based SVM.

In Table 9, classification accuracy and computational mea-
sures are present for considered algorithms. From this table,
one can easily see that SVM shows higher OA values than
ELM, but close to BagELMs and BoostELMs inmost cases of
using spectral or using stacked features of spectral with EMPs.
In the meantime, SVM takes huge time for searching the op-
timal parameters in a grid search-based criterion.
Additionally, the classification accuracies of ELM,
BagELMs, and BoostELMs are enhanced as well by including
the spatial information. The best performance is reached by
BagELMs or BoostELMs using the first 10 principal compo-
nents or using the first 10 PCs with EMP features.

Table 7 Classification results
using different methods SVM DCS-

LCA
The proposed DCS method

All bands OA 0.9495 0.9442 0.9539

Kappa 0.9388 0.9322 0.9440

VGLCM 6 + all bands OA 0.9522 0.9535 0.9608

Kappa 0.9422 0.9454 0.9524

VGLCM 6 + 5 PCs +5 selected bands OA 0.9512 0.9524 0.9525

Kappa 0.9408 0.9411 0.9416

VGLCM 6 + 5 selected bands OA 0.9503 0.9512 0.9526

Kappa 0.9397 0.9401 0.9425
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Two basic observations can be summarized: (1) ELM-
based methods obtain better or comparable accuracies in com-
parison with SVM and (2) BoostELM and BagELMs outper-
form the original ELM, showing that ensemble strategies are
useful for improving weak learner like ELM.

Ensemble Learning for Spatial Interpolation

Spatial interpolation is one of the most important methods to
show the spatial differentiation pattern of soil properties.
Currently, the spatial interpolation methods of soil properties
are mainly derived from the models of regression, surface
simulation, and probability theory, and the interpolation
models require many simplifications and assumptions on the

data (Yue and Wang 2010). However, soil properties have
significant spatial differentiation in complex geomorphologi-
cal areas. Therefore, the assumptions of the existing interpo-
lation model cannot be satisfied, and the shortage of the single
interpolation model limits the prediction accuracy (Goovaerts
2011). In order to solve the discontinuity and spatial variation
of soil properties in complex terrain areas, the ensemble
learning-based spatial interpolation method is constructed that
can adaptively divide the interpolation surface to screen the
appropriate basic interpolation model (Liu et al. 2016, 2017).
In this section, the basic interpolation model of the screening
is optimized, and the multi-model ensemble interpolation
method (SP-EL, the soil property surface modeling based on
ensemble learning) is established and coordinated to simulate
the soil properties with high precision (Liu et al. 2018).

Interpolation Surface Partitioning

A series of soil property interpolation surfaces are generated
using a built-on interpolation model, such as Radial Basis
Function, Cokriging, and empirical Bayesian. The interpola-
tion surface is scanned with a scan line algorithm as a learner
of the ensemble learning process (Fig. 6), and the prediction
error of the sample point of the soil property is calculated.
Each interpolated surface is adaptive to be partitions (Fig. 6),
thereby obtaining the applicable spatial range for each inter-
polation model (Figs. 6, 7, and 8).

Interpolation Surface Combination

As can be seen in Fig. 9, the spatial range of soil property
in ordinary kriging (OK), regression kriging (RK), and
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Fig. 4 Parameter analysis of a ensemble size and b number of features in a subset

Table 8 Classification accuracies of rotation forest and its
improvements

Methods OA AA Kappa

Bagging 65.78 77.42 58.71

AdaBoost 67.81 78.84 61.36

Random subspace 70.44 81.78 63.90

Random forest 71.37 81.93 64.79

ELM 74.56 84.64 68.75

RoF-PCA 82.66 87.69 78.09

RoF-LPP 84.76 88.64 79.35

RoRF 79.04 87.27 73.98

RoELM 79.44 87.11 74.25

RoF-LPP-MRFs 92.15 93.06 89.27

RoRF-EMAPs 96.47 95.84 95.34

RoELM-EMAPs 98.69 98.92 98.25
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Bayesian kriging (BK) is smaller than the measured value,
and OK is the smallest. The interpolation maps of RK,
BK, and OK showed varying of weak “bull’s-eye” effects.
What’s more, RK and BK interpolation can better depict
the spatial variation of soil properties, but shows the local
changes of soil property content with difficulty. The in-
verse distance weighting (IDW) interpolation presents a
strong “bulls-eye” effect with the worst result. SP-EL best
describes the spatial pattern change of soil property and
produces a more appropriate range of interpolation. SP-
EL can show the spatial pattern change of soil character-
istics in more detail. In particular, it can precisely show
the mutation of soil property content.

