
User Manual

BBEdit™

Professional Code and Text Editor for the Macintosh

Bare Bones Software, Inc.

BBEdit™
 12.0

Product Design Jim Correia, Rich Siegel, Steve Kalkwarf,
Patrick Woolsey

Product Engineering Jim Correia, Seth Dillingham, Matt Henderson,
Jon Hueras, Steve Kalkwarf, Rich Siegel,
Steve Sisak

Engineers Emeritus Chris Borton, Tom Emerson, Pete Gontier,
Jamie McCarthy, John Norstad, Jon Pugh,
Mark Romano, Eric Slosser, Rob Vaterlaus

Documentation Fritz Anderson, Philip Borenstein, Stephen
Chernicoff, John Gruber, Jeff Mattson,
Jerry Kindall, Caroline Rose, Allan Rouselle,
Rich Siegel, Vicky Wong, Patrick Woolsey

Additional Engineering Polaschek Computing

Icon Design Byran Bell

Factory Text Color Schemes Luke Andrews

Packaging Design Ultra Maroon Design

PHP keyword lists Contributed by Ted Stresen-Reuter

cmark ©John MacFarlane. Used under license.
Part of the CommonMark project

LibNcFTP Used under license from and copyright ©
1996-2010 Mike Gleason & NcFTP Software

Exuberant ctags ©1996-2004 Darren Hiebert
http://ctags.sourceforge.net/

PCRE Library Written by Philip Hazel and ©1997-2014
University of Cambridge, England

Info-ZIP Library ©1990-2009 Info-ZIP. Used under license.

Quicksilver string ranking Adapted from available sources
and used under Apache License 2.0 terms

NSTimer+Blocks ©2011 Random Ideas, LLC. Used under license.

LetsMove Written by Andy Kim; adapted from source.

BBEdit and the BBEdit User Manual are copyright ©1992-2017 Bare Bones Software, Inc.
All rights reserved. Produced/published in USA.

http://www.polaschek-computing.com/
http://www.bryanbell.com/
http://www.ultramaroon.com/
http://www.info-zip.org/pub/infozip/license.html
https://opensource.org/licenses/BSD-2-Clause
https://opensource.org/licenses/BSD-2-Clause
https://commonmark.org/
http://www.attaboy.ca/
http://www.ncftp.com/
http://www.ncftp.com/
http://www.random-ideas.net/
https://github.com/jivadevoe/NSTimer-Blocksl
https://github.com/quicksilver/
https://github.com/quicksilver/
http://ctags.sourceforge.net/
http://ctags.sourceforge.net/
https://github.com/potionfactory/LetsMove

Bare Bones Software, Inc.
73 Princeton Street, Suite 206
North Chelmsford, MA 01863 USA

(978) 251-0500 main
(978) 251-0525 fax

http://www.barebones.com/

Sales & customer service: sales@barebones.com
Technical support: support@barebones.com

BBEdit and “It Doesn’t Suck” are registered trademarks of Bare Bones Software, Inc.

Exuberant Ctags is included under the terms of the GNU General Public License
(GPL). Source is available within BBEdit’s application package, or from the Bare
Bones Software web site:
http://www.barebones.com/support/develop/ctags.html

Information in this document is subject to change without notice and does not
represent a commitment on the part of the copyright holder. The software described in
this document is furnished under a license agreement. Warranty and license
information is included in printed form with the CD-ROM package or in electronic
form for downloaded products, and is presented on the next page of this user manual.

The owner or authorized user of a valid copy of BBEdit may reproduce this
publication for the purpose of learning to use such software. No part of this publication
may be reproduced or transmitted for commercial purposes, such as selling copies of
this publication or for providing paid for support services.

Macintosh, Mac OS, Mac OS X, and AppleScript are trademarks of Apple, Inc. Intel is
a registered trademark of Intel Corporation. All other trademarks are the property of
their respective owners.

http://www.barebones.com/support/develop/ctags.html

BBEdit License Agreement:
You, the Licensee, assume responsibility for the selection of the program BBEdit to achieve your intended results, and for
the installation, use, and results obtained from the program. Breaking the package seal and installing the program, or
downloading and installing the program, constitutes your acceptance of these terms and conditions. If you do not accept
these terms and conditions, then do not download and install the program or break the package seal and install the program,
and contact Bare Bones Software, Inc., or return the package for a full refund.

License:
You may use the program and documentation on not more than two (2) machines and copy the program and documentation
into any machine-readable or printed form for backup or support of your use of the program and documentation on either or
both machines, provided that no copy of the program and documentation may be used by anyone other than you. You may
not use or copy the program or documentation, or any copy thereof, in whole or in part, except as provided in this
Agreement. You also may not modify or transfer (whether or not for consideration) the program or documentation, or any
copy thereof, in whole or in part. If you use, copy, modify, or transfer the program or documentation, or any copy thereof, in
whole or part, except as expressly provided for in this agreement, your license is automatically terminated.

Term:
The license is effective on the date you accept this Agreement, and remains in effect until terminated as indicated above or
until you terminate it. If the license is terminated for any reason, you agree to destroy the program and documentation,
together with all copies thereof, in whole or in part, in any form, and to cease all use of the program and documentation.

Limited Warranty and Limitation of Remedies:
The program, documentation and any support from Bare Bones Software, Inc., are provided “as is” and without warranty,
express and implied, including but not limited to any implied warranties of merchantability and fitness for a particular
purpose. In no event will Bare Bones Software, Inc. be liable for any damages, including lost profits, lost savings, or other
incidental or consequential damages, even if Bare Bones Software, Inc. is advised of the possibility of such damages, or for
any claim by you or any third party.

General Terms:
This Agreement can only be modified by a written agreement signed by you and Bare Bones Software, Inc. and changes
from the terms and conditions of this Agreement made in any other manner will be of no effect. If any portion of this
Agreement shall be held invalid, illegal, or unenforceable, the validity, legality, and enforceability of the remainder of the
Agreement shall not in any way be affected or impaired thereby. This Agreement shall be governed by the laws of The
Commonwealth of Massachusetts, without giving effect to conflict of laws provisions thereof. As required by United States
export regulations, you shall not permit export of the program or any direct products thereof to any country to which export
is then controlled by the United States Bureau of Export Administration, unless you have that agency's prior written
approval. Use of the program and documentation by military and civilian offices, branches or agencies of the U.S.
Government is restricted in accordance with the applicable Federal Acquisition Regulations (under which the program and
documentation constitute “restricted computer software” that is “commercial computer software”) or Department of
Defense Federal Acquisition Regulations Supplement (under which the program and documentation constitute “commercial
computer software” and “commercial computer software documentation”) to that consistent with only those rights as are
granted pursuant to the terms and conditions hereof.

Acknowledgment:
You acknowledge that you have read this agreement, understand it, and agree to be bound by its terms and conditions. You
further agree that it is the complete and exclusive statement of the agreement between you and Bare Bones Software, Inc.
which supersedes all proposals or prior agreements, oral or written, and all other communications between you and Bare
Bones Software, Inc. relating to the subject matter of this agreement.

Info-ZIP License
This is version 2009-Jan-02 of the Info-ZIP license. The definitive version of this
document should be available at ftp://ftp.info-zip.org/pub/infozip/license.html indefinitely
and a copy at http://www.info-zip.org/pub/infozip/license.html.

Copyright ©1990-2009 Info-ZIP. All rights reserved.

For the purposes of this copyright and license, “Info-ZIP” is defined as the following set of
individuals:

Mark Adler, John Bush, Karl Davis, Harald Denker, Jean-Michel Dubois, Jean-loup Gailly,
Hunter Goatley, Ed Gordon, Ian Gorman, Chris Herborth, Dirk Haase, Greg Hartwig,
Robert Heath, Jonathan Hudson, Paul Kienitz, David Kirschbaum, Johnny Lee, Onno van
der Linden, Igor Mandrichenko, Steve P. Miller, Sergio Monesi, Keith Owens, George
Petrov, Greg Roelofs, Kai Uwe Rommel, Steve Salisbury, Dave Smith, Steven M.
Schweda, Christian Spieler, Cosmin Truta, Antoine Verheijen, Paul von Behren, Rich
Wales, Mike White.

This software is provided “as is”, without warranty of any kind, express or implied. In no
event shall Info-ZIP or its contributors be held liable for any direct, indirect, incidental,
special or consequential damages arising out of the use of or inability to use this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the above disclaimer and the
following restrictions:

• Redistributions of source code (in whole or in part) must retain the above
copyright notice, definition, disclaimer, and this list of conditions.

• Redistributions in binary form (compiled executables and libraries) must
reproduce the above copyright notice, definition, disclaimer, and this list of
conditions in documentation and/or other materials provided with the distribution.
The sole exception to this condition is redistribution of a standard UnZipSFX
binary (including SFXWiz) as part of a self-extracting archive; that is permitted
without inclusion of this license, as long as the normal SFX banner has not been
removed from the binary or disabled.

• Altered versions--including, but not limited to, ports to new operating systems,
existing ports with new graphical interfaces, versions with modified or added
functionality, and dynamic, shared, or static library versions not from Info-ZIP--
must be plainly marked as such and must not be misrepresented as being the
original source or, if binaries, compiled from the original source. Such altered
versions also must not be misrepresented as being Info-ZIP releases--including,
but not limited to, labeling of the altered versions with the names “Info-ZIP” (or
any variation thereof, including, but not limited to, different capitalizations),
“Pocket UnZip,” “WiZ” or “MacZip” without the explicit permission of Info-ZIP.
Such altered versions are further prohibited from misrepresentative use of the Zip-
Bugs or Info-ZIP e-mail addresses or the Info-ZIP URL(s), such as to imply Info-
ZIP will provide support for the altered versions.

Info-ZIP retains the right to use the names “Info-ZIP,” “Zip,” “UnZip,” “UnZipSFX,”
“WiZ,” “Pocket UnZip,” “Pocket Zip,” and “MacZip” for its own source and binary
releases.

ftp://ftp.info-zip.org/pub/infozip/license.html
ftp://ftp.info-zip.org/pub/infozip/license.html
http://www.info-zip.org/pub/infozip/license.html

Contents

Chapter 1 Welcome to BBEdit 21
Getting Started . 21
What Is BBEdit? . 21
How Can I Use BBEdit? . 22

Development Environments – 22
Writing HTML Documents – 22

Human Interface Notes . 23
Dynamic Menus – 23
Bypassing Options Dialogs – 23
Keyboard Shortcuts for Commands – 23
Contextual Menus – 24
Dialog Box and Sheet Key Equivalents – 24

Feature Highlights . 24
Info on New Features – 25

Discussion Group . 25
Support Services . 25

How to contact us – 26

Chapter 2 Installing BBEdit 27
Basic Installation . 27

System Requirements – 27
Installing BBEdit – 27
Automatic Relocation – 28
Launching BBEdit – 28
Activating BBEdit – 28
Checking for Updates – 29
Upgrading from a Previous Version – 30
Converting from TextWrangler – 30
7

BBEdit’s Application Support Folder . 30
Application Support Folder Contents – 31
Attachment Scripts – 31
Auto-Save Recovery – 31
Clippings – 31
Color Schemes – 31
Completion Data – 31
Custom Keywords – 32
HTML Templates – 32
Language Modules – 32
Menu Scripts – 33
Packages – 33
Readme.txt [file] – 33
Scratchpad [file] – 33
Scripts – 33
Setup – 34
Shutdown Items – 34
Startup Items – 34
Stationery – 35
Text Filters – 35
Unix Worksheet.worksheet – 35
Superseded App Support Folders – 36

Preference Files and Folders . 36
BBEdit Preferences File – 36
BBEdit Preferences Folder – 36

Sharing Application Support & Preferences Data via Dropbox 38
Sharing Application Support & Backups via iCloud Drive 39

Chapter 3 Working with Files 41
Launching BBEdit . 42

Startup Items – 42
Creating and Saving Documents . 43

Saving a Copy of a File – 45
File Saving Options – 45
File State – 46
EditorConfig – 46
Emacs Local Variables – 47
Saving with Authentication – 48
Saving Compressed Files as bz2 or gzip – 48
Saving as Styled Text or HTML – 48

Crash Auto-Recovery . 48
8 Table of Contents

Opening Existing Documents . 49
Front Window versus Separate Windows – 49
Choosing the Encoding for a Document – 50
Using the Open Command – 51
Reload from Disk – 52
Opening and Editing Files within Zip Archives – 52
Opening bz2, gzip, and tar Files and Binary plists – 52
Opening Hidden Files – 53
Using the Open from FTP/SFTP Server Command – 53
Using the Open Selection Command – 53
Using the Open File by Name Commands – 54
Using the Open Counterpart Command – 56
Using the Open Recent Command – 56
Using the Reopen using Encoding Command – 56

Quitting BBEdit . 56
An International Text Primer . 57

International Text in BBEdit – 57
Unicode – 57
Saving Unicode Files – 58
Opening Unicode Files – 58

Accessing FTP/SFTP Servers . 59
Opening Files from FTP/SFTP Servers – 59
Saving Files to FTP/SFTP Servers – 62

Using BBEdit from the Command Line . 64
Using Projects . 65

Creating a Project – 65
Project Commands – 66
Using projects – 68
Creating Files and Folders within a Project – 68
Removing Files from a Project – 68
Contextual Menu Commands – 69
Script Access to Project Contents – 69

Using Stationery . 69
Hex Dump for Files and Documents . 70
Making Backups . 70
Printing . 70

Printing Options – 71

Chapter 4 Editing Text with BBEdit 73
Basic Editing . 74

Moving Text – 74
Multiple Clipboards – 75
Drag and Drop – 75

Multiple Undo . 76
Window Anatomy . 77

Full Screen Mode – 77
Toolbar – 77
The Navigation Bar – 78
The Sidebar – 83
The Split Bar – 84
The Gutter and Folded Text Regions – 85
The Status Bar – 87
Table of Contents 9

The View Menu . 89
Text Display – 89
Show/Hide Navigation Bar – 90
Show/Hide Editor – 90
Show/Hide Sidebar – 90
Show/Hide Open Documents – 90
Show/Hide Worksheet & Scratchpad – 90
Balance – 90
Balance & Fold – 90
Fold Selection – 90
Unfold Selection – 90
Collapse Enclosing Fold – 91
Collapse All Folds – 91
Expand All Folds – 91
Collapse All Folds – 91
Collapse Folds Below Level – 91
Previous Document/Next Document – 91
Move to New Window – 91
Open in Additional Window – 91
Reveal in Finder – 91
Reveal in Project List – 92
Go Here in Terminal – 92
Go Here in Disk Browser – 92

Cursor Movement and Text Selection . 92
Clicking and Dragging – 92
Arrow Keys – 93
CamelCase Navigation – 93
Rectangular Selections – 94
Working with Rectangular Selections – 94
Scrolling the View – 97
The Delete Key – 97
The Numeric Keypad – 97
Line Number Command – 98
Function Keys – 98
Resolving URLs – 99

Text Completion . 100
Invoking Completion – 100
Completion Symbols – 101

Text Options . 102
Editing Options – 102
Display Options – 103

How BBEdit Wraps Text . 105
Soft Wrapping – 106
Hard Wrapping – 107

The Insert Submenu . 109
Inserting File Contents – 109
Inserting File & Folder Paths – 109
Inserting a Folder Listing – 110
Inserting a Page Break – 110
Inserting Time Stamps – 110
Inserting an Emacs Variable Block – 110

Comparing Text Files . 110
Comparisons by Other Means – 113
Compare Against Disk File – 113
Multi-File Compare Options – 113
10 Table of Contents

Using Markers . 115
Setting Markers – 115
Clearing Markers – 115
Using Grep to Set Markers – 115

Speaking & Spell Checking Text . 117
Speaking Text – 117
Spell Checking Text – 117
Check Spelling As You Type – 117
Manual Spell Checking – 117
The Spelling Panel – 118

Chapter 5 Text Transformations 119
Text Menu Commands . 119

Apply Text Filter – 120
Apply Text Filter <last filter> – 120
Exchange Characters – 120
Change Case – 121
Shift Left / Shift Right – 121
Un/Comment Lines & Un/Comment Block – 121
Hard Wrap – 122
Add Line Breaks – 122
Remove Line Breaks – 122
Convert to ASCII – 122
Educate Quotes – 122
Straighten Quotes – 122
Add/Remove Line Numbers – 123
Prefix/Suffix Lines – 123
Sort Lines – 124
Process Duplicate Lines – 125
Process Lines Containing – 126
Canonize – 127
Increase and Decrease Quote Level – 127
Strip Quotes – 127
Zap Gremlins – 128
Entab – 129
Detab – 129
Normalize Line Endings – 129

Text Factories . 131
Creating and Configuring Text Factories – 131
Applying Text Factories to Files – 135
Applying Text Factories to Open Documents – 135
HTML Processing Actions – 135

Automator Actions . 136
Using BBEdit with Automator – 136
Available Actions – 137

Other Transforms . 140
Columnar Text Manipulations – 140
Extract – 140
Paste Using Filter – 140
Table of Contents 11

Chapter 6 Windows & Palettes 141
Window Menu . 141

Minimize Window – 141
Bring All to Front – 141
Palettes – 141
Workspace – 143
Show Scratchpad – 143
Show Unix Worksheet – 143
Save Default <type of >Window – 143
Cascade Windows – 143
Arrange – 144
Cycle Through Windows – 144
Exchange with Next – 144
Synchro Scrolling – 144
Window Names – 144
Zoom (key equivalent only) – 144

Chapter 7 Searching 145
Search Windows . 145
Basic Searching and Replacing . 146

Search Settings – 148
Special Characters – 148

Multi-File Searching . 149
Starting a Search – 150
Find All and Multi-File Search Results – 151
Specifying the Search Set – 152
Saved Search Sources – 154
Multi-File Search Options – 154
File Filters – 155
Searching SCM Directories – 157

Multi-File Replacing . 157
Live Search . 158
12 Table of Contents

Search Menu Reference . 159
Find – 159
Multi-File Search – 159
Search in [Document’s Folder] – 159
Search in [Project or Disk Browser] – 159
Live Search – 159
Find Next/Previous – 160
Find All – 160
Extract – 160
Find Selected Text/Previous Selected Text – 160
Use Selection for Find – 161
Use Selection for Find (grep) – 161
Use Selection for Replace – 161
Use Selection for Replace (grep) – 161
Replace – 161
Replace All – 161
Replace All in Selection – 161
Replace to End – 161
Replace & Find Again – 162
Find Differences – 162
Compare Two Front Windows – 162
Compare Against Disk File – 162
Compare Against Previous Version – 162
Apply to New – 162
Apply to Old – 162
Compare Again – 162
Find Definition – 162
Find in Reference – 163

Go Menu Reference . 163
Line Number – 163
Center Line – 163
Named Symbol – 163
Functions – 163
Reveal Start/End – 164
Go to Previous/Next – 164
Markers – 164
Jump Points – 164
Previous – 164
Next – 164
Set – 164
Previous/Next Error – 164
Previous/Next Placeholder – 165

Chapter 8 Searching with Grep 167
What Is Grep or Pattern Searching? . 168
Recommended Books and Resources . 168
Table of Contents 13

Writing Search Patterns . 169
Most Characters Match Themselves – 169
Escaping Special Characters – 169
Wildcards Match Types of Characters – 170
Character Classes Match Sets or Ranges of Characters – 172
Matching Non-Printing Characters – 173
Other Special Character Classes – 174
Quantifiers Repeat Subpatterns – 175
Combining Patterns to Make Complex Patterns – 176
Creating Subpatterns – 176
Using Backreferences in Subpatterns – 177
Using Alternation – 178
The “Longest Match” Issue – 178
Non-Greedy Quantifiers – 179

Writing Replacement Patterns . 180
Subpatterns Make Replacement Powerful – 180
Using the Entire Matched Pattern – 180
Using Parts of the Matched Pattern – 181
Case Transformations – 182

Examples . 183
Matching Identifiers – 183
Matching White Space – 183
Matching Delimited Strings – 184
Marking Structured Text – 184
Marking a Mail Digest – 185
Rearranging Name Lists – 185

Advanced Grep Topics . 185
Matching Nulls – 186
Backreferences – 186
POSIX-Style Character Classes – 187
Non-Capturing Parentheses – 188
Perl-Style Pattern Extensions – 189
Comments – 189
Pattern Modifiers – 190
Positional Assertions – 191
Conditional Subpatterns – 193
Once-Only Subpatterns – 194
Recursive Patterns – 196

Chapter 9 Browsers 197
Browser Overview . 197

List Pane – 197
Navigation Bar – 198
Text View Pane – 198
Splitter – 198

Disk Browsers . 199
Disk Browser Controls – 199
Contextual Menu Commands – 200
Dragging Items – 200
Using the List Pane in Disk Browsers – 200

Search Results Browsers . 201
Error Results Browsers . 202
14 Table of Contents

Chapter 10 Preferences 203
The Preferences Window . 203

Searching the Preferences – 205
Restore Defaults – 205

Appearance Preferences . 206
Toolbar – 206
Navigation Bar – 206
Editing Window – 207
Text Status Bar – 207
Sidebar – 208
List Display Font Size – 208

Application Preferences . 209
Open documents into the front window... – 209
Automatically refresh documents as they change on disk – 209
Remember the N most recently used items – 209
When BBEdit becomes active – 210
Automatically check for updates – 210

Completion Preferences . 211
Show text completions – 211
Include dictionary words in completion list – 211
Include system text replacements in completion list – 211
Insert matching delimiters while typing – 211
Surround selected text – 211

Editing Preferences . 211
Display instances of selected text – 211
Show tick marks in scroll bars – 212
Use “hard” lines in soft-wrapped views – 212
Soft-wrapped line indentation – 212
Line spacing – 212
Extra vertical space in text views – 212
Allow pinch-to-zoom to change magnification – 212

Editor Defaults Preferences . 212
Auto-indent – 213
Balance while typing – 213
Use typographer’s quotes – 213
Auto-expand tabs – 213
Show invisible characters – 213
Check spelling as you type – 214
Default font – 214
Tab width – 214
This option controls the default number of spaces that BBEdit uses to
represent the width of a tab character. – 214
Soft wrap text To – 214
Table of Contents 15

Keyboard Preferences . 214
Use Tab key to navigate Placeholders – 215
“Home” and “End” Keys – 215
Enter key generates Return – 215
Allow Tab key to indent text blocks – 216
Enable Shift-Delete for forward delete – 216
Enable macOS “Help” key – 216
When auto-indenting, remove leading white space from indented line –
216
Allow Page Up and Page Down keys to move the insertion point – 216
Option-¥ on Japanese keyboards – 216
Emulate Emacs key bindings – 216

Languages Preferences . 217
Installed Languages – 217
Custom Extension Mappings – 218

Menus & Shortcuts Preferences . 218
Menu Key Equivalents and Item Visibility – 219
Simple Menus/Full Menus – 219
Restore Defaults – 219

Preview Helpers Preferences . 219
Web Browsers Available for Previewing – 220

Printing Preferences . 220
Print using document’s font – 220
Printing font – 220
Frame printing area – 220
Print page headers – 221
Print full pathname – 221
Print line numbers – 221
1-inch Gutter – 221
Print color syntax – 221
Time stamp – 221
Wrap printed text to page – 221

Text Colors Preferences . 221
Selecting and Saving Color Schemes – 222
How to Change an Element’s Color – 222
Language-Specific Colors – 222
Global Colors – 222

Text Encodings Preferences . 223
Default text encoding for new documents – 224
If file’s encoding can’t be guessed, try – 224

Text Files Preferences . 224
Line breaks – 224
Ensure file ends with line break – 224
Strip trailing whitespace – 224
Backups – 224

Expert Preferences . 226
Expert preferences Help page – 226

Website configurations . 226
The Setup Window . 226

Bookmarks – 226
Clippings – 227
Filters – 227
Patterns – 227
Folders – 227
16 Table of Contents

 Chapter 11 BBEdit HTML Tools 229
Introduction to the HTML Tools . 229

Recommended Books – 230
Recommended Online Resources – 230
What You Need – 230

Configuring Web Sites . 231
Creating a Web Site Project – 231
Entering Site Settings – 231

Creating and Editing HTML Documents . 237
Creating a New Document – 238
File Addressing – 240
Checking Syntax – 240
Format Customization – 242

Previewing Pages . 242
Applying Preview Filters – 242
Applying Templates and Custom CSS – 243
Previewing Code and Text – 244
Printing Previewed Pages – 244

HTML Tool Descriptions . 244
Edit Markup – 245
Close Current Tag – 246
Balance Tags – 247
Document Type – 247
Character Set – 247
CSS submenu – 247
Body Properties – 253
Head Elements – 253
Block Elements – 254
Lists – 256
Tables – 256
Forms – 257
Inline Elements – 259
Phrase Elements – 262
Font Style Elements – 263
Frames – 263
Check – 264
Update – 265
Includes – 265
Utilities – 266
Tidy – 267
Preview – 267

The HTML Tools Palette . 269
HTML Tools Palette Tips – 269
HTML Tools Palette – 269
Other Palettes – 270

HTML Translation . 272
Convert Paragraphs – 272
HTML Entities – 272
Remove Tags – 272

Templates . 272
Template Setup – 272
Using a Template – 273
Table of Contents 17

Chapter 12 Using Clippings 275
The Clippings Menu . 275
The Clippings Palette . 276
Managing Clipping Sets . 276

Installing New Clipping Sets – 276
Language Sensitivity of Clipping Sets – 276
Manually Sorting Clipping Sets – 277

Creating and Editing Clippings . 277
Inserting Clippings . 279
Assigning Key Equivalents to Clippings . 280
Clipping Substitution Placeholders . 281

Selection and Insertion Placeholders – 283
Jump Placeholder Format – 284
Optional-Argument Placeholder Format – 284
Date Formats – 285
Time Formats – 285

Using Scripts in Clippings . 285

Chapter 13 Scripting BBEdit 287
AppleScript Overview . 287

About AppleScript – 288
Scriptable Applications and Apple Events – 288
Reading an AppleScript Dictionary – 289
Recordable Applications – 294
Saving Scripts – 295
Using Scripts with Applications – 295
Scripting Resources – 296

Using AppleScripts in BBEdit . 297
Recording Actions within BBEdit – 297
The Scripts Menu – 298
The Scripts Palette – 299
Organizing Scripts – 299
Attaching Scripts to Menu Items – 299
Attaching Scripts to Events – 300
Filtering Text with AppleScripts – 304

BBEdit’s Scripting Model . 305
Script Compatibility – 305
Getting and Setting Properties – 307
Performing Actions – 308
Arranging Documents and Windows – 311
Common AppleScript Pitfalls – 313

Chapter 14 Working with Development Tools 315
Configuring BBEdit for Development Environments 316

Syntax Coloring – 316
Ctags for Enhanced Language Support – 316
Locating Unix tools via PATH – 319
Switching Between Counterpart Files – 319
Working with Kite – 319
18 Table of Contents

BBEdit and the Unix Command-Line . 319
Shell Worksheets – 319
Installing the Command Line Tools – 321
The “bbedit” Command Line Tool – 322
The “bbdiff” Command Line Tool – 322
The “bbfind” Command Line Tool – 323
The “bbresults” Command Line Tool – 323

Unix Scripting: Perl, Python, Ruby, Shells, and more! 325
Using Unix Scripts – 325
Language Resources – 325
Setting Environment Variables for GUI Apps – 326
Line Endings, Permissions and Unix Scripts – 326
Configuring Perl – 327
Configuring Python – 327
Configuring Ruby – 327
Shebang Menu – 327
Filters and Scripts – 328
Filters – 329
Scripts – 330
Additional Notes – 330

Working with Git . 331
Configuring Git – 331
Command-Line Integration – 331
Git Commands – 331

Working with Perforce . 334
Perforce Commands – 334

Working with Subversion . 336
Configuring Subversion – 336
Command-Line Integration – 336
Subversion Commands – 336

Chapter 15 Language Modules and Packages 339
Language Modules . 339

Installing Language Modules – 339
Overriding Existing Modules – 340
Codeless Language Modules – 340
Code-based Language Modules – 340
Language Module Compatibility – 340

Packages . 341

Appendix A Command Reference 343
Keyboard Shortcuts for Commands . 343
Assigning Keys to Menu Commands . 344

Available Key Combinations – 344
Listing by Menu and Command Name . 345
Listing by Default Key Equivalent . 357

Appendix B Editing Shortcuts 363
Mouse Commands . 363
Arrow and Delete Keys . 364
Table of Contents 19

Emacs Key Bindings . 365
Using universal-argument – 366

Appendix C Placeholders and Include Files 367
Placeholders . 367

Date Formats – 370
Time Formats – 370
Using the #RELATIVE# Placeholder – 371

Include Files . 372
Include File Locations – 372
Simple Includes – 372
Persistent Includes – 373
Inline versus Block Includes – 373
Include Files with Variables – 373
Including AppleScripts – 374
Including Unix Scripts – 375
Other Include Notes – 377

Appendix D Codeless Language Modules 379

Index 381
20 Table of Contents

C H A P T E R

1
Welcome to BBEdit
This chapter introduces you to BBEdit, a high-performance HTML and text editor
for the Macintosh.

In this chapter
Getting Started . 21
What Is BBEdit? . 21
How Can I Use BBEdit? . 22

Development Environments – 22
Writing HTML Documents – 22

Human Interface Notes . 23
Dynamic Menus – 23 • Bypassing Options Dialogs – 23
Keyboard Shortcuts for Commands – 23 • Contextual Menus – 24
Dialog Box and Sheet Key Equivalents – 24

Feature Highlights . 24
Info on New Features – 25

Discussion Group . 25
Support Services. 25

Getting Started
Thank you for selecting BBEdit, the premier HTML and text editor for the
Macintosh.

If you are new to BBEdit, we recommend that you read at least Chapters 1
through 4 of this manual to familiarize yourself with the installation and basic
operation of BBEdit. You may also wish to read or preview any other chapters
that cover features you frequently use. After you have installed BBEdit, the best
way to learn it is to use it. Complete online assistance is available from the Help
menu.

If you have used earlier versions of BBEdit, we recommend that you read at least
Chapter 1 for an overview of significant changes in this version, and Chapter 2 for
information relevant to installation and upgrading.

What Is BBEdit?
BBEdit is a high-performance HTML and text editor. Unlike a word processor,
which is designed for preparing printed pages, a text editor focuses on providing a
means of producing and changing content. Thus, BBEdit does not offer fancy
formatting capabilities, headers and footers, graphics tools, a thesaurus, or similar
staples of feature-laden “office” software. Instead, it focuses on helping you
manipulate text in ways that word processors generally cannot.
21

In service of this goal, BBEdit offers powerful regular expression–based (“grep”) search
and replace, multi-file search, sophisticated text transformations, intelligent text coloring,
and other features not usually found (or missed) in word processors.

BBEdit also has features that make it easier to edit specific kinds of text, such as source
files for programming languages and HTML (Hypertext Markup Language) files for the
World Wide Web. In fact, since the rise of the Web, BBEdit has been the tool of choice for
Macintosh Web designers who need more flexibility than visual Web authoring tools can
provide.

How Can I Use BBEdit?
Use BBEdit any time you need to create or edit Web pages, source files, or text documents
of any kind. Whether you need to find (or change!) all the occurrences of some text in a set
of files, or modify or reformat large text files of any sort, or quickly tweak a Web page,
BBEdit is the right tool for the job.

Development Environments
BBEdit found its initial following among the Macintosh programming community with its
core editing- and development-oriented tools. Although we have added countless other
features to BBEdit since its first incarnation, its source code editing capabilities are
stronger than ever.

In addition to offering syntax coloring and function browsing for many different languages,
BBEdit supports direct use of Perl, Python, and Ruby (as well as any other Unix scripting
environment) and provides integrated support for the Subversion and Perforce source code
control systems. Chapter 14 provides more information on how to set up BBEdit for this
type of work.

Writing HTML Documents
BBEdit is an ideal tool for preparing and editing HTML documents (web pages). In
addition to many options for preparing text content, such as wrapping, case changes, and
searching, BBEdit offers a powerful set of tools to make editing web pages easier. BBEdit’s
Edit Markup command allows you to quickly add tags or modify existing tags, while the
HTML Tools palette lets you access commands with just a click.

Using BBEdit, you can easily preview your work in most Macintosh web browsers,
including Safari, Chrome, and Firefox, as well as via BBEdit’s native Preview feature and
Windows browsers running under VMWare Fusion. For more information on using the
HTML Tools to create, edit, and preview web pages, see Chapter 11.
22 Chapter 1: Welcome to BBEdit

Human Interface Notes
BBEdit enhances the behavior of its menus and dialogs as described in this section.

Dynamic Menus
IMPORTANT Many of BBEdit’s pull-down menus are dynamic: if you hold down the Shift, Option, or

Control key while a menu is open, you can see some of the items change. The illustration
below shows what the File menu looks like normally (left) and when you hold down the
Option key (right).

You can use the Shift, Option, or Control keys when you choose an item from a menu or
when you use the Command-key equivalents.

Bypassing Options Dialogs
You may have noticed that commands that require additional settings to be made before
they are performed appear on the menu with ellipses after their names. To bypass this step
and use the command with its most recent settings, hold down the Option key while
selecting the menu item. For example, “Zap Gremlins…” in the Text menu becomes “Zap
Gremlins” when the Option key is pressed and, when chosen, will zap gremlins in the
frontmost text document using the current settings.

Keyboard Shortcuts for Commands
Many of BBEdit’s commands have keyboard shortcuts. BBEdit lets you reassign the
shortcuts for any menu item, clippings entry, or script to suit your own way of working.

To change the keyboard shortcut for any menu command as well as any available scripts
and text filters, go to the Menus & Shortcuts preference panel.
Human Interface Notes 23

Contextual Menus
When you Control-click on selected text or at the insertion point in a text window,
BBEdit’s contextual menu will display a set of commands relevant to that location or text,
as well as some appropriate standard commands (such as Cut/Copy/Paste, or Check
Spelling) so you do not have to hunt around in the menu bar for them.

Dialog Box and Sheet Key Equivalents
You can use key equivalents to click buttons or select options in most of BBEdit’s dialog
boxes and sheets. Certain keys have the same meaning in all dialogs and sheets:

• Pressing either the Return or Enter key is the same as clicking the default button.

• Typing Command-period or pressing the Escape key is the same as clicking the
Cancel button.

• You can use the Cut, Copy, Paste, Clear, and Select All commands (either from the
Edit menu or with their Command-key equivalents) in any text field.

Feature Highlights
BBEdit 12 offers many powerful features for editing and processing text and code, and for
managing your work. Here are some highlights:

• Automatic completion (closure) of delimiters

• New 'Canonize' command to perform list-based batch search & replacement

• Dedicated column selection and sorting commands

• New 'Paste Using Filter' and enhanced 'Extract' commands

• Split View now functional for editing windows

• WebKit Inspector available within Preview windows

as well as all the powerful core features BBEdit is known for, including:

• Single-window Find Differences results

• Built-in support for Git

• Support for the EditorConfig settings file convention

• A selection of carefully crafted pre-installed color schemes

• Info popup offers live document statistics and file permissions adjustment

• Go menu, with Function, Jump Points, and Markers navigation

• Project document-based website configurations (with support for content
deployment)

• Automatically preserves unsaved documents upon quit

• Save and load custom text color schemes
24 Chapter 1: Welcome to BBEdit

• Enhanced navigation in project windows and editing windows

• Simplified preferences and configuration management

• Direct editing of files within Zip archives—plus multi-file search & replace!

• Text completion for easy insertion of words, syntax elements, and clippings

• Package support for convenient extensibility

• 'Preview in BBEdit' supports filters, template pages and stylesheets

• In-window Live Search to highlight and quickly jump between matches

• Find and Multi-File Search windows provide a convenient interface to BBEdit's
legendary search and replace capabilities

Info on New Features
In addition to these major features, BBEdit 12 also contains numerous additional
convenience features and interface refinements, as well as performance enhancements and
bug fixes. For a detailed summary of changes and bug fixes, please refer to the current
release notes, which are available in the BBEdit Support section of our web site.

https://www.barebones.com/support/bbedit/current_notes.html

Discussion Group
We maintain a public Google Group where our customers can discuss and share knowledge
about using BBEdit.

https://groups.google.com/group/bbedit

Support Services
If you need information about using BBEdit (or any of our other products) the Support area
of our web site offers up-to-date details:

 https://www.barebones.com/support/

You'll find a wide range of information there, including:

• Frequently Asked Questions (FAQ) — Information and answers for commonly
encountered questions and problems. We strongly recommend you check the
BBEdit FAQs before resorting to any other means of inquiry.

• Product Updates — The latest maintenance versions of our products are always
available for download.

as well as access to language modules, sample scripts, developer info, and other materials.
Discussion Group 25

https://www.barebones.com/support/bbedit/current_notes.html
https://www.barebones.com/
https://groups.google.com/group/bbedit

How to contact us
If you have a registered copy of BBEdit (or any other Bare Bones product), and you can’t
find the information you need on our web site, or if you encounter any problems with the
software, please use the contact form on our web site or send email to:

support@barebones.com

Note We do not offer telephone support. Please refer to the support resources available on
our web site for information and assistance, or contact us via email.
26 Chapter 1: Welcome to BBEdit

C H A P T E R

2
Installing BBEdit
This chapter tells you how to install BBEdit on your Macintosh. It also describes
the files BBEdit creates, where it puts them, and how to install or remove optional
components of BBEdit.

In this chapter
Basic Installation . 27

System Requirements – 27 • Installing BBEdit – 27
Automatic Relocation – 28 • Launching BBEdit – 28
Activating BBEdit – 28 • Checking for Updates – 29
Upgrading from a Previous Version – 30
Converting from TextWrangler – 30

BBEdit’s Application Support Folder . 30
Application Support Folder Contents – 31
Clippings – 31 • Color Schemes – 31 • HTML Templates – 32
Language Modules – 32 • Menu Scripts – 33 • Scripts – 33
Shutdown Items – 34 • Startup Items – 34 • Stationery – 35
Superseded App Support Folders – 36 • Upgrading – 36

Preference Files and Folders . 36
BBEdit Preferences File – 36 • BBEdit Preferences Folder – 36

Sharing Application Support & Preferences Data via Dropbox 38
Sharing Application Support & Backups via iCloud Drive 39

Basic Installation
BBEdit is supplied as a single application file. Specific system requirements and
installation instructions are described below, and the organization of BBEdit’s
supporting files is described in subsequent sections.

System Requirements
IMPORTANT BBEdit 12 requires OS X 10.11.6 or later, and is fully compatible with macOS

10.13 “High Sierra”. The software will not run on any earlier version of OS X.

Installing BBEdit
When you download BBEdit, you will receive a standard disk image (“.dmg”)
file. Your web browser may automatically mount the disk image once the
download is complete; otherwise, you should double-click on the disk image file
to mount it. Once the disk image is mounted, drag the “BBEdit” application over
the adjacent icon for the Applications folder and drop it there to copy BBEdit
onto your Mac’s hard drive. You can then dismount (eject) the disk image and
discard the “.dmg” file.
27

Automatic Relocation
If you launch BBEdit from any location other than your Mac’s main “Applications” folder
(/Applications/) or the account-specific equivalent (~/Applications/), BBEdit will offer to
automatically relocate itself into the main “Applications” folder.

Launching BBEdit
The first time you launch BBEdit, it will display a “Thank you” dialog.

You may click “Product Info...” to visit our website for additional product info, “Continue”
to start using BBEdit immediately, “Enter License...” to present an activation sheet into
which you can enter your name and product serial number, or “Buy License” to
immediately purchase a new license via an in-app order window (or if BBEdit finds a
license for an older version, it will send you to the upgrade verification page of our online
store).

Activating BBEdit
While running in evaluation mode, BBEdit will operate with full functionality for up to 30
days. Once the demo period has ended, BBEdit will remain permanently functional with a
revised feature set that includes its powerful text editing capabilities but not its web
authoring tools or other exclusive features; these features will present a reminder dialog
instead of functioning when chosen.
28 Chapter 2: Installing BBEdit

When the product is unlicensed, all menu commands corresponding to these exclusive
features are badged with a “Star” icon, as shown here in the Clippings menu. BBEdit's
exclusive features may be re-enabled at any time with a purchased license.

To activate the demo, click “Enter License...”and enter your name and the unique product
serial number that you received with your order into the activation sheet:

Note We recommend you copy your BBEdit serial number and paste it into the activation
sheet to avoid transcription errors.

Once you enter the serial number, your copy of BBEdit will be activated, and all demo
restrictions will be removed.

IMPORTANT In order to activate BBEdit 12, you must have a valid BBEdit 12 product serial
number (one beginning with a prefix of “BEE120-” or “BEC120-”). You cannot
activate the application with a serial number from any older version of BBEdit.

If you have not yet purchased the product and thus do not have a serial number, leave this
space blank. BBEdit will operate as a fully functional demo for a limited trial period, after
which you must purchase a license and enter a valid serial number in order to continue
using it.

If BBEdit has already been activated, you may review the active serial number at any time
by choosing the License command from the BBEdit menu to bring up the license info
dialog. In order to change activation to a different serial number, click Edit License to bring
up the activation sheet and enter the new information.

Note After you have entered a valid serial number (either manually or via in-app ordering),
BBEdit will figure out whether you have Yojimbo installed and if so, it will offer to save
your serial number there.

Checking for Updates
BBEdit offers the option to automatically check for updates; this behavior is controlled by
the “Automatically check for updates” option in the Application preferences panel. You can
also directly check for updates at any time by choosing Check for Updates in the BBEdit
(application) menu.
Basic Installation 29

http://www.barebones.com/products/yojimbo/

In order to update BBEdit when future maintenance releases become available, you need
only apply the update when prompted. (Alternatively, you may quit BBEdit, and manually
replace your existing copy with the updated version.) The first time you launch a newer
version of the software, BBEdit will prompt you for any further actions which may be
needed, such as updating the command line tools.