Deep Learning for Scene Classification
and Urban Structural Type Recognition

Basic Scene Understanding Algorithms in Deep
Learning

With the advancement of remote sensing observation
technology, high-resolution sensors can collect images
with a spatial resolution of finer than 1 m. These
high-resolution images with abundant spatial and struc-
tural patterns provide the possibility of understanding
high-level land cover and land use information or target
of interest for surface monitoring and management. To
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Fig. 5 Computational costs of
ELM, BagELMs, BoostELMs,
and SVM on original (a, c) and
EMPs (b, d) features of ROSIS
Pavia University (a, b) and
Salinas (c, d) datasets (horizontal
axis represents time consumption
in seconds)

Table 9 Classification accuracies (overall accuracy) and computational time (s) of using ROSIS data

Feature All spectral bands All spectral bands with EMPs

Classifier SVM ELM BagELMs BoostELMs SVM ELM BagELMs BoostELMs

Overall accuracy (%) 80.3 74.98 75.39 79.11 83.7 81.79 83.98 84.66

Kappa statistics 0.75 0.69 0.69 0.74 0.70 0.77 0.80 0.80

Time Searching 1321 42.39 39.67 43.28 3283 53.93 50.17 54.15

Training 0.532 0.37 12.68 18.58 0.78 0.07 3.82 19.4

Classification 33.17 2.32 103.07 68.74 62.14 1.32 174.52 92.11

Feature First 10 PCs First 10 PCs with EMPs

Classifier SVM ELM BagELMs BoostELMs SVM ELM BagELMs BoostELMs

Overall accuracy (%) 82.32 82.16 83.29 80.79 93.66 92.31 93.68 94.3

Kappa statistics 0.78 0.77 0.77 0.76 0.92 0.90 0.92 0.93

Time Searching 511.9 35.21 35.28 37.52 600.05 36.77 36.87 37.4

Training 0.63 0.34 9.92 16.09 0.19 0.22 15.54 16.94

Classification 8.1 1.81 166.37 54.69 6.45 1.64 203.96 57.84
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extract this valuable information from remote sensing
data, one of the fundamental techniques is scene classi-
fication (Wang et al. 2019). Scene classification, as a
typical issue of computer vision, is also considered as a
challenging task in remote sensing domain because of
some special properties of remote sensing scene images,
such as various spectral and spatial resolution, complex
composition in land cover categories, and uncertain size
of the scene unit. However, the biggest challenge is to
construct an effective feature representation based on
original image to describe the semantic information.

Over the years, many studies have been devoted to devel-
oping robust feature learning and representation methods. In
the early years, some feature extraction methods based on
low-level visual features (e.g., color, texture, and shape fea-
tures) or manual designed feature descriptors (e.g., local and
scale invariant feature transform) have been conducted to fin-
ish the remote sensing scene classification (Yang and
Newsam 2010). In the feature representation stage, some ad-
vanced feature coding methods, including bag-of-words
(BOW) and Fisher kernel vector, and topic models like

probabilistic latent semantic analysis (PLSA) have been
employed (Cheng et al. 2013; Zhao et al. 2016). Moreover,
more similar studies focused on improving performance in
consideration of the spatial arrangement of scene images. In
this scheme, spatial pyramid match kernel and its improve-
ments have been proposed (Yang and Newsam 2010;
Lazebnik et al. 2006). These methods have acquired satisfac-
tory results for some simple test datasets, which always in-
clude few categories and scene images of fixed size with uni-
form structures, spatial textures, or discriminative color fea-
tures of different scene objects. However, it is still a challenge
to deal with the practical problem using traditional algorithms.

Recently, deep learning-based methods have achieved
impressive results in scene image classification and
outperformed traditional methods. Inspired by the infor-
mation abstraction process of the human brain, deep
learning utilizes different functional layers to construct a
depth architecture simulating the brain cognitive process.
Initial deep learning research focused on feature learning
with an unsupervised manner that pays more attention to
feature reconstruction than category discrimination with a

Fig. 6 Interpolation surface partition process

Fig. 7 Error surface of basic interpolation model: a surface a; b surface b; c surface c
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shallow network, such as restricted Boltzmann machines
(RBMs) and au toencode r (AE) . Howeve r , t he

breakthrough is the proposal of deep belief nets (DBNs)
(Hinton and Salakhutdinov 2006), which is composed of
multiple RBM models and a logistic regression classifica-
tion layer. In the training stage, DBNs train one RBM at a
time in an unsupervised manner and then fine-tuning the
whole networks in a supervised manner. This research
shows the importance of the unsupervised feature learning
process in developing a successful deep architecture and
overcoming the overfitting problem.

Motivated by this work, a number of unsupervised feature
learning algorithms are proposed, such as sparse coding and
sparse AE (Cheriyadat 2013; Li et al. 2017). Significantly,
these unsupervised feature learning methods attempt to ex-
ploit essential feature representations of raw data by using a
shallow network model. Moreover, it is easily extended to a
supervised algorithm by stacking a classifier layer, or used to
construct a deep architecture by concatenating multiple unsu-
pervised models and a classifier. Besides, as the most repre-
sentative supervised deep learning model, deep convolutional
neural network (CNN) also achieves great success in scene
classification. The deep structure of CNN has the ability to
learn hierarchical level abstraction of input data by adopting
the structure of the multi-layer networks. Furthermore, CNN-
based algorithms integrate feature learning and category

Fig. 8 Optimization distribution

Fig. 9 Comparison of soil property content interpolation map with different methods. a RK. b BK. c IDW. d OK. e SP-EL
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discrimination into one framework. In this review, we provide
a brief introduction to the unsupervised and supervised
methods and its applications in remote sensing scene classifi-
cation. More detailed information on deep learning theory in
the computer vision and machine learning community can be
found in Krizhevsky et al. (2012).

Unsupervised Feature Learning-Based Methods

There are diverse unsupervised methods for feature learning
and scene image classification. Among these methods, sparse
coding is a typical unsupervised method that efficiently rep-
resents data by learning sets of over-complete bases
(Cheriyadat 2013). Use an over-complete base to represent
input vectors, sparse coding can effectively capture structures
and patterns inherent in the input data. Sparse coding has been
widely exploited to learn feature representation of images,
multiple features, and appearance descriptors such as SIFT
features (Cheriyadat 2013). In addition, RBM as a layer-
wise training model in the construction of a DBN is another
kind of unsupervised method. It is the improved version of
Boltzmann machines (BMs) (Hinton 2002). BMs are a partic-
ular form of log-linear Markov random field with visible units
and hidden units. Once an RBMmodel is learned, input data is
encoded by the weights matrix in the hidden layer to represent
the raw data.

In remote sensing scene classification, RBM is also
employed to learn internal feature representation for scene
understanding (Zou et al. 2015). Besides, the sparse AEmeth-
od also attracted much attention in the remote sensing com-
munity. Sparse AE is a symmetrical neural network with only
one hidden layer. It trains an AE with a given number of
hidden nodes using backing propagation to minimize squared
reconstruction error between input values of the encoding lay-
er and output values of the decoding layer. A sparse AEmodel
includes an encoder and a decoder, in which input data can be
encoded by the encoder to carry out the feature representation.
Furthermore, in order to force the hidden layer to discover
more robust features and prevent it from simply learning the
identity, the denoising AE is proposed. The denoising AE is a
stochastic version of the AE model (Vincent et al. 2008). In
practice, the stochastic corruption process randomly sets some
of the inputs (as many as half of them) to zero and then fed
them into a sparse AE to train a denoising AE model. In
another study, a new unsupervised method, triangle encoding,
is proposed.When the number of hidden nodes is set to a large
value, this method can obtain the best performance (Coates
et al. 2011).