Upgrading from a Previous Version
IMPORTANT If you are upgrading from any version prior to BBEdit 8.5, in addition to installing the

current application, you will need to manually copy over any items you wish to use from
your existing “BBEdit Support” folder into BBEdit’s application support folder. You
should not simply rename your existing “BBEdit Support” folder. (See “Sharing
Application Support & Preferences Data via Dropbox” on page 38.)

Please carefully read the remainder of this chapter, since the organization of BBEdit’s
supporting files has changed considerably. We have provided specific suggestions and tips
for transferring your customized support items in each category.

Converting from TextWrangler
If you launch BBEdit with no existing preferences, the application will instead look for any
existing TextWrangler preferences and migrate them.

In addition, if a TextWrangler preference data folder exists (at “/Users/<username>/
Library/TextWrangler/` which is the default for recent versions), then BBEdit will copy
that folder to “/Users/<username>/Library/BBEdit/”.

Finally if a TextWrangler application support folder exists (at “/Users/<username>/Library/
Application Support/TextWrangler/” BBEdit will copy this folder to “/Users/<username>/
Library/Application Support/BBEdit/”.

BBEdit’s Application Support Folder
BBEdit’s application support folder contains items which define or extend BBEdit’s
capabilities, such as clippings sets, language modules, scripts, and more. These items are
organized into subfolders according to their purpose (described below).

IMPORTANT BBEdit’s application support folder must be present in the following location:

/Users/<username>/Library/Application Support/BBEdit/

If this folder does not exist when BBEdit starts up, BBEdit will create this folder together
with a number of standard subfolders, to which you can add any appropriate items. None of
these folders are essential for doing basic tasks with BBEdit, and you can remove any or all
of them that you don’t use.

Note Although OS X hides your account’s local “Library” folder by default, you can still
access this folder in the Finder by holding down the Option key, then selecting
Library from the Go menu in the menu bar.
30 Chapter 2: Installing BBEdit

Application Support Folder Contents
BBEdit’s application support folder contain various subfolders, each of which holds a
specific type of support item.

You can relocate BBEdit’s application support folder by placing a symlink (though not an
alias) in the default location which points to this folder’s actual location. However, you
cannot independently relocate any of the subfolders within the application support folder.
We also recommend that you do not try to share scripts between BBEdit and other
applications, nor should you attempt to store BBEdit’s application support folder on any
remote (server) volume.

Attachment Scripts
This folder does not exist by default, but you may create it at any time. The Attachment
Scripts folder contains AppleScripts which are run at specific points: when BBEdit starts or
quits; and when documents are open, saved, and closed.

Auto-Save Recovery
[This folder’s default location has moved into BBEdit’s local preferences folder.]

Clippings
BBEdit will automatically create this folder if it does not exist. The Clippings folder
contains clipping items. These items are text files which appear in the Clippings menu and
palette, and whose contents can be inserted into a document by choosing them directly, or
via text completion. Clippings may also contain special placeholders which insert varying
or context-sensitive information—for example, a date or the name of the current file. (See
Chapter 12 for more information on creating and using clippings.)

Upgrading You should move or copy over any third-party clipping packages, or any custom
clippings which you have created, that you wish to preserve.

Color Schemes
BBEdit will automatically create this folder when needed. The Color Schemes folder stores
any custom color schemes which you have saved within the Text Colors preference panel
(or which you have download and copied over). Each scheme is stored within a separate
“.bbColorScheme” file.

Completion Data
This folder does not exist by default, but you may create it. The Completion Data folder
contains tags files (or aliases to tags files) which can provide additional text completions
for editing documents in the corresponding languages.

These tags files should be in the format generated by ‘bbedit --maketags’, and must be
placed in subfolders corresponding to their languages.

Each subfolder should have the exact name of its language as that language appears in the
list of installed languages (or on the Languages popup menu).
BBEdit’s Application Support Folder 31

For example, the subfolder containing a Python tags file must be named “Python”, and the
subfolder containing a tags file for ANSI C must be named “ANSI C”.

Custom Keywords
BBEdit will automatically create this folder if it does not exist. This folder provides an
easy, supported way to add keywords to any installed languages via text files.

In order to do so, place one or more files containing the keywords that you wish to be
colored inside this folder. Each file's name should map to the appropriate language, e.g.
“.js” for JavaScript files. You can have multiple keyword files mapped to the same
language, if you wish.

Each file should contain UTF-8 text (no BOM) with one keyword per line. Keyword
lookups are case-sensitive if the corresponding language is case sensitive, or case-
insensitive otherwise.

All keywords within a keyword file are colored using the “Language Keywords” color.

Custom keyword files can also use an Emacs mode line to specify their language type. This
option addresses the case in which you may want to supply keywords for a language that
doesn't have any filename extension mappings. For example, “.php” maps to the “PHP in
HTML” language type, which means that embedded PHP keywords need to be in a
keywords file that maps to the “PHP” language. Such a keyword file’s contents would look
like this:

- mode: php; --
keyword_one
keyword_two
...etc...

HTML Templates
BBEdit does not create this folder by default, but one may exist from previous versions.
This folder contains HTML template files which are used by the New HTML Document
command. In order to use these templates elsewhere, you may either choose this folder to
be the Templates & Includes folder for the web site configuration within a specific project,
or you can copy the template files into an already-designated site templates folder. Please
see Chapter 11 for more information on BBEdit’s HTML tools.

Upgrading You should move or copy over any customized template or include documents that
you wish to preserve.

Language Modules
BBEdit does not create this folder by default, but will do so if necessary. The Language
Modules folder allows you to add syntax coloring and function navigation support for
additional languages by installing language modules.

IMPORTANT Please do not attempt to extract or modify the language modules contained
in the BBEdit application bundle.

A list of additional modules from third-party developers is available on our web site, or you
may create your own compiled or codeless language modules (see “Codeless Language
Modules” on page 340).
32 Chapter 2: Installing BBEdit

Upgrading You should move or copy over any compatible third-party language modules that you
wish to preserve.

Menu Scripts
This folder does not exist by default, but you may create it. The Menu Scripts folder
contains AppleScripts that are attached to BBEdit menu items. (For more details on using
menu scripts, please see “Attaching Scripts to Menu Items” on page 299.)

Upgrading You should move or copy over any menu scripts that you wish to preserve.

Packages
This folder does not exist by default, but you may create it. The Packages folder contains
pre-packaged sets of supporting items. (For information about creating packages, please
see “Packages” on page 341.)

Readme.txt [file]
This file contains an abbreviated description of the default contents of BBEdit’s application
support folder.

Scratchpad [file]
BBEdit automatically creates this file, which contains the data for BBEdit’s main
Scratchpad. Removing this file will result in the loss of your Scratchpad data.

Scripts
BBEdit will automatically create this folder if it does not exist. The Scripts folder may
contain AppleScript files, Automator workflows, text factories, and executable Unix files
(scripts). Items placed in this folder will appear in the Scripts menu (left), and you may
place items within subfolders (up to four levels deep) to organize them.

You may run these items from the Scripts menu, the floating Scripts palette, or via assigned
key equivalents. (You may use the Menus & Shortcuts preference panel to assign a key
equivalent to any item in the Scripts menu.)

BBEdit runs such items by simply loading the item and calling it directly, without
providing any inputs. (Naturally, AppleScript scripts and Automator actions may query
BBEdit for more information, and Unix scripts may obtain information from the
environment variables that BBEdit sets, while text factories will use their stored target list
if any.)

Upgrading If you are upgrading from BBEdit 8.5 or 9, the first time you launch BBEdit 12, it will
automatically copy all of your existing Unix scripts into this folder.

If you are upgrading from a version prior to 8.5, you must instead manually move or
copy over any customized scripts that you wish to preserve. Note also that scripts
written for use with such older versions of BBEdit may no longer work. (Please see
Chapters 13 and 14 for more details and tips on modifying your existing AppleScripts
and Unix filters & scripts.)
BBEdit’s Application Support Folder 33

Setup
BBEdit will automatically create this folder if it does not exist. The Setup folder contains
configuration data such as: stored file filters, FTP/SFTP bookmarks, key bindings, and grep
patterns. Thus, if you have relocated your BBEdit application support folder into either
your Dropbox or iCloud Drive folder, these items will be synchronized.

The Setup folder may contain any or all of the following data files.

File Filters.filefilters
BBEdit stores all user-defined file filter patterns in this file. You should not attempt to
directly edit the contents of this file; instead, please use the Filters panel of the Settings
window to add, modify, or remove stored grep patterns.

FTP Bookmarks.xml
BBEdit stores user-defined FTP and SFTP bookmarks in this file. You should not attempt
to directly edit the contents of this file; instead, please use the Bookmarks panel of the
Settings window to add, modify, or remove bookmarks.

Grep Patterns.xml
BBEdit stores user-defined search patterns in this XML file. You should not attempt to
directly edit the contents of this file; instead, please use the Patterns panel of the Settings
window to add, modify, or remove stored grep patterns.

Upgrading If you have created any custom grep patterns in a previous version of BBEdit, these
patterns will be imported; otherwise, BBEdit will create a set of factory default
patterns.

Menu Shortcuts.xml
BBEdit stores keyboard shortcuts for menu commands in this XML file.

Not Menu Shortcuts.xml
BBEdit stores other keyboard shortcuts in this XML file.

Shutdown Items
This folder does not exist by default, but you may create it at any time. The items in this
folder are opened when you quit BBEdit. Usually, this function is used to run scripts of
some sort.

Shutdown items are run after all windows have been closed, and only if BBEdit is actually
quitting. Thus, if you wish to run any items as the immediate result of a Quit command, you
should write a menu script attached to BBEdit•Quit.

Note In some previous versions of BBEdit, shutdown items were run before all windows
were closed, and were run whenever the application was told to quit (either by the
Quit menu command or via the scripting interface), regardless of whether it actually
quit or not.

Upgrading You should move or copy over any shutdown items that you wish to preserve.

Startup Items
This folder does not exist by default, but you may create it at any time. When launched,
BBEdit will open any items it finds in this folder.
34 Chapter 2: Installing BBEdit

If the items present are documents of a type that BBEdit knows how to handle (such as text
files or projects), BBEdit will open them directly. If you place a compiled AppleScript in
this folder, BBEdit will execute the script. If you place a folder alias here, BBEdit will open
a disk browser window based at that folder.

If you place other types of items in this folder, BBEdit will ask the Finder to open them. If
you often edit HTML files, for instance, you may want to place an alias to your Web
browser (or your visual HTML editor) in the BBEdit Startup Items folder so that it will start
up automatically whenever you run BBEdit.

Upgrading You should move or copy any file or application aliases that you wish to preserve. If
you have any AppleScripts startup items, please see the preceding upgrade note for
the Scripts folder about script compatibility.

Stationery
This folder does not exist by default, but you may create it at any time. The Stationery
folder contains stationery files for use with BBEdit’s New with Stationery command.
Stationery files may be placed within subfolders (up to four levels deep) to organize them.

You can hide, or show, all items included from the global folder by using the menu item
“Hide/Show Library Stationery”.

Upgrading You should move or copy over any stationery documents that you wish to preserve.

Text Filters
This folder does not exist by default, but you may create it at any time. The Text Filters
folder contains executable items, such as compiled AppleScripts, Automator workflows,
text factories, and Unix filters, which you may apply to the frontmost document via the
Apply Text Filter command in the Text menu, or to the current contents of the clipboard via
the Paste Using Filter submenu of the Edit menu.

When you apply such an item, BBEdit will pass either the selected text (if any) or the
contents of the entire document (or the clipboard) on STDIN to Unix executables and
filters, as a reference to a ‘RunFromBBEdit’ entry point in AppleScripts, as text input to
Automator workflows, and as a source to text factories. (An AppleScript script intended for
use as a text filter must have a ‘RunFromBBEdit’ handler.)

AppleScript scripts and Automator workflows should return a string which BBEdit will use
to replace the selection range, Unix filters should write to STDOUT, and the text emitted by
a text factory will replace the selection range.

Upgrading If you are upgrading from BBEdit 8.5 or 9, the first time you launch BBEdit 12, it will
copy all of your existing text factories and Unix filters into this folder.

Unix Worksheet.worksheet
BBEdit automatically creates this file, which contains the data for BBEdit’s global Unix
worksheet window. (Choose Show Unix Worksheet in the Window menu to open this
worksheet.) Removing this file will result in the loss of your global Unix worksheet data.
BBEdit’s Application Support Folder 35

Superseded App Support Folders
Upgrading BBEdit 12 does not use the Text Factories or Unix Support subfolders, though these folders

may exist if they were created by a prior version. Instead, the first time you launch BBEdit
12 after upgrading from an older (pre-10.0) version, it will copy all existing Unix scripts
into the Scripts folder, and all existing text factories and Unix filters into the Text Filters
folder.

Preference Files and Folders
When you start up BBEdit, it may create the files and folders noted in this section.

BBEdit Preferences File
All of BBEdit’s basic preference settings are stored in the file “/Users/<username>/Library/
Preferences/com.barebones.bbedit.plist”, which is created and maintained using standard
system services.

In addition to the settings documented in Chapter 10, you may adjust additional expert
preference settings outside of BBEdit by issuing suitable “defaults write” commands. For a
complete list of available expert preference settings, please see the “Expert Preferences”
page of the built-in Help book. (To open the Help book, choose “BBEdit Help” in the
“Help” menu.)

Upgrading BBEdit 12 will import and use any relevant preference settings from version 8.5 or
later, provided an existing preference file is available.

BBEdit Preferences Folder
By default, BBEdit stores ancillary preference data in the folder “/Users/<username>/
Library/BBEdit” so as to comply with current OS guidelines.

Note BBEdit 12 will not use the historical prefs data folder “~/Library/Preferences/
com.barebones.BBEdit.PreferenceData/” even if such a folder already exists.

The standard contents of this folder are as follows.

Auto-Save Recovery
BBEdit will automatically create this folder. The Auto-Save Recovery folder contains
information which BBEdit can use to recover the contents of unsaved documents after a
crash, or to restore them at launch. Removing items from this folder can cause data loss.

Document State.plist
BBEdit stores state information for individual documents in this file.

Recent Files & Favorites
This folder is no longer used and may be deleted.

Recent Folders & Favorites
This folder is no longer used and may be deleted.

Save Application State.appstate
BBEdit stores application state info in this file.
36 Chapter 2: Installing BBEdit

Saved Sources.xml
BBEdit stores all user-defined search sources in this file.

Sleep State.appstate
BBEdit stores application state info in this file.
Preference Files and Folders 37

Sharing Application Support &
Preferences Data via Dropbox
If you use Dropbox, you may relocate your BBEdit application support and preference data
folders to your active Dropbox folder, and BBEdit will use their contents from that location
rather than the default locations (within your account’s local “Library” folder). In this way,
you can easily share supporting files among multiple BBEdit installations.

In order to do this:

• Quit BBEdit if it is running.

• Move your BBEdit application support folder (/Users/<username>/Library/
Application Support/BBEdit/) into a folder named “Application Support” within
your Dropbox folder, so that its final location is “/Users/<username>/Dropbox/
Application Support/BBEdit/. (Since Dropbox does not create an “Application
Support” folder by default, you may need to do so.)

• Locate your BBEdit preference data folder (either /Users/<username>/Library/
BBEdit/ or ~/Library/Preferences/com.barebones.bbedit.PreferenceData/)

• Rename your BBEdit preference data folder from “BBEdit” (or
“com.barebones.bbedit.PreferenceData”) to “PreferenceData”.

• Move the “PreferenceData” folder into ~/Dropbox/Application Support/BBEdit/

Note Since the system does not support relocation of an application’s core preferences data
file (/Users/<username>/Library/Preferences/com.barebones.bbedit.plist), you
cannot directly sync these settings. You may, however, copy BBEdit’s core preferences
file to other machines to ‘seed’ them with your preferred preference settings.
38 Chapter 2: Installing BBEdit

Sharing Application Support &
Backups via iCloud Drive
If you use iCloud Drive, you may relocate your BBEdit application support folder and/or
backup data folders to iCloud Drive, and BBEdit will use their contents from that location
rather than the default locations (within your account’s local “Library” folder). In this way,
you can easily share supporting files among multiple BBEdit installations.

In order to share BBEdit’s application support folder:

• Quit BBEdit if it is running.

• Create a folder named “Application Support” within your iCloud Drive folder.

• Move your BBEdit application support folder (/Users/<username>/Library/
Application Support/BBEdit/) into the “Application Support” folder within your
iCloud Drive folder.

• Launch BBEdit

and BBEdit should automatically recognize and use the relocated application support
folder.

In order to share BBEdit’s backups folder:

• Create a folder named “BBEdit Backups” within your iCloud Drive folder.

• Open BBEdit’s Preferences window and select the Text Files preference pane.

• Turn on the options to “Make backup before saving” and “Keep historical
backups”

and BBEdit should now recognize and use the relocated backups folder.

IMPORTANT The ability to share supporting files between multiple installations of BBEdit does not
excuse you from the terms of BBEdit’s license. You may use Dropbox to share your
supporting files with whomever you wish, but you must continue to abide by the
license agreement.
Sharing Application Support & Backups via iCloud Drive 39

40 Chapter 2: Installing BBEdit

C H A P T E R

3
Working with Files
This chapter discusses how to use BBEdit to manipulate text files.

In this chapter
Launching BBEdit . 42

Startup Items – 42
Creating and Saving Documents . 43

Saving a Copy of a File – 45 • File Saving Options – 45
File State – 46 • Emacs Local Variables – 47
Saving with Authentication – 48
Saving Compressed Files as bz2 or gzip – 48
Saving as Styled Text or HTML – 48

Crash Auto-Recovery . 48
Opening Existing Documents . 49

Front Window versus Separate Windows – 49
Choosing the Encoding for a Document – 50
Using the Open Command – 51 • Reload from Disk – 52
Opening and Editing Files within Zip Archives – 52
Opening bz2, gzip, and tar Files and Binary plists – 52
Opening Hidden Files – 53
Using the Open Recent Command – 56
Using the Reopen using Encoding Command – 56
Using the Open Selection Command – 53

Quitting BBEdit . 56
An International Text Primer . 57

International Text in BBEdit – 57 • Unicode – 57
Saving Unicode Files – 58 • Opening Unicode Files – 58

Accessing FTP/SFTP Servers . 59
Opening Files from FTP/SFTP Servers – 59
Saving Files to FTP/SFTP Servers – 62
Using BBEdit from the Command Line – 64

Using BBEdit from the Command Line. 64
Using Projects . 65

Creating a Project – 65 • Project Commands – 66
Using projects – 68 • Removing Files from a Project – 68
Contextual Menu Commands – 69
Script Access to Project Contents – 69

Using Stationery . 69
Hex Dump for Files and Documents . 70
Making Backups. 70
Printing . 70

Printing Options – 71
41

Launching BBEdit
To launch BBEdit, double-click the BBEdit application icon or a BBEdit document.
Holding down the following keys at launch has the indicated effects, overriding any startup
options set in the Application preference panel. When one of these key combinations is
applied, BBEdit will beep after it finishes launching.

Startup Items
When launched, BBEdit will look for a folder named Startup Items in the its application
support folder (see “Sharing Application Support & Preferences Data via Dropbox” on
page 38). If this folder is found, BBEdit will open any items it finds in the folder.

If the items present are documents of a type that BBEdit knows how to handle (such as text
files or projects), BBEdit will open them directly. If you place a compiled AppleScript in
this folder, BBEdit will execute the script. If you place a folder alias here, BBEdit will open
a disk browser window based at that folder.

If you place other types of items in this folder, BBEdit will ask the Finder to open them. If
you often edit HTML files, for instance, you may want to place an alias to your Web
browser (or your visual HTML editor) in the BBEdit Startup Items folder so that it will start
up automatically whenever you run BBEdit.

Modifier Function

Option Suppress startup items only.

Shift Disable all external services and startup items,
and skip reopening all documents except those
which contain unsaved changes.

Command-
Control-Shift

Disable all external services and startup items,
and optionally discard auto-recover information
(which will result in the loss of any unsaved
changes).
42 Chapter 3: Working with Files

Creating and Saving Documents
To create a new text document or special-purpose window within BBEdit, pull down the
File menu and open the New submenu. Since BBEdit uses different kinds of documents for
specific purposes, you will see several options, as follows:

The available commands and their effects are as follows:

• Text Document: Opens an empty text document.

• (with selection): Opens a new text document containing any text selected in the
active document and having the same display font, saving you the trouble of
copying and pasting it.

• (with Clipboard): Opens a new text document and automatically pastes the
contents of the current clipboard into it.

• HTML Document: Brings up a dialog with options for creating a new HTML
document (see Chapter 11 for more information on working with HTML
documents).

• Text Window: Opens a new text window (see “Text Windows” later in this chapter
for more information).
Creating and Saving Documents 43

• Project: Opens a new project window (see “Using Projects” later in this chapter for
more information).

• Disk Browser: Opens a new disk browser (see Chapter 9 for more information).

• FTP/SFTP Browser: Opens a new FTP/SFTP browser (see later in this chapter for
more information).

• Shell Worksheet: Opens a new shell worksheet using your default shell.

• Text Factory: Opens a new Text Factory window (see “Text Factories” in Chapter
5 for more information).

You can also create a new text document by selecting text in any application which
supports the system Services menu, and choosing the New Window with Selection
command from the BBEdit submenu of the Services menu. BBEdit will open a new text
window containing a copy of the selected text.

When you want to save a new text document:

1 Choose the Save or Save As command from the File menu.

BBEdit opens a standard Save sheet:

2 Give the file a name.

3 Change the automatically-provided filename extension (if necessary).

BBEdit will automatically provide a filename extension based on the current
document’s language.

4 Change any desired options (see below).

5 Click Save to save the file.
44 Chapter 3: Working with Files

You can also create a new document from the selected text in any open window with
BBEdit’s contextual menu. Simply Control-click the selected text and choose New (with
selection) or Save Selection from the menu that appears. Depending on which command
you choose BBEdit will either create a new editing window containing the selected text, or
display the Save dialog and allow you to create a new file containing the selected text. The
new file will use the same options (see “File Saving Options,” below) as those of the
original parent document.

Saving a Copy of a File
You can save a copy of a file with BBEdit’s Save a Copy command in the File menu. Just
like the Save As command, the Save a Copy command displays a Save dialog and lets you
choose a name and location for the file. However, unlike the Save As command, where
BBEdit will start working with the new file you saved in place of the original, when you
use Save a Copy, you create a new file in the designated location, but keep working with
the original file.

For example, say you are editing a document called Test.c and use the Save a Copy
command to save a document called Backup-Test.c. The next time you choose the Save
command, BBEdit saves the changes to Test.c and not to Backup-Test.c.

File Saving Options
BBEdit’s Save dialog is the standard Macintosh Save dialog with these additions:

Save As Stationery
When this option is on, BBEdit saves the document as a stationery pad file. When you later
open the stationery file, BBEdit will use it as the basis of a new untitled document. The
new document will inherit the contents and display settings of the stationery document, but
BBEdit will prompt you for a name when you save it.

Line Breaks
The Line Breaks menu let you choose what kinds of line breaks BBEdit writes when you
save the file. Choose:

• Unix line breaks (ASCII 10) for most purposes, including use with modern Mac
applications, or for files being saved to a Unix file server. This is the default
option.

• Legacy Mac OS line breaks (ASCII 13) if you will be using the file with other
applications which expect this format.

• Windows line breaks (ASCII 13/10) if the file resides on a Windows file server or
if you will be sending it to someone who uses a Windows- or DOS-based system.

Encoding
BBEdit lets you save documents using any character set encoding supported by OS X,
including a variety of Unicode formats (see “Saving Unicode Files” on page 58). To select
an encoding, choose its name from the Encoding pop-up menu. The list of available
encodings is controlled by your preference settings (see “Text Encodings Preferences” on
page 223).
Creating and Saving Documents 45

When you select an encoding that requires a Unicode file format, you can also choose
“Unicode” as an option from the Line Breaks pop-up menu in this dialog. (Unicode has its
own line-ending standard.)

Note You can choose which encodings appear in the Encoding pop-up menu in the Text
Encodings preference panel.

Encoding and File Type Codes
BBEdit no longer uses the “TUTX”, “utxt”, or “UTF8” HFS file type codes to determine
the text encoding of a file’s contents.

File State
If you modify a document’s window position or display settings and then save the
document, BBEdit stores state information, which it will use to reopen that document in the
same manner.

BBEdit captures only those settings which are fundamental to the document (window
position, selection range, folds, splitter setting), or any settings which vary from the global
preferences. (The latter ensures that changes to the global preferences are never
inappropriately overridden by stored display options derived from prior global or default
preference settings.)

For example, say BBEdit’s default display font is Menlo, and you open (or create), save,
and close a document which uses that font. If you then change BBEdit’s default display
font to Monaco before reopening that document, the document will display in Monaco.

Note The above example uses the display font option for illustration, but the same principle
applies to any document display option which derives from BBEdit’s global
preferences.

EditorConfig
BBEdit supports the ‘EditorConfig’ settings file convention. You can learn more about this
convention at the EditorConfig project website:

http://www.editorconfig.org/

BBEdit supports most, but not all, of the core EditorConfig properties listed here:

https://github.com/editorconfig/editorconfig/wiki/EditorConfig-
Properties

except that the ‘end_of_line’ and ‘max_line_length’ properties are not supported.

In addition to the core EditorConfig properties, there are some BBEdit-specific additions.
First, BBEdit supports the following keys which originated as Emacs variables:

• coding: similar to ‘charset’, but allows you to specify any IANA character set
name.

• mode: allows you to explicitly specify the language. Many of the Emacs-style
mode names work, as long as they correspond to supported languages in BBEdit.
In addition, any installed language in BBEdit may be expressed as a mode name
by lowercasing its name and replacing spaces with dashes. For example, “Ruby in
HTML” becomes ‘ruby-in-html’; or “Strings File” becomes ‘strings-file’.
46 Chapter 3: Working with Files

http://www.editorconfig.org/
https://github.com/editorconfig/editorconfig/wiki/EditorConfig-Properties

• make-backup-files: set to 1 or 0, determines whether BBEdit makes a backup of
the file when saving.

• backup-inhibited: if present and set to 1, will explicitly suppress the creation of
backup files when saving.

Finally, BBEdit supports some keys which are explicitly specific to its own settings. All of
these keys have names that begin with ‘x-’ in order to prevent collisions with any future
core keys. These correspond directly to individual document settings, and if present will
override BBEdit’s global preferences:

• x-typographers-quotes: Use Typographer’s Quotes

• x-balance-while-typing: Balance While Typing

• x-soft-wrap-text: Soft Wrap Text

• x-soft-wrap-mode: (string) Must be one of ‘CharacterWidth’, ‘WindowWidth’, or
‘PageGuide’

• x-soft-wrap-limit: (integer) if the wrap mode is ‘CharacterWidth’, specifies the
number of characters

• x-font-name: (string) the display font name

• x-font-size: (integer) the display font point size

• x-show-invisibles: Show Invisibles

• x-show-spaces: Show Spaces

Unless otherwise noted, these application-specific keys are all Boolean flags.

Emacs Local Variables
Emacs (the popular Unix text editor) supports a convention in which you can define
Emacs-specific settings in a block of text near the end of the file, or in the first line of the
file. This convention helps maintain consistency when sharing files among a group of
people, or across multiple systems.

For general information on Emacs variables, please see the GNU Emacs manual:

http://www.gnu.org/software/emacs/manual/html_node/emacs/
Specifying-File-Variables.html

BBEdit will read and honor the “coding”, “tab-width”, and “x-counterpart” variables in any
file which contains an Emacs variable block, and adjusts the value of the “coding” variable
if you change the document’s encoding by using the Encoding popup.

If a file contains an Emacs variable block (or line) having a “mode” variable, BBEdit will
attempt to match the mode name against all currently recognized languages, before
attempting to match the file name suffix or guess based on the file's contents.

You may add an Emacs variable block (or lines) to any document either directly, or by
selecting the Emacs Variable Block command from the Insert submenu of the Edit menu.

Here is an example variable block from a plain text file:
Creating and Saving Documents 47

http://www.gnu.org/software/emacs/manual/html_node/emacs/Specifying-File-Variables.html

Local Variables:
coding: ISO-8859-1
tab-width: 8
End:

You may also add the BBEdit-specific variable “make-backup-files” to control whether or
not BBEdit should back up a given file. For more details, please see “Controlling Backups
with Emacs Variables” on page 225.

Saving with Authentication
BBEdit supports saving files that require administrator privileges, if you possess the
necessary user and password information to enable this. For example, you can edit and save
files that are owned by, and only readable by, the “root” user. Authenticated saving is
particularly useful in conjunction with the “Show Hidden Items” option in the Open dialog,
which allows you to see and open files in hidden folders (like /bin and /usr).

When you open a file for which you do not have write privileges, BBEdit will display a
locked padlock icon in the status bar. To edit the file, click the padlock icon. BBEdit will
prompt you to confirm whether you wish to unlock the file. (Option-click the padlock icon
to skip the confirmation dialog.)

When you are finished editing, simply choose Save from the File menu. BBEdit will
prompt you to authenticate as a user with administrator privileges. Type a suitable user
name and password to save the file.

Saving Compressed Files as bz2 or gzip
BBEdit transparently supports opening, browsing, and saving files compressed in the ‘bz2’
and ‘gzip’ formats. To save a file with gzip compression, simply append an filename
extension of “.bz2”, “.gz”, or “.gzip” when creating it (or doing a Save As of an existing
document). (For more information on these formats, issue the commands ‘man bz2’ or
‘man gzip’ in the Terminal.)

Saving as Styled Text or HTML
If syntax coloring is active, BBEdit can generate rich text (RTF) or HTML markup which
replicates the visual appearance of the current document’s contents. You can save a file
containing RTF via the Save as Styled Text command or a file containing HTML via the
Save as Styled HTML command (both in the File menu), or copy the current selection to
the clipboard as styled text via the Copy as Styled Text command, or as HTML markup via
the Copy as Styled HTML command (both in the Edit menu).

Crash Auto-Recovery
IMPORTANT BBEdit automatically saves auto-recovery information for all unsaved open documents at

the specified interval. When you relaunch BBEdit after a system or application crash,
BBEdit will reopen and restore the contents of any documents for which recovery
information is available.
48 Chapter 3: Working with Files

BBEdit’s auto-recovery mechanism can help minimize the chance of data loss in the event
of unexpected system or application crashes. However, it may not protect against
extraordinary events, and it will not protect against hardware failures or any other events
that render your disk unreadable. You should always manually save a document after
making any significant changes to it, and we strongly recommend that you take appropriate
measures to back up your important files and other data.

Opening Existing Documents
There are several ways to open existing documents with BBEdit.

• Double-click any file with a BBEdit document icon.

• If BBEdit is running, choose the Open or Open Recent command from the File
menu.

• Select the name of a file in a BBEdit editing window; then use the Open Selection
command in the File menu.

• Double-click a file name in a browser’s file list (see Chapter 9, “Browsers”).

• Drag a file’s icon to the Windows palette (see Chapter 6, “Working with
Windows”).

• Drag a file’s icon into the sidebar of any editing window (see Chapter 4, “Window
Anatomy).

• Drag a file’s icon to the BBEdit icon or to an alias of the icon.

• Select a file in the Finder, and use the Open File command from the BBEdit
submenu of the Services menu.

BBEdit can natively open all files which it or the system recognize as plain text files. By
default, BBEdit will attempt to display the contents of image files via QuickTime, but will
open PDF files in a “raw” condition as if they were text documents. You can adjust how
BBEdit should handle such files via its expert preferences. (See the “Expert Preferences”
page of BBEdit’s built-in Help book for complete details.)

Front Window versus Separate Windows
Since BBEdit supports opening multiple documents into a single text window, you must
decide whether the application should work in this manner, or whether it should instead
open each document into its own window. (A document may represent either a file which
you open for editing, a text document created by the New Document command on the File
menu, or any similar item, such as a text document created via the scripting interface.)

By default, BBEdit will open all new documents into a single text window, but you can
instead configure it to open each document into its own text window by turning off the
option “Open documents into the front window when possible” in the Application
preference panel.
Opening Existing Documents 49

Choosing the Encoding for a Document
When you open a document, BBEdit will automatically examine its contents for any
indication of the proper encoding, and attempt to handle it appropriately. If BBEdit cannot
determine the proper encoding, and you opened the file with the Open command, it uses the
encoding specified in the Read As pop-up menu on the Open dialog. Otherwise, it uses the
encoding specified by the “If the file’s encoding can’t be guessed, use” preference setting
in the Text Encodings preference panel.

Note You can choose which encodings appear in the Read As pop-up menu by using the
Text Encodings preference panel.

Here are the details of the steps that BBEdit goes through to determine the proper encoding
for a file:

1 If the file is well-formed HTML or XML, BBEdit looks for an “encoding=” or <meta
charset=> directive.

2 If the file contains an Emacs variable specifying its encoding, BBEdit will use that
encoding.

3 If you have opened the file with BBEdit before, BBEdit will use the file’s stored encoding
info (if any).

4 If the file contains a UTF-8 or UTF-16 (Unicode) byte-order mark (BOM), BBEdit opens
it as that type of Unicode file.

5 If the file has a resource that contains font information (such as a ‘styl’ resource) and that
resource specifies a multi-byte font, BBEdit opens the file as a Unicode file.

6 If you are opening the file with the Open command, BBEdit uses the encoding specified
Read As pop-up menu on the Open dialog.

7 If the file contains no other cues to indicate its text encoding, and its contents appear to be
valid UTF-8, BBEdit will open it as UTF-8 without recourse to the below preferences
option.

8 Finally, it uses the encoding chosen for the option “If the file’s encoding can’t be guessed,
use” from the pop-up menu in the Text Encoding preference panel.

To change the encoding for a file after opening it, use the Text Encoding popup in the
document’s status bar.

Note If an encoding change results in the conversion of a document’s contents from a
single-byte script to a multi-byte script, BBEdit will mark the document as being
“dirty” or changed.
50 Chapter 3: Working with Files

Using the Open Command
To open a file with the Open command:

1 Choose Open from the File menu.

 BBEdit displays the Open dialog box:

2 Select the file you want to open.

You can select (or deselect) multiple files by holding down the Command key or the
Shift key as you click the files.

3 Change any desired options (see below).

4 Click Open to open the file.

You can use the options described below when you open a file.

Show Hidden Items
Turning this option on will both cause BBEdit to make any hidden items visible and allow
BBEdit to open all files present (whether or not they appear to be text files).

Read As
When opening a file, you can tell BBEdit what encoding to use by choosing it from this
pop-up menu. Usually, BBEdit will correctly auto-detect the encoding, but if it does not,
you can try applying the Reopen Encoding command with an appropriate encoding.
Chapter 5 includes more information on encodings.

Open In
When opening one or more files, you can use the options on this pop-up menu to override
your default document opening preferences. These options have the following effect:
Opening Existing Documents 51

• (default): BBEdit will open the selected documents according to your preference
settings.

• Front Window: BBEdit will open all of the selected documents into the frontmost
text window. If there are no text windows open, or the frontmost text window
contains an active sheet, this option will be disabled.

• New Window: BBEdit will open all of the selected documents into a new text
window.

• Separate Windows: BBEdit will open each of the selected documents into its own
text window.

Translate Line Breaks
When this option is selected, BBEdit translates Windows or Unix line breaks when opening
a file. Otherwise, BBEdit leaves the original line breaks untranslated.

Unlike the other options in the Open dialog, the setting of this option is not preserved
between uses of the Open command, since in general you will only need to use this
operation temporarily, e.g. to read in a particular file.

Reload from Disk
When you choose this command, BBEdit will compare the contents of the current
document in memory to those of its file on disk, and reload the document from its file if
they differ. This is useful in situations where the file may have changed without BBEdit
noticing, which can happen if, e.g. the “Automatically refresh documents” option in the
Application preference panel is turned off, or if the file is on a shared disk and has been
modified from another workstation.

When the active document has been opened from a remote (FTP/SFTP) server, the Reload
from Disk command will become Reload from Server and choosing this command will
cause BBEdit to fetch a fresh copy of the file from the server, and then refresh the
document's contents.

Opening and Editing Files within Zip Archives
BBEdit transparently opens and displays the contents of any Zip-compressed archives
(“.zip”) both directly and during multi-file search. In addition, you can directly edit the
contents of files within such an archive and save changes directly back to those files. (Zip
archives must be in the format created by the Finder’s “Compress” command, or by
applying `ditto -k` from the command line.)

Note If the Zip archive contains only one top-level item, and that item is a folder, BBEdit
will “hoist” the rest of that package’s contents and not display the top-level item.

Opening bz2, gzip, and tar Files and Binary
plists
BBEdit transparently opens and displays the contents of any bz2 or gzip-compressed files
(“.bz2”, “.gz” and “.gzip” files), as well as tarballs (“.tar” files) and binary plists (“.plist”
files), both directly and during multi-file search.
52 Chapter 3: Working with Files

 This is especially useful for viewing and working with system log files and similar
automatically-generated files, as well as system and application preference files.

If you make any changes to such a file and save it, BBEdit will automatically re-compress
or re-convert the file on save.

Opening Hidden Files
Turn on the “Show Hidden Items” option in the Open dialog to display hidden files
(including both files whose invisible attribute has been set, and those whose names begin
with a period) or files from a folder which is normally hidden by the system.

Using the Open from FTP/SFTP Server
Command
See “Accessing FTP/SFTP Servers” on page 59.

Using the Open Selection Command
The Open Selection command lets you quickly invoke the Open File by Name command to
search for any file that is referenced in the text of a document. It is particularly useful for
opening include files or any document referenced by another file.

To open a file whose name is referenced in the text of a document:

1 Select the file name within the body of the document.

2 Choose Open Selection from the File menu.

If a suffix of the form “.x” follows the name, BBEdit will automatically expand the
selection to include the suffix.

BBEdit will display the Open File by Name window, pre-populated with the selected
text.

3 Click Open or type Return in the Open File by Name window.

BBEdit also understands the Unix-style line number and character offset specifications
“:line:offset” that can be appended to a file name, and will honor them when opening a file.
If the specified file is already open, this command will simply select the designated
location within the file. (These specifications are frequently generated by Unix command
line tools.)

For example, selecting the text “main.cp:210” and choosing Open Selection will bring up
the Open File by Name window prefilled with that search string, and when you click Open,
BBEdit will then open the file “main.cp” and automatically select line 210. Likewise if you
apply Open Selection to the text “foo.cp:398:43” and invoke Open File by Name, BBEdit
will open the file “foo.cp” and automatically position the insertion point at the specified
location.

In searching for the requested file, BBEdit will look in the following locations, in order:
Opening Existing Documents 53

• If a project document is open, BBEdit will start its search within the project,
looking first at discrete file entries and then (if necessary) searching any folders
contained within the project. (If multiple projects are open, BBEdit will use the
frontmost project.)

• If the Open Selection is being done from a shell worksheet, BBEdit will search the
shell’s current working directory, followed by any subdirectories within it.

• Otherwise, BBEdit will look first in the same folder as the file containing the
selected file name, and then in any subfolders within that folder.

• If BBEdit cannot find the file in any of these places, it will display a Choose
Folder dialog to allow you to locate the file manually.

In some cases, there may be more than one file with the same name in the various folders
BBEdit looks in. Normally, BBEdit opens the first such file it encounters, and then stops.

Using the Open File by Name Commands
If there is no selection, or there is no text display view in the front window, Open Selection
becomes Open File by Name. Choosing this command brings up the Open File by Name
window.)

Activating the Open File by Name window, or choosing the menu command, will place
keyboard focus in the search box and select its contents, so that you can just start typing.
(To clear an existing entry, click the “clear” widget at the right-hand edge of the field.)

As you type, BBEdit will search for files matching the current string as well as wildcard
matches, and present a list of possible matches in the bottom panel of the window. If the
string you enter contains wildcard characters (see below) then BBEdit will treat it as a
wildcard pattern. If the string you enter does not contain wildcards, BBEdit will instead use
it as a basis for casting a wide net.
54 Chapter 3: Working with Files

BBEdit will look for matches in the following locations (in order of preference):

• If a project document is open, BBEdit will start its search within the project,
looking first at discrete file entries and then (if necessary) searching any folders
contained within the project. (If multiple projects are open, BBEdit will use the
frontmost (Z-order) project.)

• If Xcode is running, BBEdit will search all files in the active project (if any), then
files in the system framework includes.

• If there is a disk browser open, BBEdit will search within its current root directory.

• If there is a shell worksheet open, BBEdit will search the shell’s current working
directory, followed by any subdirectories within it.

• Otherwise, BBEdit will look first in the same folder as the file containing the
selected file name, and then in any subfolders within that folder.

• If BBEdit cannot find the file in any of these places, it will display a Choose
Folder dialog to allow you to locate the file manually.

You can navigate the list of potential matches by using the up and down arrow keys or the
mouse pointer, and open any listed file by selecting it and typing Return or Enter, or
clicking the Open button.

If BBEdit does not locate any potential matches, you can still search for the file, as before.
(The search will skip locations where such a file would have already been found, i.e. the
frontmost project.)

If you type a string which appears to be an absolute or a home-relative path (e.g. “/path/to/
some/file.txt” or “~/Documents/some/file.txt”, BBEdit will cease searching and when you
type Return or Enter, or click the “Open” button, BBEdit will attempt to open the file at that
path, if it exists.

If you type a string which appears to be a URL, BBEdit will attempt to open it directly, or
hand it off to an application that can. (BBEdit supports a number of schemes, including
‘file’, ‘http’, ‘ftp’, and ‘sftp’.)

If you type in an unqualified partial path, e.g. “sys/errno.h”, BBEdit will check the path
components and only display files whose immediate ancestry matches what you entered. In
this example, it would list “/usr/include/sys/errno.h” but not “/usr/include/errno.h”.