Generally, the scheme of unsupervised feature learning
method for remote sensing scene classification consists of five
main steps: (1) image patch or local feature extraction; (2)
unsupervised feature learning model training; (3) feature map-
ping of scene images using learnt unsupervised feature

learning model through convolution operation; (4) feature
coding or middle-level feature representation; and (5) scene
classification. This scheme can be summarized as in Fig. 10.
In the first step, image patches are randomly extracted from all
scene images for training an unsupervised feature learning
model. It is worth noting that image patches are not the only
option as the input to train the model, other features with the
possibility to describe the characteristics of scene images can
be used as well. Then, a selected unsupervised feature learning
method is employed to train a required feature learning model
based on the extracted features. Thirdly, an input scene image
can be mapped into a new feature space with the learned
model through convolution operation. Up to now, the raw
scene images are represented by the new feature maps, which
are still three-dimensional data. Hence, we must use a feature
coding method, such as BOW, Fisher kernel (Perronnin and
Dance 2007), or pooling method, to encode the three-
dimensional data into vector representation form. Finally,
the vector representation of scene images as input data is used
to train a classifier to predict the categories of scene images.

In this section, we present some experimental results of
remote sensing scene classification based on the unsupervised
feature learning method. In this experiment, image patches are
extracted to train the feature learning model, and sparse AE is
employed as the unsupervised feature learning method. At the
feature coding stage, some commonly used feature coding
methods like max-pool, Fisher kernel (FK), and BOW are
investigated. Furthermore, we also propose a feature coding
method based on global feature descriptors (Li et al. 2017).
The widely used dataset UCMerced (UCM) dataset is used to
evaluate the unsupervised method (Yang and Newsam 2010).
It consists of 21 land use categories, and each category con-
tains 100 images of size 256 × 256 × 3. Following the com-
mon experimental setup in related studies, all samples of input
dataset are randomly divided into five equal parts, and four
parts are used as training samples and the rest as a testing set
every time. We train a sparse AEmodel with 400 hidden units
for feature learning. For comparisons with different feature
coding methods, the proposed feature coding method global
feature coding (GFC) (Li et al. 2017), maximum pooling
(max-pool), BOW, and FK are employed to build feature rep-
resentation for classification. As shown in Table 10, among
the four feature coding methods, GCF achieves the highest
accuracy. These experimental results also indicate that the
feature coding process is an important factor for unsupervised
feature learning-based scene classification.

Supervised Feature Learning-Based Methods

Building a deep supervised neural network is always a pursuit
in machine learning study. Generally, the earliest back-
propagation neural networks are the antecedents of deep su-
pervised neural networks. However, it is widely believed that
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training a supervised neural network with very deep architec-
tures is difficult before the appearance of DBNs. Recently, it
has become an easy task in constructing and training a deep
network due to the advancement in hardware and software
technology, and big data acquisition ability. There are two
patterns to build a deep network. The first one is stacking
series of unsupervised networks and a classification layer to
complete a supervised manner, with DBNs as the typical ex-
ample of this pattern is. Actually, other unsupervised feature
learning like sparse AE is also employed to build a deep su-
pervised network (Abdi et al. 2017). Besides, another pattern
of deep learning networks is deep convolutional neural net-
work (CNN). CNN is the most popular deep learning struc-
ture, which is widely used for learning visual features in sev-
eral distinct tasks, such as remote sensing scene classification
(Penatti et al. 2015). In contrast with an unsupervised feature
learning-based scene classification scheme, CNN integrates

feature learning and classification processes into one frame-
work. Moreover, a multi-layer CNN model can extract differ-
ent levels of information, ranging from low-level information
in the first layer to high-level information in the final layer.

Recently, many CNN-based algorithms are proposed for
remotely sensed scene classification and achieve better perfor-
mance than the traditional methods (Xia et al. 2015; Nogueira
et al. 2017). Some studies have tried to design a reasonable
CNN model to solve remote sensing scene classification
(Zhang et al. 2015). A general scheme of scene classification
based on CNN models is displayed as Fig. 11. Although the
CNN shows an impressive ability to distortion and rotation for
remote sensing scene classification, some challenges have
been exposed in the application, such as various scales, and
complex spatial assignment of remote sensing scene images.
Furthermore, it is almost impossible to train a very deep CNN
model for many applications with only a few hundreds or
thousands of samples. To overcome this problem encountered
when using deep CNN models, many studies use transfer
learning to address this issue (Nogueira et al. 2017). To this
end, the pre-trained CNN models trained on large datasets are
employed as feature extractors in remote sensing scene im-
ages. In this framework, the pre-trained CNN is only used as a
feature extractor and is not trained on the target data, so it can
be regarded as an unsupervised learning feature learning pro-
cess that can prevent overfitting problem. In addition, multi-
scales scene images of various sizes can be used as input of the
pre-trained CNN model to alleviate the scale problem.

Fig. 10 The overall flow chart of the unsupervised feature learning-based scene classification

Table 10 Classification performances’ comparison using different
feature coding methods on UCM dataset

Method Classification accuracy (%)

max-pool 62.52±2.47

Fisher kernel 79.05±2.01

Bag-of-words 81.19±1.00

Global feature coding 89.62±1.67
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Fig. 11 A generally CNN structure for scene classification

Fig. 12 The flowchart of fusing
multi-layer features for scene
classification. Conv1-L repre-
sents the convolutional layers;
MIFV1-L denotes the coded fea-
tures of different convolutional
features; fc1-n represents the fully
connected layers

(a) (b)

Dese building Meadow High sparse building Low sparse building Open place

Forest Water Medium dense building River bank Road

(c)

Fig. 13 a The SPOT 7 image of being annotated. b The image ground truth. c Ten urban structural types
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Motivated by these advantages, some studies also make ef-
forts to exploit the benefits of using multiple layers and pre-
trained CNN models (more than three) in remote sensing
scene classification (Hu et al. 2015; Li et al. 2017). In the
future, more advanced CNN models or improved deep learn-
ing method will be employed in remote sensing scene classi-
fication domains.

Then, we provide some examples of remote sensing
scene classification based on CNN methods. In these
experiments, we use the pre-trained CNN models as
feature extractors and focus on investigating the perfor-
mances of different CNN models. Furthermore, some
improvements in taking advantage of multi-layer fea-
tures and CNN models are proposed for remote sensing
scene classification. Briefly, a multi-layer feature fusion
framework is firstly proposed to integrate multiple level
features extracted by a pre-trained CNN model to im-
prove the performance of scene classification. In addi-
tion, we also pay attention to exploit the benefits of
different CNN architectures and extend the multi-layer
feature fusion framework to multiple model fusion. The
basic flow of fusing multi-layer features and multiple
models are shown in Fig. 12. In this framework, the
convolutional features, including lower abstractions of
scene image, are encoded by feature coding methods
into a vector representation, then stacked with fully con-
nected features for scene classification. With multiple
pre-trained CNN models, we also can extract feature
representation from every model and stack series fea-
tures from various models to construct feature represen-
tation for scene images. It is important to note that
encoded features of convolutional features or fully con-
nected features are always high-dimensional features, so

it is a challenge to fuse those high-dimensional features.
In our studies, some subspace feature learning methods
are proved to be effective in processing high-
dimensional features. Furthermore, a supervised sub-
space learning method can decrease the diversity of
multiple models. Therefore, a fusion strategy of
supervised and unsupervised subspace learning methods
is a more reasonable choice. The more detailed
information on feature coding methods and feature
fu s i on s t r a t eg i e s c an be found in L i e t a l .
(2016, 2017) and Du et al. (2019).

In this experiment, the UCM dataset is used as the
experimental data as well. Besides, we also take a test
on a large satellite image acquired from Nanjing, China,
by SPOT 7 sensor. The spatial resolution of this data is
1.5 m for the panchromatic band and 6 m for multi-
spectral bands. They are fused by the Gram-Schmidt
pan-sharpening method and reached 1.5 m spatial reso-
lution of the multi-spectral image. The red, green, and
blue channels are selected in scene classification. The
large image to be annotated is of 5200 × 6600 in size,
as shown in Fig. 13. This experiment is designed to
challenge the urban structural type recognition by using
the scene classification method. Therefore, ten urban
structural types are annotated, including dense building,
meadow, high sparse building, low sparse building,
open space, forest, water, medium dense building, river
bank, and road. We manually label part of the image to
obtain series scene images of urban structural type in
which each scene image is of the size of 100 × 100. In
the classification stage, 50% of labeled samples are ran-
domly selected as the training set, and the remaining
scene images are used for testing. The detailed informa-
tion of the ground truth data is shown in Table 11.