If you type in an absolute path, or a home-directory-relative path, e.g. “/usr/include/
errno.h” or “~/.bash_profile”, BBEdit will show the file if it exists at that location.

BBEdit also maintains a search history in the Open File by Name window: when you open
a matched item, BBEdit will store the string you used, and the search history (magnifying
glass) popup lists these recently used strings.

You may use the following wildcards as part of a search string:

Wildcard Meaning

? Any single character

* Any number of characters
Opening Existing Documents 55

Using the Open Counterpart Command
You can use this command or its default key equivalent of Option-Command-Up arrow
(configurable via the Menus & Shortcuts preference panel) to switch between counterpart
files (from source to header and vice versa). In addition to intrinsic counterparts (e.g. C/
C++ style header/source mapping, or HTML to CSS mapping), you can explicitly define
counterparts by setting a value for the (BBEdit-specific) “x-counterpart” variable in a file’s
Emacs variables. For example, if your file contains the following as part of its variable
block:

-*- x-counterpart: ExampleStrings.R; -*-

when you type Option-Command-Up arrow, BBEdit will look for the file
“ExampleStrings.R”.

Using the Open Recent Command
The Open Recent submenu contains a list of files you have opened recently. To open one of
these files, choose it from the Open Recent submenu. To set the number of items displayed
in the Open Recent list, use the “Remember the [] most recently used items” option on the
Application preference panel.

Using the Reopen using Encoding Command
The Reopen using Encoding submenu contains a list of all available text encodings. To
reopen the current text document and have its contents interpreted using a different
encoding, choose the desired encoding from the Reopen using Encoding submenu. This
command will only be available if the current document is unmodified.

Quitting BBEdit
By default, whenever you quit BBEdit or BBEdit automatically quits because of a system
shutdown, restart, or user account logout, BBEdit will attempt to restore as much of its state
as possible when starting back up. Thus, you may not be prompted to save new or unsaved
documents, since BBEdit will automatically preserve the contents of all open documents
before it exits.

You can control whether BBEdit should preserve and restore unsaved changes via the
“Restore unsaved changes” option in the Application preference panel existing documents.
If this option is on, BBEdit will automatically preserve unsaved changes. If this option is
off, BBEdit will instead prompt you to save each document which has unsaved changes.

Any numeric character

\ Escapes one of the above; for example, \? enters a
question mark. To enter a literal backslash, use \\.

Wildcard Meaning
56 Chapter 3: Working with Files

An International Text Primer
Mac OS X includes extensive support for working with international text, including
Unicode. If you have enabled additional text input methods in the International section of
the System Preferences, you will see the Input menu on the right-hand side of the menu bar.
This menu allows you to change keyboard layouts or script systems as you work.

Note Actually, even if you have never used a non-Roman script system before, you may still
have used this menu, if you have ever chosen an alternate keyboard layout such as
Dvorak, or a keyboard layout for a Roman language such as French. However, since
the Roman script is suitable for several languages, choosing one of these keyboard
layouts still leaves you in the Roman script.

International Text in BBEdit
As a text editor, BBEdit supports only one font per document window, though it can
display all available characters in the active font, including Unicode characters.

BBEdit supports editing in almost any language which uses left-to-right text input methods.
To start entering text in any supported language, choose a suitable input method from the
Input menu. The icon for that method will appear in the menu bar in place of either the
American flag (for the U.S. English layout) or the icon for your usual Roman keyboard
layout.

If you have turned off the “Try to match keyboard with text” option in the Options dialog of
the International section of the System Preferences), you may also need to select a suitable
display font via the Font panel. (We recommend leaving this option on, so that BBEdit can
automatically switch to the correct input method when you change document windows.)

You can use international text throughout BBEdit—for example, in the Find window, in the
HTML Tools, and everywhere else you would use Roman text. Likewise, BBEdit will
provide the necessary style information so that if you copy and paste, or drag and drop,
international text into another application, that application will have enough information to
handle the text correctly (assuming it is capable of doing so).

BBEdit remembers the encoding used in a document when you save it, so the next time you
open it, you will not need to choose the font. However, you may not be able to read files
which do not have this stored information, for instance, files downloaded from the Internet,
until you choose an appropriate encoding for them.

When performing a search, BBEdit respects any available information about each file’s
encoding. If a file does not contain any information about its encoding, BBEdit will use the
default encoding set in the Text Encodings Preferences panel.

Unicode
Unicode is an international standard for character encoding, which includes an extensive
selection of characters from Roman, Cyrillic, Asian, Middle Eastern, and various other
scripts. For more background information or complete details on Unicode, the Unicode
Consortium web site is the best place to look.

http://www.unicode.org/
An International Text Primer 57

BBEdit fully supports and makes extensive use of Unicode, in addition to all other OS-
supported text encodings. In particular, BBEdit internally represents all documents as
Unicode, regardless of their on-disk encoding.

Saving Unicode Files
BBEdit lets you save documents that use character set encodings other than Mac Roman,
even multi-byte character sets. When saving a file, you can choose to save text composed
in any script with any encoding. In addition to the standard character set encodings, BBEdit
also lets you save the files in a variety of plain Unicode files:

• Unicode (UTF-8): UTF-8 without a byte-order mark

• Unicode (UTF-8, with BOM): UTF-8 with a byte-order mark (BOM)

• UTF-16 Little-Endian

• UTF-16 Little-Endian, no BOM

• UTF-16

• UTF-16, no BOM

IMPORTANT The naming convention BBEdit follows for UTF-8 documents has changed from that used
by versions before 9.5: the encoding name “Unicode (UTF-8)” refers to files without a
byte-order mark (BOM), while the specific name “Unicode (UTF-8, with BOM)” refers to
files which have a BOM.

Here are details about what each of the above options means:

• UTF-8: UTF-8 encoding is a more compact variant of Unicode that uses 8-bit
tokens where possible to encode frequently used sequences from the file. (This
format makes it easier to view and edit content in non-Unicode-aware editors.)

• UTF-16: UTF-16 encoding always uses 16-bit tokens.

• BOM: When saving Unicode files, you may include a byte-order mark (BOM) so
that the reading application knows what byte order the file’s data is in. However,
since many applications do not correctly handle files which contain BOMs, you
may wish to use an encoding variant without a BOM for maximum compatibility.
(For purposes of recognition when you use this option, the UTF-16 BOM is FEFF,
and the UTF-8 BOM is EFBBBF.)

• Little-Endian: Since UTF-16 uses two bytes to represent each character, this leaves
the question of which of the two bytes comes first—whether it is “little-endian” or
“big-endian.” By default, BBEdit writes UTF-16 big-endian (the standard). By
choosing one of the “Little-Endian” (or “byte-swapped”) encodings, you can write
little-endian files instead, which some Windows software requires.

Opening Unicode Files
When opening files, BBEdit will ordinarily determine the format of a file based on its file
type and content, and automatically process Macintosh text, Unicode, and UTF-8.
However, some files are structured such that BBEdit is unable to correctly determine their
format based on their type or contents. The cases that we know of are:
58 Chapter 3: Working with Files

• UTF-8 files which lack a byte-order mark and do not contain any encoding
specification or any extended characters. (If a UTF-8 has a byte-order mark,
BBEdit will correctly interpret its contents as UTF-8.)

• Byte-swapped Unicode files which were written without a byte-order mark
(usually by broken Windows software);

• Unicode files which lack a byte-order mark.

If you know that a file you are trying to open is in Unicode but it displays as gibberish on
your screen, close its window without saving. Then try reopening the file, using the Open
As pop-up menu in the Open dialog to specify whether to treat the file as Unicode, byte-
swapped (little-endian) Unicode, or UTF-8.

If you attempt to open a document which cannot be represented by either its declared
encoding or any recognizable encoding, BBEdit will present an alert to warn you. Also, if
BBEdit encounters such a file during a multi-file search, it will log a warning.

Accessing FTP/SFTP Servers
BBEdit can open files directly from, and save them to, any available FTP server. It can also
open and save files directly via SFTP (SSH File Transfer Protocol). In order to access a
server via SFTP, that server must be running a compatible version of sshd. (A great many
machines, including Mac OS X systems for which “Remote Login” is turned on in the
Sharing panel of System Preferences, satisfy these criteria.)

Aside from choosing the SFTP checkbox in the Open from…/Save to… dialogs, or the
FTP/SFTP Browser, opening and saving files via SFTP works just like it does when using
ordinary FTP. A file opened via SFTP will appear in the Open Recent submenu with an
“sftp:” URL, and you can send a “get URL” event to BBEdit with an “sftp” URL as well.

Opening Files from FTP/SFTP Servers
To directly open files from an FTP or SFTP server, choose Open from FTP/SFTP Server
from the File menu. BBEdit will open an new FTP/SFTP Browser window. Like other
browser windows, FTP/SFTP browsers will remain open until you close them, and once
connected, they will maintain a persistent connection to the server for as long as they
remain open
Accessing FTP/SFTP Servers 59

Enter the server’s name in the “Server:” field, or choose a local server advertised by
Bonjour by clicking the Bonjour popup menu to the right of the “Server:” field, specify
your user name and password in the appropriate fields, enable the “SFTP” option if
appropriate, and then click the Connect button or press the Return or Enter keys to connect
to the server.

Alternatively, you can choose a bookmark from the Bookmarks pop-up menu to fill in
stored info for the server, user name, password, and connection options. You can choose
Add Bookmark... from the directory popup in an FTP/SFTP Browser window to create a
bookmark for the current server and directory, or create arbitrary bookmarks via the
Bookmarks panel of the Setup window. You can modify or delete existing bookmarks via
the Bookmarks panel of the Setup window.
60 Chapter 3: Working with Files

Once you have connected to the server, you can open files by double-clicking them, or
selecting them and clicking the Open button. You can double-click a folder to change
directories. If you hold down the Option key when opening a folder, it will open in a new
FTP/SFTP Browser window. You can select a range of files and directories by Shift-
clicking, and you can select (and deselect) multiple items one at a time by Command-
clicking them.

To refresh the directory listing, click the circular arrow icon (located in the center of the
toolbar). The checkbox below the listing labeled Show Files Starting with “.” tells BBEdit
whether to display hidden or admin files in the chosen directory, such as .login, .forward,
and .signature. (Starting a file name with a period is a convention used by OS X and other
Unix systems to make that file invisible in most directory listings.)

Once you have selected a file and opened it, BBEdit displays the file in a text editing
window. The navigation bar displays the URL of the file on the server, not the pathname of
the file on your hard drive as it does for local files.

NEW You can drag items from an FTP browser window to other applications. BBEdit will
include a URL in the drag event for each selected item in a form that applications which
accept URLs may be able to use.

You can use the Info button to examine the size, modification date, and if applicable, file
system permissions of the selected file. You can edit the file’s name and click the Rename
button to rename the file on the server; you can also make changes to the permissions and
click the Set button to change them. (Take care not to set the permissions such that the file
becomes inaccessible to you!)

You can directly create a new file (or folder) on the server by clicking the New button, or
remove files from the server by selecting them and pressing the Delete button.
Accessing FTP/SFTP Servers 61

Specifying Alternate Ports
BBEdit allows you to open an FTP or SFTP connection to any alternate port (i.e. any port
other than the default). To specify an alternate port, just type the desired port number into
the “Port” field of the connection sheet.

Specifying a Login Path
You can optionally specify the server directory that BBEdit logs into by typing or pasting a
suitable path into the “Path” field of the connection sheet.

Storing Passwords
As long as your account’s login keychain is unlocked, BBEdit will use it to store the
password for each server that you access, and to automatically fill in the corresponding
password whenever you enter a server and user name pair for which there is a keychain
entry. If your keychain is locked, you will need to retype your password every time you use
the FTP browser.

Using SSH Key Files
In order to connect to an SFTP server which requires SSH keys (or certificates) rather than
passwords, you must first create an appropriate entry for that server in your local account’s
.ssh/config. You may then type the server name, or shortcut name, into the Server field of
the FTP/SFTP Browser and connect without entering a password.

Transfer Formats
When you open a file from an FTP or SFTP server, BBEdit downloads the file “raw” (in
binary mode) and then performs a standard line ending conversion upon opening the (local
temp) file.

Working with URL Clippings
BBEdit also supports FTP and SFTP URL clippings. You can make a clipping of the FTP
or SFTP URL for a file, add the clipping to a project, and double-click it, and BBEdit will
open the specified file for editing. If the clipping contains the URL for a directory, BBEdit
will open a new FTP/SFTP Browser at that location. Alternatively, you can double-click an
FTP or SFTP clipping in a disk browser, or drop one on BBEdit’s icon in the Finder, with
the same results as just described.

Dragging the window proxy icon from the editing window of a file open from an FTP or
SFTP server will create a clipping containing that file’s URL.

Saving Files to FTP/SFTP Servers
After you have edited a file opened from an FTP or SFTP server, pressing Command-S or
choosing Save from the File menu saves the new version back to the server. If you want to
save the file in a different directory or under another name, choose Save to FTP/SFTP
Server to open the Save to FTP/SFTP Server sheet (shown below).
62 Chapter 3: Working with Files

This sheet works much like the standard Save sheet for a local file, with the addition of
fields and controls similar to those in the FTP/SFTP browser allowing you to select or
specify connection info, and to navigate and obtain info about other files.

Note When you save a file to an FTP or SFTP server using either Save or Save to FTP/SFTP
Server, and the file has Unix (LF) or Windows (CR+LF) line endings, BBEdit uploads
the file in binary mode, preserving its line endings exactly as they are on your local
machine. However, if the file has Macintosh (CR) line endings, it is uploaded in text
mode so that the server can convert the line endings as appropriate.

Finally, you can use Save a Copy to FTP/SFTP Server to upload a copy of your current file
to an FTP server while keeping your local file open. This is especially useful when you
maintain web site content on your local hard drive and only need to upload changes made
in one or two files to the server.
Accessing FTP/SFTP Servers 63

Using BBEdit from the Command
Line
You can use the “bbedit” command line tool to open files into BBEdit via the Unix
command line. The first time you run BBEdit after installation, it will offer to install the
command line tools for you. If you choose not to do so, you can choose “Install Command
Line Tools” from the BBEdit (application) menu at any time to install (or re-install) the
current version of the command line tools.

To open a file in BBEdit from the command line, type

bbedit filename

where filename is the name of the file to be opened. To launch BBEdit without opening a
file (or activate it, if it is already running), type

bbedit -l

In addition to files, you can also specify FTP or SFTP URLs to files or directories, to have
BBEdit open the specified files, or an FTP/SFTP Browser for each directory. You will be
prompted to enter passwords if necessary.

You can also pipe STDIN to the “bbedit” tool, and it will open in a new untitled window in
BBEdit: for example,

ls -la | bbedit

If you just type

bbedit

with no parameters, the tool will accept STDIN from the terminal; type Control-D (end-of-
file) to terminate and send it to BBEdit.

The complete command line syntax for the “bbedit” tool is

bbedit [-<short-form switches> --<long_form_switches>]
 [-e <encoding_name>] [-t <string>] [+<n>]
 [file (or) <S/FTP URL> ...]

See the “bbedit” tool’s man page (‘man bbedit’) for a complete description of the available
switches and options.
64 Chapter 3: Working with Files

Using Projects
If you frequently work with many related files, you may want to create a project for them.
A project is a special kind of BBEdit file that contains references to other files and folders,
including aliases and URL clippings.

You can use a project to gather and directly edit related files, as well as to serve as an
organizational or navigational aid. For example, you can perform multi-file searches on the
contents of projects, or process a project’s contents with a text factory.

Creating a Project
To create a new project, choose the Project... command from the New submenu in the File
menu. You will need to decide where to place the project file on disk; thereafter, the project
document will autosave as necessary.

Alternatively, you can create a project from the frontmost editing window by choosing the
Save Project command in the File menu.

To add files or folders to a project, drag them from the Finder into the project window, or
click the Add button. When you click Add, BBEdit presents the Open dialog in which you
can choose one or more files and folders to add. The files and folders you select will be
added directly to the project’s file list, and you can drag them to reorganize their positions.
You can also add a file by dragging its icon from a text window’s navigation bar or sidebar
to the group window, or by dragging a file entry from any disk browser or results browser.

You can display the contents of a folder by clicking the adjacent disclosure control. Each
folder’s listing is a “live” representation of its contents on disk.
Using Projects 65

In addition to file and folder references, BBEdit supports URLs in projects. You can drag a
URL (text or clipping file) to a project window, and the URL will be saved in the group. If
you subsequently open the item, BBEdit will either open that URL directly if it is an FTP or
SFTP URL, or hand the URL off to a system-designated helper.

Project Commands
Projects offer a variety of commands and options to help you manage your files.

The buttons and popup menus at the bottom of the sidebar are commands that give you
quick access to project functions. You can use these commands to add new items, create
new files and folders, open existing files and folders, reveal them in the Finder or navigate
to them in the Terminal, limit the kinds of files which appear in the project list, and
navigate through your disks and folders.

You can resize the Currently Open Documents pane by dragging its top boundary upward
or downward, or collapse either the Currently Open Documents pane or the Project pane by
double-clicking its header bar. (If you collapse the Project pane, the Currently Open
Documents pane will expand upward to fill the available space.)

Note The “Recent Documents” section in the sidebar is gone; in its place, you can select
and reopen files via the Recent (clock) popup in the action bar at the bottom of the
sidebar.
66 Chapter 3: Working with Files

The following table explains each button.

Icon Meaning

 Click the Add button (plus sign) to bring up a standard file
and folder selection dialog in which you can choose items to
add to the project.

 The Recent (clock) popup menu at the bottom of the
sidebar allow you to select and reopen any recently-open
files.

 The Filter (magnifying glass) popup menu allows you to
apply options to control what items BBEdit should display in
the project’s file list.

 The Site (cloud) popup menu allows you to assign web site
configuration settings to the current project via the Site
Settings sheet, apply web site-related commands (e.g.
Check Site Syntax), and deploy the contents of the
designated site folder to a remote server via FTP or SFTP.

 Click the Toggle Editor button to collapse or expand the
project’s text editing pane. (This button has the same effect
as choosing the View/Hide Editor command in the View
menu.)
Using Projects 67

Using projects
To open a text file within a project, just click on the file and BBEdit will display it in the
editing pane. If you click on an FTP or SFTP URL clipping, BBEdit will open the remote
file (or open an FTP Browser if the clipping points to a directory). Otherwise, BBEdit tells
the Finder to open the file.

If you added nested folders, they appear in the project with disclosure triangles, as in a
Finder list view. Click any folder’s disclosure triangle to reveal the files and folders inside
that folder.

You can use the project browser pane or the document list popup in the navigation bar to
select any open file in the project.

You can use a project as the basis of a multi-file search. See Chapter 7, “Searching,” for
more information.

Creating Files and Folders within a Project
When you choose either the New Folder or New Text Document command (via the Action
menu or the contextual menu), BBEdit will display a standard Save panel in which you can
specify the location of the item you wish to create. BBEdit will then determine where to
place the item in the file list based on its location and/or the starting point of the command:
within the initially selected collection (if any), or at the top level of the project, or adjacent
to another item already in the project.

Removing Files from a Project
To remove a directly added file or folder from a project, select it and type Delete, or choose
Remove from the Action popup.
68 Chapter 3: Working with Files

You cannot directly remove files and folders which are part of a “live” folder listing from a
project. However, you can move the original item(s) to the Finder trash by selecting them
and choosing Move to Trash from the Action popup or contextual menu.

Contextual Menu Commands
If you select one or more items in the file list and bring up the contextual menu, BBEdit
will offer commands to open the selection, copy the items’ paths (in the same fashion
available via the "Copy Path" submenu), or apply selected Subversion commands (for
items contained within a Subversion working copy).

Script Access to Project Contents
You can access the items contained in a project document via AppleScript. Note that
BBEdit enforces a strict containment hierarchy for such items. For instance, if you ask for
“every item of project document 1”, BBEdit will return a list of every item that’s present at
the top level of the project. You can recurse to explore the items contained within folders or
collections.

Using Stationery
Like most Macintosh applications, BBEdit supports stationery pads. A stationery pad is a
template document that, when opened, results in a new, untitled document with the content
from the stationery file. In other words, you do not edit the stationery document itself; you
use it as a starting point for a new document.

To create a stationery pad, click the Save As Stationery checkbox when saving the file from
BBEdit. Alternatively, you can change any document into a stationery pad in the Finder by
clicking the Stationery Pad checkbox in the document’s Get Info window.

You can create new documents from a stationery pad in any of these ways:

• Open the pad the same way you would open any other document.

• Choose New With Stationery from the File menu, and select the desired stationery
pad from the contents of the Stationery folder (inside BBEdit’s application support
folder).

• Use BBEdit’s Stationery List, which is available from the Window menu. The
Stationery List is a palette that displays all the stationery pads you have placed
inside the Stationery folder of BBEdit’s application support folder. You can create
a new document from any of these pads by double-clicking them in this list.

You can also assign a keyboard shortcut to a stationery file in the Menus & Shortcuts
preference panel (in the File -> New with Stationery section).
Using Stationery 69

Manually Sorting the Stationery List
By default, items in the Stationery List are displayed in alphabetical order. However, you
can force them to appear in any desired order by including any two characters followed by
a right parenthesis at the beginning of their names. For example, “00)Web template” would
sort before “01)HTML Template”. For such files, the first three characters are not displayed
in BBEdit. You can also insert a divider by including an empty folder whose name ends
with the string “-***”. (The folder can be named anything, so it sorts where you want it.)

Hex Dump for Files and Documents
Choose the Hex Dump File command to generate a hex dump representation from a file
that you choose. Choose Hex Dump Front Document to generate a hex dump
representation of the frontmost document as it exists in memory.

You should bear in mind that the result of performing the Hex Dump command against a
disk file may differ from the result obtained by using it against an open document, since
when a document is open in memory, even without any explicit edits being made, line-
break translation and possibly character set encoding conversions have taken place.

Making Backups
BBEdit can automatically make a backup copy of each document you edit before saving it.
To enable this feature, turn on the “Make backup before saving” option in the Text Files
preference panel. For complete details on how this feature works, and optional behaviors,
please see “Make backup before saving” on page 225.

Printing
To print a document, choose the Print command from the File menu. BBEdit will display a
standard print sheet in that document’s window.

To print one copy of the active document without displaying the print sheet, press and hold
the Option and Shift keys and choose the Print One Copy command from the File menu.

To print only the selected range of text within the active document, choose the Print
Selection command from the File menu.
70 Chapter 3: Working with Files

Printing Options
You can access BBEdit’s application-specific printing options for the current document by
choosing the Text Options command in the Edit menu and selecting the Printing tab of the
Text Options sheet..

Note You can set defaults for these options, as well as the printing font, in the Printing
panel of BBEdit’s Preferences window.

Page Options:
These options control how the printed pages will be laid out.

Frame printing area
When this option is selected, BBEdit draws a frame around the printed text.

Print line numbers
When this option is selected, BBEdit prints line numbers along the left edge of the paper.

One-Inch gutter
When this option is selected, BBEdit leaves a one-inch margin along the left edge of the
paper. Use this option if you usually put your pages in three-ring binders.

Print color syntax
When this option is selected, BBEdit will print the document in color.

Print page headers
When this option is selected, BBEdit prints the page number, the name of the file, and the
time and date printed in a header at the top of each page.

Print full pathname
When this option is selected, BBEdit prints the full pathname of the file in the header.

Time Stamp
The Time Stamp option lets you choose whether the date that appears in the header is the
date that the file was last modified or the date that the file was printed.
Printing 71

72 Chapter 3: Working with Files

C H A P T E R

4
Editing Text with
BBEdit
This chapter describes the basics of editing text with BBEdit, wrapping text, text
manipulations, and file comparison.

In this chapter
Basic Editing . 74

Moving Text – 74 • Multiple Clipboards – 75
Drag and Drop – 75

Multiple Undo . 76
Window Anatomy . 77

Toolbar – 77 • The Navigation Bar – 78
The Sidebar – 83 • The Gutter and Folded Text Regions – 85
The Split Bar – 84 • The Split Bar – 84

The View Menu . 89
Text Display – 89

Cursor Movement and Text Selection . 92
Clicking and Dragging – 92 • Arrow Keys – 93
CamelCase Navigation – 93 • Rectangular Selections – 94
Working with Rectangular Selections – 94
Scrolling the View – 97 • The Delete Key – 97
The Numeric Keypad – 97 • Line Number Command – 98
Function Keys – 98 • Resolving URLs – 99

Text Completion . 100
Editing Options – 102

Text Options . 102
Editing Options – 102 • Display Options – 103

How BBEdit Wraps Text . 105
Soft Wrapping – 106
Hard Wrapping – 107

The Insert Submenu . 109
Inserting File Contents – 109 • Inserting File & Folder Paths – 109
Inserting a Folder Listing – 110 • Inserting a Page Break – 110
Comparing Text Files – 110

Comparing Text Files . 110
Compare Against Disk File – 113
Multi-File Compare Options – 113

Using Markers . 115
Setting Markers – 115 • Clearing Markers – 115
Using Grep to Set Markers – 115

Speaking & Spell Checking Text . 117
Speaking Text – 117 • Spell Checking Text – 117
Check Spelling As You Type – 117 • Manual Spell Checking – 117
The Spelling Panel – 118
73

Basic Editing
BBEdit behaves like most Macintosh word processors and text editors. Characters that you
type in an active window appear at the insertion point, a vertical blinking bar. You can click
and drag the mouse to select several characters or words, and (by default) the selected text
is highlighted using the system highlight color, which you can set in the Appearance panel
of the System Preferences.

If you select some text and then type, whatever you type replaces the selected text.

To delete selected text, press the Delete key or choose Clear from the Edit menu. If you
have a keyboard with a numeric keypad on it, you can press the Clear key on the keypad to
delete the selected text.

In addition to clicking and dragging to select text, you can use the selection commands in
the Edit menu.

You can then cut, copy, or perform any other action that affects the selected text.

Note BBEdit defines a paragraph as a block of text surrounded by blank lines (lines
containing no characters other than tabs or spaces). The beginning and end of the
document also mark the beginning and end of paragraphs.

Moving Text
To move text from one place to another, follow these steps:

1 Select the text you want to move.

2 Choose Cut from the Edit menu.

BBEdit removes the text from the window and stores it on the clipboard.

To select… Choose this from the Edit menu…

All text Select All

No text (deselect) (click anywhere in the document, or
type any arrow key)

Line containing
insertion point

Select Line

Paragraph containing
insertion point

Select Paragraph
74 Chapter 4: Editing Text with BBEdit

3 Use the scroll bars to move to the new place for the text if necessary; then click to set the
insertion point where the text is to be inserted.

4 Choose Paste from the Edit menu.

You can paste the contents of the clipboard as many times as you want in any BBEdit
window or in any other application.

Pasting inserts the text stored on the clipboard at the insertion point. If there is a selection,
pasting replaces the selection with the contents of the clipboard.

If you need to copy and paste indented text, you can instead choose ‘and Match
Indentation’ from the Paste submenu (or type its default shortcut of Cmd-Shift-Opt-V), and
this command will attempt to indent the pasted text to the same level as the line on which
you paste (or if that line is empty, the most recent non-empty line).

To place text on the clipboard without deleting it, choose Copy from the Edit menu.

Tip To add selected text to the existing contents of the clipboard, hold down the Shift key
as you choose the Cut or Copy command. When you hold down the Shift key, BBEdit
changes these commands to Cut & Append and Copy & Append.

To paste text and have BBEdit immediately select that text, click on the Paste
submenu of the Edit menu and choose the ‘and Select’ command, or use its key
equivalent of Option-Command-V.

Multiple Clipboards
BBEdit supports six separate clipboards. Each time you use the Cut or Copy command,
BBEdit automatically switches to the next clipboard (wrapping back around to the first
clipboard after the sixth). This way, the last six things you copied or cut are always
available for pasting—sort of a “clipboard history.”

By default, the Paste command pastes text from the most recently used clipboard, so if you
do nothing special, BBEdit works just like any other Macintosh program. However, by
using the Previous Clipboard command in the Edit menu you can access the previous
clipboard contents. Next Clipboard moves forward through the clipboard history.

Once you have selected a clipboard, the next Cut, Copy, or Paste command will use the
clipboard you chose. (Subsequent Cut or Copy commands will advance to the next
clipboard; Paste never advances automatically.)

Alternatively, you can select the Previous Clipboard command in the Paste submenu (or
use its key equivalent of Shift-Command-V. This command replaces the pasted text with
the contents of the previous clipboard. The previous clipboard becomes current and will be
used for any further paste operations; repeated applications of the command cycle
backward through the available clipboards.

Drag and Drop
Another way to move text from one place to another is by “drag and drop.” If you drag and
drop text from one window to another, BBEdit copies the text to the target window without
removing it from the original window.
Basic Editing 75

In addition, you can drag and drop an item from the Finder onto an editing window in
BBEdit. If the item is a text file, the file’s contents are inserted. If the item is a folder, a
listing of the item’s contents is inserted. If you hold down the Command key while
dragging a folder, the path of the item is inserted instead.

Multiple Undo
BBEdit provides the ability to undo multiple edits, one action at a time. The number of
edits that may be undone is limited only by available memory. The practical limitation is
determined by the extent of the edits and the amount of free memory.

BBEdit also supports multiple Redos. If you have not made any changes after performing
an Undo, you can redo each action, in order, by choosing that Redo command from the Edit
menu or typing Shift-Command-Z. However, once you perform a new action, you cannot
redo any actions that you undid before you made that change.

There is also a Clear Undo History menu command (Control-Command-Z), which will
clear the undo history for the current editing window. This command can be useful if you
have performed many operations on a file and wish to recover memory stored by Undo
state information (in the rare event that should become necessary). You can also script this
operation via the "clear undo history" scripting command (see the scripting dictionary for
details).
76 Chapter 4: Editing Text with BBEdit

Window Anatomy
BBEdit text windows have the same controls you are familiar with from other Macintosh
applications (for example, text windows are resizable and zoomable, and have both vertical
and horizontal scroll bars). Some additional elements which may be less familiar are the
navigation bar, the sidebar, the split bar, and the status bar.

In addition, BBEdit will automatically display marks in the vertical scroll bar for elements
which are highlighted in the text at various times-such as matches for selected text, Live
Search results, spelling errors, and differences.

IMPORTANT You can choose whether BBEdit should display all new and opened documents in the
frontmost window, or open each document into a new text window, by setting the “Open
documents into the front window when possible” option in the Application preference
panel (see page 209).

Full Screen Mode
You can expand the current editing window into full screen mode by clicking the green
“Zoom” button, or typing the default key shortcut of Control-Command-F, while you can
exit full screen mode by typing the default shortcut again, or by pressing the Escape key, or
by moving the mouse to the top of the screen to display the menu bar and clicking the
double-arrow control in the top right corner.

Toolbar
The toolbar is no longer present; instead, the navigation bar is the primary source of
information about the current document and its contents.
Window Anatomy 77

The Navigation Bar
The navigation bar is a panel at the top of a text window which provides controls for
selecting the active document and for moving to specific points with the current document.
To hide the navigation bar, choose Hide Navigation Bar in the View menu, or turn off the
Navigation Bar options in the Appearance preference panel.

You can also use the options in the Appearance preference panel to hide or show individual
items on the navigation bar.

Choosing the Active Document
You can click on any document in the sidebar to make that document active or choose
Previous Document/Next Document from the View menu. You can also choose a specific
document from the navigation bar’s file popup to make it active, as shown here:

The Previous Document/Next Document commands select documents by the order in
which they were most-recently used, rather than alphabetical order.
78 Chapter 4: Editing Text with BBEdit

Function Navigation
The Function popup menu lists the functions defined in a source code file or various
specific tags present within an HTML document. If the current document’s language does
not support function scanning, the function popup will not be displayed in the navigation
bar.

The following indicators appear in the function popup to show the type of function.

Manually Defined Functions
For code written in several languages, including C/C++, PHP, Python, and Ruby, you can
manually add customized entries to the function popup menu by inserting suitable “mark”
directives within a document. (These directives are also often known as comment callouts.)

In C/C++ documents, BBEdit recognizes “#pragma mark” directives. For other languages,
each directive consists of a line comment followed by a space and the string “#mark ”, plus
the desired marker string.

The complete set of ‘mark’ directives includes:

mark, fixme, fix-me, note, nyi, review, todo, to-do, xxx, ???, !!!

For example, to add an function popup entry named “My item”:

In C/C++:

#pragma mark My item

In JavaScript:

// #mark My item

Indicator Meaning

• The function containing the insertion
point

† C/C++ typedef

◊ C/C++ “#pragma mark” directive

italic name C/C++ function prototype

1-6 Heading level (in HTML files)

tag name Tag name for the indicated name or ID
attribute value (in HTML files)
Window Anatomy 79

In HTML:

<!-- #mark My item -->

In PHP

// #mark My item

// #mark: My item

Note Callout markers may be uppercase, lowercase, or mixed case, and may have a single,
optional colon at the end, before the space and the text to appear in the function
popup.

In Python:

#mark My item

#mark My item

Note In Python files, each directive must be separated from the preceding content by at
least one empty line.

Navigation with Markers
A marker is a selection range that you can name. If a document contains any markers, you
can select them from the Marker popup menu to move quickly to the specified section of
the file.

For more information on working with markers, please see “Using Markers” on page 115.

Note If you are programming, you may be tempted to use markers to mark functions in
your source code. However, if BBEdit supports the language you are using, this is
usually unnecessary; your functions will automatically appear in the Function popup
menu.

Opening Counterparts
You can use the Counterparts popup next to the Marker popup to quickly open and/or
switch back and forth between a file and its counterpart (source file to header, or vice
versa).
80 Chapter 4: Editing Text with BBEdit

This button has the same effect as Open Counterpart in the File menu (see page 56) but in
addition to defined and derived counterparts, it will also list files that are in the same
directory as the active document’s disk file.

Opening Included Files
You can use the Included Files popup to list or open any included files which the current
document references.

The Document Info Panel
Clicking on the document icon in a window's navigation bar (below) will open a spring-
loaded info panel (next page) which displays basic information about the current
document’s file.
Window Anatomy 81

The document info panel also allows you to rename the current file (for local files only), to
“touch” its creation/modification dates, to copy its path in filesystem or URL format, or to
change its permissions (via the options presented in the Permissions tab). To dismiss this
panel, click outside it, switch to another window or application, or press the Escape key.

Key Equivalents for Navigation Bar Menu Items
You can assign key equivalents to the controls on the navigation bar from the Navigation
Bar entry in the Menus & Shortcuts preference panel. So, for example, you can assign a key
equivalent to Open Function Menu, then press that key combination and use the arrow keys
to navigate the current document's function list directly from the keyboard.

If the current document has a corresponding disk file, the navigation bar will display that
file’s full path (or as much of the path as space permits). If the document has not been saved
to disk, the toolbar displays “(New Document)” instead of a file name.
82 Chapter 4: Editing Text with BBEdit

The Sidebar
If BBEdit is configured to open documents into the front window, it will display a sidebar
down the left-hand side of each editing window which lists all the documents currently
open in that window. To hide (or show) the sidebar, choose the Show Sidebar (or Hide
Sidebar) command in the View menu, or type its default key equivalent of Command-0
(Command-Zero). Click any document’s name in the “Currently Open Documents” list to
make that document frontmost in the text window.

BBEdit will display a dark ring around the “close” button of each open documents which
contains unsaved changes. In addition, the title bar and status bar icons of such documents
will change to indicate their unsaved condition.

Dragging a document’s name from the list has the same effect as dragging its proxy icon in
the navigation bar. You can also drag documents within the list to manually reorder them

There are also two controls below the sidebar, which you can employ to perform various
additional actions. (These controls are very similar to the controls in a project window’s
sidebar.)

To open an existing file into the current text window, choose Open from the File menu, or
drag and drop the file from the Finder into that window’s sidebar.

To create a new document, click the Add (plus) button or choose New Text Document in
the New submenu of the File menu.

To move a single document from the current text window into its own text window, just
Control-click on that document in the file list and choose the Move to New Window
command in the contextual menu. To move multiple documents, select them and choose
Move to New Window to create a new text window containing all the selected documents.
Window Anatomy 83

To close a document, choose Close Document from the File menu, click on the close box
next to its name in the list, or Control-click on it in the list and select Close in the
contextual menu. You can also choose the Close Others command in the contextual menu
to close all documents except for the selected document.

To reopen any recently open file, click on the Recent (clock) popup and select the desired
file.

To move a document from one text window to another, drag its name from the first text
window’s sidebar into the second text window’s sidebar. You can select and move multiple
documents at once.

To save the current document, choose Save from the File menu or the action menu. To save
multiple documents at once, select them, then Control-click on them and select Save in the
contextual menu. To save all documents in the window at once, hold down the Option and
Shift keys and choose Save All in Window in the File menu.

The Split Bar
Every text window and every browser text pane has a split bar, a small black bar above the
scroll bar, that lets you split it into two active view regions. Splitting a text pane lets you
view and edit a document’s content in two places at the same time. Each region is
independently scrollable.

Note Scrolling the non-active split region does not automatically change view focus.

To split the text pane, simply drag the split bar down and let go.

To collapse the text pane back down to a single region, drag the split bar (starting from
anywhere along its length, not just at its right end) back up to its original position.

Tip Double-clicking the split bar unsplits a split text pane or restores the last-used split
position. If the text pane has never been split, it will be split 50-50. To force a 50-50
split for a previously split text pane, Option-double-click the split bar when it is in its
original position.
84 Chapter 4: Editing Text with BBEdit

The Gutter and Folded Text Regions
The gutter is the vertical bar directly to the left of the text area, and immediately to the right
of the line number display bar (not shown), which contains indicators for folded and
foldable regions (automatically-generated folds).

Folding Controls
The triangular controls displayed in the gutter are disclosure triangles; you can click on
them to fold or expand regions within the document. If there are nested folds present,
Option-clicking on the outermost fold will expand or collapse that fold and all subordinate
folds.

You can also employ the commands on the View menu to expand or collapse folds, or fold
manually-selected ranges of text. (See “The View Menu” on page 89.)
Window Anatomy 85

The linear bars displayed in the gutter are range end indicators. They show where each
foldable range ends.

When you fold a range, BBEdit displays a fold indicator within the document to represent
that range. To expand the range, you can either click on the disclosure triangle or double-
click the fold indicator.

If you expand a range by double-clicking the fold indicator, the entire range will remain
selected after expansion.
86 Chapter 4: Editing Text with BBEdit

The Status Bar
The status bar is located directly to the left of the horizontal scrollbar. The status bar
displays the current cursor position and the document’s save status, and contains popup
menus showing the language, text encoding, and line break format of the current document

You can use the options in the Status Bar group of the Appearance preference panel to hide
or show individual items on the status bar, and if you disable these options, BBEdit will
hide the status bars.

Cursor Position
This section of the status bar shows the current line and character position of the insertion
point. In addition, clicking on the cursor position display will open a popover that you can
use to go to another line. (The popover will remain active until you click outside of it or
press the Escape key, allowing you to browse the file by line number.)

Language
The Language popup menu displays the language mapping for the current document. You
can change this mapping by choosing a different language from the popup.

Text Encoding
The Text Encoding popup menu displays the encoding used to open the current document.
You can change the encoding in which the document will be saved by choosing a different
encoding from the popup.

To choose an arbitrary encoding, even one not currently displayed, choose Other from the
popup and pick your desired encoding from the resulting list.

Line Break Type
The Line Break Type popup menu shows the line break format of the current document’s
disk file. You can change the line break format with which the file will be saved by
choosing it from the popup.

Document Lock State
The padlock icon immediately to the left of the Document Save Date indicates whether the
document is currently writeable or locked.
Window Anatomy 87

Document Save Date
The Document Save Date section of the status bar displays the date and time that the
document was last saved (if applicable).

Document Statistics
This section of the status bar dynamically displays the number of characters, words, and
lines in the document or the active selection (if any). (This icon will be white when BBEdit
is displaying statistics for the whole document, and green when it’s displaying statistics for
the current selection.)

You may also click on the statistics section at any time to display the Text tab of the
document information panel which will present details for both the whole document and
the current selection range (if any).

Magnification
The Magnification popup menu displays the current document’s magnification level and
allows you to change it. The default magnification level is 100%.

Key Equivalents for Status Bar Items
You can assign key equivalents to the items on the status bar from the Status Bar entry in
the Menus & Shortcuts preference panel. For example, you can assign a key equivalent to
the Line Breaks popup, then press that key combination and use the arrow keys to select the
desired line break option directly from the keyboard.
88 Chapter 4: Editing Text with BBEdit

The View Menu
This menu contains commands which you can use to toggle the display of navigational
elements in text windows, to fold and expand regions of text, to select documents, and to
get information on documents and files.

Text Display
This submenu contains commands which control various text formatting and display
options. You can set key equivalents for any of these commands under the Text Display
entry of the View menu in the Menus & Shortcuts preference panel. You can also adjust
many of the same options via the Text Options command in the Edit menu.

Show/Hide Fonts
This command toggles display of the standard system font panel, which you can use to set
the font, font size, text style, and tab spacing for the active document.

IMPORTANT The chosen display style will be used for all text in the window; BBEdit does not support
the use of selective text styles.

Note The font changes you make by using this command affect only the active document.
To set the default font, size, style, and tab width for all documents, use the “Default
Font” option in the Editor Defaults preference panel.

Soft Wrap Text
This command toggles the use of soft wrapping in the current document. (See “Soft
Wrapping” on page 106.)

Show/Hide Page Guide
This command toggles display of the page guide in the current document. (See “Page
guide” on page 103.)

Show/Hide Tab Stops
This command toggles display of tab stops in the current document. (See “Tab stops” on
page 103.)

Show/Hide Line Numbers
This command toggles display of line numbers in the current document. (See “Line
numbers” on page 103.)

Show/Hide Gutter
This command toggles display of the gutter in the current document. (See “The Gutter and
Folded Text Regions” on page 85.)

Show/Hide Invisibles
This command toggles display of invisible characters in the current document. (See “Show
invisibles” on page 104.)

Show/Hide Spaces
This command toggles display of invisible characters in the current document. (See “Show
invisibles” on page 104.)
The View Menu 89

Show/Hide Navigation Bar
Choose this command to hide or show the navigation bar in the frontmost text window.
(See “The Navigation Bar” on page 78.)

Show/Hide Editor
Choose this command to hide or show the editing pane within a project window.

Show/Hide Sidebar
Choose this command to hide or show the sidebar within the frontmost text window. (See
“The Sidebar” on page 83.)

Show/Hide Open Documents
Choose this command to hide or show the “Open Documents” section within a project
window’s sidebar.

Show/Hide Worksheet & Scratchpad
Choose this command to hide or show the “Worksheet & Scratchpad” section within a
project window’s sidebar.

Balance
This command locates the pair of parentheses, braces, brackets, or smart (curly) quotes that
surround the insertion point or the current selection. If there are unmatched delimiters
within this area, BBEdit beeps. You can also double-click a delimiter character to invoke
this command.

When syntax coloring is active for a document, Balance (including auto-balance) will
ignore balance characters that appear inside strings or comments.

Balance & Fold
This command behaves identically to Balance (above) except that in addition to locating
the paired delimiters, BBEdit will also generate a fold range including the delimiters and all
the text they contain.

Fold Selection
This command generates a fold range from the currently selected text. You can use Unfold
Selection (below) or double-click the fold indicator to expand the fold. When there is no
active selection, this command is disabled.

Unfold Selection
This command will expand any text folds in the selection range. When there is no active
selection, this command is disabled.
90 Chapter 4: Editing Text with BBEdit

Collapse Enclosing Fold
This command will collapse the auto-generated fold that most closely surrounds the current
insertion point (or the start of the selection range).

Collapse All Folds
This command will collapse all automatic fold points in the current document.

Expand All Folds
This command will expand all text folds in the current document, whether automatically
generated or manually created.

Collapse All Folds
This command will collapse all automatically generated fold regions in the text, whether or
not they are contained within other folds. (This is distinct from “Collapse Top-Level
Folds”, which collapses the top-level folds but leaves any nested folds open.)

Collapse Folds Below Level
This command presents a submenu listing all available fold levels within the current
document. Choosing any level will collapse all of the automatically generated fold regions
in the text that are below that fold level. So, for example, choosing Collapse Folds Below
Level 1 will leave the top-level folds open, but will collapse all of the folds below the top
level, whether or not they are contained by other folds.

Previous Document/Next Document
You may use these commands to switch between documents within the frontmost text
window. (By default, BBEdit selects documents in most-recently viewed order, but you can
choose to have it select documents in name order via an expert preference. For details, see
the “Expert Preferences” page in BBEdit’s built-in Help.)

Move to New Window
Choose this command to open the active document of the frontmost text window or project
window into its own text window. If the frontmost text window contains only one
document, this command will be disabled.

Open in Additional Window
Choose this command to open the active document of the frontmost text window or project
window into an additional text window, while leaving it open in the current window.

Reveal in Finder
Choose this command to open a Finder window which will display the active document’s
file. If the active document is not associated with a file, this command will be disabled.
Using this command is the same as clicking (without dragging) the document proxy icon in
the navigation bar.
The View Menu 91

If the selected text in a document is the name of a file, hold down the Option key as you
open the File menu and choose the Reveal Selection command to have BBEdit open a
Finder window which will display that file.

Reveal in Project List
When there are one or more projects open, choose this command to locate the frontmost
project which contains the active document, and reveal that document’s file in the project’s
file list.

Go Here in Terminal
This command is enabled when the active document has a corresponding disk file. Choose
this command to open a Terminal window with the current working directory set to the
document's parent directory.

Go Here in Disk Browser
This command is enabled when the active document has a corresponding disk file. Choose
this command to open a disk browser in the document's parent directory.

Cursor Movement and Text
Selection
BBEdit gives you several ways to move the insertion point and change the selection. You
can click and drag using normal Macintosh text selection techniques or you can use various
keys on the keyboard.

Clicking and Dragging
You can select text in an editing window in the normal Macintosh fashion, by clicking and
dragging. Holding down the Shift key while clicking or dragging extends the selection.

Triple-clicking is the same as clicking in a line and then choosing the Select Line command
from the Edit menu.

You can hold down the Command or Option keys when clicking or double-clicking to
trigger special actions:

No Modifier Shift

Click Move insertion point Extend selection

Double-
click

Select word Extend selection to
word

Triple-click Select line –none–

Option Command

Click –none– Open URL
92 Chapter 4: Editing Text with BBEdit

BBEdit also allows you to select entire lines by clicking in the left margin of an editing
window. (If you have enabled line number display via the Show Line Numbers option in
the Appearance preference panel, you can click in the line number as well.) You can click
and drag to select multiple lines, double-click to select an entire paragraph, or double-click
and drag to select a range of paragraphs.

Arrow Keys
You can use the arrow keys to move the insertion point right, left, up, and down, and
augment these movements with the Command, Option, and Control keys:

Holding down the Shift key extends the selection. For example, pressing Shift-Option-
Right Arrow selects the word to the right of the insertion point.

CamelCase Navigation
BBEdit supports CamelCase navigation. CamelCase (also “camel case”) is the practice of
writing intercapitalized compound words or phrases; it is used as a standard naming
convention in several programming languages, and as an automatic link creation method in
wiki content.

You can move from one part of a CamelCase word to the next by holding the Control key
down and tapping the right (or left) arrow key to jump to the next (or previous) transition
from lower-case to upper-case or the next word boundary, whichever comes first.

Double-
click

Look up selected
word in
programming
reference

–none–

No Modifier Option Command Control

Up Up one line Up one screen Start of
document

(scroll view up)

Down Down one line Down one
screen

End of
document

(scroll view
down)

Left Left one
character

Left one word Start of line Previous case
transition or
word boundary

Right Right one
character

Right one word End of line Next case
transition or
word boundary

Option Command
Cursor Movement and Text Selection 93

Rectangular Selections
By holding down the Option key as you drag, or holding down the Shift and Option keys
while clicking, you can select all text lying within a specified rectangular area (column).
You can then perform all of the normal editing operations on this “rectangular selection,”
such as Cut, Copy, Paste, or drag and drop, as well as text transformations such as Change
Case, Shift Left, Shift Right, Entab, Detab, Increase Quote Level, Decrease Quote Level,
Strip Quotes, and Zap Gremlins.

BBEdit offers two additional commands in the Edit menu: Select Up and Select Down.
These commands facilitate rectangular selection via the keyboard. (Their default key
equivalents are Control-Shift-up arrow and Control-Shift-down arrow, which can be
changed as usual in the Menus & Shortcuts preferences panel.) Starting from either an
existing selection that does not cross a line boundary, or an existing rectangular selection,
the Select Up command will extend the selection range up, or Select Down will extend it
down, within the same column, thus creating (or extending) a rectangular selection.

IMPORTANT Rectangular selection and soft wrapping are mutually incompatible. When soft wrapping is
enabled, dragging the mouse to make a selection will always result in a normal (non-
rectangular) selection even if you hold down the Option key, and the Select Up/Select
Down commands will be disabled.

Working with Rectangular Selections
Commonly, while working with text, you will be performing actions on a line-by-line
basis; for example, when making a selection, you will start by selecting the contents of one
line before moving on to the next. However, if you need to deal with tabular data, it can be
useful to think in terms of rectangles or blocks of text that include parts of several lines.
This is where you can make use of BBEdit’s ability to manipulate rectangular selections.

IMPORTANT You cannot make or insert rectangular selections into a document which is soft wrapped, so
you must turn off soft wrap before using this technique. (See “Soft Wrapping” on
page 106.)

Example: Moving a Column
Consider you have the document shown below, and you want to move only the bottom left
column (the one that says “This text goes in the middle”) and move it in between the top
left and top right columns. To do this using standard selection methods, you would have to
perform five separate cut-and-paste operations. However, by using rectangular selections,
you can move the whole column in one operation.
94 Chapter 4: Editing Text with BBEdit

To start, hold down the Option key while dragging over the bottom left column, until you
get a selection that looks like this:

Choose Cut from the Edit menu (or press Cmd-X) to cut the selected text out of the
document and place it on the Clipboard.

Next, you must paste in the text you just cut. You can do this in either of two ways:

• Use the Paste Column command, which will “paste down” from the current
insertion point. This allows you to directly insert text without needing to make a
rectangular selection first.

• Make a rectangular selection as described below, and then use the standard Paste
command. This procedure is less efficient for moving columnar data than using the
Paste Column command, but it allows you to select and replace a region of text as
well as simply inserting text.
Cursor Movement and Text Selection 95

To manually make a rectangular selection prior to pasting text, position the arrow pointer
just to the left of the top right column, press and hold the Option key, press the mouse
button, and drag straight down until you have a very thin vertical selection just to the left of
the whole column, as shown below.

Now, paste the text you previously cut back in, and the task is finished.

Filling Down
When you apply the Paste Column command and the pasted text contains no line break (or
only a single line break at the end), BBEdit will perform a “fill down”, placing a copy of
the pasted text on each line within the selected column.

Further Details
Some word processors also provide support for rectangular selections which works a little
differently than BBEdit's, so you may wish to keep this difference in mind. Typically, when
you copy a rectangular selection of text to the clipboard in these programs, they handle that
piece of text differently than text copied from a line-by-line selection. Then, when you
paste, the text will be entered in a block, even when you have not made a rectangular
selection to paste into.

BBEdit does not do this. Instead, when you copy a rectangular selection to the clipboard,
BBEdit turns the selection into a series of individual lines, which is why you must make a
rectangular selection before pasting, so BBEdit will know it should paste the text in block
fashion. Though this method does require an extra step, it is more flexible, because you can
select a set of lines and then paste it as a block, or vice versa.
96 Chapter 4: Editing Text with BBEdit

Scrolling the View
When holding down the Control key, the arrow keys will scroll document windows without
moving the insertion point.

Accelerated Scrolling
When clicking the arrows in a scroll bar, you can use the Command and Option keys to
accelerate the scrolling. These shortcuts also apply if you use a mouse with a built-in scroll
wheel.

The Delete Key
The Delete key deletes the character to the left of the insertion point. If you have selected
text, the Delete key deletes all the text in the selection. You can use the Command and
Option keys to modify the way the Delete key works:

Holding down the Shift key with the Delete key makes the Delete key work the same way
as the Forward Delete key on extended keyboards.

The Numeric Keypad
Some keyboards have a numeric keypad on the right side. Normally, you use the keys on
the keypad to enter numbers.

To toggle the behavior of the keypad between moving the cursor and entering numbers,
hold down the Option key and press the Clear key in the upper-left corner of the keypad.
(This key is also labeled Num Lock on some keyboards.)

Modifier Scroll Speed

none Normal

Command 2x accelerated

Option 3x accelerated

Command+Optio
n

6x accelerated

Modifier Action

none Deletes character to the left of the insertion
point

Option Deletes to the beginning of the word to the left
of the insertion point

Command Deletes to the beginning of the line

Command+Optio
n

Deletes to the beginning of the document
Cursor Movement and Text Selection 97

When keypad navigation is active, BBEdit will perform the following actions:

You can use the Shift key with the keys on the numeric keypad to extend a selection. You
can use the Command and Option keys with the 2, 4, 6, and 8 keys as you would the arrow
keys.

Line Number Command
To move the insertion point to a specific line, use the Line Number command in the Go
menu. When you choose this command, BBEdit opens a Go To Line sheet in the frontmost
document. Type the number of the line you want to move to and click Go To.

The Line Number command will also accept relative inputs, and character offsets. Entering
a value prefixed with +/- will add that value to the current line number. For example, with
the insertion point in line 100, “+75” will move to line 175; “-75” will go to line 25. (As
always, when you enter an unsigned number, BBEdit will move to the specified line
number.)

In addition, you can enter a line number of the form “xx:yy”, in which "yy" is a character
offset into the destination line. If the character offset exceeds the number of characters on
the line, BBEdit will place the insertion point at the end of the specified line.

Note The Line Number command honors the Use “Hard” Lines in Soft-Wrapped Views
option in the Editing preference panel.

Function Keys
If your keyboard has function keys, you can use the following key equivalents for cutting
and pasting, to scroll, and to move the insertion point.

start of line

7
up

8
Scroll up

9

left

4
show

selection

5
Right

6

end of line

1
down

2
Scroll down

3

No Modifier Option Command Shift

del forward delete delete to
end of
word

delete to
end of line

Home scroll to top of
document

move
insertion point
to start of
document
98 Chapter 4: Editing Text with BBEdit

Note Holding down the Command and Option keys as you press the forward delete key
deletes to the end of the document.

Resolving URLs
To resolve a URL (Uniform Resource Locator), you can Command-click anywhere in the
URL text, or Control-click to bring up the contextual menu and choose Open URL from the
menu. BBEdit will examine the URL and launch the appropriate helper application. If the
URL is not valid or the helper application cannot be found, BBEdit will beep.

Note Some Web browsers cannot resolve URLs if the request is sent when the browser is
starting up. If your Web browser does not properly resolve the URL, wait until the
browser has finished starting up and then try again.

Bare Bones Software gratefully acknowledges John Norstad for providing the URL parsing
code.

End scroll to end of
document

move
insertion point
to end of
document

Pg Up scroll page up

Pg Dn scroll page
down

No Modifier Option Command Shift
Cursor Movement and Text Selection 99

Text Completion
BBEdit can either automatically offer completions for words and symbols as you edit, or
offer completions only when you manually request them. You can control when BBEdit
offers completions via the “Show Text Completions” option in the Editing preferences
panel:

• After a delay in typing: If you pause briefly while typing, BBEdit will figure out
the possible completions for what you just typed and display them.

• Only manually: BBEdit will only display possible completions when you invoke
the Complete command (see below).

Note This feature is also known as “autocomplete” or “autocompletion”.

You can also enable (or disable) text completion on a per-language basis by adding a
custom language setting in the Languages preferences panel.

Completions are derived from a variety of sources, including (in no particular order):

• clippings (both language-specific and universal);

• ctags symbols computed by running the current document through 'ctags';

• ctags symbols found in 'tags' files in the current document's hierarchy;

• predefined names for the source code language at the point of completion;

• language-specific completions (both predefined and derived from the current
document’s content);

• dictionary words provided by the system spelling service

Each completion item has an associated completion symbol which indicates its source; for
a complete listing of completion symbols, see the Completion Symbols table on the
following page.

Invoking Completion
You may trigger a completion at any time (whether or not automatic completion is enabled)
by using the “Complete” command in the Edit menu or pressing its default key equivalent
of F5. (You can change this equivalent via the Menus & Shortcuts preference panel.)

Note Text completion treats clippings in the same way that the "Insert Clipping" command
used to (and still does). So, the behavior of F5 should be indistinguishable if you were
used to using it to complete clippings.

You can also optionally use the Escape key to invoke text completion. By default, this key
is not used for completion, but you may enable it by turning on the corresponding option in
the Keyboard preference panel.

Note Because the Escape key has a special meaning when the “Use Emacs key bindings”
option is on (in the Keyboard preference panel), if this option is active and you choose
to use the Escape key as a completion trigger, you will have to press Escape twice to
invoke completion.
100 Chapter 4: Editing Text with BBEdit

Completion Symbols

Item Type Badge
Shape

Symbol
Color

Letter
(Symbol)

Global

Clipping Circle Black C

Spelling word Square Black w

Content-derived

Class Square Light purple C

CSS property Square Dark purple p

Enumeration name Square Orange E

Enumeration value Square Orange e

External variable Square Light green V

Function Square Light blue ƒ

Function prototype Square Light blue F

Global variable Square Light green G

HTML attribute name Square Dark purple A

HTML attribute
value

Square Dark purple V

HTML element Square Dark purple <

IVar Square Light green v

Include file Square Dark purple #

Language keyword Square Blue K

Local variable Square Light green L

Macro Square Light red #

Member Square Light green v

Method Square Light blue M

Namespace Square Light purple N

Predefined symbol Square Blue k

Static type Square Orange T

Struct Square Orange S

Union Square Orange U
Text Completion 101

Text Options
You can use the Text Options command to change the way BBEdit edits text and the way it
displays text and additional elements in its windows. When you choose this command,
BBEdit will drop a Text Options sheet in the current text window.

The controls on the Text Options sheet are divided into two parts: the Editing options on
the left control the way BBEdit behaves while you type, and the Display options on the
right control the appearance of the BBEdit window.

Note You can also change many of these options using the commands in the Text Display
submenu of the View menu.

Changes you make in the Text Options sheet affect only the active document or window. To
set options which will apply to all text windows you open, use the Editor Defaults and
Appearance preference panels.

Editing Options
These options control the way BBEdit behaves as you type text in the active document
window. Changes you make here affect only that document. To change the default editing
options for documents that you will open in the future, use the Editor Defaults preference
panel.

Use typographer’s quotes
When this option is on, BBEdit will automatically replaces straight quotes (" ') with
typographer’s quotes (“ ” ‘ ’) in the current document. If you need to type a straight quote
when this option is selected (or to type a typographer’s quote when the option is not
selected), hold down the Control key as you type the " or ' key.

Note We recommend against using this option if you are editing HTML content, email
content, or program code.

Auto-expand tabs
When this option is selected, BBEdit inserts an appropriate number of spaces when you
press Tab, rather than inserting a tab character.
102 Chapter 4: Editing Text with BBEdit

Additionally, when there are only spaces (and tabs) between the insertion point and the start
of the current line (or the first non-whitespace character on the line), BBEdit will delete a
tab stop's worth of spaces when you press Delete (Backspace).

Soft wrap text
When this option is selected, BBEdit soft-wraps the text in the file to the right margin that
you choose: the page guide, the window width, or a specific number of characters. The
page guide is an arbitrary visual boundary whose width you can set in the Appearance
preference panel. (See “Soft Wrapping” on page 106 to learn how wrapping works in
BBEdit.)

Language
The Language menu lets you specify which source code language the file uses. The file’s
language setting affects how BBEdit performs syntax coloring and parses function names
for the function popup menu. BBEdit generally determines the file’s language from its
filename extension, using the mapping table in the Languages preference panel.

For example, “.cp” files are C++, and “.m” files are Objective-C. You can use this menu to
override those settings for a specific file. To quickly check the language for a file, look at
the Languages popup in the status bar, or choose the Text Options command and look at the
Languages popup in the resulting options sheet.

Display Options
These options determine which controls appear in the frontmost text window, regardless of
whether that window contains one or more documents. Changes you make here affect only
that window. To change the display characteristics for text windows that you will open in
the future, use the Appearance preference panel.

Line numbers
This option displays line numbers along the left edge of the window.

Gutter
This option shows or hides the gutter in the window.

Navigation bar
This option shows or hides the navigation bar in the window.

Page guide
This option shows or hides the page guide in the window.

Tab stops
This option shows or hides tab stop indicators in the window.
Text Options 103

Show invisibles
This option shows or hides non-printing characters in the window. Select this option when
you want to see line breaks, tabs, and “gremlins” (other invisible characters). BBEdit uses
these symbols:

If you turn on Show Invisibles, the Show Spaces option will become available, allowing
you to enable display of the visually “noisy” space characters if you desire.

Syntax Coloring
When this option is selected and the editing window contains a document in a
programming language BBEdit recognizes, BBEdit displays keywords and other language
elements in color.

BBEdit uses several methods to determine what language (if any) to use for a particular
file. The primary way to activate syntax coloring in a document is simply to save it with a
file name extension that indicates what programming or markup language the file contains.
For example, if you save your file with “.html” at the end of the file name, BBEdit will
color your HTML tags and anchors. Other common suffixes are “.tex” for TeX files and
“.c” for C files.

For any file whose name does not have an extension, or whose name has an extension that
does not match any of the mappings in BBEdit’s Languages preference panel, BBEdit will
attempt to guess what language the file contains and apply the appropriate syntax coloring.
If BBEdit guesses wrong (or is unable to guess), you can resort to the Language popup in
the status bar or the Language popup menu in the Text Options sheet, either of which gives
you the ability to manually select any installed language to be applied to the document,
regardless of its name. If the file is saved with “BBEdit” state, the manual language
selection will persist and override any suffix mapping.

By default, BBEdit recognizes over 20 different languages and several dozen suffix
mappings. You can add new suffixes to map to existing languages or (by installing third-
party language modules) add syntax coloring support for new languages as well. All the
specific languages that BBEdit recognizes, and the suffixes or extensions it expects for
them, are listed in the Languages preference panel, and suffix mappings can also be
changed there. You can choose the colors that BBEdit uses for syntax coloring in the Text
Colors preference panel.

Note BBEdit will recognize and syntax-color VBScript embedded within HTML via the
<%…%> and <SCRIPT>…</SCRIPT> tags.

Symbol Meaning

Δ tab

• space

• non-breaking space

¬ line break

¶ page break

¿ other non-printing or
special characters
104 Chapter 4: Editing Text with BBEdit

How BBEdit Wraps Text
BBEdit wraps text in one of two ways: soft wrapping or hard wrapping.

Soft wrapping is like the word wrapping found in most word processors. When the
insertion point reaches a right margin as you type, the word processor automatically moves
the insertion point to the beginning of the next line. You never need to type a hard line
break (that is, press the Return key) at the end of a line, but only to start a new paragraph. If
you place the insertion point in the middle of a paragraph and start typing, the text reflows
so that words that are pushed out beyond the right margin end up on the next line. Usually,
you use soft wrapping when you are editing memos, mail messages, and other prose. It is
also useful for HTML documents. With soft wrapping, you generally do not have to scroll
the window horizontally to see all the text in the file.

Unlike soft wrapping, hard wrapping requires a line break at the end of every line. When
soft wrapping is turned off, BBEdit lets you type as far as you like on a line, and never
automatically moves the insertion point to the beginning of the next line. You have to
manually type a line break to start a new line. You usually use hard wrapping to write
programs, tabular data, resource descriptions, and so on. With hard wrapping, each line of
source code or data appears on its own line in the window, although you may have to scroll
the window horizontally to see the entire line if it is long.

Note When you use the Hard Wrap command on a rectangular selection, lines will be
padded with spaces as necessary.

Tip If you open a file in BBEdit that appears to consist of a few very long lines, you should
select the soft wrapping option for that file.

This table summarizes the commands to soft-wrap and hard-wrap text. The sections that
follow give details about using the wrapping commands.

Note Users of very old versions of BBEdit or BBEdit Lite will note that the Wrap while Typing
option (which hard-wrapped text automatically by inserting a Return when you reach
the right margin) has been relegated to the dustbin of history. It has been superseded
by soft wrapping.

To do this… Do this…

Soft-wrap text as you type Choose Soft Wrap Text from the
Text Display submenu of the View
menu or select the Soft Wrap Text
option from the Text Options sheet

Convert hard-wrapped text to
soft-wrapped text

Use the Remove Line Breaks
command in the Text menu, and
activate soft wrapping

Convert soft-wrapped text to
hard-wrapped text

Use the Add Line Breaks command
in the Text menu

Hard-wrap text to a specific
margin, reflowing paragraphs as
needed

Use the Hard Wrap command in
the Text menu
How BBEdit Wraps Text 105

Soft Wrapping
To turn on soft wrapping within the current document, you may do either of the following:

• Choose Soft Wrap Text from the Text Display submenu of the View menu.

• Select the Soft Wrap Text option from the Text Options sheet. (Choose Text
Options from the Edit menu to open this sheet.)

You can also specify whether BBEdit should wrap text at the Page Guide, the edge of the
window, or a specific character position.

IMPORTANT Soft wrapping and rectangular selection are mutually incompatible. When soft wrapping is
enabled, dragging the mouse performs normal (non-rectangular) selection even if the
Option key is held down.

To make soft wrapping the default for new windows, select the Soft Wrap Text option in
the Editor Defaults preference panel. You can also use the settings in that panel to specify
the default wrapping margin.

To “freeze” the current line endings and hard-wrap the text at the current soft wrapping
settings, use the Add Line Breaks command to insert a line break at the end of each line.

While BBEdit prefers to break lines at white space when soft-wrapping, lines will be
broken as close as possible to the designated wrap width if they do not contain any white
space. This way, long URLs and other extended strings of characters are visible without
requiring horizontal scrolling.

Soft Wrapping with Indentation
You can control how BBEdit indents soft wrapped text by means of the Soft Wrapped Line
Indentation option in the Editing preference panel. Choose Flush Left to have all lines of
each paragraph below the first wrap flush to the left margin of the window. Choose First
Line to have all subsequent lines of a paragraph wrap to the same indent level as its first
line. Choose Reverse to have all subsequent lines of each paragraph wrap indented one
level deeper than its first line.

Exporting Soft-Wrapped Text
BBEdit will not insert hard line breaks into softwrapped files upon saving them. If you
wish to add hard line breaks to a softwrapped file, use the Hard Wrap or Add Line Breaks
command.

Soft Wrapping in Browsers
Use the Text Options command from the Edit menu to control soft wrapping (and other
display options) for files viewed in a browser window.

Soft Wrapping and Line Numbers
The preference Use “Hard” Lines in Soft-Wrapped Views controls how line numbers are
displayed when you use soft wrapping. If this option is turned on, the line number bar,
cursor position display, and Line Number commands in editing views will use line numbers
that correspond to “hard” line breaks in the document, rather than to soft-wrapped line
breaks. To restore the behavior of previous versions of BBEdit, turn this preference off.
106 Chapter 4: Editing Text with BBEdit

Hard Wrapping
The easiest way to hard-wrap text is to type a line break (by pressing the Return key)
whenever you want to start a new line. If you are editing program source code, it is
generally best to turn off soft wrapping altogether.

To turn off soft wrapping for the active window, do one of the following:

• Choose Soft Wrap Text from the Text Options popover in the navigation bar.

• Deselect the Soft Wrap Text option from the Text Options sheet box by choosing
Text Options from the Edit menu.

To turn off soft wrapping for new windows, deselect the Soft Wrap Text option in the
Editor Defaults preference panel.

BBEdit provides two ways to convert soft-wrapped text into hard-wrapped text. The first is
a simple technique that uses a single command; the second is a bit more complicated but
gives you much more control over wrapping.

Hard-Wrapping Soft-Wrapped Text
To convert soft-wrapped text to hard-wrapped text, use the Add Line Breaks command in
the Text menu. This command inserts a line break at the end of every line of the text as it
appears in the window. If your wrapping margin is the edge of the window, you will get
different results depending on the width of the window.

If the current document contains a selection range, Add Line Breaks will affect only the
selected text; if there is no selection, this command will affect the entire contents of the
current document.

Note The Add Line Breaks command does not turn off soft wrapping.

Hard Wrapping and Filling Text
The Hard Wrap command in the Text menu offers more flexibility for hard-wrapping text
than the Add Line Breaks command. Whereas Add Line Breaks merely “freezes” the line
breaks displayed in a document by inserting line breaks, the Hard Wrap command allows
you to wrap text to any arbitrary width, while also reflowing or indenting paragraphs.

If the current document contains a selection range, Hard Wrap will affect only the selected
text; if there is no selection, this command will affect the entire contents of the current
document.

When you choose the Hard Wrap command, BBEdit opens a sheet in the frontmost
document:
How BBEdit Wraps Text 107

The controls in the left half of the sheet control the maximum width of lines after hard
wrapping, how to treat quote delimiters (if present), and whether wrapped lines should be
consolidated to fill paragraphs to the specified width. The controls in the right half
determine how paragraphs should be indented.

The “Break Lines at” setting let you specify the wrapping margin.

If the text contains Internet-style quotes (one or more “>” characters at the beginning of
each line) and the “Remove spaces” option is selected, BBEdit will remove the leading and
trailing spaces from each line, or if the “Leave trailing space” option is also selected,
BBEdit will remove the leading spaces while leaving trailing spaces.

If the Paragraph Fill option is selected, BBEdit forms the lines into paragraphs before
wrapping the lines. An example is the best way to illustrate this option.

Suppose you start with this text:

This is what happens when you wrap to 65 characters with Paragraph Fill off:

BBEdit breaks the long line at a width of 65 characters (twice, because the line was so
long) and leaves the short lines alone.

This is what happens to the same text when you wrap with Paragraph Fill on:

BBEdit joins all the lines together to form a single paragraph and then wraps the text to a
width of 65 characters.
108 Chapter 4: Editing Text with BBEdit

The Paragraph Indentation buttons let you indent paragraphs after they have been wrapped.

• Flush Left does not indent paragraphs at all.

• First Line indents all lines in the paragraph by one tab stop.

• Reverse places the first line in the paragraph flush against the left edge of the
window and indents all other lines in the paragraph by one tab stop.

Mark the Relative to First Line checkbox to make any paragraph indents relative to the
original indent of the first line of the selection or document. If you want paragraph indents
to be relative to the left margin of the document, make sure this checkbox is not marked.

Click the Wrap button to perform the Hard Wrap command, or cancel to dismiss the sheet.

Tip If you hold down the Option key as you choose the Hard Wrap command, BBEdit uses
the last Hard Wrap settings to perform the operation, without displaying a sheet.

The Insert Submenu
In addition to typing, you can use the commands in the Insert submenu of the Edit menu to
insert text into the active window. These commands let you insert the contents of other
files, folder listings, page break characters, time stamps, and Emacs variable blocks.

Inserting File Contents
The File Contents command inserts the contents of one or more files into the document you
are editing. When you use this command, BBEdit displays an Open sheet in which you can
choose the files to insert. To select more than one file hold down the Shift key or Control
key as you click the files. BBEdit then inserts the contents of the selected files at the
insertion point or replaces the selected text. If you select more than one file, the files will be
inserted in alphabetical order, according to file name.

The Open sheet also presents an option named Include Separators, and if you enable this
option, BBEdit will include a separator which consists of a dashed line and the file's name
between each inserted file's contents.

Tip You can also drag a file’s icon from the Finder into a BBEdit editing window to insert
the contents of that file.

Inserting File & Folder Paths
The File/Folder Paths command inserts the full path information for the selected files and
folder into the document you are editing. When you use these commands, BBEdit displays
a sheet that lets you select the files and/or folders. BBEdit inserts the path information at
the insertion point or replaces the selected text.
The Insert Submenu 109

Inserting a Folder Listing
The Folder Listing command inserts a textual listing of a folder hierarchy. When you use
this command, BBEdit displays a sheet that lets you select a folder to insert, and options to
control whether the generated listing should be hierarchical (the original style), or flat
(which lists the full path of every item) and whether to include hidden (invisible) items.
These option settings will remain selected until you change them, and will also apply if you
drag a folder into a document.

Tip You can also drag a folder’s icon from the Finder into a document to insert a folder
listing.

Inserting a Page Break
To insert a page break, choose the Page Break command from the Insert submenu of the
Edit menu. This will place a form feed character (ASCII 12) at the location of the insertion
point. BBEdit uses this character to indicate the start of a new page when printing.

Inserting Time Stamps
To insert the current time, choose Short Time Stamp or Full Time Stamp from the Insert
submenu of the Edit menu. These commands will insert short and long forms (respectively)
of the current date and time at the location of the insertion point.

Inserting an Emacs Variable Block
To insert an Emacs variable block describing the option settings for the current document,
choose Emacs Variable Block from the Insert submenu of the Edit menu. This will bring up
a sheet which you can use to review and confirm the desired options. (Since depending on
what options are set, the resulting block can be rather verbose, you may wish to prune the
resulting text.)

These options specified in this block will take precedence over saved document state when
BBEdit opens the document. (Inserting these explicit settings can be useful when sharing
the document with others.)

Comparing Text Files
If you have ever had to reconcile changes between two different versions of a file, or even
larger numbers of documents, you know how laborious this task can be. BBEdit’s Find
Differences command is a powerful tool for doing such comparisons faster and more
effectively. Using Find Differences, you can compare any two files, or the contents of two
folders. You can also specify options to eliminate minor variations in document content,
such as different amounts of white space, from being considered.

If you have two or more text documents open, choose the Compare Two Front Windows
command on the Search menu to quickly compare the topmost two documents. (BBEdit
will automatically determine which document is newer and which older based on their
modification dates.)
110 Chapter 4: Editing Text with BBEdit

To compare two arbitrary files or folders:

1 Choose the Find Differences command from the Search menu.

 BBEdit opens the Find Differences dialog box.

2 Use the Left and Right popup menus to select the documents you want to compare.

If the files you want to compare are already open, they will appear in the popup menus;
otherwise, you can select them by clicking the standard item selection button next to
either popup menu, or by dragging the icon of any desired file or folder icons from the
Finder into the Left or Right field.

You can also select recently opened files from the Recent Files item on the New and
Old popup menus, or drag files (or folders) from the Finder into the “Left” and “Right”
path fields or their adjacent image wells.

The image well to the right of each path shows a file (or folder) icon if the path refers to
an item on disk; if the item indicated by the path does not exist on disk (i.e. an unsaved
document), the image well will instead display an alert icon.

3 Select the Compare options that apply.

When the Case Sensitive option is selected, BBEdit distinguishes uppercase from
lowercase letters; deselect this option if you want BBEdit to consider uppercase and
lowercase letters the same.

When Ignore Curly Quotes is selected, BBEdit treats typographers’ quotes the same as
straight quotes.

When Ignore Blank Lines is selected, BBEdit will skip all differences that consist
entirely of blank (empty) lines.

When one or more of the Ignore Spaces options is selected, BBEdit will ignore the
corresponding presence of whitespace at the specified positions while comparing files,
or if the “All” option is selected, BBEdit will ignore all whitespace differences.

4 Click Compare to perform the comparison.
Comparing Text Files 111

Alternatively, you can use the ‘bbdiff’ command line tool to specify two files (or folders),
and have BBEdit perform a Find Differences on them.

If the two documents are different, BBEdit opens a Differences window which contains
both documents.

The Differences window lists all the differences between the left-hand and right-hand
documents. To see the differences in context, click a line in the Differences window;
BBEdit scrolls and selects that spot in both files.

The range of lines within each file which belong to the selected difference are highlighted
with the current color scheme’s “Differences” color, while all other differences within file
are drawn with a light grey background.

Reviewing and Applying Differences
To view and apply individual differences within a line or region (i.e. sub-line differences),
just click on the triangle to the left of that difference to expand the list and select the
appropriate character difference.

Use the Apply to Left and Apply to Right buttons in the Differences window to transfer the
differing text from the new file to the old file, or vice versa. After you use one of these
buttons, BBEdit italicizes the entry in the Differences window to indicate that you have
already applied that change.

You may also apply all differences by clicking in the differences list, then choosing Select
All in the Edit menu, and using the Apply to Left or Apply to Right button to apply the
differences to the desired file.

If a Differences window is open and is the frontmost window, the Compare Again
command in the Search menu will recompare the two files being compared and refresh the
list of differences accordingly. The small button (with the circular icon) between the Apply
to Left and Apply to Right buttons performs the same function.

Preserving a List of Differences
When a Differences window is active, you can save the currently listed differences to a
plain text file by using the Export command in the File menu.
112 Chapter 4: Editing Text with BBEdit

Comparisons by Other Means
Comparisons performed by means other than the Find Differences dialog will use the
settings currently specified in that dialog, rather than reverting to factory defaults. These
means include the contextual menu Compare command, the Compare Against Previous
Version and Compare Against Disk File commands, and various forms of source control
revision comparisons.

Compare Against Disk File
You can use the Compare Against Disk File command to compare the contents of the active
document against the disk file for that same document. This capability makes it easy to
locate in-progress changes to a document.

Multi-File Compare Options
You can compare multiple files at once by selecting two folders in the Find Differences
dialog; BBEdit lists all the files in each folder, and displays a directional arrow icon to
denote files which exist only in one folder.

You can select any file pair to view their differences (as for a single pair of files), or for
files which exist only in one folder, click the arrow icon to copy the existing file into the
corresponding location in the second folder. In addition, you can click any file’s icon to ask
the OS to open it, or Option-click to reveal that file in the Finder, or Command-click to
open that file into a separate editing window within BBEdit.

When performing a multiple file comparison, you can specify the additional options
described below.
Comparing Text Files 113

List identical files
Normally, when you compare folders using the Find Differences command BBEdit
presents you with three lists: one list of the items that are in the first folder but not in the
second folder, another list of the items that are in the second folder but not in the first one,
and another list of the items that appear in both folders.

The list of items that appear in both folders generally displays a bullet next to items that are
not identical. For example, if you have an archived mail folder that you are comparing
against a current mail folder, mailbox files that appear in both the old and new file will all
be listed together; however, if there have been any changes to the contents of particular
mailbox files, the changed mailbox files will be listed with bullets next to them.

If you are comparing very large folders, however, the list of common items can be
extremely long, making the flagged items hard to find. When you deselect the List Identical
Files checkbox, BBEdit will list only the flagged items (the ones that have been changed)
in the list of items that appear in both folders.

Flatten hierarchies
Normally, BBEdit retains the hierarchy of the files being compared in a folder. In other
words, when comparing folders, it looks in each subfolder of the first folder you select and
tries to match it with a file of the same name in the same subfolder of the second folder, and
so on down for all subfolders. If you choose Flatten Hierarchies, BBEdit considers the files
in the folders as a single flat list, allowing a file in one folder to match a file of the same
name in the other folder, regardless of whether they are in the same subfolder in both
hierarchies.

Only compare items in common
If this option is set, BBEdit will only list items in the results that exist in both of the folders
being compared. (This option is also available to the scripting interface.)

Skip (…) folders
If this option is set, BBEdit skips subfolders whose names are enclosed in parentheses
when comparing folders.

Only compare text files
If this option is set, BBEdit does not include non-text files when comparing folders.

Use file filter
File filters allow you to select files for comparison with great precision. If either file in a
compared pair matches the filter, the files are eligible for comparison; if neither file
matches the filter, the files will not be compared. See Chapter 7, “Searching,” for more
information on creating, editing, and using file filters.

Note When comparing folders with the Find Differences command, BBEdit applies any
specified file filter to the contents of the resulting “Only in new” and “Only in old” lists,
so that only those files that match the filter criteria will appear in the lists.
114 Chapter 4: Editing Text with BBEdit

Using Markers
A marker is a selection range that you can name. If a document contains any markers, you
can select them from the Mark popup menu to move quickly to the specified section of the
file. (The navigation bar must be visible in order to access the Mark popup menu. Choose
Show Navigation Bar from the View menu to display the Navigation bar if it’s hidden.)

Note If you are programming, you may be tempted to use markers to mark functions in
your source code. However, if BBEdit supports the language you are using, this is
usually unnecessary; your functions will automatically appear in the Function popup
menu in the document window.

Setting Markers
To set a marker:

1 Select the text you want to mark.

2 Choose the Set Marker command from the Mark popup menu (identified by the icon
shown at left), or Control-click the selected text and choose Set Marker from the
contextual menu.

BBEdit opens a sheet so that you can name the marker. If you have selected a range of
text, the sheet will contain the first characters of the selection.

3 Click Set to set the marker.

Tip If you hold down the Option key as you choose Set Marker, BBEdit sets the marker
using the leading characters of the selected text as the name of the marker, without
displaying a dialog box.

Clearing Markers
To clear a marker:

1 Choose the Clear Markers command from the Mark popup menu.

 BBEdit displays the list of markers.

2 Select the marker you want to delete.

3 Click Clear to clear the marker.

BBEdit also offers a Clear All Markers command, which clears all the markers in the
document in one fell swoop. You can access this command by holding down the Option key
and using the Mark popup menu.

Using Grep to Set Markers
You can use the Find & Mark All command in the Mark popup menu to mark text that
matches a grep pattern. To learn more about using grep patterns, see Chapter 8, “Searching
with Grep.”
Using Markers 115

To use a grep pattern to mark text:

1 Choose the Find & Mark All command from the Mark submenu.

 BBEdit opens the Find & Mark All sheet.

2 Type the pattern in the Search For field and the marker names in the Mark With field.

You can also choose stored patterns from the Patterns popup menu.

3 Click Find & Mark to mark the matching text.

BBEdit searches the current document for text that matches the pattern and marks it the
way you specified.
116 Chapter 4: Editing Text with BBEdit

Speaking & Spell Checking Text

Speaking Text
The Start Speaking command in the Edit menu will speak the selected text in the document
using the system’s current speech settings, or if there is no selection range it will speak the
entire document.

If the frontmost document is empty, this command will be disabled. When speaking is in
progress, this command reads “Stop Speaking” and selecting it will stop the in-progress
speech.

Spell Checking Text
The commands in the Edit menu’s Spelling submenu let you check the spelling of the text
in your documents using the system’s built-in spelling checker.

Check Spelling As You Type
To have BBEdit automatically check spelling as you type for the current document, select
Check Spelling as You Type in the Spelling submenu. To have BBEdit always check
spelling as you type, turn on the corresponding option in the Editor Defaults preference
panel.

When BBEdit encounters a word which is either misspelled or not in the checker’s
dictionary, it will draw a heavy red underline beneath the word. You can either type a
correction, or Control-click on the word and select a suggested correction from the
contextual menu.

To skip the identified word and continue checking, use the Check Spelling command again.
To ignore all further instances of the word, Control-click on it and choose Ignore Spelling
from the contextual menu. To add the word to the dictionary, Control-click on it and choose
Learn Spelling from the contextual menu.

Manual Spell Checking
Choose the Find Next Misspelled Word command from the Spelling submenu, or type its
key equivalent (Command-;) to start checking a document’s spelling. BBEdit will check
every word in the document in order, starting from the current insertion point.