For the UCM dataset, seven pre-trained CNN models
are employed in this experiment. We investigate perfor-
mances using different layer features. According to the
results, the convolution features encoded by feature cod-
ing methods achieve better performances than fully con-
nected features. In addition, the best accuracy is always
obtained when multi-layer features are fused for classi-
fication. Besides, fine-tuning the pre-trained CNN
models with the training samples of task maybe im-
prove the performances of CNN models, but cannot
outperform the fusion method. As shown in Table 12,

Table 12 Performance
comparison of fusing multi-layer
features and multiple CNN
models for UCM dataset

Pre-trained CNN models Accuracy (%) Pre-trained CNN models Accuracy (%)

AlexNet 98.10 ± 0.48 VGG-F 97.95 ± 0.55

CaffeNet 98.33 ± 0.45 VGG-VD16 98.57 ± 0.24

VGG-M 98.29 ± 0.68 VGG-VD19 97.71 ± 0.69

VGG-S 98.24 ± 0.69 Multi-CNNs 99.05 ± 0.48

Table 11 Detailed information of ground truth data for urban structural
types

Class name Samples Class name Samples

Dese building 99 Meadow 37

Medium dense building 106 Water 33

High sparse building 102 Road 128

Low sparse building 75 River bank 146

Open space 52 Total 859
Forest 81
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fusing multiple CNN models also can improve the per-
formance of remote sensing scene classification.

The performances of urban structural type recognition
using scene classification method are shown in Table 13.
We compared the classification accuracies of fusing multi-
layer features and multiple models by using seven pre-
trained CNN models. The results confirm that using CNN-
based deep learning method is an efficient way to complete
urban structural type recognition.

Conclusions and Prospects

In this paper, we conducted a systematic review in the appli-
cations of four advanced machine learning methods for clas-
sification and regression-related spatial data handling. Those
machine learning-based methods consist of applying kernel
learning to address nonlinear and high-dimensional classifica-
tion and regression problems, adopting semi-supervised and
active learning to handle small training sample size chal-
lenges, using ensemble learning to combine the advantages
of different learners and improve learning robustness, and
exploiting deep learning to extract the hidden high-level fea-
tures. In addition to summarize the advances in these fields,
some representative examples completed by the authors are
used to demonstrate the merits of advanced machine learning
methods for spatial data handling. Based on the technical re-
views and experimental analyses, it can be concluded that
machine learning methods are suitable to overcome the chal-
lenges in spatial data handling and improve the performance
of classification, regression, and inversion problems, and will
play more and more important roles in the future.

However, it should be noted that both machine learn-
ing and spatial data handling methods cover quite a
broad range, and only a few of them are reviewed in
this paper. For other spatial data handling techniques
including point, vector, and map data in GIS, some
research has demonstrated the great potential of ad-
vanced machine learning methods, for example, deep
learning for semantic address matching (Lin et al.
2020), deep neural network for personalized POI recom-
mendation in location-based social networks (Ding and
Chen 2018), machine learning models for estimation of
land consumption rates (Hagenauer et al. 2019), ma-
chine learning for automated general izat ion of

buildings(Steiniger et al. 2010), and hybrid ensemble
learning method for tourist route recommendations
(Wan et al. 2018).

Other directions in machine learning for spatial data han-
dling should be further explored in the future: (1) embedding
the spatial laws and geographical knowledge in machine
learning; (2) improving the efficiency of learning and comput-
ing by parallel computing or cloud computing platform, for
example, Google Earth Engine (GEE); and (3) fusing the ad-
vantages of multi-source data and different learning algo-
rithms under open and complex geographical environment.
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