To check the spelling of all words in the document at once, choose the Find All Misspelled
Words command, or type its key equivalent (Option-Command-;). BBEdit will draw an
underline under every questioned word in the document. You can then correct the spelling
of any questioned word by typing, or by using the contextual menu to select a suggested
correction or to skip, ignore, or add the word to the dictionary.

To clear the underline from all questioned words, choose the Clear Spelling Errors
command.
Speaking & Spell Checking Text 117

The Spelling Panel
In addition to allowing you to correct, ignore, or learn identified words, the Spelling panel
allows you to choose which spelling dictionary BBEdit will use, and to forget learned
spellings. To use the Spelling panel:

1 Choose the Show Spelling Panel command from the Spelling submenu.

 BBEdit opens the Spelling panel.

2 Set spelling options.

Choose a dictionary to use by selecting it from the Dictionary popup menu. Select Skip
All Caps to avoid checking words consisting of only capital letters. (Note that these
settings persist across runs of the application.)

3 Click Find Next to begin checking.

BBEdit scans the document, and stops at the first misspelled or unrecognized word.
This word is displayed in the text field to the left of the Correct button. Possible
corrections for the questioned word are listed in the Guess box above.

4 If the questioned word is misspelled, choose the correct spelling from the Guess list or
type it yourself in the Correct field.

5 Click one of the Spelling panel’s action buttons to handle the questioned word.

Click Ignore to ignore further instances of the questioned word, without adding it to the
active dictionary.

Click Guess to display a list of possible corrections.

Click Find Next to ignore this instance of the questioned word and continue checking.

Click Correct to replace this instance of the questioned word with the text in the
adjacent text field.

Click Learn to add the questioned word to the active dictionary.

Click Forget to remove the questioned word from the active dictionary.
118 Chapter 4: Editing Text with BBEdit

C H A P T E R

5
Text Transformations
This chapter describes the range of powerful text transformation commands
offered by BBEdit. Beyond applying individual commands to the current
document, you can define and save Text Factories, which are sequences of
commands that can be applied to one or more documents.

In this chapter
Text Menu Commands . 119

Apply Text Filter – 120 • Exchange Characters – 120
Change Case – 121 • Shift Left / Shift Right – 121
Un/Comment Lines & Un/Comment Block – 121 • Hard Wrap – 122
Add Line Breaks – 122 • Remove Line Breaks – 122
Convert to ASCII – 122 • Educate Quotes – 122
Straighten Quotes – 122 • Add/Remove Line Numbers – 123
Prefix/Suffix Lines – 123 • Sort Lines – 124
Process Duplicate Lines – 125 • Process Lines Containing – 126
Increase and Decrease Quote Level – 127 • Strip Quotes – 127
Zap Gremlins – 128 • Entab – 129 • Detab – 129
Normalize Line Endings – 129

Text Factories . 131
Creating and Configuring Text Factories – 131
Applying Text Factories to Files – 135
Applying Text Factories to Open Documents – 135
HTML Processing Actions – 135

Automator Actions . 136
Using BBEdit with Automator – 136
Available Actions – 137

Other Transforms . 140
Columnar Text Manipulations – 140 • Extract – 140
Paste Using Filter – 140

Text Menu Commands
BBEdit provides a variety of commands which you can use to transform text in
different and useful ways. Most of these commands are situated in the Text menu,
and described in this section. You can also use BBEdit’s built-in search and
replace capabilities to transform text, as detailed in Chapters 7 and 8 of this
manual.

Unless otherwise specified, each of these commands will be applied to the active
text selection in the frontmost document range, or if there is no active selection, to
the entire contents of the document.
119

Hold down the Option key when selecting any command from the menu in order to quickly
re-invoke it with its last-used option settings. (These “short form” commands are also
available in the Menus & Shortcuts preference panel, so that you can set key equivalents
for them.)

Apply Text Filter
This command presents a submenu listing all currently available text filters. (These filters
consist of any executable items contained in the Text Filters folder of BBEdit’s application
support folder. See “Text Filters” on page 35.)

When you choose a filter, BBEdit will pass either the selected text (or the contents of the
active document, if there is no selection) on STDIN to Unix executables or filters, as a
string to text factories, as a reference to a ‘RunFromBBEdit’ entry point in AppleScripts, as
text input to Automator workflows, and as a source to text factories. (An AppleScript script
intended for use as a text filter must have a ‘RunFromBBEdit’ handler.)

AppleScript scripts and Automator workflows should return a string which BBEdit will use
to replace the selection range, Unix filters should write to STDOUT, and the text emitted by
a text factory will replace the selection range.

Apply Text Filter <last filter>
When you choose this command, BBEdit will reapply the most recently used text filter.

Exchange Characters
This command swaps two characters according to the following rules:

• If there is no selection and the insertion point is not at the beginning or end of a
line or of the document, this command transposes the two characters on either side
of the insertion point.

• If the insertion point is at the beginning of a line or document, this command
transposes the two characters following the insertion point.

• If the insertion point is at the end of a line or document, this command transposes
the two characters before the insertion point.

• If there is a selection, this command transposes the characters at either end of the
selection.

If you hold down the Option key as you choose this command, Exchange Characters
becomes Exchange Words. Exchange Words behaves like Exchange Characters except that
it acts on entire words rather than individual characters.
120 Chapter 5: Text Transformations

Change Case
This command lets you change between uppercase and lowercase characters, or capitalize
word, line, or sentence starts. When you choose the Change Case command, the following
sheet appears:

The radio buttons let you choose how to change the case of the text. The following table
explains the function of each option in this dialog.

 In addition to using the Change Case sheet, you can also select individual case change
actions from the Change Case submenu immediately below the Change Case... command.

Shift Left / Shift Right
These commands indent or outdent the selected text by one tab stop. If there is no selection,
this command works on the current line. Hold down the Shift key while choosing these
commands, to have BBEdit indent or outdent the text by one space instead of one tab stop.

BBEdit also entabs and detabs on the fly as you shift text. For example, if the selected text
is indented one tab stop and you apply Shift Left One Space, the tab will be converted to
spaces and the text will be outdented one space. If you then apply Shift Right One Space,
the spaces will be converted back to a single tab.

Un/Comment Lines & Un/Comment Block
These commands allow you to selectively comment and uncomment sections of code in
various programming languages, using line or block comments respectively. Choose a
range of text and apply the desired command to add or remove line (or block) comments to
that text, depending on its initial comment state. If there is no selection, these commands
are disabled.

This button… Changes the text like this…

ALL UPPER CASE Every character changes to uppercase.

all lower case Every character changes to lowercase.

Capitalize Words The first character of every word changes to
uppercase; all other characters change to
lowercase.

Capitalize
sentences

The first character of every sentence changes to
uppercase; all other characters change to
lowercase.

Capitalize lines The first character of every line changes to
uppercase; other characters are unaffected.
Text Menu Commands 121

The one condition under which BBEdit will automatically override your chosen command
is if you attempt to apply line comments to text whose language type does not include them
(e.g. HTML or XML), or block comments to text whose language does not support them
(e.g. Perl or CSS). In that situation, these commands will behave identically and apply the
available comment format.

You can use the Options sheet of the Installed Languages list in the Languages preference
panel to modify or set comment strings for any available languages.

Note If you have set custom comment delimiters for HTML in the Languages preference
panel, those delimiters will be honored when you use the Un/Comment command.
However, they will not affect the operation of the HTML-specific comment commands
on the Markup menu.

Hard Wrap
This command wraps long lines by inserting hard line breaks and can reflow (fill)
paragraphs if desired. See “How BBEdit Wraps Text” on page 105 for more information.

Add Line Breaks
This command inserts a hard line break at the end of each line of text as displayed. See
“How BBEdit Wraps Text” on page 105 for more information.

Remove Line Breaks
This command removes line breaks (line feeds) and spaces from sections of text. Use this
command to turn text that has hard line breaks into text that can be soft-wrapped. See “How
BBEdit Wraps Text” on page 105 for more information.

Convert to ASCII
This command is no longer present; instead, the Zap Gremlins command using the
“Replace with code” and “Use ASCII equivalent” performs the same conversions.

Educate Quotes
This command converts straight quotes (" and ') to typographer’s quotes (“ ” and ‘ ’).

Note You should not use this command to prepare text for use in a web page or an email,
as typographer’s quotes in the Mac character set will generally not be properly
displayed by applications on other platforms.

Straighten Quotes
This command performs the reverse of Educate Quotes; it converts typographer’s quotes (“
” and ‘ ’) to straight quotes (" and ').
122 Chapter 5: Text Transformations

Add/Remove Line Numbers
This command displays a sheet which allows you to add or remove line numbers for each
line of the selected text or of the document. You can set the starting number and numbering
increment, as well as whether to include a trailing space, and whether to right-justify the
inserted numbers, by choosing the appropriate options.

Prefix/Suffix Lines
This command displays a sheet which allows you to insert (or remove) the specified prefix
and/or suffix strings on each line of the selected text or of the document.

If you define both a prefix and a suffix string, BBEdit will apply them to the text at the
same time.

Note When using the “add prefix”, “add suffix”, “remove prefix”, or “remove suffix”
scripting commands, the string direct parameter is required.
Text Menu Commands 123

Sort Lines
This command displays a sheet which allows you to sort lines of text in Unicode collation
order. The sorted lines can be copied to the clipboard, be displayed in a new untitled
window, replace the selection within the original document, or any combination of the
three.

There are also options for ignoring white space at the beginning of lines, taking case
distinctions into account, sorting strings of digits by numerical value instead of lexically,
and sorting in descending rather than ascending order.

IMPORTANT If you need to sort lines in strict character code order (e.g. in order for case sensitivity to
take precedence), you may do so by turning on the “Case sensitive” option and turning off
the “Numbers match by value” option.

By checking the Sort Using Pattern option, you can specify a grep pattern to further filter
the lines to be sorted. If the pattern contains subpatterns, you can use them to control the
sort order based on the contents of the strings they match. When you sort using a grep
pattern, the Case Sensitive option controls the case sensitivity of the pattern match in the
same manner as the equivalent option in the Find dialog.

For example, suppose you are sorting a list of cities together with their two-letter state
abbreviations, separated by a tab character. The pattern and subpatterns shown in the figure
will sort the results first by city name and second by state abbreviation. Changing the
contents of the Specific Sub-Patterns field from “\1\2” to “\2\1” will instead sort the results
by state first and by city second.

IMPORTANT When you use a grep pattern with this command, matches are not automatically anchored
to line boundaries, so ambiguous patterns may produce unpredictable results. To avoid this
problem, you should use the line start ^ and line end $ operators as necessary. Also, keep
mind that the pattern will only be tested against a single line at a time. So, if the pattern
matches one or more sets of multiple lines within in the document, but does not match any
individual lines, BBEdit will not sort the contents of the document.
124 Chapter 5: Text Transformations

Process Duplicate Lines
This command displays a sheet which allows you to locate duplicate lines within a body of
text and operates on them in various ways.

The Matching All option processes all duplicate lines; Leaving One ignores the first of
each set of duplicate lines and processes only the additional ones.

The Numbers Match by Value and Ignore Leading White Space options allow you to
choose whether strings of digits should be evaluated numerically or compared as strings,
and whether white space at the beginnings of lines should be considered.

The Match Using Pattern option allows you to use a grep pattern to further filter the lines to
be processed. You can enter a pattern in the Searching Pattern field, or choose a stored
pattern from the popup menu. The Match Using: radio buttons control what part of the
specified pattern should be used to determine duplication.

IMPORTANT When you use a grep pattern with this command, matches are not automatically
anchored to line boundaries, so ambiguous patterns may produce unpredictable
results. To avoid this problem, you should use the line start ^ and line end $
operators as necessary.

The options on the right-hand side of the sheet allow you to specify how duplicate lines
should be handled once they have been identified. You can copy duplicate lines to the
clipboard (Duplicates to Clipboard), copy them to a new document (Duplicates to New
Document Window), and/or delete them from the current document (Delete Duplicate
Lines). You can likewise specify how to handle the lines that are not duplicated by
choosing Unique Lines to Clipboard and/or Unique Lines to New Document).

Since each of these options is an independent checkbox, you can select any combination of
them that you wish. For example, selecting both Delete Duplicate Lines and Unique Lines
on Clipboard would delete the duplicate lines from the document and copy them to the
clipboard for pasting elsewhere.
Text Menu Commands 125

Process Lines Containing
This command displays a sheet which allows you to search the active window for lines
containing a specified search string and then removes those lines or copies them to the
clipboard. The options above the text field control how the search is performed and the
options below the text field control what happens to lines which contain matches.

To specify a search pattern, enter it in the Find Lines Containing field. If you do not want
BBEdit to match text when the letters in the text differ from the letters in the search string
only by case (upper-case versus lower-case), select Case Sensitive.

To search using a grep pattern, select Use Grep and enter the pattern in the text field. You
can also select a predefined search pattern from the Patterns popup menu.

Note If the selection ends on a trailing line break, BBEdit will omit that line break from the
search string copied into the text field.

The checkboxes on the right of the sheet control the way lines containing the specified
search pattern will be processed. By selecting the appropriate combinations of these
options, you can achieve the effect of applying various editing commands to each line:

• Setting both Copy to Clipboard and Delete Matched Lines on is equivalent to
applying the Cut command.

• Setting Copy to Clipboard on and Delete Matched Lines off is equivalent to
applying the Copy command.

• Setting Copy to Clipboard off and Delete Matched Lines on is equivalent to
applying the Clear command.

The Copy to New Document option opens a new, untitled document containing copies of
all lines matching the search pattern, whether or not they are deleted from the original
window. By using this option and turning Copy to Clipboard off, you can collect all
matching lines without affecting the previous contents of the clipboard.

The Report Results option causes BBEdit to display a dialog reporting the total number of
lines matched, regardless of their final disposition. With all of the other options turned off,
this can be useful for pretesting the extent of a search operation without affecting the
clipboard or the contents of the original window.
126 Chapter 5: Text Transformations

Canonize
This command allows you to perform batch string search and replace operations which are
governed by a pre-defined file. The transformation file is itself a list of paired search and
replace strings, one pair per line. Each search string is separated from its replace string by a
literal tab, so if you want your searches or replacements to match or insert tabs, you must
use the special character “\t” within the corresponding strings.

Blank lines are allowed, and transformation files may be commented: all the text on a line
which follows a literal hashmark character“#” will be ignored so if you want your search or
replace strings to match or insert hashmarks, you must escape them by prepending a
backslash:“\#”.

There is one case in which a line may contain only a single string, namely when you wish
to case-insensitively normalize the spelling of all occurrences of a word.

Here is an example transformation file:
void VOID

MyAncientClassName MyModernClassName # class rename for the new world order

this line is a comment

\#include \#import # convert from C++ to Objective-C

noErr # normalize capitalization from "noerr", "NOERR", "NoErr", etc

When using the Canonize command, you can specify whether the search is to be case-
sensitive or not; and whether the searches should match on word boundaries, or not. (These
behave identically to the “Case Sensitive” and “Match Words” options in the Find and
Multi-File Search windows.)

Note Even when you specify that the Canonize command should be “Case Sensitive”, when
BBEdit encounters a single word on a line, it will perform a case-insensitive search for
that word, since the purpose of this construction is to normalize all occurrences of the
word to use the same (provided) capitalization.

Increase and Decrease Quote Level
These commands respectively insert or delete a standard Internet quote character (“>”)
from each line of the selected hard-wrapped text, or for the current line if there is no
selection.

Strip Quotes
This command removes all Internet-style quoting from the selected hard-wrapped text, or
from the current line if there is no selection.
Text Menu Commands 127

Zap Gremlins
This command displays a sheet which allows you to remove or replace various non-
printing characters, often known as “gremlins”. Use this command when you have a file
that may contain extraneous control characters, or any non-ASCII characters, which you
wish to identify or remove.

The checkboxes in the “Search for:” section of the sheet determine which types of
characters the Zap Gremlins command affects, while the radio buttons below determine
what action(s) to perform on all gremlins which are found.

Non-ASCII characters
When this option is selected, Zap Gremlins zaps all characters in the file that do not fall in
the 7-bit (or ASCII) range. Examples of such characters include special Macintosh
characters such as bullets (•) and typographer’s quotes (“ and ”, ‘ and ’), as well as all
multi-byte characters. In general, such special characters are those that you type by holding
down the Option key.

Control characters
When this option is selected, Zap Gremlins zaps a specific range of invisible low-ASCII
characters, also known as control characters. Control characters can cause compilers and
other text-processing utilities to malfunction, and are therefore undesirable in many files.

Null (ASCII 0) characters
When this option is selected, Zap Gremlins zaps all instances of the null character (ASCII
0). Like other control characters, nulls can cause many programming tools and text-
processing utilities to malfunction. This specific option is included in case you want to
remove only nulls without affecting other control characters that may be present in a file.

Delete
This option removes the zapped character completely from the text. It is useful if you are
only interested in destroying gremlins and you do not care where they were in the text.

Replace with code
This option causes BBEdit to handle each gremlin character according to its value as
follows:
128 Chapter 5: Text Transformations

BBEdit will convert certain eight-bit Mac Roman characters (characters whose decimal
values are greater than 128 and less than 255) to 7-bit (printable ASCII range) equivalents.
Converted characters include umlauted and accented vowels, ligatures, typographer's
quotes, and various specialized punctuation forms. This conversion may entail expansion
to multiple characters; for example, in the case of ligatures.

When the Use ASCII equivalent option is also enabled, BBEdit will convert all extended
Roman characters to their closest ASCII equivalent.

Otherwise, BBEdit will convert all other gremlins present to escaped hexadecimal format.
The escape code is formed via the same convention used by the C programming language:
\0x followed by the character code in hexadecimal (base 16). This option is useful for
identifying both the value and the location of gremlin characters. Later, you can search for
occurrences of \0x to locate the converted characters. (Searching for the grep pattern of
“\\0x..” will select the entire character code for easy modification or deletion.)

Replace with <character>
This option replaces the gremlin with the character you type in the text field next to the
radio button. It is useful for identifying the location of gremlins, but not their value. The
replacement character can be specified not only as any typeable character, but also by using
any of the special characters defined for text searches, including hex escapes. (See “Special
Characters” on page 148.)

Note In some cases, this option could be counterproductive, since hex escapes (\xNN) can
themselves be used to insert unprintable characters.

Entab
This command displays a sheet which allows you to set the number of consecutive space
characters which should be converted into tabs. This transformation is useful when you are
copying content from many online sources, which use spaces to line up columns of text. If
you do not use a monospaced font, columns usually will not line up unless you entab the
text first.

Detab
This command displays a sheet which allows you to set the number of consecutive spaces
which should replace each tab. This command is useful when you are preparing text for use
in a program which has no concept of tabs as column separators, for email transmission,
and similar purposes.

Normalize Line Endings
This command converts a document containing mixed line endings to have a uniform set of
line endings.

If you open a file which contains a mixture of Mac, Unix, and DOS/Windows line endings,
the “Translate Line Breaks” option may not suffice to properly convert the document for
viewing and editing. After conversion, the document may appear to not have any line
breaks at all (this usually happens if the first line break in the file is a Mac line break, and
all the rest are Unix), or to have an invisible character at the beginning of each line.
Text Menu Commands 129

Should this happen, use Normalize Line Breaks to convert the remaining line endings, and
save the document. Once you have done this, the document’s line endings will be
consistent, and BBEdit’s line-break translation will suffice when you next open it.
130 Chapter 5: Text Transformations

Text Factories
A text factory document enables you to apply BBEdit’s powerful text transformation
commands in the order and fashion that you decide, to whatever collection of files you
choose. So, for example, if you routinely need to process a folder full of server logs by
reducing them to lines which don’t contain “error”, prefixing each line with a line number,
and converting each file’s line endings to Unix, you can assemble and save a text factory to
do that work for you, and apply it at any time.

Creating and Configuring Text Factories
To create a new text factory, choose the Text Factory command from the New submenu of
the File menu. BBEdit will create a text factory document. You may save a text factory
document to disk any time by using the Save command, or clicking the Save button at the
bottom of the window.

Text factories saved in the Text Filters folder of BBEdit’s application support folder will
appear in the Apply Text Filter and Paste Using Filter submenus, and you may apply such a
factory to process the current selection (if any) or the contents of the frontmost document
(or clipboard).

Text factories saved into the Scripts folder will appear in the Scripts menu, and you may
run such a factory to process any designated set of target files and folders.

Note Text factory documents are plist files, which are distinguished from editable text files
by having either a file type of “TxEN” and a creator type of “R*ch”, or a filename
extension of “.textfactory”. If you store documents in any manner which does not
preserve file type info, you must name your text factory documents accordingly.
Text Factories 131

Choosing Targets
At the top of a text factory window is a summary area which displays information about the
target files and folders you have chosen for processing. Click Choose to present a sheet
containing a list of selected and available target items.

Available targets include:

• open text documents

• individual files

• the files in any selected or recently-searched folder

• the files listed in any results browser (such as a search results browser, an HTML
syntax errors browser, or a compile errors browser)

• the files and folders contained in any open project

• any Finder “Smart Folders” which you have defined (BBEdit will automatically
list such items from the “Saved Searches” folder for your login account)

To select (or deselect) an item as a target, click the checkbox next to its name. To add a file
or folder to the list, click Other and select it in the resulting Choose Object dialog.
132 Chapter 5: Text Transformations

Click Options to select additional options for controlling which target items will be
processed. To process all the files in subfolders of each target folder, mark the Process
Nested Folders checkbox (this option is on by default). If you also want the factory to
process Git ignored files, mark the “Process Git ignored files” checkbox.

You can also choose to process only text files or to process all file types. If you have
graphics or other types of files in the target folders, you should restrict processing to only
text files. This setting works in addition to any file filter that you apply (see “File Filters”
on page 155) and will take effect before the filter.

The last group of options controls how BBEdit treats processed documents. Choose “Leave
open”to have BBEdit leave all the documents open so that you can inspect the results of the
operation. Choose “Save to disk” to have BBEdit automatically save changes to each file
after processing it. When the “Confirm before saving” option is enabled, you will have an
opportunity to approve the changes before BBEdit saves them to disk. You should not turn
this off unless you are sure that the actions being applied are doing what you want.

Defining Actions
Each action in a text factory contains the following elements:

• a checkmark to enable or disable the action. (This option is primarily intended as a
troubleshooting aid, but may also be useful in other contexts.)

• a popup menu from which you select the operation to apply. You are not limited to
a single use of an operation; for example, you can apply multiple Replace All
operations in a single factory.

• an Options... button, which is used to configure any settable options for the
command. If the command has no settable options, this button is disabled.

• a Comments button, which brings up a dialog you can use to record comments
about the configuration or purpose of the action.
Text Factories 133

• Add (“plus”) and Remove (“minus”) buttons. Clicking the Remove button in an
action will remove that action; clicking the Add button will insert a new action
after the selected action. Hold down the Option key while clicking the Add button
to create a new action which duplicates the action next to that button. If there is
only one action in the factory, its Remove button is disabled.

• a summary line which describes the chosen command and any parameters.

Note It is up to you to make sure that your actions do not work at cross purposes. For
example, it would not be useful to have an “Educate Quotes” operation followed
immediately by a “Straighten Quotes” operation.

You can re-order actions by clicking the line containing an action (in any place not
occupied by a button or popup menu) and dragging it to a new location.

Each operation available on an action’s pop-menu behaves similarly to its counterpart
command on the Text menu. When choosing and configuring operations, you should keep
the following differences in mind.

• Change Line Endings and Change Text Encoding will only affect the line endings
and text encoding of the file that BBEdit writes out when you choose Save to Disk
from the factory’s Options sheet. Neither operation changes any file contents in
memory, so they will have no visible effect if the document is left open (either by
choosing the Leave Open button in the Options sheet, or by opting to leave the
document open when confirming a save).

• When you use the Run AppleScript Filter operation, your script should be written
with an entry point named “ApplyTextTransform”. The input parameter to this
entry point is a Unicode string containing the file’s contents. This entry point
should return the file’s contents as a Unicode string (or something which can be
directly coerced to one):

on ApplyTextTransform (fileData

-- do something to fileData

return fileData -- or some reasonable facsimile thereof

end

• The “Run Unix Filter” action can reference any executable file; such files need not
contain a shebang line.

• Unix filters run from text factories get their input on STDIN, and should write any
content they want passed to the next filter stage to STDOUT. (Unlike Unix filters
run from the Shebang menu, text factories do not pass a temp file in argv[1].)

• When you use the “Run Unix Filter” operation, you can choose to have BBEdit
convert the file’s contents and the output to UTF-8 by setting the “Use UTF-8 for
I/O” option. If you do not set this option, BBEdit will use the system encoding
instead.
134 Chapter 5: Text Transformations

Applying Text Factories to Files
Once you have configured a text factory and selected the files and folders to process, click
the Apply button in the lower right-hand corner of the window. BBEdit will apply the
actions in the order you specify, to each file in the target set. This processing happens in the
background, so you can keep using BBEdit while it’s underway (similar to a multi-file
search operation).

To run a stored text factory, choose it from the Scripts menu. If the text factory has any
saved targets, BBEdit will apply the text factory to them. Otherwise, BBEdit will display
the Run Text Factory dialog so you may choose a set of target items to process.

Applying Text Factories to Open Documents
You can apply a stored text factory to the current document, or to the contents of the current
selection, by choosing it from the Apply Text Filter submenu of the Text menu, or by
double-clicking it in the Text Filters palette. (Alternatively, you can apply such a factory to
the current contents of the clipboard by choosing it in the Paste Using Filter submenu of the
Edit menu.)

HTML Processing Actions
Text factories support the following actions based on the equivalent Markup menu
commands. (See Chapter 11 for details.)

• Translate Text to HTML

• Translate HTML to Text

• Format Markup

• Optimize Markup
Text Factories 135

Automator Actions
Automator is a system feature which enables you to create and reuse actions to easily
perform common or time-consuming tasks. The Mac OS X Automation web site offers a
good overview of Automator.

http://www.macosxautomation.com/automator/

Using BBEdit with Automator
BBEdit offers Automator actions which correspond to most of the text transformation
commands on the Text menu. In order to use any of BBEdit’s actions, BBEdit must be
running.

After you launch Automator, it will create an Untitled workflow as shown below. Choose
any application in the Library section to see what actions it offers. To add an action to your
workflow document, you can double-click on the action, or drag it into the right-hand
panel. After you add an action to your workflow, you can set options (if any) in the action’s
tile. To expand or collapse an action tile, click the triangle next to the action’s name.

The Automator actions which BBEdit offers allow you to make use of BBEdit's unique
transformations in the context of a larger Automator workflow. Please keep in mind that
BBEdit currently does not include any actions which support working with files (other than
opening them), as it’s expected that you will be applying BBEdit actions to work on text
acquired from other sources in the workflow. If your main need is to apply BBEdit’s text
transformations to files or sets of files, you would be better served by using a Text Factory.
136 Chapter 5: Text Transformations

http://www.macosxautomation.com/automator/

Available Actions
Add/Remove Line Numbers
This action will prepend a line number to each line processed, or remove the leading line
number from each line processed.

Input: (Text)
Result: (Text) Text with leading line numbers added or removed.

Change Case
This action will change the case of the provided text according to the specified rules.

Input: (Text)
Result: (Text) Text with the case transformation applied.

Convert Spaces to Tabs
This action will convert each run of N space characters into a tab character.

Input: (Text)
Result: (Text) Text with runs of space characters converted to tabs.

Convert Tabs to Spaces
This action will convert each tab character into the specified number of spaces.

Input: (Text)
Result: (Text) Text with tab characters converted to runs of spaces.

Convert to ASCII
This action will convert the input text into an ASCII-only representation.

Input: (Text)
Result: (Text) Text with non-ASCII characters “translated” into ASCII

Delete Lines Containing
This action will return all lines in the input string which do not match the specified string.

Input: (Text)
Result: (Text) Text with the complement of the matching lines.
Related Actions: Extract Lines Containing

Educate Quotes
This action will convert ASCII quotes into their typographer equivalent.

Input: (Text)
Result: (Text) Text with ASCII quotes converted to typographer’s quotes
Related Actions: Straighten Quotes

Extract Lines Containing
This action will return all lines in the input string which contain the specified string.

Input: (Text)
Result: (Text) Text with the matching lines.
Related Actions: Delete Lines Containing
Automator Actions 137

Get Contents of BBEdit Document
This action will get the contents of the frontmost text document in BBEdit according to the
options you set.

Requires: A text document must be open.
Result: (Text) A BBEdit document object
Related Actions: Set Contents of BBEdit Document, New BBEdit Document

New BBEdit Document
This action creates a new BBEdit document from the input text.

Input: (Text)
Result: (com.barebones.bbedit.document-object) A BBEdit document object
Related Actions: Get Contents of BBEdit Document, Set Contents of BBEdit Document

Normalize Line Breaks
This action will change all line breaks into the format specified.

Input: (Text)
Result: (Text) Text with the chosen line breaks.

Prefix/Suffix Lines
This action will insert (or remove) the specified prefix and/or suffix strings on each line
processed.

Input: (Text)
Result: (Text) Text with the specified strings inserted on (or removed from) each line.

Remove Duplicate Lines
This action will eliminate duplicates from the provided lines according to the specified
rules.

Input: (Text)
Result: (Text) Unique Lines of Text
Related Actions: Sort Lines

Remove Prefix
This action will remove the supplied string from the beginning of each line processed.

Input: (Text)
Result: (Text) Text with the specified prefix removed from each line.
Related Actions: Add Suffix, Remove Suffix

Remove Suffix
This action will remove the supplied string from the end of each line processed.

Input: (Text)
Result: (Text) Text with the specified suffix removed from each line.
Related Actions: Add Suffix, Remove Prefix

Search and Replace
This action will search the input string, and replace all matches with specified string.

Input: (Text)
Result: (Text) Text with the specified replacements done.
138 Chapter 5: Text Transformations

Set Contents of BBEdit Document
This action will replace or insert the passed text into the frontmost text document in BBEdit
according to the options you set.

Requires: A text document must be open.
Input: (Text)
Result: (com.barebones.bbedit.document-object) A BBEdit document object
Related Actions: Get Contents of BBEdit Document, New BBEdit Document

Sort Lines
This action will sort the provided lines according to the specified rules.

Input: (Text)
Result: (Text) Sorted Lines of Text.
Related Actions: Remove Duplicate Lines

Straighten Quotes
This action will convert typographer quotes into their ASCII equivalent.

Input: (Text)
Result: (Text) Text with typographer’s quotes converted to ASCII quotes
Related Actions: Educate Quotes

Zap Gremlins
This action will convert each non-ASCII character as specified in the configuration.

Input: (Text)
Result: (Text) Text with non-ASCII characters removed.
Related Actions: Convert to ASCII
Automator Actions 139

Other Transforms
BBEdit also offers a variety of other tools for transforming text, including columnar
selections and manipulation, the Extract command for gathering text from single or multi-
file search operations, and the ability to apply Text Filters to the contents of the clipboard.

Columnar Text Manipulations
The Columns submenu of the Edit menu contains commands to help you work more easily
with column-delimited text files.

The three basic commands: Cut Columns, Copy Columns, and Clear Columns work
similarly to their top-level analogues (Cut, Copy, and Clear). The columns to be cut,
copied, or cleared are determined by the selection range: for example, to cut a single
column, click in the middle of it and choose Cut Columns. You can cut, copy, or clear
multiple columns by selecting text across them.

The Rearrange Columns command offers you an easy way to rearrange the columns in a
column-delimited text document. To use this command, just invoke it to bring up a dialog
which will list all distinguishable columns present within the current document, then drag
the columns into whatever order you wish, and click the Apply button to have BBEdit
rearrange them.

Extract
The Extract command (available in the Search menu, as well as the Find and Multi-File
Search windows) will find all instances of the search string in the current document or
search set, and collects each occurrence into a new untitled text document, separated by
line breaks.

When performing an Extract operation, you can optionally enter a grep replacement pattern
in the “Replace” field of the Find or Multi-File Search window to transform the extraction
results. For further details as well as an example, please see “Extract” on page 160.

Paste Using Filter
The Paste Using Filter submenu lists all the text filters available in the “Text Filters”
subfolder of BBEdit’s application support folder. When you choose a filter, BBEdit will
process the text on the clipboard through the selected filter before inserting that text into
the current document.

You can re-invoke the most recently used filter by choosing the ‘Paste Using Filter
<FILTERNAME>’ command in the Paste submenu of the Edit menu, and optionally assign
this command a key shortcut for quicker access in the Menus & Shortcuts preferences
panel.
140 Chapter 5: Text Transformations

C H A P T E R

6
Windows & Palettes
This chapter describes the commands in the Window menu. These commands
allow you to arrange and access editing and browser windows quickly, and also to
access BBEdit’s extensive set of tool and utility palettes.

In this chapter
Window Menu . 141
Minimize Window . 141
Bring All to Front. 141
Palettes . 141

Character Inspector – 142 • Clippings – 142 • 1Clippings – 142 Scripts –
142 • Windows – 142 • HTML Markup Tools – 142 • Workspace – 143

Save Default <type of >Window . 143
Cascade Windows . 143
Arrange. 144
Zoom (key equivalent only) . 144
Cycle Through Windows . 144
Exchange with Next . 144
Synchro Scrolling. 144
Window Names . 144

Window Menu
The Window menu provides easy, centralized access to all of BBEdit’s tool and
utility palettes, in addition to offering commands that you can use to access and
organize editing and results windows on screen.

Minimize Window
This command puts the frontmost window into the Dock. Click the window icon
in the Dock to restore the window. Hold down the Option key and this command
becomes Minimize All Windows.

Bring All to Front
This command brings all un-minimized BBEdit windows to the front.

Palettes
The Palettes submenu provides quick access to all of BBEdit’s numerous tool
palettes and utility windows. Choosing an item from this submenu toggles display
of the corresponding palette.
141

Character Inspector
This command opens a palette which displays the character values of the selected text in
several standard formats. You may also select the displayed character values and either
copy them or drag & drop them into a document.

Clippings
BBEdit’s powerful Clippings feature provides an easy way to store and access frequently
used text of any sort. For details on using Clippings, please see “Using Clippings” on
page 275.

Note The Set Shortcut button in the Clippings, Filters, and Scripts palettes allows you to
assign a key equivalent to the currently selected item. You can use combinations of
the Command, Shift, Option, and Control keys, plus any single other key, to create
such equivalents, except that any equivalent must contain either the Command or
Control keys (or both). You can also map Function keys directly to items, with or
without the use of a modifier.

Colors
This command opens the system color picker, which you can use to insert hex color values
into HTML and XML files.

Scripts
The Scripts palette displays all the scripts currently installed in the Scripts subfolder of
BBEdit’s application support folder. See Chapter 2, “Scripts”, for more information about
using scripts in BBEdit.

Text Filters
The Text Filters palette displays all the text filters currently present in the Text Filters
subfolder of BBEdit’s application support folder. See Chapter 2, “Text Filters”, for more
information about using text filters in BBEdit.

Windows
The Windows palette displays the names of all open windows ordered by name and kind,
and optionally displays an hierarchical list of all documents open within an editing window
or project. (You can expand or collapse this list by clicking the disclosure triangle to the left
of the parent window’s name.)

You can open a file by dragging its icon from the Finder or from a project window into the
Windows window.

Any document whose icon is darkened indicates that document’s contents have been
modified but not yet saved.

To bring any window or document to the front, click its name in the Windows palette, or to
close any window or document, click the circular “close” box to its right.

“Hovering” the mouse over a window name displays a tool tip showing the full window
title; this is useful for names that have been truncated with ellipses (…) because they are
too long to fit within the width of the window.

HTML Markup Tools
The main HTML Markup Tools palette is a comprehensive listing of BBEdit’s numerous
HTML markup commands. See “HTML Tools Palette” on page 269 in Chapter 11 for
details on what these commands do.
142 Chapter 6: Windows & Palettes

Several other HTML palettes are available, each with a specific focus: CSS, Entities, and
Utilities. For more information on these tools, please see Chapter 11, “BBEdit HTML
Tools.”

Workspace
Note BBEdit 12 does not support “Workspace”-based palette sets.

Show Scratchpad
This command opens BBEdit’s persistent Scratchpad window. The scratchpad provides a
workspace where you can store text to manipulate without needing to manage files. It’s
ideal as a ‘worktable’ where you can accumulate and modify text from one source (by
performing transforms, manual edits, or batches of copy/paste operations) before gathering
the text and using it elsewhere.

You can use the Save a Copy command in the File menu to save the scratchpad’s contents
into a stand-alone text file.

Show Unix Worksheet
This command opens BBEdit’s persistent Unix Worksheet window.

Save Default <type of >Window
The Save Default Window command stores the position and size of the front window in
BBEdit’s preferences, and BBEdit will create all new windows of the same type with the
stored position and size.

By default, new windows always stack down and right 20px. If you have saved a default
window size, and that window is of full screen height, new windows will just stack to the
right, and preserve their saved height.

Each type of window has its own default position and size. For instance, the default
position and size for project windows is different from the default position and size for text
windows.

Window position and size preferences are also keyed to the active screen configuration, so
if you frequently switch screen layouts (as when connecting an external display to a
portable), you can save separate default window preferences which will be applied
depending on which screen configuration is active.

Cascade Windows
The Cascade Windows command cascades all open editing windows in the default fashion:
each successive window will be moved incrementally down and to the right (as described
above).
Window Menu 143

Arrange
The Arrange command presents a submenu of multiple window arrangements to cascade,
stack, or tile windows as indicated by their titles. You may choose any arrangement to
immediately apply it, or assign a keyboard shortcut to any specific arrangement that you
use frequently in the “Menus & Shortcuts” preference panel.

Cycle Through Windows
This command sends the front window behind all the other windows. Hold the Shift key
down when choosing this command to Cycle Through Windows Backwards, i.e. to bring
the rearmost window to the front.

Exchange with Next
This command makes the second window the active window. Choose this command
repeatedly to alternate between the front two windows.

Synchro Scrolling
When you have two or more windows open, Synchro Scrolling makes both files scroll
when you scroll one. This feature is useful to look over two versions of the same file.

Synchro Scrolling is also enabled by default within Differences windows, and when this
option is active, scrolling either document within the window will scroll the other
document as well. You can turn Synchro Scrolling off within the active Differences
windows, or you can disable this behavior off for all new Differences windows by turning
it off and then selecting the “Save Default Differences Window” command in the Window
menu.

Window Names
The last items in the Window menu are the names of all the open documents, browsers, and
other editing windows. Choose a window’s name from this menu (or use its numbered
Command key equivalent, if applicable) to bring that window to the front.

Tip You can also use the Windows palette to quickly select any open window.

Zoom (key equivalent only)
There is no longer a Zoom command in the Window menu, but the key equivalent
Command-/still works. Zoom will produce the same effect as clicking a window’s zoom
box: it makes the active window larger if it is small, or returns it to its original size if it was
previously enlarged by a Zoom command.

When zooming windows, BBEdit will move the window as little as possible (consistent
with maximizing the window’s size). This behavior is similar to what the Finder does when
zooming a window.
144 Chapter 6: Windows & Palettes

C H A P T E R

7
Searching
This chapter describes how to employ BBEdit’s powerful Find and Multi-File
Search commands. It tells you how to search for text in the active window or
within a set of files, and explains how to construct and employ file filters. BBEdit
can also do advanced pattern, or grep, searching. To learn about pattern searching,
you should read this chapter first and then read Chapter 8, “Searching with Grep.”

In this chapter
Search Windows. 145
Basic Searching and Replacing . 146

Search Settings – 148 • Special Characters – 148
Multi-File Searching . 149

Find All and Multi-File Search Results – 151
Specifying the Search Set – 152
Multi-File Search Options – 154 • File Filters – 155
Searching SCM Directories – 157

Multi-File Replacing . 157
Live Search. 158
Search Menu Reference . 159

Search Windows
BBEdit’s Find and Multi-file Search windows provide a consistent modeless
interface to BBEdit's powerful text search and replace capabilities.

If you are familiar with the modal Find dialog used in older versions, you'll
generally feel at home, but there are some important differences and
improvements of which you should be aware:

The Find dialog has been split in two, with a Find window for searching only the
front document, and a Multi-File search window for searches which span more
than one document (including folders, arbitrary open documents, BBEdit and
Xcode projects, etc.).

The set of search options which configure how text is actually searched (for
single-file searches) has been condensed down to a single pair of options:
“Selected text only” and “Wrap around”.

• “Selected text only” affects only the Find All and Replace All
operations: if there is a selection range in the front document, these
operations will affect search only the contents of the selection range if
this option is on, or the entire document (starting from the top) if this
option is off.
145

• “Wrap around” affects only the “Next”, “Previous”, "Replace", and "Replace &
Find" operations: if this option is on and the search reaches the end (or the
beginning) of the document, then BBEdit will continue the search from the
appropriate end of the document.

Keyboard navigation is considerably different due to the Find and Multi-File Search
windows’ modeless nature.

• Pressing the Return or Enter key with focus in the Find field will perform “Next”
in the Find window or “Find All” in the Multi-File Search window.

• Pressing the Escape key will close the window.

• Choosing an appropriate command in the Search menu will trigger the
corresponding action in the front Find window.

• BBEdit supports the following key equivalents to control (toggle) the search
options contained in the Find and Multi-File Search windows. The factory default
key equivalents for these options are as follows:

Case sensitive Control-Shift-N
Entire word Control-Shift-E
Grep Control-Shift-G
Selected text only Control-Shift-S
Wrap around Control-Shift-W
Open search history Control-Shift-H
Open saved patterns Control-Shift-P

If these assignments overlap with any keyboard equivalents for clippings that you
have set, or if you just wish to change them, you can do so via the “Find Windows”
section of the Menus & Shortcuts preference panel.

Note The “Replace All” command replaces all occurrences of the search string within the
document (or in the selection if there is one and “Search Selection Only” is checked). If
you wish to replace only occurrences between the current insertion point and the end of the
document, you can instead apply the Replace to End command in the Search menu.

Basic Searching and Replacing
This section describes the basic steps for searching and replacing text in a document. Later
sections in this chapter cover more advanced techniques. To search and replace text in the
front document, follow these steps:

1 Choose Find from the Search menu. BBEdit opens the Find window.
146 Chapter 7: Searching

2 Type the string you are looking for in the Find text field.

You can use special characters in the Find text field to search for tabs, line breaks, or
page breaks. See “Special Characters” later in this section.

3 Type the replace string (if any) in the Replace text field .

BBEdit persistently remembers the pairs of search and replace terms that you have
most recently used. If you want to repeat a previous search or replace, you can choose
the appropriate entry from the Search History popup menu at the right of the Find text
field to fill in the Find and Replace fields.

Note The size of both the search and replace terms is limited only by available memory.

4 Turn on any options that you want to apply to your search.

For more info about these options, see “Search Settings” later in this section.

5 Click one of the buttons along the right side of the dialog box.

The following table explains what each of the buttons does.

Once you have entered a search string (and also, if desired, a replace string), you can also
use the commands in the Search menu to find and replace matches (see “Search Menu
Reference” later in this chapter). The table below summarizes the most common
commands you can use at this point.

This button… Does this…

Next Finds the first occurrence of the text in the active
window after (below) the current insertion point.

Previous Finds the first occurrence of the text in the active
window before (above) the current insertion point.

Find All Finds all the occurrences of the search string and
displays the results in a search results browser.

Replace Replaces the current selection with the replace
string.

Replace All Replaces every occurrence of the search string in
the active window with the replace string.

Replace & Find Replaces the current selection with the replace
string, then finds the next occurrence of the text in
the active window.

This command… Does this…

Find Next Finds the next occurrence of the search string.
To reverse the search direction, hold down
Shift.

Replace Replaces the selection with the replace string.

Replace All Replaces all occurrences of the search string
within the document with the replace string.
Basic Searching and Replacing 147

Search Settings
The checkboxes in the Find window lets you control how BBEdit searches your document
for the indicated text.

Case Sensitive
When this checkbox is selected, BBEdit treats upper- and lowercase letters as different
letters. Otherwise, BBEdit treats upper- and lowercase letters as if they were the same.

Entire Word
When this checkbox is selected, BBEdit matches the search string only if it is surrounded in
the document text by word-break characters (white space or punctuation). Otherwise,
BBEdit matches the search string anywhere in the text.

Grep
When this checkbox is selected, BBEdit treats the search and replace strings as grep
patterns. Otherwise, BBEdit searches the document for text that matches the search string
as it appears literally, and will replace any matched text with the replace string. To learn
more about pattern searching see “Searching with Grep” on page 167.

Selected Text Only
When this checkbox is selected, BBEdit searches only the selected text. Otherwise, BBEdit
searches the entire document.

Wrap Around
When this checkbox is selected, BBEdit continues searching from the beginning of the
document if a match is not found (or from the end of the document if searching backwards).
Otherwise, BBEdit stops searching when it reaches the end (or the beginning if searching
backwards) of the file.

Special Characters
You can use the following special characters to search for line breaks and other non-
printing characters, as well as hexadecimal escapes to search for any desired 8-bit
character.

Replace to End Replaces every occurrence of the search string
from the current insertion point to the end of
the document with the replace string.

Replace & Find
Again

Replaces the selection with the replace string
and looks for the search string again.

Character Matches…

\r or \n line break

\t tab

\f page break (form feed)

This command… Does this…
148 Chapter 7: Searching

The form of a hex escape is “\xNN”, where “N” is any single hex digit [0-9,A-F]. The “x”
may be upper or lower case. (You can use the Character Inspector palette to find the hex
value for any selected character or string.) You can perform a literal search for any
character, including a null, using this option. Malformed escapes are treated as literal
strings.

Multi-File Searching
The main difference between single-file searching and multi-file searching is that to
perform a multi-file search, you must specify the files to be searched. BBEdit gives you a
great deal of flexibility in how to do this. You can search all the files in a given folder or
defined web site, in a project, in open editing windows, or in an existing search results
browser. For even greater control, you can select a diverse set of search sources, or apply
BBEdit’s advanced file filtering capabilities.

When you start a search, BBEdit will display a search progress window and return control,
so that you can continue working. You can perform more than one multi-file searches at a
time; each search will have its own progress window. Closing a search’s progress window
or clicking Cancel in the progress window will stop the operation, and BBEdit will display
a search results browser containing any matches found up to that point.

\xNN hexadecimal character code NN (for example,
\x0D for CR)

\x{NNNN} any number of hexadecimal characters NN…
(for example, \x{0} will match a null, \x{304F}
will match a Japanese Unicode character)

\\ backslash (\)

Character Matches…
Multi-File Searching 149

Starting a Search
To search for a string in multiple files, do the following steps:

1 Choose Multi-File Search from the Search menu, or type Shift-Command-F, to open the
Multi-File Search window (if it is not already open).

2 Type the string you are looking for in the Find text field.

3 Type the replace string (if any) in the Replace text field.

Be sure to read the section “Multi-File Replacing” later in this chapter if you want to
perform replace operations.

4 Turn on any search options that you want to apply to your search.

To learn more about these options, see “Search Settings” earlier in this chapter.

5 Drag a folder to the search target area to search its contents, or select any of the available
search sources in the Sources list to specify the set of files to search.

 See “Specifying the Search Set” later in this chapter for more information.

6 Click one of the buttons along the right side of the dialog box to begin the search.
150 Chapter 7: Searching

The table below tells you what each of the buttons does.

Find All and Multi-File Search Results
When you perform a Find All search, either on a single file or across multiple files, BBEdit
will open a search results browser which lists every occurrence of the search string in the
selected file(s)

The information at the top of the window tells you how many matches BBEdit found in the
set of files you specified, as well as specifying whether there were any error conditions or
warnings generated during the search. You can display or hide any combination of errors,
warnings, and matches, by checking the appropriate options.

The top pane lists each line that contains the matched text. Every match is identified by file
name and line number.

This button… Does this…

Find All Finds all occurrences of the search string in all the
files in the selected search sources. BBEdit displays
the results in a search results browser.

Replace All Finds all occurrences of the search string in all the
files in the selected search sources and replaces
them with the replace string.

Options Brings up the Search Options sheet.

Save Set Creates an entry under the “Saved Search Sets”
heading in the search sources list which you can
later choose to reselect the same search sources.

Other Select arbitrary file(s) or folder(s) to add to the
search sources.
Multi-File Searching 151

Click any match in the list of occurrences to have BBEdit display the part of the file that
contains the match in the text pane.

IMPORTANT You can edit text directly within a search results browser, or double-click any line that
contains a match to open the corresponding file at the point of the match.

After you have opened a file, you can use the Find Again, Replace, Replace All, and
Replace & Find Again commands in the Search menu to continue searching it, as if you had
chosen a File by File search. See the next section for information on File by File searching.

Note You can use a search results window as the basis of another multi-file search. See
“Specifying the Search Set” below.

Specifying the Search Set
To specify which files and folders BBEdit should examine when performing a multi-file
search, just select items from the Search In list of the Multi-File Search window.

 You can choose multiple sources for a multi-file search, and you can mix different types of
sources. Available sources include:

• specified individual files

• the files in any selected or recently-searched folder

• open text documents

• the frontmost project

• the files listed in any results browser (such as a search results browser, an HTML
syntax errors browser, or a compile errors browser)

• the files and folders contained in a project
152 Chapter 7: Searching

• the files and folders contained within any Zip archives

• any Xcode projects in your home directory

• any “Smart Folders” which you have saved in the Finder (BBEdit will
automatically list any such items present in the “Saved Searches” folder
for your login account)

To add a file, folder, or other suitable item to the Search In list, click Other in the
Multi-File Search window, and choose the item using the resulting selection
sheet. (You can select multiple items to be added.)

To designate any item in the list as a search source, click on the box next to its
name, or double-click on the name, to add a checkmark. To deselect a search
source, click the box next to its name, or double-click its name, to turn off the
checkmark. To select a single source only, and deselect all other sources,
Command-click on the checkbox next to the desired source’s name. To remove a
search source from the list, click on the minus sign (–) to the right of its name.
(Doing so removes only the entry from the list, not the original item.)

BBEdit will display a summary of the selected sources in the information box at
the bottom of the Multi-File Search window. Here are some common scenarios.

Searching the files in a folder
To search the files in a folder, click on the box next to the folder’s name, or
double-click its name, in the Sources list. If the folder you want to search is not in
the Sources list, click the Other button at the right of the dialog and pick the
folder using the resulting selection sheet.

You can also drag a folder from the Finder directly into the search items box of
the Find & Replace dialog to choose it as the source.

Searching the frontmost project
You can directly search all files contained within the frontmost project document.
To choose the frontmost project, click the box next to the Frontmost Project item,
or double-click on the item in the list.

If the active document is also a project document, you can directly target it by
choosing the Search in [project name] command (in the Search menu).

Searching all open documents
You can choose any or all open text documents as search sources. This option
allows you to search documents that have not yet been saved to a file, or which
contain unsaved changes. To choose all open documents, click the box next to the
Open Text Documents item, or double-click on the item in the list.

Searching the contents of compressed archives
You can control whether BBEdit should search within the contents of compressed
archives (“.bz2”, “.gz”, and “.zip”) via the “Search compressed files” option in
the Multi-File Search window's “Options” sheet. When this option is off, BBEdit
will skip all bz2, gz, and Zip while searching, even if they may contain
compressed text files.
Multi-File Searching 153

Searching the files contained in a results browser
If a previous multi-file search found many files that contain your search string, you may
want to narrow the search. To search the files listed in any results browser window, click
the box next to that browser’s name, or double-click on its name, in the Sources list. You
can also click the box next to the Results Browsers item, or double-click on this item, to
search the files listed in all results browsers.

Searching the files in a project
If the files you are working with are all listed in a BBEdit project, you can choose that
group in order to search the files. To chose a project, click the box next to that group’s
name, or double-click on its name, in the Sources list.

Note The Choose a Folder dialog will display any packages it encounters as folders (rather
than just as single files, the way they appear in the Finder). This allows you to
navigate their internal structure just as you would any other folder. Similarly, you can
drag a package from the Finder into the path box in the Find & Replace dialog and it
will be treated as a true folder rather than as a single file.

Saved Search Sources
You can use the Saved Search Sources popup menu to store specific sets of search sources
for later reuse. To save a set of search sources, choose Remember this Set from the popup
menu and give the set a name in the resulting dialog. To select a saved set of search
sources, choose that set’s name from the pop-menu.

Multi-File Search Options
Click the Options button to display the search options sheet.

You can choose to search only text files or to search all file types. If you have image files or
other non-text files in search source folders, it may be a good idea to restrict the search to
only text files. This setting is applied in addition to any file filter (see next section) and in
fact takes effect before the filter.

To search the contents of all subfolders within the folders you choose, select the “Search
nested folders” option in the resulting sheet. You can also choose to skip any folders whose
names are enclosed in parentheses here by selecting the “Skip (…) folders” option, or
whether to search the contents of invisible folders by selecting the “Search invisible
folders” option. In addition, you can control whether BBEdit should search compressed
files and/or Git ignored files by enabling (or disabling) the coresponding options.
154 Chapter 7: Searching

To find only files whose contents do not contain the search string, select the Exclude
Matches option.

You can further restrict which files from the chosen sources BBEdit will search by applying
a file filter. See “File Filters” (below) for more details.

File Filters
If you do not want to search every file in the set you selected, but want to include only
those that meet certain criteria (such as those created on a certain date, or only those created
by BBEdit and not some other program, or those that are HTML or Perl documents), you
can use a file filter.

To apply a file filter, just choose it from the Filters popup menu in the Multi-File Search
window. If none of the available filters meets your needs, you can define a new one, or
create a temporary filter.

New Filter
To define a new saved file filter, select New… from the popup menu. BBEdit will ask you
for a filter name, and then display the Edit Filter dialog (below). You can also define new
file filters in the Filters panel of the Setup window (see page 227).

Note If the Setup window is open, any filters you define in the Multi-File Search window will
not be available in the Filters panel of the Setup window until you close and reopen
the Setup window.

The Edit Filter dialog lets you specify multiple criteria that determine whether a given file
is selected by the filter. You can choose whether these criteria are exclusive (that is,
whether a file must meet every listed test to be selected) or inclusive (that is, whether a file
that meets any of the tests is selected) using the Every (AND) and Any (OR) radio buttons
at the top of the dialog.

To add a test, click the Add (+) button, and a new row will appear in the dialog.

Within each row (criterion), the left-hand popup lets you specify which attribute of a file
you wish to test. BBEdit lets you test a file’s name, the name of its enclosing folder, its
creator or type, its creation and modification date (or both date and time), or its Finder
label, visibility, or the programming or markup language it is written in. You can also test
the content of a file, using the “Contents” criterion.
Multi-File Searching 155

The center popup lets you choose the test to be applied to the selected attribute. The
available options here change depending on what attribute you selected. If you choose
Visibility in the first column, for instance, your only choices are whether the file is or is not
visible, However, if you choose File Name in the first column, the middle column lets you
test to see if the name does or does not exactly match, contain, begin with, or end with a
particular string. You can also test file names to see if they match wildcard or Grep
patterns.

Note In wildcard patterns, the asterisk (*) and question mark (?) characters have special
meanings. The asterisk matches any number of characters, such that “*.c” matches
any file whose name ends with “.c”. The question mark matches a single character, so
that “foo?” matches “food”, fool”, “foot”, and many other words. Both the asterisk and
the question mark can be used anywhere in a wildcard pattern, and any number of
either can be used in a single pattern.

Grep patterns, also known as regular expressions, are a powerful method of selecting
file names based on classes of text or repeating text. They are covered in great detail
in the next chapter.

The right-hand text field specifies the match criterion. For example, when filtering by File
Name, you type the text you want the name to match, contain, begin with, or end with (or
not). When filtering by Language, you choose a supported language from a popup menu.

You can add any number of criteria using the Add (+) button. To delete any criterion, click
the Remove (-) button next to it.

Click Save to save the file filter and use it for this search. BBEdit will ask you to name the
filter, and it will then appear in the Filters popup menu in the Find & Replace dialog (and in
the Filter panel of the Setup window). Click Cancel to discard any changes you have made
to the filter. (Hold the Option key when you click Cancel to skip the confirmation alert.)

Filtering by Name
In order to provide the greatest possible flexibility, BBEdit offers several different criteria
for filtering based on file names

File Name: Tests the complete string corresponding to the file name.

File Name Root: Tests only the “root” portion of the file name. Given a name of the form
“foo.txt”, the root is the string which occurs before the period, in this case “foo”.

File Name Extension: Tests only the file name extention. In the above example, the
extension is “txt”. (Note that the extension does not include a period.)

Temporary Filters
Choose “(current criteria)” from the popup menu in the Find & Replace dialog to reuse the
last set of criteria applied (either from using a saved filter, or from using the Edit button to
define criteria). Thus, you can use filter criteria on the fly, without the need to create and
store a throwaway filter.

Editing and Deleting Filters
To edit a file filter you have already defined, choose it from the Filters popup menu, change
it as desired, and click Save. Since each filter must have a unique name, saving it will
replace the old version of the filter. To delete a filter entirely, visit the Filters panel of the
Setup window. (You can also create or modify filters there.)
156 Chapter 7: Searching

Searching SCM Directories
When scanning folders for various purposes (multi-file search, Find Differences, and other
batch operations), BBEdit ignores all directories which contain administrative data for
source-control management (SCM) tools: CVS, .svn, .git, .hg, .bzr. This behavior prevents
any inadvertent modifications to such data which might otherwise occurs during a multi-
file search or other batch operation. If you must search the contents of such directories, you
can enable BBEdit to do so by issuing the following Terminal command:
defaults write com.barebones.bbedit SkipSCMAdminDirsWhenScanningFolders
-bool NO

Note The “Search Invisible Folders” option no longer enables BBEdit to search within such
directories.

Multi-File Replacing
If you want to replace only some occurrences of text in multiple files, you can simply
search those files, select the instances you want to change in the search results browser to
open the files to those points, and perform the replacements individually. However, BBEdit
can also change all occurrences of a string in a group of files with one command.

Globally replacing text in more than one file works the same as replacing it in a single file.
The only possible complication is that, if you make a mistake, it can have much wider
consequences. If you are not sure what effect a replace operation will have, test it out on a
few sample files (or a copy of your data) first!

To do a multi-file search and replace, replacing all occurrences:

1 Enter your desired find and replace strings in the Multi-File Search window as described
in the section “Multi-File Search.”

2 Choose the files to be searched as described in “Specifying the Search Set”.

3 To start the operation, click Replace All in the Multi-File Search window, choose the
Replace All command, or type its key equivalent of Option-Command-R.

 BBEdit displays the Find & Replace All Matches dialog:

 This is what each of its options does:

This option… Replaces all occurrences of the search
string with the replace string and…

Leave open Leaves all the files open so that you can inspect the
replacements.

If there are many files that contain the search
string, BBEdit may run out of memory.
Multi-File Replacing 157

Live Search
The Live Search command performs an incremental search. In other words, it shows the
matching text as you type the search string, so you only have to type until you find the text
you want.

Live Search always searches in the text view of the frontmost window; if that window has
no text view, the Live Search command will be disabled.

To use Live Search:

1 Choose Live Search from the Search menu, or type Option-Command-F.

2 Type the string you are looking for into the Live Search field.

As you type, BBEdit selects the first occurrence of what you have typed so far.

3 To find the next occurrence of the matching text, click the Next (right) arrow, or type
Return or Enter.

4 To find the previous occurrence of the matching text, click the Previous (left) arrow, or
type Shift-Return or Shift-Enter.

If Emacs key bindings are enabled, you can also type Control-S to start a Live Search, and
then type Control-S or Control-R to search forward or backward respectively.

To clear the most recent word of the search string, you can type Option-Delete, or click on
the “delete” button (the “X”) within the search field to delete the entire search string.

To cancel Live Search, you may click the “Done” button in the search bar or type the
Escape key.

Save to disk Saves each file with the changes.

Confirm before
saving

When this option is enabled, you will have an
opportunity to approve changes to each file being
searched before BBEdit saves that file to disk. You
should not turn this option off until you are sure
that the replace operation is doing what you want.

This option… Replaces all occurrences of the search
string with the replace string and…
158 Chapter 7: Searching

Live Search also supports grep pattern matching when the “Grep” option is enabled, and
stored patterns are available under the “Saved patterns (“g”) popup. If the entered pattern is
invalid, BBEdit will display an alert icon which you can click on to see the error.

Note The Live Search bar replaces the Quick Search window present in older versions.

Search Menu Reference
This section describes all of the commands in the Search menu.

Find
Opens the Find window (or the Find & Replace dialog). See “Basic Searching and
Replacing” on page 146.

Multi-File Search
Opens the Multi-File Search window. See “Multi-File Searching” on page 149 and “Multi-
File Replacing” on page 157.

Search in [Document’s Folder]
If a text document is active in the front window and that document is associated with a file
on disk, this command will be enabled, and selecting it will open the Multi-File Search
window with the search source pre-set to the parent folder of the document’s file, and that
folder’s name and path will appear in this command’s menu name.

Search in [Project or Disk Browser]
If the frontmost window is a project or disk browser, this command's name will reflect the
name of the project, or the name of the disk browser’s current root directory.

Choosing this command will open the Multi-File Search window with the search source
pre-set to the current project, or the disk browser’s root folder.

If the Multi-File Search window is frontmost, this command will target the project or disk
browser which is closest to the front (Z-order).

This command is also available in the Action (‘gear’) menu of projects and disk browsers.

Live Search
Opens the Live Search bar. You can use this feature to interactively search for text strings,
as described in the previous section.
Search Menu Reference 159

Find Next/Previous
Searches the current document for the next occurrence of the search string. Hold down the
Shift key to find the previous occurrence.

Find All
Finds all instances of the search string in the current document or search set, and displays a
search results browser.

Extract
Finds all instances of the search string in the current document or search set, and collects
each occurrence into a new untitled text document, separated by line breaks.

When performing an Extract operation, you can optionally enter a grep replacement pattern
in the “Replace” field of the Find or Multi-File Search window to transform the extraction
results.

For example, consider this sample text:
!_TAG_FILE_FORMAT 2 /extended format; --format=1 will not append ;" to lines/

!_TAG_FILE_SORTED 1 /0=unsorted, 1=sorted, 2=foldcase/

!_TAG_PROGRAM_AUTHOR Universal Ctags Team //

!_TAG_PROGRAM_NAME Universal Ctags /Derived from Exuberant Ctags/

!_TAG_PROGRAM_URL https://ctags.io/ /official site/

!_TAG_PROGRAM_VERSION 0.0.0 /a1e9cbe/

To extract just the unique part of each field name (without the leading “!_TAG_”), match it
with this pattern: “_TAG_(.+?)\s”. The first capture group is the unique part of the field
name, so use “\1” in the "Replace:" field, and then click the Extract" button.

The resulting extracted text will be:
FILE_FORMAT

FILE_SORTED

PROGRAM_AUTHOR

PROGRAM_NAME

PROGRAM_URL

PROGRAM_VERSION

Performing extraction with Grep substitutions will allow you to complete many extraction
operations in a single step, rather than requiring you to apply multiple Replace All
operations to the extracted text.

Find Selected Text/Previous Selected Text
Uses the selected text as the search string and finds the next occurrence of the selected text.
Hold down the Shift key to find the previous occurrence of the selected text.

When you invoke this command, BBEdit will add the current search string to its Search
History list of recently-used search strings.

Tip You can also hold down the Option and Command keys as you double-click on a
selection to search for the next occurrence of the selected text.
160 Chapter 7: Searching

Use Selection for Find
Sets BBEdit’s search string to the currently selected text but does not perform a search.
When you invoke this command, BBEdit will add the current search & replace strings to its
Search History list.

Use Selection for Find (grep)
When you hold down the Shift key, Use Selection for Find becomes Use Selection for Find
(grep). This command sets BBEdit’s search string to the currently selected text and turns on
the Grep option, but does not perform a search. When you invoke this command, BBEdit
will add the current search & replace strings to its Search History list.

Use Selection for Replace
Sets BBEdit’s replace string to the currently selected text but does not perform a search
operation. When you invoke this command, BBEdit will add the current search & replace
strings to its Search History list.

Use Selection for Replace (grep)
When you hold down the Shift key, Use Selection for Replace becomes Use Selection for
Replace (grep). This command sets BBEdit’s replace string to the currently selected text
and turns on the Grep option, but does not perform a search operation. When you invoke
this command, BBEdit will add the current search& replace strings to its Search History
list.

Replace
Replaces the selected text (usually an occurrence of the search string) with the replace
string.

Replace All
Replaces all occurrences of the search string in a file with the replace string, or, starts a
multi-file search & replace operation.

Replace All in Selection
This command is enabled only when there is a selection in the frontmost text document (or
in the text document immediately behind the Find window). Choosing it will perform a
Replace All upon the selected range of text, i.e. it has the same effect as enabling the
Selected Text Only option in the Find window.

Replace to End
Replaces each occurrence of the search string from the current insertion point (or the start
of the current selection range) to the end of the document.
Search Menu Reference 161

Replace & Find Again
Replaces the selected text with the replace string and searches for the next occurrence of
the search string.

Find Differences
Finds the differences between two files, or all of the files contained in two folders. See
“Comparing Text Files” in Chapter 4 for more details.

Compare Two Front Windows
Performs a Find Differences between the active documents within the two frontmost text
windows, using the same settings currently active for the Find Differences command.

This command will be enabled only if: there are two or more editing (or project) windows
open, and a text document is active in each of the frontmost two windows, and neither
window is blocked by a sheet or modal dialog.

Compare Against Disk File
Performs a Find Differences between the contents of the front document and the disk file
for that same document. This capability makes it easy to locate in-progress changes to a
document.

Compare Against Previous Version
Provides access to previous versions of the current document using the system’s built-in
file versioning capability. You can compare and integrate changes from any prior version
into the current document as desired.

Apply to New
Applies the currently selected difference to the “New” version of two files which are being
compared. See “Comparing Text Files” for more details.

Apply to Old
Applies the currently selected difference to the “Old” version of two files which are being
compared. See “Comparing Text Files” for more details.

Compare Again
Find the differences between two files, using the same settings that were used in the last
time you used the Find Differences command. See “Comparing Text Files” for more
details.

Find Definition
Looks up definitions for the selected word using ctags information if available. If there is
no selection, BBEdit will attempt to determine the symbol name by inspection of the text
around the insertion point, rather than requiring you to type a name. (See “Ctags for
Enhanced Language Support” in Chapter 14 for more details about working with ctags.)
162 Chapter 7: Searching

Find in Reference
Performs a search for the selected symbol using an appropriate language-specific online
resource. As for Find Definition, if there is no selection, BBEdit will attempt to determine
the symbol name by inspection around the insertion point.

For example, Find in Reference in a PHP document will look up the selected symbol on
php.net; in a Ruby document, it will use the ‘ri’ interactive reference; in a Unix Shell
Script, it will open the appropriate Unix man page.

For languages which don’t have a pre-defined resources, lookups will performed on the
Apple Developer Connection web site.

You can modify the URL template which BBEdit uses to perform the lookup for a
particular language by bringing up the Options sheet for that language in the Languages
preference panel and editing the template directly. In the template, use
“__SYMBOLNAME__” to indicate where the selected symbol name should be placed in
the lookup string.

Go Menu Reference
This section describes all of the commands in the Go menu.

Line Number
When you choose this command, BBEdit opens the Line Number sheet. Type in a line
number and the frontmost text window will jump to display that line.

This command does not follow the usual convention of applying the last-used setting when
invoked with the Option key pressed. Instead, if you select a number within the current
document, then hold down the Option key and choose “Line Number”, BBEdit will go
directly to the correspondingly numbered line.

Note This command honors the “Use ‘Hard’ Line Numbering in Soft-Wrapped Text Views”
option in the Editing preference panel.

Center Line
Will move the insertion point to the beginning of the middle or center line of the displayed
text.

Named Symbol
When you choose this command, BBEdit opens a sheet displaying all named symbols
within the current document, i.e. all available functions and markers. You can navigate this
list with the arrow keys, or type to filter the displayed list of symbols.

Functions
When you choose this command, BBEdit opens a floating window which lists the functions
in the active document (if any, i.e. provided its language type supports function scanning,
and the document contains recognizable functions). You can filter the list by typing a
partial function name into the search box.
Go Menu Reference 163

Reveal Start/End
When you choose one of these commands, BBEdit will move the insertion point to a
position immediately before the start or immediately after the end of the current function,
where a function is any item which appears on the function popup menu. If you anticipate
using these commands often, you may wish to assign them key equivalents in the Menus &
Shortcuts preference panel.

Go to Previous/Next
When you choose one of these commands, BBEdit will select the name of the previous or
next function in the document, where a function is any item which appears on the function
popup menu. If you anticipate using these commands often, you may wish to assign them
key equivalents in the Menus & Shortcuts preference panel.

Markers
When you choose this command, BBEdit opens a floating window which lists any markers
associated with the active document. (For information about setting markers, see “Using
Markers” on page 115). You can filter the list by typing a partial marker name into the
search box.

Jump Points
This command opens a floating window which displays the current document’s jump
history (implemented in previous versions of BBEdit) and provides a means to navigate
this history in a non-linear fashion.

Previous
When you choose this command, BBEdit will go to the last selection you made in the
document which was outside the current view (an automatic jump mark), or the last
location you marked with the Set command (see “Set” on the preceding page). If the
current document does not contain any jump marks, this command is disabled.

Next
When you choose this command after navigating to an earlier jump mark, BBEdit will go
to the next later jump mark, or return to the most recent position of the insertion point. If
you have not jumped back to a jump mark, this command is disabled.

Set
Choose this command to define the current insertion point location or selection range as a
manual jump mark within the active document. You can navigate to jump marks using the
Jump Back and Jump Forward commands.

Previous/Next Error
If an error browser is open, this command will open the listed error which came before or
after the selected error. See Chapter 9 for more information on error browsers.
164 Chapter 7: Searching

Previous/Next Placeholder
When you apply a clippings item that contains multiple #INSERTION# cookies, the second
and subsequent cookies are replaced with special jump placeholders. You can also
manually insert jump placeholders at any desired points within a clipping or a document.

These placeholders are strings of the form “<#...#>”, where the content “...” between the
two # signs may be any alphanumeric text, or empty.

You can use the Go To Previous Placeholder and Go to Next Placeholder commands to
jump back and forth between these special strings from the keyboard. For example, you
might use this command when filling in the parameters of a function call, or a series of tag
attributes. For additional details, see “Selection and Insertion Placeholders” on page 283.

If the “Use Tab key to navigate Placeholders” option in the Keyboard preferences panel is
turned on, you can press the Tab key (or Shift-Tab) to navigate between placeholders.

In additional to jump placeholders, you can also insert “optional” placeholders of the form
<#?#>. When the “Go to Next Placeholder” command would select such a placeholder,
BBEdit will place the insertion point at the specified position and remove the optional
placeholder.
Go Menu Reference 165

166 Chapter 7: Searching

C H A P T E R

8
Searching with Grep
This chapter describes the Grep option in BBEdit’s Find command, which allows
you to find and change text that matches a set of conditions you specify.
Combined with the multi-file search and replace features described in Chapter 7,
BBEdit’s grep capabilities can make many editing tasks quicker and easier,
whether you are modifying Web pages, extracting data from a file, or just
rearranging a phone list.

In this chapter
What Is Grep or Pattern Searching? . 168
Recommended Books and Resources . 168
Writing Search Patterns . 169

Most Characters Match Themselves – 169
Escaping Special Characters – 169
Wildcards Match Types of Characters – 170
Character Classes Match Sets or Ranges of Characters – 172
Matching Non-Printing Characters – 173
Other Special Character Classes – 174
Quantifiers Repeat Subpatterns – 175
Combining Patterns to Make Complex Patterns – 176
Creating Subpatterns – 176 • Using Backreferences in Subpatterns – 177
Using Alternation – 178 • The “Longest Match” Issue – 178
Non-Greedy Quantifiers – 179

Writing Replacement Patterns . 180
Subpatterns Make Replacement Powerful – 180
Using the Entire Matched Pattern – 180
Using Parts of the Matched Pattern – 181
Case Transformations – 182

Examples . 183
Matching Identifiers – 183 • Matching White Space – 183
Matching Delimited Strings – 184 • Marking Structured Text – 184
Marking a Mail Digest – 185 • Rearranging Name Lists – 185

Advanced Grep Topics . 185
Matching Nulls – 186 • Backreferences – 186
POSIX-Style Character Classes – 187
Non-Capturing Parentheses – 188
Perl-Style Pattern Extensions – 189 • Comments – 189
Pattern Modifiers – 190 • Positional Assertions – 191
Conditional Subpatterns – 193 • Once-Only Subpatterns – 194
Recursive Patterns – 196
167

What Is Grep or Pattern Searching?
Grep patterns offer a powerful way to make changes to your data that “plain text” searches
simply cannot. For example, suppose you have a list of people’s names that you want to
alphabetize. If the names appear last name first, you can easily put these names in a BBEdit
window and use the Sort tool. But if the list is arranged first name first, a simple grep
pattern can be used to put the names in the proper order for sorting.

A grep pattern, also known as a regular expression, describes the text that you are looking
for. For instance, a pattern can describe words that begin with C and end in l. A pattern like
this would match “Call”, “Cornwall”, and “Criminal” as well as hundreds of other words.

In fact, you have probably already used pattern searching without realizing it. The Find
window’s “Case sensitive” and “Entire word” options turn on special searching patterns.
Suppose that you are looking for “corn”. With the “Case sensitive” option turned off, you
are actually looking for a pattern that says: look for a C or c, O or o, R or r, and N or n. With
the “Entire word” option on, you are looking for the string “corn” only if it is surrounded
by white space or punctuation characters; special search characters, called metacharacters,
are added to the search string you specified to indicate this.

What makes pattern searching counterintuitive at first is how you describe the pattern.
Consider the first example above, where we want to search for text that begins with the
letter “C” and ends with the letter “l” with any number of letters in between. What exactly
do you put between them that means “any number of letters”? That is what this chapter is
all about.

Note Grep is the name of a frequently used Unix command that searches using regular
expressions, the same type of search pattern used by BBEdit. For this reason, you will
often see regular expressions called “grep patterns,” as BBEdit does. They’re the
same thing.

Recommended Books and
Resources
Mastering Regular Expressions, 3rd Edition
by Jeffrey E.F. Friedl. O’Reilly & Associates, 2006. ISBN 0-596-52812-4

Although it does not cover BBEdit’s grep features specifically, Mastering Regular
Expressions is an outstanding resource for learning the “how-to” of writing useful grep
patterns, and the second edition is even better than the original.

BBEdit Talk
The BBEdit Talk discussion group covers a wide range of topics and questions about using
BBEdit, which frequently include searching and the use of grep patterns.

 http://groups.google.com/group/bbedit

Note BBEdit’s grep engine is based on the PCRE library package, which is open source
software, written by Philip Hazel, and copyright 1997-2004 by the University of
Cambridge, England. For details, see: http://www.pcre.org/
168 Chapter 8: Searching with Grep

http://groups.google.com/group/bbedit
http://www.pcre.org/
http://www.pcre.org/

Writing Search Patterns
This section explains how to create search patterns using BBEdit’s grep syntax. For readers
with prior experience, this is essentially like the syntax used for regular expressions in the
Perl programming language. (However, you do not need to understand anything about Perl
in order to make use of BBEdit’s grep searching.)

Most Characters Match Themselves
Most characters that you type into the Find window match themselves. For instance, if you
are looking for the letter “t”, Grep stops and reports a match when it encounters a “t” in the
text. This idea is so obvious that it seems not worth mentioning, but the important thing to
remember is that these characters are search patterns. Very simple patterns, to be sure, but
patterns nonetheless.

Escaping Special Characters
In addition to the simple character matching discussed above, there are various special
characters that have different meanings when used in a grep pattern than in a normal
search. (The use of these characters is covered in the following sections.)

However, sometimes you will need to include an exact, or literal, instance of these
characters in your grep pattern. In this case, you must use the backslash character \ before
that special character to have it be treated literally; this is known as “escaping” the special
character. To search for a backslash character itself, double it \\ so that its first appearance
will escape the second.

For example, perhaps the most common “special character” in grep is the dot: “.”. In grep,
a dot character will match any character except a return. But what if you only want to
match a literal dot? If you escape the dot: “\.”, it will only match another literal dot
character in your text.

So, most characters match themselves, and even the special characters will match
themselves if they are preceded by a backslash. BBEdit’s grep syntax coloring helps make
this clear.

Note When passing grep patterns to BBEdit via AppleScript, be aware that both the
backslash and double-quote characters have special meaning to AppleScript. In order
to pass these through correctly, you must escape them in your script. Thus, to pass \r
for a line break to BBEdit, you must write \\r in your AppleScript string.
Writing Search Patterns 169

Wildcards Match Types of Characters
These special characters, or metacharacters, are used to match certain types of other
characters:

Being able to specifically match text starting at the beginning or end of a line is an
especially handy feature of grep. For example, if you wanted to find every instance of a
message sent by Patrick, from a log file which contains various other information like so:

From: Rich, server: barebones.com
To: BBEdit-Talk, server: lists.barebones.com

From: Patrick, server: example.barebones.com

you could search for the pattern:

^From: Patrick

and you will find every occurrence of these lines in your file (or set of files if you do a
multi-file search instead).

It is important to note that ^ and $ do not actually match return characters. They match
zero-width positions after and before returns, respectively. So, if you are looking for “foo”
at the end of a line, the pattern “foo$” will match the three characters “f”, “o”, and “o”. If
you search for “foo\r”, you will match the same text, but the match will contain four
characters: “f”, “o”, “o”, and a return.

Note ^ and $ do not match the positions after and before soft line breaks.

You can combine ^ and $ within a pattern to force a match to constitute an entire line. For
example:

^foo$

will only match “foo” on a line by itself, with no other characters. Try it against these three
lines to see for yourself:

foobar
foo
fighting foo

The pattern will only match the second line.

Note In versions of BBEdit prior to 6.5, the # character was a wildcard that matched any
digit (0–9); however, this is no longer the case. If you have grep patterns written with
an old version of BBEdit that use # for this purpose, you will need to change these
patterns. The easiest way to do this is to use the \d character class, which has the
exact same meaning that # used to—it matches any character from 0-9. Character
classes are explained in the next section.

Wildcard Matches…

. any character except a ‘hard’ line break

^ beginning of a line (unless used in a character class)

$ end of line (unless used in a character class)
170 Chapter 8: Searching with Grep

Other Positional Assertions
BBEdit’s grep engine supports additional positional assertions, very similar to ^ and $.

Examples (the text matched by the pattern is underlined)

Search for: \bfoo\b

Will match: bar foo bar

Will match: foo bar

Will not match: foobar

Search for: \bJane\b

Will match: Jane's

Will match: Tell Jane about the monkey.

Search for: \Afoo

fmWill match: foobar

Will not match: This is good foo.

Escape Matches

\A only at the beginning of the document (as
opposed to ^, which matches at the beginning
of the document and also at the beginning of
each line)

\b any word boundary, defined as any position
between a \w character and a \W character, in
either order

\B any position that is not a word boundary

\z at the end of the document (as opposed to $,
which matches at the end of the document and
also at the end of each line)

\Z at the end of the document, or before a trailing
return at the end of the doc, if there is one
Writing Search Patterns 171

Character Classes Match Sets or Ranges of
Characters
The character class construct lets you specify a set or a range of characters to match, or to
ignore. A character class is constructed by placing a pair of square brackets […] around the
group or range of characters you wish to include. To exclude, or ignore, all characters
specified by a character class, add a caret character ^ just after the opening bracket [^…].
For example:

You can use any number of characters or ranges between the brackets. Here are some
examples:

A character class matches when the search encounters any one of the characters in the
pattern. However, the contents of a set are only treated as separate characters, not as words.
For example, if your search pattern is [beans] and the text in the window is “lima beans”,
BBEdit will report a match at the “a” of the word “lima”.

To include the character] in a set or a range, place it immediately after the opening bracket.
To use the ^ character, place it anywhere except immediately after the opening bracket. To
match a dash character (hyphen) in a range, place it at the beginning of the range; to match
it as part of a set, place it at the beginning or end of the set. Or, you can include any of these
character at any point in the class by escaping them with a backslash.

Character
Class Matches

[xyz] any one of the characters x, y,
z

[^xyz] any character except x, y, z

[a-z] any character in the range a to
z

Character Class Matches

[aeiou] any vowel

[^aeiou] any character that is not a vowel

[a-zA-Z0-9] any character from a-z, A-Z, or 0-9

[^aeiou0-9] any character that is neither a vowel nor a
digit

Character
Class Matches

[]0-9] any digit or]

[aeiou^] a vowel or ^

[-A-Z] a dash or A - Z
172 Chapter 8: Searching with Grep

Character classes respect the setting of the Case Sensitive checkbox in the Find window.
For example, if Case Sensitive is on, [a] will only match “a”; if Case Sensitive is off, [a]
will match both “a” and “A”.

Matching Non-Printing Characters
As described in Chapter 7 on searching, BBEdit provides several special character pairs
that you can use to match common non-printing characters, as well as the ability to specify
any arbitrary character by means of its hexadecimal character code (escape code). You can
use these special characters in grep patterns as well as for normal searching.

For example, to look for a tab or a space, you would use the character class [\t] (consisting
of a tab special character and a space character).

Use \r to match a line break in the middle of a pattern and the special characters ^ and $
(described above) to “anchor” a pattern to the beginning of a line or to the end of a line. In
the case of ^ and $, the line break character is not included in the match.

[--A] any character in the range from - to
A

[aeiou-] any vowel or -

[aei\-ou] any vowel or -

Character Matches

\r ‘hard’ line break

\n ‘hard’ line break

\t tab

\f page break (form feed)

\a alarm (hex 07)

\cX a named control character, like \cC for Control-C

\b backspace (hex 08) (only in character classes)

\e Esc (hex 1B)

\xNN hexadecimal character code NN (for example,
\x0D for CR)

\x{NNNN} any number of hexadecimal characters NN… (for
example, \x{0} will match a null, \x{304F} will
match a Japanese Unicode character)

\\ backslash

Character
Class Matches
Writing Search Patterns 173

Other Special Character Classes
BBEdit uses several other sequences for matching different types or categories of
characters.

A “word” is defined in BBEdit as any run of non-word-break characters bounded by word
breaks. Word characters are generally alphanumeric, and some characters whose value is
greater than 127 are also considered word characters.

Note that any character matched by \s is by definition not a word character; thus, anything
matched by \s will also be matched by \W (but not the reverse!).

Special
Character Matches

\s any whitespace character (space, tab, carriage
return, line feed, form feed)

\S any non-whitespace character (any character
not included by \s)

\w any word character (a-z, A-Z, 0-9, _, and some
8-bit characters)

\W any non-word character (all characters not
included by \w, including line breaks)

\d any digit (0-9)

\D any non-digit character (including line breaks)
174 Chapter 8: Searching with Grep

Quantifiers Repeat Subpatterns
The special characters *, +, and ? specify how many times the pattern preceding them may
repeat. {}-style quantifiers allow you to specify exactly how many times a subpattern can
repeat. The preceding pattern can be a literal character, a wildcard character, a character
class, or a special character.

Note that the repetition characters * and ? match zero or more occurrences of the pattern.
That means that they will always succeed, because there will always be at least zero
occurrences of any pattern, but that they will not necessarily select any text (if no
occurrences of the preceding pattern are present).

For this reason, when you are trying to match more than one occurrence, it is usually better
to use a + than a *, because + requires a match, whereas * can match the empty string. Only
use * when you really mean “zero or more times,” not just “more than once.”

Try the following examples to see how their behavior matches what you expect:

Pattern Matches

p* zero or more p’s

p+ one or more p’s

p? zero or one p’s

p{COUNT} match exactly COUNT p’s, where COUNT is an
integer

p{MIN,} match at least MIN p’s, where MIN is an integer

p{MIN,MAX} match at least MIN p’s, but no more than MAX

Pattern Text Matches

.* Fourscore and seven
years

Fourscore and seven
years

[0-9]+ I’ve been a loyal member
since 1983 or so.

1983

\d+ I’ve got 12 years on him. 12

A+ BAAAAAAAB AAAAAAA

A{3} BAAAAB AAA (first three A’s)

A{3,} BAAAAB AAAA

A{1,3} BAAAAB AAA on the first match,
the remaining A on the
second match

c?andy andy likes candy “andy” on the first match,
“candy” on the second

A+ Ted joined AAA yesterday “AAA” on the first match;
“a” from “yesterday” on
the second
Writing Search Patterns 175

Combining Patterns to Make Complex
Patterns
So far, the patterns you have seen match a single character or the repetition of a single
character or class of characters. This is very useful when you are looking for runs of digits
or single letters, but often that is not enough.

However, by combining these patterns, you can search for more complex items. As it
happens, you are already familiar with combining patterns. Remember the section at
beginning of this discussion that said that each individual character is a pattern that
matches itself? When you search for a word, you are already combining basic patterns.

You can combine any of the preceding grep patterns in the same way. Here are some
examples.

Note again in these examples how the characters that have special meaning to grep are
preceded by a backslash (\+, \., and \$) when we want them to match themselves.

Creating Subpatterns
Subpatterns provide a means of organizing or grouping complex grep patterns. This is
primarily important for two reasons: for limiting the scope of the alternation operator
(which otherwise creates an alternation of everything to its left and right), and for changing
the matched text when performing replacements.

A subpattern consists of any simple or complex pattern, enclosed in a pair of parentheses.
You can optionally specify a simple string to identify a subpattern, making it a named
subpattern.

You can combine more than one subpattern into a grep pattern, or mix subpatterns and
other pattern elements as you need.

Pattern Matches Examples

\d+\+\d+ a string of digits, followed
by a literal plus sign,
followed by more digits

4+2
1234+5829

\d{4}[\t]B\.C\. four digits, followed by a
tab or a space, followed by
the string B.C.

2152 B.C.

\$?[0-9,]+\.\d* an optional dollar sign,
followed by one or more
digits and commas,
followed by a period, then
zero or more digits

1,234.56
$4,296,459.1
9
$3,5,6,4.0000
0. (oops!)

Pattern Matches

(p) the pattern p and remembers it

(?P<NAME>p) the pattern p and remembers it by the
specified string NAME
176 Chapter 8: Searching with Grep

Taking the last set of examples, you could modify these to use subpatterns wherever actual
data appears:

Using Backreferences in Subpatterns
What if we wanted to match a series of digits, followed by a plus sign, followed by the
exact same series of digits as on the left side of the plus? In other words, we want to match
“1234+1234” or “7+7”, but not “5432+1984”.

Using grouping parentheses, you can do this by referring to a backreference, also known as
a captured subpattern. There are two kinds of backreferences: numbered backreferences,
and named backreferences. You can use both types of backreference within the same grep
pattern.

Each subpattern within the complete pattern is numbered from left to right, starting with the
opening parenthesis. Later in the pattern, you can refer to the text matched within any of
these subpatterns by using a backslash followed by the number of that subpattern; this is a
numbered backreference. Unlike numbered backreferences, which are automatically
identified from the pattern, named backreferences are only available after you define them.

Names may include alphanumeric characters and underscores, and must be unique within a
pattern.

Pattern Matches Examples

(\d+)\+(\d+) a string of digits, followed
by a plus sign, followed
by more digits

4+2
1234+5829

(\d{4})[\t]B\.C\. four digits, followed by a
tab or a space, followed
by the string B.C.

2152 B.C.

\$?([0-9,]+)\.(\d*) an optional dollar sign,
followed by one or more
digits and commas,
followed by a period, then
zero or more digits

1,234.56
$4,296,459.1
9
$3,5,6,4.0000
0.

Pattern Matches…

\1, \2, …,
\99

the text of the nth subpattern in the entire
search pattern

(?P=NAME) the text of the subpattern NAME
Writing Search Patterns 177

Here are some examples of numbered backreferences:

We will revisit subpatterns in the section on replacement, where you will see how the
choice of subpatterns affects the changes you can make.

Using Alternation
The alternation operator | allows you to match any of several patterns at a given point. To
use this operator, place it between one or more patterns x|y to match either x or y.

As with all of the preceding options, you can combine alternation with other pattern
elements to handle more complex searches.

The “Longest Match” Issue
IMPORTANT When creating complex patterns, you should bear in mind that the quantifiers +, *, ? and {}

are “greedy.” That is, they will always make the longest possible match possible to a given
pattern, so if your pattern is E+ (one or more E’s) and your text contains “EEEE”, the
pattern matches all the E’s at once, not just the first one. This is usually what you want, but
not always.

Pattern Matches Examples

(\d+)\+\1 a string of digits, followed
by a plus sign, followed
the same digits

7+7
1234+1234

(\w+)\s+\1 double words, or, a pair of
identical character runs
separated by whitespace

the the
tire return
(oops!)

(\w)(\w)\2\1 a word character, a
second word character,
followed by the second
one again and the first
one again

abba

Pattern Text is… Matches…

a|t A cat each “a” and “t”

a|c|t A cat each “a”, “c”, and “t”

a (cat|dog)
is

A cat is here. A dog is
here. A giraffe is here.

“A cat is”, “A dog is”

A|b+ Abba “A”, “bb”, and “a”

Andy|Ted Andy and Ted joined
AAA yesterday

“Andy” and “Ted”

\d{4}|years I’ve been a loyal
member since 1983,
almost 16 years ago.

“1983”, “years”

[a-z]+|\d+ That’s almost 16
years.

“That”, “s”, “almost”,
“16”, “years”
178 Chapter 8: Searching with Grep

Suppose, for instance, that you want to match an HTML tag. At first, you may think that a
good way to do this would be to search for the pattern:

<.+>

consisting of a less-than sign, followed by one or more occurrences of a single character,
followed by a greater-than sign. To understand why this may not work the way you think it
should, consider the following sample text to be searched:

This text is in boldface.

The intent was to write a pattern that would match both of the HTML tags separately. Let’s
see what actually happens. The < character at the beginning of this line matches the
beginning of the pattern. The next character in the pattern is . which matches any character
(except a line break), modified with the + quantifier, taken together, this combination
means one or more repetitions of any character. That, of course, takes care of the B. The
problem is that the next > is also “any character” and that it also qualifies as “one or more
repetitions.” In fact, all of the text up to the end of the line qualifies as “one or more
repetitions of any character” (the line break does not qualify, so grep stops there). After
grep has reached the line break, it has exhausted the + operator, so it backs up and sees if it
can find a match for >. Lo and behold, it can: the last character is a greater-than symbol.
Success!

In other words, the pattern matches our entire sample line at once, not the two separate
HTML tags in it as we intended. More generally, the pattern matches all the text in a given
line or paragraph from the first < to the last >. The pattern only does what we intended
when there is only one HTML tag in a line or paragraph. This is what we meant when we
say that the regular quantifiers try to make the longest possible match.

Non-Greedy Quantifiers
IMPORTANT To work around this “longest match” behavior, you can modify your pattern to take

advantage of non-greedy quantifiers.

Astute readers will note that these non-greedy quantifiers correspond exactly to their
normal (greedy) counterparts, appended with a question mark.

Revisiting our problem of matching HTML tags, for example, we can search for:

<.+?>

Quantifier Matches…

+? one or more

*? zero or more

?? zero or one

{COUNT}? match exactly COUNT times

{MIN,}? match at least MIN times

{MIN,MAX}? match at least MIN times, but no more than
MAX
Writing Search Patterns 179

This matches an opening bracket, followed by one or more occurrences of any character
other than a return, followed by a closing bracket. The non-greedy quantifier achieves the
results we want, preventing BBEdit from “overrunning” the closing angle bracket and
matching across several tags.

A slightly more complicated example: how could you write a pattern that matches all text
between and HTML tags? Consider the sample text below:

Welcome to the home of BBEdit!

As before, you might be tempted to write:

.*

but for the same reasons as before, this will match the entire line of text. The solution is
similar; we will use the non-greedy *? quantifier:

.*?

Writing Replacement Patterns

Subpatterns Make Replacement Powerful
We covered subpatterns earlier when discussing search patterns and discussed how the
parentheses can be used to limit the scope of the alternation operator. Another reason for
employing subpatterns in your grep searches is to provide a powerful and flexible way to
change or reuse found information as part of a search-and-replace operation. If you do not
use subpatterns, you can still access the complete results of the search with the &
metacharacter. However, this precludes reorganizing the matched data as it is replaced.

Note BBEdit will remember up to 99 backreferenced subpatterns. Versions prior to 6.5 were
limited to 9 subpatterns.

Using the Entire Matched Pattern
The & character is useful when you want to use the entire matched string as the basis of a
replacement. Suppose that in your text every instance of product names that begin with the
company name “ACME” needs to end with a trademark symbol (™). The following search
pattern finds two-word combinations that begin with “ACME”:

ACME [A-Za-z]+

The following replacement string adds the trademark symbol to the matched text:

&™

Pattern Inserts…

& the text matched by the entire search pattern

\1, \2, …,
\99

the text matched by the nth subpattern of the
entire search pattern

\P<NAME> the text matched by the subpattern NAME
180 Chapter 8: Searching with Grep

For example, if you start with

ACME Magnets, ACME Anvils, and ACME TNT are all premium
products.

and perform a replace operation with the above patterns, you will get:

ACME Magnets™, ACME Anvils™, and ACME TNT™ are all premium
products.

Using Parts of the Matched Pattern
While using the entire matched pattern in a replacement string is useful, it is often more
useful to use only a portion of the matched pattern and to rearrange the parts in the
replacement string.

For example, suppose a source file contains C-style declarations of this type:

#define Util_Menu 284
#define Tool_Menu 295

and you want to convert them so they look like this, Pascal-style:

const int Util_Menu = 284;
const int Tool_Menu = 295;

The pattern to find the original text is straightforward:

#define[\t]+.+[\t]+\d+[^0-9]*$

This pattern matches the word “#define” followed by one or more tabs or spaces, followed
by one or more characters of any type, followed by one or more tabs or spaces, followed by
one or more digits, followed by zero or more characters that are not digits (to allow for
comments), followed by the end of the line.

The problem with this pattern is that it matches the entire line. It does not provide a way to
remember the individual parts of the found string.

If you use subpatterns to rewrite the above search pattern slightly, you get this:

#define[\t]+(.+)[\t]+(\d+)[^0-9]*$

The first set of parentheses defines a subpattern which remembers the name of the constant.
The second set remembers the value of the constant.

The replacement string would look like this:

const int \1 = \2;

The sequence \1 is replaced by the name of the constant (the first subpattern from the
search pattern), and the sequence \2 is replaced by the value of the constant (from the
second subpattern).

Our example throws out any comment that may follow the C-style constant declaration. As
an exercise, try rewriting the search and replace patterns so they preserve the comment,
enclosing it in (*…*) style Pascal comment markers.
Writing Replacement Patterns 181

Here are some more examples:

Case Transformations
Replace patterns can also change the case of the original text when using subpattern
replacements. The syntax is similar to Perl’s, specifically:

Here are some examples to illustrate how case transformations can be used.

Given some text:

mumbo-jumbo

and the search pattern:

(\w+)(\W)(\w+)

the following replace patterns will produce the following output:

\U\1\E\2\3 MUMBO-jumbo
\u\1\2\u\3 Mumbo-Jumbo

Note that case transformations also affect literal strings in the replace pattern:

\U\1\2fred MUMBO-FRED
\lMUMBLE\2\3 mUMBLE-jumbo

Data Search for Replace Result

4+2 (\d+)\+(\d+) \2+\1 2+4

1234+5829 (\d+)\+(\d+) \1+\1 1234+1234

2152 B.C. (\d{4})[\t]B\.C\. \1 A.D. 2152 A.D.

1,234.56 \$?([0-
9,]+)\.(\d+)

\1 dollars and
\2 cents

1,234 dollars
and 56 cents

$4,296,459.19 \$?([0-
9,]+)\.(\d+)

\1 dollars and
\2 cents

4,296,459
dollars and 19
cents

$3,5,6,4.00000 \$?([0-
9,]+)\.(\d+)

\1 dollars and
\2 cents

3,5,6,4 dollars
and 00000
cents

Modifier Effect

\u Make the next character uppercase

\U Make all following characters uppercase until
reaching another case specifier (\u, \L, \l) or \E

\l Make the next character lowercase

\L Make all following characters lowercase until
reaching another case specifier (\u, \U, \l) or \E

\E End case transformation opened by \U or \L
182 Chapter 8: Searching with Grep

Finally, note that \E is not necessary to close off a modifier; if another modifier appears
before an \E is encountered, that modifier will take effect immediately:

\Ufred-\uwilma FRED-Wilma

Examples
The example patterns in this section describe some common character classes and shortcuts
used for constructing grep patterns, and addresses some common tasks that you might find
useful in your work.

Matching Identifiers
One of the most common things you will use grep patterns for is to find and modify
identifiers, such as variables in computer source code or object names in HTML source
documents. To match an arbitrary identifier in most programming languages, you might
use this search pattern:

[a-z][a-zA-Z0-9]*

This pattern matches any sequence that begins with a lowercase letter and is followed by
zero or more alphanumeric characters. If other characters are allowed in the identifier, add
them to the pattern. This pattern allows underscores in only the first character of the
identifier:

[a-z_][a-zA-Z0-9]*

The following pattern allows underscores anywhere but the first character, but allows
identifiers to begin with an uppercase or lowercase letter:

[a-zA-Z][a-zA-Z0-9_]*

Matching White Space
Often you will want to match two sequences of data that are separated by tabs or spaces,
whether to simply identify them, or to rearrange them.

For example, suppose you have a list of formatted label-data pairs like this:

User name: Bernard Rubble
Occupation: Actor
Spouse: Betty

You can see that there are tabs or spaces between the labels on the left and the data on the
right, but you have no way of knowing how many spaces or tabs there will be on any given
line. Here is a character class that means “match one or more white space characters.”

[\t]+

So, if you wanted to transform the list above to look like this:

User name("Bernard Rubble")
Occupation("Actor")
Spouse("Betty")
Examples 183

You would use this search pattern:

([a-z]+):[\t]+([a-z]+)

and this replacement pattern:

\1\("\2"\)

Matching Delimited Strings
In some cases, you may want to match all the text that appears between a pair of delimiters.
One way to do this is to bracket the search pattern with the delimiters, like this:

".*"

This works well if you have only one delimited string on the line. But suppose the line
looked like this:

"apples", "oranges, kiwis, mangos", "penguins"

The search string above would match the entire line. (This is another instance of the
“longest match” behavior of BBEdit’s grep engine, which was discussed previously.)

Once again, non-greedy quantifiers come to the rescue. The following pattern will match "-
delimited strings:

".+?"

Marking Structured Text
Suppose you are reading a long text document that does not have a table of contents, but
you notice that all the sections are numbered like this:

3.2.7 Prehistoric Cartoon Communities
5.19.001 Restaurants of the Mesozoic

You can use a grep pattern to create marks for these headings, which will appear in the
Mark popup menu. Choose Find & Mark All from the Mark popup menu in the navigation
bar. Then, decide how many levels you want to mark. In this example, the headings always
have at least two digits and at most four.

Use this pattern to find the headings:

^(\d+\.\d+\.?\d*\.?\d*)[\t]+([a-z]+)

and this pattern to make the file marks:

\1 \2

The ^ before the first search group ensures that BBEdit matches the numeric string at the
beginning of a line. The pattern

\.?\d*

matches a (possible) decimal point and a digit sequence. The other groups use the white
space idiom and the identifier idiom. You can use a similar technique to mark any section
that has a section mark that can be described with grep.
184 Chapter 8: Searching with Grep

Marking a Mail Digest
You can elaborate the structured text technique to create markers for mail digests. Assume
that each digest is separated by the following lines:

From: Sadie Burke <sadie@burke.com>
Date: Sun, 16 Jul 1995 13:17:45 -0700
Subject: Fishing with the judge

Suppose you want the marker text to list the subject and the sender. You would use the
following search string:

^From:[\t]+(.*)\r.*\rSubject:[\t]+(.*)

And mark the text with this replacement string:

\2 \1

Note that for the sequence \r.*\r in the middle of the search string, the \r before “Subject” is
necessary because as previously discussed, the special character . does not match a ‘hard’
line break. (At least, not by default. See “Advanced Topics,” below, for details on how to
make dot match any character, including line breaks.)

Rearranging Name Lists
You can use grep patterns to transform a list of names in first name first form to last name
first order (for a later sorting, for instance). Assume that the names are in the form:

Junior X. Potter
Jill Safai
Dylan Schuyler Goode
Walter Wang

If you use this search pattern:

^(.*) ([^]+)$

And this replacement string:

\2, \1

The transformed list becomes:

Potter, Junior X.
Safai, Jill
Goode, Dylan Schuyler
Wang, Walter

Advanced Grep Topics
BBEdit’s new PCRE-based grep engine offers unparalleled syntactical power. The topics
below cover areas that show how grep can effectively match very complicated patterns of
text—matches which were impossible to achieve with older versions of BBEdit. However,
with this power comes complexity.
Advanced Grep Topics 185

If you are new to grep, it is possible that the topics covered in this section will not make
much sense to you. That’s OK. The best way to learn grep is to use it in real life, not by
reading example patterns. In many cases, the basic grep syntax covered previously in this
chapter will be all that you need.

If you are an experienced user of grep, however, many of the topics covered below will be
of great interest.

Matching Nulls
The grep engine used in versions of BBEdit prior to 6.5 was unable to search text that
contained null characters (ASCII value zero), but this limitation has since been removed.
Here’s one way to match a null:

\x{0}

Backreferences
The following charts explain the rules BBEdit uses for determining backreferences.

In Search Patterns

Modifier Effect

\0 A backslash followed by a zero is an octal character
reference. Up to two further octal characters are read. Thus,
“\040” will match a space character, and “\07” will match the
ASCII BEL (\x07), but “\08” will match an ASCII null
followed by the digit 8 (because octal characters only range
from 0-7).

\1-9 A backslash followed by a single decimal digit from 1 to 9 is
always a backreference to the Nth captured subpattern.

\10-99 A backslash followed by two decimal digits, which taken
together form the integer N (ranging from 10 to 99), is a
backreference to the Nth captured subpattern, if there exist
N capturing sets of parentheses in the pattern. If there are
fewer than N captured subpatterns, the grep engine will
instead look for up to three octal digits following the
backslash. Any subsequent digits stand for themselves.

So, in a search pattern, “\11” is a backreference only if there
are AT LEAST 11 sets of capturing parentheses in the
pattern. If not, BBEdit interprets this as 11 octal (9 decimal)
and matches a tab. “\011” always matches a tab. “\81” is a
backreference if there are 81 or more captured subpatterns;
otherwise, BBEdit interprets this as \0 (ASCII null) followed
by the two literal characters “8” and “1”.
186 Chapter 8: Searching with Grep

In Character Classes

In Replacement Patterns

POSIX-Style Character Classes
BBEdit provides support for POSIX-style character classes. These classes are used in the
form [:CLASS:], and are only available inside regular character classes (in other words,
inside another set of square brackets).

Modifier Effect

\OCTAL Inside a character class, a backslash followed by up to three
octal digits generates a single byte character reference from
the least significant eight bits of the value. Thus, the
character class “[\7]” will match a single byte with octal
value 7 (equivalent to “\x07”). “[\8]” will match a literal “8”
character.

Modifier Effect

\NNN+ If more than two decimal digits follow the backslash, only
the first two are considered part of the backreference. Thus,
“\111” would be interpreted as the 11th backreference,
followed by a literal “1”. You may use a leading zero; for
example, if in your replacement pattern you want the first
backreference followed by a literal “1”, you can use “\011”.
(If you use “\11”, you will get the 11th backreference, even
if it is empty.)

\NN If two decimal digits follow the backslash, which taken
together represent the value N, and if there is an Nth
captured substring, then all three characters are replaced
with that substring. If there is not an Nth captured
substring, all three characters are discarded—that is, the
backreference is replaced with the empty string.

\N If there is only a single digit N following the backslash and
there is an Nth captured substring, both characters are
replaced with that substring. Otherwise, both characters are
discarded—that is, the backreference is replaced with the
empty string. In replacement patterns, \0 is a backreference
to the entire match (exactly equivalent to “&”).

Class Meaning

alnum letters and digits

alpha letters

ascii character codes 0-127

blank horizontal whitespace

cntrl control characters

digit decimal digits (same as \d)

graph printing characters, excluding spaces
Advanced Grep Topics 187

For example: [[:digit:]]+ is the same as: [\d]+

POSIX-style character class names are case-sensitive.

It is easy to forget that POSIX-style character classes are only available inside regular
character classes. The pattern [:space:], without enclosing square brackets, is just a
character class consisting of the characters “:”, “a”, “c”, “e”, “p”, and “s”.

The names “ascii” and “word” are Perl extensions; the others are defined by the POSIX
standard. Another Perl extension supported by BBEdit is negated POSIX-style character
classes, which are indicated by a ^ after the colon. For example, to match any run of non-
digit characters:

[[:^digit:]]+

Non-Capturing Parentheses
As described in the preceding section “Creating Subpatterns”, bare parentheses cluster and
capture the subpatterns they contain. The portion of the matching pattern contained within
the first pair of parentheses is available in the backreference \1, the second in \2, and so on.

Opening parentheses are counted from left to right to determine the numbers of the
captured subpatterns. For example, if the following grep pattern:

((red|white) (king|queen))

is matched against the text “red king”, the backreferences will be set as follows:

\1 "red king"
\2 "red"
\3 "king"

Sometimes, however, parentheses are needed only for clustering, not capturing. BBEdit
now supports non-capturing parentheses, using the syntax:

(?:PATTERN)

That is, if an open parenthesis is followed by “?:”, the subpattern matched by that pair of
parentheses is not counted when computing the backreferences. For example, if the text
“red king” is matched against the pattern:

(?:(red|white) (king|queen))

lower lower case letters

print printing characters, including spaces

punct punctuation characters

space white space (same as \s)

upper upper case letters

word “word” characters (same as \w)

xdigit hexadecimal digits

Class Meaning
188 Chapter 8: Searching with Grep

the backreferences will be set as follows:

\1 "red"
\2 "king"

Perl-Style Pattern Extensions
BBEdit’s grep engine supports several extended sequences, which provide grep patterns
with super-powers from another universe. Their syntax is in the form:

(?KEY…)

in other words, an open parenthesis followed by a question mark, followed by a KEY for
the particular grep extension, followed by the rest of the subpattern and a closing
parenthesis. This syntax—specifically, an open parenthesis followed by a question mark—
was not valid in older versions of BBEdit, thus, none of these extensions will conflict with
old patterns.

We have already seen one such extension in the previous section of this document—non-
capturing parentheses: (?:…). The remainder are listed in the chart below, and discussed in
detail afterward.

Comments
The sequence (?# marks the start of a comment which continues up to the next closing
parenthesis. Nested parentheses are not permitted. The characters that make up a comment
play no part in the pattern matching at all.

Search for: foo(?# Hello, this is a comment)bar
Will match: foobar

Extension Meaning

(?:…) Cluster-only parentheses, no capturing

(?#…) Comment, discard all text between the parentheses

(?imsx-imsx) Enable/disable pattern modifiers

(?imsx-
imsx:…)

Cluster-only parens with modifiers

(?=…) Positive lookahead assertion

(?!…) Negative lookahead assertion

(?<=…) Positive lookbehind assertion

(?<!…) Negative lookbehind assertion

(?()…|…) Match with if-then-else

(?()…) Match with if-then

(?>…) Match non-backtracking subpattern (“once-only”)

(?R) Recursive pattern
Advanced Grep Topics 189

Pattern Modifiers
The settings for case sensitivity, multi-line matching, whether the dot character can match
returns, and “extended syntax” can be turned on and off within a pattern by including
sequences of letters between “(?” and “)”.

i — By default, BBEdit obeys the “Case Sensitive” checkbox in the Find window (or the
corresponding property of the search options when using the scripting interface). The (?i)
option overrides this setting.

m — By default, BBEdit’s grep engine will match the ^ and $ metacharacters after and
before returns, respectively. If you turn this option off with (?-m), ^ will only match at the
beginning of the document, and $ will only match at the end of the document. (If that is
what you want, however, you should consider using the new \A, \Z, and \z metacharacters
instead of ^ and $.)

s — By default, the magic dot metacharacter . matches any character except return (“\r”). If
you turn this option on with (?s), however, dot will match any character. Thus, the pattern
(?s).+ will match an entire document.

x — When turned on, this option changes the meaning of most whitespace characters
(notably, tabs and spaces) and #. Literal whitespace characters are ignored, and the #
character starts a comment that extends until a literal return or the “\r” escape sequence is
encountered. Ostensibly, this option intends to let you write more “readable” patterns.

Perl programmers should already be familiar with these options, as they correspond
directly to the -imsx options for Perl’s m// and s/// operators. Unadorned, these options turn
their corresponding behavior on; when preceded by a hyphen (-), they turn the behavior off.
Setting and unsetting options can occur in the same set of parentheses.

Modifier Meaning Default

i case insensitive according to Case
Sensitive checkbox in Find
window

m allow ^ and $ to match at \r on

s allow . to match \r off

x ignore most white space and
allow inline comments in grep
patterns

off

Example Effect

(?imsx) Turn all four options on

(?-imsx) Turn all four options off

(?i-msx) Turn “i” on, turn “m”, “s”, and “x” off
190 Chapter 8: Searching with Grep

The scope of these option changes depends on where in the pattern the setting occurs. For
settings that are outside any subpattern, the effect is the same as if the options were set or
unset at the start of matching. The following patterns all behave in exactly the same way:

(?i)abc
a(?i)bc
ab(?i)c
abc(?i)

In other words, all four of the above patterns will match without regard to case. Such “top
level” settings apply to the whole pattern (unless there are other changes inside
subpatterns). If there is more than one setting of the same option at the top level, the right-
most setting is used.

If an option change occurs inside a subpattern, the effect is different. An option change
inside a subpattern affects only that part of the subpattern that follows it, so, if the “Case
Sensitive” checkbox is turned on:

Search for: (a(?i)b)c
Will match: abc or aBc

and will not match anything else. (But if “Case Sensitive” is turned off, the “(?i)” in the
above pattern is superfluous and has no effect.) By this means, options can be made to have
different settings in different parts of the pattern. Any changes made in one alternative do
carry on into subsequent branches within the same subpattern. For example:

Search for: (a(?i)b|c)

matches “ab”, “aB”, “c”, and “C”, even though when matching “C”, the first branch is
abandoned before the option setting.

These options can also be set using the clustering (non-capturing) parentheses syntax
defined earlier, by inserting the option letters between the “?” and “:”. The scope of options
set in this manner is limited to the subpattern contained therein. Examples:

Search for: (?i:saturday|sunday)
Will match: SATURDAY or Saturday or SUNday (and so on)

Search for: (?i:foo)(?-i:bar)
Will match: foobar or FOObar
Will not match: FOOBAR or fooBAR

Positional Assertions
Positional assertions “anchor” a pattern, without actually matching any characters. Simple
assertions have already been described: those which are invoked with the escape sequences
\b, \B, \A, \Z, \z, ^ and $. For example, the pattern \bfoo\b will only match the string “foo” if
it has word breaks on both sides, but the \b’s do not themselves match any characters; the
entire text matched by this pattern are the three characters “f”, “o”, and “o”.

Lookahead and lookbehind assertions work in a similar manner, but allow you to test for
arbitrary patterns to anchor next to. If you have ever said to yourself, “I would like to match
‘foo’, but only when it is next to ‘bar’,” lookaround assertions fill that need.
Advanced Grep Topics 191

Positive lookahead assertions begin with “(?=”, and negative lookahead assertions begin
with “(?!”. For example:

\w+(?=;)

will match any word followed by a semicolon, but the semicolon is not included as part of
the match.

foo(?!bar)

matches any occurrence of “foo” that is not followed by “bar”. Note that the apparently
similar pattern:

(?!foo)bar

does not find an occurrence of “bar” that is preceded by something other than “foo”; it
finds any occurrence of “bar” whatsoever, because the assertion (?!foo) is always true when
the next three characters are “bar”. A lookbehind assertion is needed to achieve this effect.

Positive lookbehind assertions start with “(?<=”, and negative lookbehind assertions start
with “(?<!”. For example:

(?<!foo)bar

does find an occurrence of “bar” that is not preceded by “foo”. The contents of a
lookbehind assertion are restricted such that all the strings it matches must have a fixed
length. However, if there are several alternatives, they do not all have to have the same
fixed length. Thus

(?<=Martin|Lewis)

is permitted, but

(?<!dogs?|cats?)

causes an error. Branches that match different length strings are permitted only at the top
level of a lookbehind assertion. This is different compared with Perl 5.005, which requires
all branches to match the same length of string. An assertion such as

(?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it
is acceptable if rewritten to use two top-level branches:

(?<=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily move
the current position back by the fixed width and then try to match. If there are insufficient
characters before the current position, the match is deemed to fail. (Lookbehinds in
conjunction with non-backtracking [a.k.a. “once-only”] subpatterns can be particularly
useful for matching at the ends of strings; an example is given in the section on once-only
subpatterns below.)

Several assertions (of any sort) may occur in succession. For example,

(?<=\d{3})(?<!999)foo
192 Chapter 8: Searching with Grep

matches “foo” preceded by three digits that are not “999”. Notice that each of the assertions
is applied independently at the same point in the subject string. First there is a check that
the previous three characters are all digits, and then there is a check that the same three
characters are not “999”. This pattern does not match “foo” preceded by six characters, the
first of which are digits and the last three of which are not “999”. For example, it does not
match “123abcfoo”. A pattern to do that is:

(?<=\d{3}...)(?<!999)foo

This time the first assertion looks at the preceding six characters, checking that the first
three are digits, and then the second assertion checks that the preceding three characters are
not “999”. Assertions can be nested in any combination. For example,

(?<=(?<!foo)bar)baz

matches an occurrence of “baz” that is preceded by “bar” which in turn is not preceded by
“foo”, while

(?<=\d{3}(?!999)...)foo

is another pattern which matches “foo” preceded by three digits and any three characters
that are not “999”.

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because it
makes no sense to assert the same thing several times. If any kind of assertion contains
capturing subpatterns within it, these are counted for the purposes of numbering the
capturing subpatterns in the whole pattern. However, substring capturing is carried out only
for positive assertions, because it does not make sense for negative assertions.

Conditional Subpatterns
Conditional subpatterns allow you to apply “if-then” or “if-then-else” logic to pattern
matching. The “if” portion can either be an integer between 1 and 99, or an assertion.

The forms of syntax for an ordinary conditional subpattern are:

if-then: (?(condition)yes-pattern)
if-then-else: (?(condition)yes-pattern|no-pattern)

and for a named conditional subpattern are:

if-then: (?P<NAME>(condition)yes-pattern)
if-then-else: (?P<NAME>(condition)yes-pattern|no-pattern)

If the condition evaluates as true, the “yes-pattern” portion attempts to match. Otherwise,
the “no-pattern” portion does (if there is a “no-pattern”).

If the “condition” text between the parentheses is an integer, it corresponds to the
backreferenced subpattern with the same number. (Do not precede the number with a
backslash.) If the corresponding backreference has previously matched in the pattern, the
condition is satisfied. Here’s an example of how this can be used. Let’s say we want to
match the words “red” or “blue”, and refer to whichever word is matched in the
replacement pattern. That’s easy:

(red|blue)
Advanced Grep Topics 193

To make it harder, let’s say that if (and only if) we match “blue”, we want to optionally
match a space and the word “car” if they follow directly afterward. In other words, we want
to match “red”, “blue”, or if possible, “blue car”, but we do not want to match “red car”.
We cannot use the pattern:

(red|blue)(car)?

because that will match “red car”. Nor can we use:

(red|blue car|blue)

because in our replacement pattern, we want the backreference to only contain “red” or
“blue”, without the “ car”. Using a conditional subpattern, however, we can search for:

((blue)|(red))(?(2) car)?

Here’s how this pattern works. First, we start with “((blue)|(red))”. When this subpattern
matches “blue”, \1 and \2 are set to “blue”, and \3 is empty. When it matches “red”, \1 and
\3 are set to “red”, and \2 is empty.

Next comes the conditional subpattern “(?(2) car)?”. The conditional test is on “2”, the
second backreferenced subpattern: if \2 is set, which in our case means it has matched the
word “blue”, then it will try to match “ car”. If \2 is not set, however, the entire conditional
subpattern is skipped. The question mark at the end of the pattern makes this conditional
match optional, even if \2 is set to “blue”.

Here’s an example that uses an assertion for the condition, and the if-then-else form. Let’s
say we want to match a run of digits of any length, followed by either “ is odd” or “ is
even”, depending on whether the matched digits end with an odd or even digit.

\d+(?(?<=[13579]) is odd| is even)

This pattern starts with “\d+” to match the digits. Next comes a conditional subpattern, with
a positive lookbehind assertion as the condition to be satisfied. The lookbehind assertion is
true only if the last character matched by \d+ was also in the character class [13579]. If that
is true, we next try to match “ is odd”; if it is not, we try to match “ is even”. Thus, this
pattern will match “123 is odd”, “8 is even”, and so on, but will not match “9 is even” or
“144 is odd”.

Once-Only Subpatterns
With both maximizing (greedy) and minimizing (non-greedy) repetition, failure of what
follows normally causes the repeated item to be reevaluated to see if a different number of
repeats allows the rest of the pattern to match. Sometimes it is useful to prevent this, either
to change the nature of the match, or to cause it to fail earlier than it otherwise might, when
the author of the pattern knows there is no point in carrying on.

Consider, for example, the pattern “\d+foo” when matching against the text “123456bar”.
194 Chapter 8: Searching with Grep

After matching all 6 digits and then failing to match “foo”, the normal action of the grep
engine is to try again with only 5 digits matching the \d+ item, and then with 4, and so on,
before ultimately failing. Once-only subpatterns provide the means for specifying that once
a portion of the pattern has matched, it is not to be reevaluated in this way, so the matcher
would give up immediately on failing to match “foo” the first time. The notation is another
kind of special parenthesis, starting with “(?>”, as in this example:

(?>\d+)bar

This kind of parentheses “locks up” the part of the pattern it contains once it has matched,
and a failure further into the pattern is prevented from backtracking into it. Backtracking
past it to previous items, however, works as normal.

In most situations, such as in the example above, the time saved by using once-only
subpatterns is insignificant—a few small fractions of a second, at most. With some
complicated grep patterns or with humongous lines of text, however, you can save
tremendous amounts of time using once-only subpatterns.

Once-only subpatterns are not capturing subpatterns. Simple cases such as the above
example can be thought of as a maximizing repeat that must swallow everything it can. So,
while both \d+ and \d+? are prepared to adjust the number of digits they match in order to
make the rest of the pattern match, (?>\d+) can only match an entire sequence of digits.

Once-only subpatterns can be used in conjunction with lookbehind assertions to specify
efficient matching at the end of a line of text. Consider a simple pattern such as:

abcd$

when applied to a long line of text which does not match (in other words, a long line of text
that does not end with “abcd”). Because matching proceeds from left to right, the grep
engine will look for each “a” in the subject and then see if what follows matches the rest of
the pattern. If the pattern is specified as:

^.*abcd$

the initial .* matches the entire line at first, but when this fails (because there is no
following “a”), it backtracks to match all but the last character, then all but the last two
characters, and so on. Once again the search for “a” covers the entire string, from right to
left, so we are no better off. However, if the pattern is written as:

^(?>.*)(?<=abcd)

there can be no backtracking for the .* item; it can match only the entire line. The
subsequent lookbehind assertion does a single test on the last four characters. If it fails, the
whole match fails immediately. For long strings, this approach makes a significant
difference to the processing time.

When a pattern contains an unlimited repeat inside a subpattern that can itself be repeated
an unlimited number of times, the use of a once-only subpattern is the only way to avoid
some failing matches taking a very long time (literally millions or even billions of years, in
some cases!). The pattern:

(\D+|<\d+>)*[!?]
Advanced Grep Topics 195

matches an unlimited number of substrings that either consist of non-digits, or digits
enclosed in <>, followed by either ! or ?. When it matches, it runs quickly. However, if it is
attempts to match this line of text:

aa

it takes a long time before reporting failure. So long, in fact, that it will effectively “freeze”
BBEdit. This is not really a crash, per se, but left to run on its own, it might take years
before it finally fails. (We are not sure, frankly, because much like determining how many
licks it takes to get to the center of a Tootsie Pop, we do not feel like waiting long enough
to find out.)

The reason this takes so long to fail is because the string can be divided between the two
repeats in a large number of ways, and all have to be tried before the grep engine knows for
certain that the pattern will not match. (The example used [!?] rather than a single character
at the end, because both PCRE and Perl have an optimization that allows for fast failure
when a single character is used. They remember the last single character that is required for
a match, and fail early if it is not present in the string.) If the pattern is changed to

((?>\D+)|<\d+>)*[!?]

sequences of non-digits cannot be broken, and failure happens quickly.

Recursive Patterns
Consider the problem of matching a string in parentheses, allowing for unlimited nested,
balanced parentheses. Without the use of recursion, the best that can be done is to use a
pattern that matches up to some fixed depth of nesting. It is not possible to handle an
arbitrary nesting depth. Perl 5.6 has provided an experimental facility that allows regular
expressions to recurse (among other things). It does this by interpolating Perl code in the
expression at run time, and the code can refer to the expression itself. Obviously, BBEdit’s
grep engine cannot support the interpolation of Perl code. Instead, the special item (?R) is
provided for the specific case of recursion. The following recursive pattern solves the
parentheses problem:

\(((?>[^()]+)|(?R))*\)

First it matches an opening parenthesis. Then it matches any number of substrings which
can either be a sequence of non-parentheses, or a recursive match of the pattern itself (that
is, a correctly parenthesized substring). Finally there is a closing parenthesis.

This particular example pattern contains nested unlimited repeats, and so the use of a once-
only subpattern for matching strings of non-parentheses is important when applying the
pattern to strings that do not match. For example, when it tries to match against this line of
text:

(aaa()

it yields “no match” quickly. However, if a once-only subpattern is not used, the match runs
for a very long time indeed because there are so many different ways the + and * repeats
can carve up the subject, and all have to be tested before failure can be reported.
196 Chapter 8: Searching with Grep

C H A P T E R

9
Browsers
Browsers are special kinds of windows that let you see a lot of information about
files at once. Browsers typically have two panes: one pane lets you select a file,
the other displays detailed information about the file (often its contents). If you
have performed a Find All search, you have already seen an example of a BBEdit
browser.

In this chapter
Browser Overview . 197

List Pane – 197 • Navigation Bar – 198
Text View Pane – 198 • Splitter – 198

Disk Browsers . 199
Disk Browser Controls – 199
Contextual Menu Commands – 200
Dragging Items – 200
Using the List Pane in Disk Browsers – 200

Search Results Browsers . 201
Error Results Browsers . 202

Browser Overview
All BBEdit browsers share the same basic structure and behavior. All browsers
have a results bar, a sidebar or results list, and a text pane. You can either edit files
directly in any browser window, or open them separately.

List Pane
The top pane of a browser lists the items available in the browser. This pane
shows different information for different kinds of browsers:

You can open both files and folders from the sidebar pane. When you double-
click a folder name, BBEdit replaces the file list pane with the contents of the
folder. When you double-click a file name, BBEdit opens the file in an editing
window. If the file list pane also included a line number, BBEdit scrolls to that
line.

Browser File pane contains

Disk browser Sidebar lists files and folders in the current
directory

Search results File and line number of each match

Error results (or)
general results

File, line number, and status message for each
condition
197

Controls above the list may allow you to determine what kinds of items are displayed in the
list. For example, in disk browsers, there is a popup menu that lets you choose to display
text files, all files, or other types of files, and another that lets you return the browser to a
parent directory of the current folder. In error browsers, checkboxes allow you to hide or
show all errors, warnings, or notes.

To remove items from the display list, select them and press the Delete key, or choose
Clear from the Edit menu.

In results browsers, you may Control-click on items in the list to bring up the contextual
menu with relevant commands—primarily “Copy”, as well as Subversion commands if the
selected item is a file within a Subversion working copy.

Navigation Bar
The browser navigation bar is like the navigation bar in editing windows. Some browsers
have additional buttons and controls in the status area as well.

The standard items in this bar should already be familiar to you, since they appear on
BBEdit document windows by default. See “Window Anatomy” in Chapter 4 for an
explanation of these standard BBEdit functions.

Text View Pane
When you click on a file name in the list pane, BBEdit displays that file in the text view
pane, and you can edit the file just as if it were open in a document window.

Splitter
You can change the size of the file list pane or the text view pane by dragging the double
line that separates them. Double-clicking on the splitter bar will collapse the text view pane
completely, and double-clicking on it again (in the bottom of the browser window) will
restore the text pane to its previous proportions. You can also choose the Hide Editor or
View Editor commands in the View menu to hide or display the text view pane.
198 Chapter 9: Browsers

Disk Browsers
Use a disk browser to explore the contents of a disk or a folder without opening each file
one at a time.

To open a disk browser, pull down the File menu and choose Disk Browser from the New
submenu. BBEdit opens a new disk browser that starts in your home directory, but you can
navigate to any desired location:

The name and path of the file (if any) and directory currently being viewed are displayed in
the title bar of the window. The sidebar pane displays all the items in the current folder.
Click on a file in the sidebar pane to open it in the text pane, or double-click to open the file
into a text window.

Disk Browser Controls
The menus at the top and bottom of the sidebar pane let you create new files and folders,
open existing files and folders, reveal them in the Finder or navigate to them in the
Terminal, limit the kinds of files to show in the list pane, and navigate through your disks
and folders.

Directory Menu
The Directory popup menu at the top of the sidebar pane always shows the currently active
folder. You can use this menu to “back out” of any folder you are currently in to a higher-
level folder (as you can by Command-clicking the name of a folder in the Finder).

Action Menu
The commands on the Action (gear) popup menu at the bottom of the sidebar pane allow
you to open the selected items, reveal them in the Finder, copy their paths, navigate to their
location in the Terminal, move them to the Trash, or create a new file or folder.
Disk Browsers 199

Filter Menu
The Filter (magnifying glass) popup menu at the bottom of the sidebar pane lets you
specify what kinds of files BBEdit should display:

• All Available: All files which BBEdit recognizes, including its own document
types. This includes text files, images, text factories, and so on.

• Text Files Only: Only files which BBEdit recognizes as text files.

• Everything: All items present, including invisible files and folders.

You can also select a file filter to further limit what files BBEdit should display. (You can
define additional file filters in the Filters panel of the Setup window.)

Toggle Editor Button
Click this button to collapse or expand the browser’s text view pane. (This button has the
same effect as choosing the View/Hide Editor command in the View menu.)

Contextual Menu Commands
If you select one or more items in the sidebar pane and bring up the contextual menu,
BBEdit will offer a variety of commands including those available from the Action menu.

Dragging Items
You can select and drag files and folders from a disk browser’s sidebar to any location,
either within BBEdit or elsewhere, which can accept file or folder drags. For example, you
can drag a file from a disk browser to a project window to add it to that project, or to an
editing window to insert its contents, or to a folder in the Finder to copy or move it.

Using the List Pane in Disk Browsers
The list pane of a disk browser displays disks, files, and folders. When you are at the
computer level, the list shows all mounted volumes.

When you click a folder or disk in the list pane, BBEdit displays the names of all the files it
can open in the text pane, subject to the criteria specified by the Show and Filter menus.

When you click a file name in the list pane, BBEdit displays that file in the text pane.

To open a folder or disk and display its contents in the sidebar pane, you can either double-
click it, or Select it and press Command-Down Arrow.

To go up one level to the enclosing folder or disk, you can either choose the enclosing
folder from the directory popup menu, or press Command-Up Arrow

You can also use Quick Look to examine any non-text file by selecting it and pressing the
spacebar.

Note When the list pane has input focus, the browser window’s AppleScript “selection”
property will return a list of the files currently selected. See “Getting and Setting
Properties” on page 307 for further details.
200 Chapter 9: Browsers

Search Results Browsers
If you selected the Batch Find option when performing a multi-file search, BBEdit displays
every occurrence of the search string in the searched files in a search results browser.

The items at the top of the window tell you how many matches BBEdit found in the set of
files you specified, as well as whether any error conditions or warnings were generated
during the search. The list pane lists each line that contains the matched text. Every match
is identified by file and line number. To choose whether to display the search errors,
warnings, and results, use the checkboxes at the top of the browser.

To open the file which contains a particular match, just click on that match in the results
list. After you have opened a file, you can use the Search menu commands to continue
searching it. (See Chapter 7 for more information on searching.)

The Open button opens the selected items using BBEdit. To open the selected items using
the Finder, hold down the Option key while clicking the Open button.
Search Results Browsers 201

Error Results Browsers
When you use the HTML syntax checker, link checker, or update tool, BBEdit will open an
error results browser to display any errors generated by the command. BBEdit will also
open an error results browser to list errors generated by Perl or Python scripts.

Each entry in the list pane corresponds to an error, warning, or note. You can use the
checkboxes for each type of item to suppress or display the associated results as desired.

If you click on a entry in the sidebar, BBEdit will open the corresponding file in the text
display pane and select the section of text related to the error.
202 Chapter 9: Browsers

C H A P T E R

10
Preferences
You can use the Preferences command to customize much of BBEdit’s behavior.
You can decide which windows are open when you launch BBEdit, set the default
options for windows, set the default options for searches, and so on. This chapter
describes BBEdit’s extensive preference options.

In this chapter
The Preferences Window . 203

Searching the Preferences – 205
Application Preferences – 209
Completion Preferences – 211
Editing Preferences – 211
Editor Defaults Preferences – 212
Keyboard Preferences – 214
Languages Preferences – 217
Menus & Shortcuts Preferences – 218
Preview Helpers Preferences – 219
Printing Preferences – 220
Text Colors Preferences – 221
Text Encodings Preferences – 223
Text Files Preferences – 224
Expert Preferences – 226

The Setup Window . 226
Bookmarks – 226
Filters – 227
Patterns – 227

The Preferences Window
The Preferences window provides control over many aspects of BBEdit’s
behavior. You can decide which actions BBEdit should perform when you launch
it, set default options for editing behavior, examine and set or modify keyboard
shortcuts, create and apply text color schemes, and so on.
203

To open the Preferences window, choose the Preferences command from the BBEdit menu.

To select a preference panel, click its name in the list at the left side of the window. The text
area at the top of the Preferences window gives you a brief description of the options
provided by the currently displayed preference panel.

BBEdit’s Preferences window is non-modal: you can leave it open and change preference
settings while you work, or close it at any time by clicking its close button or by choosing
Close Window from the File menu. Any changes you make to preference options take
effect immediately unless otherwise indicated.

IMPORTANT BBEdit employs the standard system preferences mechanism to store your preference
settings. Accordingly, you can modify preference options directly by issuing “defaults
write” commands. However, if you choose to modify your preferences by means of
“defaults write” commands other than those documented in this manual or the “Expert
Preferences” page of BBEdit’s built-in Help book, without explicit advice from Bare Bones
Software technical support, you take responsibility for any adverse effects.

If you discard your BBEdit preferences file, you will have to re-activate the application
with your product serial number, in addition to re-selecting any customized preference
options you may have chosen.
204 Chapter 10: Preferences

Searching the Preferences
You can perform keyword searches to quickly locate preference options in the Preferences
window. To do this, just click in the search field below the list of preference panels, and
type a word or partial word into the field. As you type, BBEdit will search for instances of
the current term and display all the panels which contain it. You can then select any of the
listed panels to view and change the options within it. For example, here is the Preferences
window with an active search for the term “completion”:.

Restore Defaults
Each of BBEdit’s preference panels (except the Language panel) contains this button,
which you can click to reset all preference options within the current panel to their factory
default settings.
The Preferences Window 205

Appearance Preferences
The Appearance preferences let you choose which control and display elements appear in
text windows and in other windows which include text panes.

Toolbar
NOTE The toolbar is no longer present; instead, the navigation bar is the primary source of

information about the current document and its contents.

Navigation Bar
When any of the listed options are on, BBEdit displays the navigation bar (see page 78).
You can also show or hide the navigation bar independently for each text window. This
option is on by default.

Text options
When this option is on, BBEdit displays the Text Options popover in the navigation bar
(see page 78).

Document navigation
When this option is on, BBEdit displays the Document popup menu in the navigation bar
(see page 79).

Marker menu
When this option is on, BBEdit displays the Marker popup menu in the navigation bar (see
page 80).

Counterpart button
When this option is on, BBEdit displays the Counterpart button in the navigation bar (see
page 80).

Included files menu
When this option is on, BBEdit displays the Included Files popup menu in the navigation
bar (see page 81).

Document status
When this option is on, BBEdit displays the document status icon in the navigation bar (see
page 81). This icon serves as a proxy for the document file; you can Command-click on it
to reveal the current file in the Finder, or drag it anywhere the original file can be dragged.
In addition, you can click on this icon to display the File Info popover.

Function menu
When this option is on, BBEdit displays the Function popup menu in the navigation bar
(see page 79). The related options below control how items appear in the menu.

Sort items by name
If this option is on, BBEdit sorts the items in the Function popup menu by name.
Otherwise, items appear in the same order in the menu as they appear in the file. This
option is off by default.
206 Chapter 10: Preferences

Show comment callouts
When this option is on, BBEdit will suppress callouts embedded in comments from
appearing in the Function popup. This option is on by default.

Show function prototypes
When this option is on, BBEdit displays the names of function prototypes as well as
function definitions in the Function popup menu. Otherwise, the menu does not include
entries for function prototypes. This option is on by default.

Editing Window
These options control additional elements which BBEdit can display in editing windows.

Tab stops
If this option is on, BBEdit displays tab stops as vertical grid lines within the content area
of text windows, using the tab width set in the Editor Defaults panel.

Line numbers
If this option is on, BBEdit displays line numbers along the left edge of the window.

Gutter
When this option is on, BBEdit displays the gutter (see page 85). You can show or hide the
gutter independently for each text window. This option is on by default.

Page Guide at N characters
When this option is on, BBEdit displays the page guide at the specified character width.
The page guide is a visible boundary indicator, whose color and contrast you can adjust
(see page 223). This option is on by default.

Guide Contrast
You can use this sliding control to adjust the contrast level of the page guide display region.
(See “Tab stops” on page 207.)

Text Status Bar
When any of the listed options are on, BBEdit displays the status bar (see page 84). You
can show or hide the status bar independently for each text window.

Cursor position
When this option is on, BBEdit displays the current location (line and column) of the
insertion point, or the endpoint of the current selection range in the status bar (see page 87).

Language
When this option is on, BBEdit displays the Language popup menu in the status bar (see
page 87).

Text encoding
When this option is on, BBEdit displays the Text Encoding popup menu in the status bar
(see page 87).
Appearance Preferences 207

Line break type
When this option is on, BBEdit displays the Line Break Type popup menu in the status bar
(see page 87).

Document lock state
When this option is on, BBEdit displays a padlock icon in the status bar to represent the
document’s current lock state. You can click on this icon to lock (or unlock) the current
document (if possible).

Document save date
When this option is on, BBEdit displays the current document’s last saved date and time (if
applicable) in the status bar.

Document statistics
When this option is on, BBEdit displays an item in the status bar which shows the number
of characters, words, and lines in the document (and, if there's a selection, the number of
characters, words, and lines in the selection range).

Text magnification
When this option is on, BBEdit displays the Magnification popup in the status bar (see
page 88).

Sidebar
The options in this section control when BBEdit displays the sidebar on editing windows
(see page 90).

Automatically show:
This option controls whether BBEdit should display the sidebar only as needed (i.e. when
there are two or more documents open in the front window, always, or never.

Note Using any of the “Save Default Text Window”, “Save Default Project Window”, or
“Save Default Differences Window” commands will set the default visibility of the
sidebar in windows of the chose type irrespective of this option.

Show icons
When this option is on, BBEdit displays icons for files and folders in the sidebar’s file list.
This option controls the display of icons in editing windows, project documents, and disk
browsers.

List Display Font Size
This option controls the size of the system font used to display text in browser list panes,
including disk browser, search results browsers, etc. To decrease the font size, click on the
slider control and move it to the left, or to increase the font size, click on the slider control
and drag it to the right. (The default size is 11 point.)
208 Chapter 10: Preferences

Application Preferences
The Application preferences control how BBEdit checks for updates, when open files are
verified, what action BBEdit performs at startup, and various other global settings.

Open documents into the front window...
This option controls whether BBEdit should attempt to open newly created or opened
documents into the frontmost window (if possible), or whether each document should open
directly into a separate text window.

This option is active by default, and while it is, BBEdit will handle documents in the
following manner.

When you open an existing document, BBEdit will look for a project document which
contains the document's file. If there is one, BBEdit will open the document that project's
window (and bring the project window to the front). Otherwise, BBEdit will open the
document into the frontmost editing window (and bring that window to the front if it is not
already there.)

When you create a new document (via the File menu), BBEdit will never open that
document in a project document's window: it will either use the frontmost editing window
(if one is available), or make a new editing window if necessary. If you wish to explicitly
create a new document explicitly within a project, you may use the “New Document...”
within the project’s action menu (or contextual menu) to do so.

Automatically refresh documents as they
change on disk
This option controls whether BBEdit checks if documents (files) have changed on disk
while they’re open. If an open document has changed on disk, and there are no unsaved
changes, BBEdit will automatically reload the document. If a document has changed on
disk and also has unsaved changes, BBEdit will ask whether you want to reload the
document from disk or keep the unsaved changes. This option is on by default.

The effects of the Revert command (from the File menu), and of a file Reload (which
occurs when a document is reloaded by a refresh action) are both undoable.

Remember the N most recently used items
This text field lets you choose how many files appear on the Open Recent sub-menu of the
File menu, and how many folders appear on the folder search popup menu in the Find
Differences folder lists.

Always Show Full Paths in “Open Recent” Menu
Check this option to have BBEdit always display full paths in the Open Recent menu. If
this option is off, BBEdit will only display path info when it’s needed to distinguish
between files with the same name.
Application Preferences 209

When BBEdit becomes active
This preference controls what BBEdit does when you launch it, or activate it when there are
no open windows (e.g. by clicking its Dock icon while the application is already running).
To override any of these actions when launching BBEdit, hold down the following
modifiers.

Do Nothing
Choose this option to prevent BBEdit from opening a new text editing window.

New text document
Choose this option to have BBEdit open a new, empty text editing window.

Reopen documents that were open at last quit
When this option is on, BBEdit will remember what documents (as well as disk browsers
and FTP/SFTP browsers) were open when you choose the “Quit” command, and will
attempt to reopen those documents the next time you launch it. This option is on by default.

Restore unsaved changes
When this option is on, BBEdit will preserve the contents of any unsaved document
contents when you quit (including untitled documents) and restore those documents the
next time you launch it. If you prefer the traditional Quit behavior, turn this option off.

Include documents on servers
When this option is on, BBEdit will attempt to reopen documents from remote servers
when you launch it.

Automatically check for updates
This option controls whether BBEdit automatically looks to see if a newer version is
available. Regardless of the setting of the checkbox, you can manually check for an update
at any time by clicking the Check Now button.

The version checking mechanism used by BBEdit protects your privacy. It works by
requesting information about the currently available version from Bare Bones Software’s
web server. The server will log the date, time and originating address of the request, and
which versions of the OS and BBEdit you are using. This information is used to guide the
future development of BBEdit; it is not personalized and will not be disclosed. Click the
Privacy button to view our posted privacy policy.

Modifier(s) Function

Option Suppress startup items only.

Shift Suppress all external services and startup
items, and only reopen documents which
contain unsaved changes.

Command-
Control-Shift

Disable all external services and startup items,
and optionally discard auto-recover information
(which will result in the loss of any unsaved
changes).
210 Chapter 10: Preferences

Completion Preferences
The Completion preferences control BBEdit’s text completion behaviors, including both
the completion popup and automatic insertion of delimiters, which consist of parentheses,
brackets, single and double quotes, as well as various language-specific elements.

Show text completions
This option lets you choose when BBEdit will display text completions: automatically after
a short delay while typing, or manually upon typing a trigger key (F5 by default) or
choosing the Complete command in the Edit menu.

Note This feature is also known as “autocomplete” or “autocompletion”.

Include dictionary words in completion list
When this option is on, BBEdit will include dictionary words in the text completion list.
This option is off by default.

Include system text replacements in
completion list
When this option is on, BBEdit will include any system-wide Text Replacement triggers
(as configured in the “Keyboard” system preferences) which begin with the text you typed
in the completion popup.

Note This feature is also known as “autocorrect” or “autocorrection”.

Insert matching delimiters while typing
When this option is on, typing any opening delimiter will cause BBEdit to immediately
insert the appropriate closing delimiter. This option is on by default.

Surround selected text
When this option is on, typing an opening delimiter will cause BBEdit to surround the
selected text with a matched pair of delimiters. This option is on by default.

Editing Preferences
The Editing preferences control various general editing behaviors.

Display instances of selected text
When this option is on and you make a selection (that doesn't consist entirely of whitespace
or punctuation), BBEdit will display all occurrences of the selection within the current
document via either underlining or highlighting, and you can use the Search menu
commands Next Occurrence of <string> and Previous Occurrence of <string> to navigate
the occurrences. This option is on by default.
Completion Preferences 211

You can control whether BBEdit underlines or highlights occurrences via the
corresponding radio buttons, or adjust the duration of the delay before BBEdit applies
highlighting via the “Delay” control.

Note Any navigation you undertake via this feature is independent from the Find and Live
Search commands, except that BBEdit will add the selected string to its search history
for convenient future reuse.

Show tick marks in scroll bars
You can use these options to control whether BBEdit shows tick marks for instances of
selected text and/or spelling errors in the active document’s scroll bar.

Use “hard” lines in soft-wrapped views
When this option is on, the line number bar, position display, and Line Number commands
in editing views will use line and character position numbers that correspond to the “hard”
line breaks actually present in the document, rather than the soft-wrapped line breaks.

Additionally, when this option is on, line selection commands and gestures, including the
Select Line command, triple-clicking, and click selection in the left margin, will treat only
“hard” line breaks as line boundaries.

Soft-wrapped line indentation
This option lets you specify how BBEdit should indent soft wrapped text: flush with the
left edge of the window, at the same indent level as the first line of the paragraph, or
indented one level deeper than the first line of the paragraph.

Line spacing
This control allows you to adjust the amount of space between lines of text in editing
views. The default value is consistent with previous versions of BBEdit.

Extra vertical space in text views
This option allows you to specify how much empty space BBEdit should leave after the
end of each document’s content: none, a half-window, or a full window.

Allow pinch-to-zoom to change magnification
When this option is on, you can use touchpad pinch gestures to increase or decrease the
magnification level of the frontmost (active) document. This option is on by default.

Editor Defaults Preferences
The Editor Defaults preferences control the behavior of newly created document windows
and documents without saved state information. Many of the options in this panel parallel
options provided in the Text Options sheet and in the Text Options popover in the
navigation bar. The difference is that the options in the Text Options sheet and the Text
Options popover control only the behavior of the active window, while the Editor Defaults
preferences control the behavior of all new windows.
212 Chapter 10: Preferences

Auto-indent
When this option is selected, pressing the Return key in new windows automatically inserts
spaces or tabs to indent the new line to the same level as the previous line.

Tip To temporarily invert the sense of the Auto Indent option while typing, hold down the
Option key as you press the Return key.

Balance while typing
When this option is selected, BBEdit flashes the matching open parenthesis, brace, bracket,
or curly quote when you type a closing one. This option is useful when you are editing
source files, to ensure that all delimiters are balanced.

Use typographer’s quotes
When this option is on, BBEdit will automatically substitutes curly (or typographer’s)
quotes (“ ” ‘ ’) for straight quotes (" ') in any new documents you create.

Tip To type a straight quote when this option is selected (or to type a curly quote when
the option is deselected), hold down the Control key as you type a single or double
quote.

Note You should avoid using typographer’s quotes when creating or editing any plain-text
documents such as email message content or source code.

Auto-expand tabs
When this option is on, BBEdit inserts an appropriate number of spaces instead of a tab
character every time you press the Tab key.

Show invisible characters
This option shows or hides non-printing characters in the window. Select this option when
you want to see line breaks, tabs, and gremlins (invisible characters). BBEdit uses these
symbols to represent non-printing characters:

Symbo
l Meaning

Δ tab

• space

• non-breaking space

¬ line break

¶ page break

¿ other non-printing
characters
Editor Defaults Preferences 213

Show Spaces
When this option is on (and Show Invisibles is also active), BBEdit will display
placeholder characters for spaces. Turn this option off to suppress the display of spaces
(reducing visual clutter when you are displaying invisible characters).

Note Non-breaking spaces (typed by pressing Option-space) will not be displayed with a
placeholder.

Check spelling as you type
When this option is on, BBEdit will automatically check spelling as you type, and
underline any potentially misspelled words. Turn this option off to prevent BBEdit from
automatically checking spelling.

You can turn on automatic spell checking for the active document only by choosing Check
Spelling as You Type from the Text menu. (See “Check Spelling As You Type” on
page 117.)

Default font
This option controls the standard font and font size which BBEdit uses to display the
contents of text windows. To change this option, click Select to bring up the standard Font
panel, and choose the desired font and size. If the “Consolas” font is available on your Mac
(e.g. you installed it via Microsoft Office or obtained it from Monotype) then BBEdit will
use it as the default font; otherwise, it will default to an appropriate choice. (Menlo, the
OS’s default monospaced font is the fallback choice.)

Note You can also adjust the default tab width on a per-language basis. To do so, select a
language entry in the Languages preference panel, click “Options” to bring up the
language options sheet, and enter the desired tab width in the Editing section of this
sheet.

Tab width
This option controls the default number of spaces that BBEdit uses to represent the width
of a tab character.

Soft wrap text To
When this option is selected, BBEdit soft-wraps the text in the file to the right margin that
you choose: the Page Guide, the window width, or a specified number of characters, as
selected by the options below the checkbox.

Keyboard Preferences
The Keyboard preferences control BBEdit’s response to the use of various special keys,
including the ability to recognize Emacs key bindings
214 Chapter 10: Preferences

https://catalog.monotype.com/family/microsoft-corporation/consolas

Use Tab key to navigate Placeholders
When this option is on, BBEdit will jump to the next placeholder in the document (if any)
when you press the Tab key, or the previous placeholder if you press Shift-Tab. This
behavior is equivalent to the Go to Previous/Next Placeholder commands in the Search
menu (see page 165). For additional details, see “Selection and Insertion Placeholders” on
page 283. This option is on by default.

“Home” and “End” Keys
There are three potential choices for this option:

Scroll to Beginning and End of Document
Choose this setting to have the Home and End keys perform these respective actions. This
is the default setting, which reflects the standard key motion behavior in Macintosh
applications.

Move Cursor to Beginning and End of Current Line
Choose this setting to have the Home and End keys perform these respective actions
instead. This option may be useful for those accustomed to Windows editing key behavior.

Progressive (BRIEF Compatible)
Choose this option to have the Home and End keys behave as follows on successive
presses:

• the first press will move the insertion point to the beginning (or end) of the current
line;

• the second press will move the insertion point to the beginning of the first line (or
the end of the last line) in the current page of text, without scrolling;

• the third press will move the insertion point to the beginning (or end) of the
document.

The behavior is progressive within a specific time period. After the period expires, or if you
change the selection range by other means, the behavior state resets, so the next press of
Home or End will behave as in the first step described above.

The factory default timeout period is ten seconds. (There is an expert preference option to
control this period; please see the “Expert Preferences” page of BBEdit’s online Help for
details.)

Enter key generates Return
When this option is on, BBEdit will generate a line break when you press the Enter key.

When this option is off, pressing the Enter key will bring the current insertion point (or
selection range) into view.

Note Pressing the Enter key in a Unix worksheet will always execute the current line (or the
selected lines).
Keyboard Preferences 215

Allow Tab key to indent text blocks
When this option is on, you can press the Tab key to invoke the Shift Right command, or
Shift-Tab to invoke the Shift Left command; this may be useful for those accustomed to
Windows editing key behavior. When this option is off, pressing Tab will insert a tab
character in the normal manner. This option is off by default.

Enable Shift-Delete for forward delete
When this option is on, holding down the Shift key with the Delete key makes the Delete key
work the same way as the Forward Delete key on extended keyboards.

Enable macOS “Help” key
When this option is on, pressing the Insert key present on some PC-style keyboards will
open BBEdit’s Help book. (This frequently happens by accidentally.) This option is off by
default.

When auto-indenting, remove leading white
space from indented line
When this option is on, if the current line is not indented but there is whitespace followed
by text to the right of the insertion point, when you type Return, BBEdit will insert a line
break and strip the following whitespace, leaving the remaining text also left-aligned.

Allow Page Up and Page Down keys to move
the insertion point
When this option is off, scrolling the view by typing Page Up or Page Down does not affect
the position of the insertion point. (This is the standard behavior for Mac applications.)
When this option is on, BBEdit will move the insertion point to the same relative position
within the window in each new screenful of text displayed by Page Up or Page Down. This
option may be useful for those accustomed to Windows editing key behavior.

Option-¥ on Japanese keyboards
This option controls whether typing Option-yen on a Japanese keyboard generates a yen
symbol “ ¥ ” or a backslash “\”.

Emulate Emacs key bindings
If turned on, this option allows you to use the basic Emacs navigation keystrokes to move
around in editing views. It is not a full Emacs emulation mode; rather, it is more of a
comfort blanket for individuals with Emacs key bindings hard-wired into their muscle
memory. See Appendix B, “Editing Shortcuts,” for a list of the Emacs commands BBEdit
supports.

Display status window
When both this option and “Emulate Emacs key bindings” are on, BBEdit will display a
small palette which shows Emacs shortcuts as you type them.
216 Chapter 10: Preferences

Enable meta sequences
This option is off by default so the Escape key can be used to exit full screen mode when
running on OS X 10.10 or later.

If you turn this option on, BBEdit will intercept presses of the Escape key and use these to
emulate a meta key to generate Emacs command sequences, at the cost of no longer being
able to use the Escape key to exit full screen mode.

Allow the Escape key to trigger text completion
This option is off by default. When this option is on, pressing the Escape key will trigger
text completion (also known as “autocomplete”) in the same manner as pressing the default
key shortcut of F5.

Note This option works at cross purposes to both Emacs emulation and using the Escape
key to exit full screen mode; that is, if you turn on Escape key completion triggering,
the Escape key will serve only to trigger a completion, and will not function as either
the Emacs meta key nor will it exit full-screen mode.

Languages Preferences
The Languages preferences allow you to configure how BBEdit maps file names to
language types (e.g. “.html” to HTML), and allows you to apply customized behavior and
display parameters to any installed language.

Installed Languages
Click the “Installed Languages” button at the bottom of this panel to see a complete list of
installed languages, together with the language module version number (if applicable) and
filename extension(s) associated with each language. (This list includes both languages
intrinsically supported by BBEdit, and those added via installed language modules.)

By default, BBEdit will apply your active preference settings within each language.

If you wish to modify how BBEdit treats documents having a particular language, e.g. to
have BBEdit use a specific tab width or a custom color scheme, you may add a custom
language preference.

To create such a preference, click the plus (+) button below the list of Custom Language
Preferences, and select the desired language from the resulting popup. When you do so,
BBEdit will display a language options sheet which contains the following sections:

• General: In this section, you can view or change the comment-start and comment-
end strings used by the Un/Comment command on the Text menu for the selected
language, or to view or change the Reference URL Template used by the Find in
Reference command.

• Editor: In this section, you can view or change the default display and editing
options used for documents in the selected language. (These options parallel the
options provided by the Text Options command.)

• Display: In this section, you can view or change the default items which appear on
the navigation bar and status bar for documents in the selected language. You can
also choose any available color scheme to use for syntax coloring of documents in
the selected language.
Languages Preferences 217

To remove an existing language preference, select the desired entry in the list of Custom
Language Preferences, and click the minus (-) button below the list. Once you have
removed the entry, BBEdit will again apply its active global preferences settings to all
documents with that language.

Note A language preference can specify an alternate display font and font size, so, for
example, you could use one font for Markdown, a second font for Objective-C, a third
font for HTML, and so on.

Custom Extension Mappings
BBEdit includes a set of default file extension mappings which cover the most common
usages for each supported language, while each language module ordinarily contains
extension mappings for the language it supports.

You may add (or remove) additional extension mapping via the Custom Extension
Mappings list. To add a mapping, click the plus (+) button below the list, click in the Suffix
column and type the desired filename extension, then select the associated language via the
adjacent popup. (You can also edit existing mappings in the same manner.)

Note You can use wildcards in the suffix to indicate single characters (?), any number of
characters (*), or a single digit (#). For example, “page.#html” could map to a
different language from “.html”.

Menus & Shortcuts Preferences
The Menus & Shortcuts preferences allow you to show or hide whole menus or individual
commands. You can also assign key equivalents to commands and various window
elements, as well as to clippings and scripts.
218 Chapter 10: Preferences

Menu Key Equivalents and Item Visibility
This section of the preference panel displays a hierarchical list of each menu and menu
command available within BBEdit.

You can hide any menu or command which is not necessary for BBEdit to function, by
turning off the checkbox next to that item’s name. (The checkbox is disabled for necessary
items, such as the File menu and the Quit command.)

You can assign or change the keyboard shortcut (key equivalent) for any menu command,
as well as items on the Text Options popover, and the Markers and Line Breaks popup
menus, by double-clicking on the right-hand portion of that command's list item and typing
the desired key equivalent.

To clear the key equivalent from a menu command, double-click on the right-hand portion
of that command’s list item and press the Delete key.

Click Restore Defaults to restore all key equivalents to their factory default values (as listed
in Appendix A).

Available Key Combinations
All menu key combinations must include either the Command key or the Control key (or
both), except function keys, which may be used unmodified. The Help, Home, End, Page
Up and Page Down keys can be used in menu key combinations as well. The Help key can
be assigned without modifiers; the others must be used in combination with at least either
the Command or Control key.

Note The OS may preempt certain key combinations, such as Command-Tab.

Simple Menus/Full Menus
You can click the Simple Menus button to simplify BBEdit’s menu structure by hiding its
“advanced” commands (i.e. the commands which are available with a full BBEdit license,
as well as during the initial evaluation period). The result is a menu structure that is very
similar to TextWrangler's.

Clicking the Full Menus button will “undo” the changes made by the Simple Menus button
by making all menus and commands visible (even ones that might have previously been
manually hidden).

Each of these buttons will leave your custom keyboard equivalents intact.

Restore Defaults
Clicking the Restore Defaults button will reset all keyboard equivalents to their factory
defaults, and will make all menus and items visible.

Preview Helpers Preferences
The Preview Helpers preference panel lists all web browsers on your machine which are
available to preview HTML documents.
Preview Helpers Preferences 219

Web Browsers Available for Previewing
This list displays all the web browsers known to BBEdit. Browsers are listed by name and
version number, in the same form as they appear in the Preview In submenu of the Markup
menu.

The browser list includes each individual browser application that is available on your
Mac. For example, if you have Firefox 45.2.0 and Firefox 49.0 on your hard disk, both
applications will be listed and available for previewing.

You can use the plus (+) and minus (-) buttons to respectively to add a browser to the list or
to remove an entry.

If you click the “Restore Defaults” button, BBEdit will ask the system for a list of all
installed applications which claim to support HTTP URLs, and will add these applications
to the list if they are not already present. If using this button does not add a browser which
you know is available, you can add it directly with the Add button. (Sometimes, the system
may not properly inform BBEdit of every browser application present.)

Previewing in Windows browsers through VMWare
BBEdit recognizes the application stubs created by VMWare Fusion (version 2.0 or later),
so that you can preview documents in Internet Explorer or other Windows-based browsers
while running VMWare Fusion. Any documents you wish to preview must be readable by
the running Windows virtual machine via either a shared folder or VMWare Fusion’s
“Mirrored Folder” option.

If the browser list does not include these VMWare-hosted applications, you can add them
either manually or by using the Find All button as described above.

Printing Preferences
The Printing preferences control BBEdit’s default document printing behavior.

Print using document’s font
When this option is on, BBEdit uses the document’s display font and tab settings when
printing.

Printing font
This option specifies the default font BBEdit uses for printing when the “Print using
document’s font” option is turned off. Click Select to bring up the standard Font panel,
where you can choose a font and font size. The current printing font options appear in the
display box.

Frame printing area
When this option is on, BBEdit draws a box along the edges of the printed text.
220 Chapter 10: Preferences

Print page headers
When this option is on, BBEdit prints the page number, the name of the file, the time and
date printed in a header at the top of each page.

Print full pathname
When this option is on, BBEdit prints the full pathname of the file being printed in the
header.

Print line numbers
When this option is on, BBEdit prints line numbers along the left edge of the paper.

1-inch Gutter
When this option is on, BBEdit leaves a one-inch margin along the left edge of the paper.
Use this option if you usually store printed pages in three-ring binders.

Print color syntax
If this checkbox is on, BBEdit prints all colorized text within the document in color. You
should generally use this option only on color printers, as colorized text may come out in
difficult-to-read dithered shades of gray on black-and-white printers.

Time stamp
This option let you choose whether the date that appears in the printed page header is the
date that the file was last modified or the date that the file was printed.

Wrap printed text to page
This option lets you choose whether a document’s contents should always be soft-wrapped
upon printing, or only if soft wrapping is enabled for that document.

Text Colors Preferences
The Text Colors preferences let you adjust the default colors that BBEdit applies to both
general and language-specific syntax elements, as well as various standard elements
including the foreground and background text colors, spelling errors, spaces and invisible
characters, and highlight colors.

When a dark color scheme is active, BBEdit will adjust various UI elements to blend better
with the editing view, including those within windows which are not necessarily editing
windows.

Note If BBEdit has no existing preferences when you launch it (nor was it able to migrate
any from TextWrangler), it will use the “BBEdit Dark” color scheme by default. If you
prefer a different scheme, you can choose it in this preferences panel.
Text Colors Preferences 221

Selecting and Saving Color Schemes
BBEdit offers several built-in color schemes, which you may use as-is or as the basis for a
custom scheme. To save a customized color scheme, click the “Save Scheme...” button and
name the theme. To load a saved color scheme, choose it in the Color Scheme popup menu.
(As in prior versions, any color scheme you create will be stored in the “Color Schemes”
subfolder of BBEdit’s application support folder.)

BBEdit will also import any BBColors files which you place in the “Color Schemes”
folder, and convert them.

You can further associate a saved color scheme with any language via the Custom
Language Preferences list in the Languages preference panel. (See “Languages
Preferences” on page 217.)

How to Change an Element’s Color
The color bars show the colors that BBEdit uses to display different interface and language
elements. To change the color for any element, click the adjacent color box to open the
system color picker which you can use to select a new color. To restore all colors and
options to their default settings, click the Restore Defaults button.

Language-Specific Colors
The center section of the Text Colors panel contains groups of language-specific syntax
coloring options, which you can adjust to specify the colors BBEdit uses to display the
corresponding language elements.

Though the available set of languages and elements is too extensive to list in total, here are
some common elements:

• Comments include all text set off by a language’s designated comment marker(s).

• Strings (and Numbers) are defined by each individual language’s specification.

• Language keywords are those terms defined in a language’s specification

• Predefined symbols are terms which are not language keywords, but which are
predefined by a language's reference implementation, or which are part of a
language's standard library/framework support, or which have other special
meaning to developers writing code in that language.

• ctags symbols are any words or elements identified in an associated ctags file.

while in general, most elements’ natures should be clear from their display names (e.g.
Preprocessor directives).

Global Colors
The bottom section of the Text Colors panel contains options which control global colors
used within any language such as the foreground (text) and background (window) colors
and the color of the underline used by the spelling checker to mark questioned words.
222 Chapter 10: Preferences

Background
This option controls the background color used within editing windows (and other content
display views).

Misspelled words
This option controls the color BBEdit uses to highlight misspelled words.

Spaces
This option controls the color BBEdit uses to display spaces when the Show Invisibles and
Show Spaces display options are active.

Other invisibles
This option controls the color BBEdit uses to display invisible characters other than spaces
when the Show Invisibles display options is active.

Differences
This option controls the color BBEdit uses to highlight differing regions within a
Differences window. (BBEdit automatically derives the color used to display differences
within a line from this color by darkening or lightening it as needed).

If a custom color scheme which does not include a Differences color is active, BBEdit will
instead use a dark gray or light gray, depending on the scheme’s background color.

Use custom highlight colors
Turn this option on to have BBEdit use custom highlight colors. You can choose the
primary and secondary highlight colors.

Highlight insertion point
When this option is on, BBEdit highlights the line currently containing the insertion point
using the indicated color. You can choose the line highlight color.

Text Encodings Preferences
The top of the Text Encodings preference panel contains an alphabetical list of every
character set encoding available in the system, and allows you to choose which of these
encodings BBEdit includes in its menus. These menu are:

• The Read As popup menu in the Open dialog

• The Encoding popup menu in the Options dialog within the Save dialog

• The Encoding popup in the status bar

• The character set popup menus in various dialogs (e.g. New HTML Document)

• The encoding selection popup menus in this preference panel

To include an encoding for display, select it and click Enable. To remove an encoding from
display, select it and click Disable. To include all encodings or remove all but the required
the encodings, click the Enable All or Disable All buttons respectively.

(All available Unicode encodings are permanently enabled and cannot be turned off.)
Text Encodings Preferences 223

Tip To keep the length of the encoding menus manageable, you should add only those
encodings which you use frequently.)

Default text encoding for new documents
BBEdit uses the encoding specified by this option for new documents which do not contain
an intrinsic encoding specification.

If file’s encoding can’t be guessed, try
If BBEdit cannot determine a file’s proper encoding by examination, it will try opening the
file using the encodings) contained in this list, in the order they appear.

Text Files Preferences
The Text Files preferences control how BBEdit opens and saves files, including whether to
make backups.

Line breaks
This option controls what kind of line breaks BBEdit writes when creating a new file. You
can choose:

• Unix line breaks (ASCII 10) for general use. This is the default option.

• Classic Mac line breaks (ASCII 13) if you will be using the file with Classic
Macintosh applications.

• Windows line breaks (ASCII 13/10) if the file will reside on a Windows server or
if you are sending it to someone who uses a Windows system

Ensure file ends with line break
When this option is on, BBEdit will add a line break at the end of the file if there is not
already one present.

You can also adjust this option on a per-language basis by adding custom language
preferences. (See “Languages Preferences” on page 217).

Strip trailing whitespace
When this option is on, BBEdit will trim all trailing non-vertical whitespace from the
document file before writing it out.

You can also adjust this option on a per-language basis by adding custom language
preferences. (See “Languages Preferences” on page 217).

Backups
These options control whether BBEdit should make backup copies of edited files, and the
manner in which it does so.
224 Chapter 10: Preferences

Make backup before saving
Turn this option on to have BBEdit automatically make a backup copy of each file that you
save. BBEdit creates a single backup file for each file that you save in the same folder as
that file. This option is global and backups can no longer be made on a per-file basis.
However, you can exclude individual files from being backed up by adding an Emacs
variable to them (see “Emacs Local Variables” on page 47).

When this option is on, and you close a document with unsaved changes and elect to
discard those changes (“Don't Save”), BBEdit will automatically save a snapshot of the
document's contents in the same directory as the document, and the snapshot file’s name
will follow the Emacs convention “#foo.txt#” (or if the “Preserve file name extension” (see
below) is on, the snapshot's name will be “#foo#.txt”).

Keep historical backups
When this option is on, BBEdit will preserve backups in the folder “~/Documents/BBEdit
Backups/” and the “Preserve File Name” option (see below) will automatically be turned
on and locked.

Within the backup folder will be one folder for each day's backup files. The format of the
dated folder name is static and non-localized: YYYY-MM-DD. Inside of each day’s backup
folder will be all of the backup files made on that day, each named using a
timestamped format.

You may change the location of the backup folder by placing a folder alias named “BBEdit
Backups” in your “Documents” folder (~/Documents/) and BBEdit will follow the alias.

Alternatively, if you use Dropbox, you may just move the “BBEdit Backups” folder into
your Dropbox folder (~/Dropbox/BBEdit Backups/) and BBEdit will use it in that location.

Preserve file name extension
By default, the backup files which BBEdit creates are named in accordance with current
system conventions (which themselves follow the old Emacs convention): the backup file
takes the name of the original with a tilde appended; for example, “foo.html~” is the
backup of “foo.html”.

If you want backup files to have the same filename extension as the originals, turn on this
option to have BBEdit place the tilde after the “base” name of the file; for example,
“foo~.html”.

Controlling Backups with Emacs Variables
You may also use an Emacs variable to control whether or not a given file is backed up.
There are two ways to do this:

Absolute: If the variable line/block contains a “make-backup-files” variable, that variable’s
value will override the global “Make Backup Before Saving” preference.

-*- make-backup-files: 1 -*- --> always back up this file
-*- make-backup-files: 0 -*- --> never back up this file

If the first letter of the variable’s value is “y”, “t”, or “1”, the value is “yes”, otherwise it’s
“no”. These are all synonymous:
Text Files Preferences 225

make-backup-files: yes
make-backup-files: y
make-backup-files: true
make-backup-files: t
make-backup-files: 1

Inhibit: If the variable’s line/block contains a “backup-inhibited” variable, and its value is
true (see above), then the file will never be backed up, even if “Make backup before
saving” is turned on in the global preferences.

Expert Preferences
The Expert preferences pane provides background information about BBEdit’s expert
preference options, and a Expert Preferences Help button which you can press to open the
“Expert Preferences” page of the Help book.

In addition, you can click the Restore Defaults button in this pane to reset all expert
preferences to their factory defaults.

Expert preferences Help page
In addition to the ordinary preference options which you can adjust in its Preferences
window, BBEdit supports a number of expert preferences which you can adjust by issuing
an appropriate ‘defaults write’ command.

The “Expert Preferences” page within BBEdit’s built-in Help book (choose BBEdit Help
from the Help menu) contains a complete, current listing of these options.

Website configurations
Website configurations are no longer stored in BBEdit’s preferences; instead, you may
apply or modify site configurations on a per-project basis via the Site Settings dialog
accessible via the Sites (cloud) popup menu within a project window. For complete details
on web site configurations, please see “Configuring Web Sites” on page 231.

The Setup Window
The Setup window allows you to manage several types of configuration info which BBEdit
uses, including FTP/SFTP bookmarks, file filters, and grep search patterns. (In older
versions, most of this information was managed through the Preferences window.)

Bookmarks
The Bookmarks panel lists any bookmarks you have created for FTP and SFTP servers.
You may click the plus (+) button to create a new bookmark, double-click any bookmark
item to edit its stored options (or rename it), or select a bookmark and click the minus (-)
button to remove it.
226 Chapter 10: Preferences

Clippings
The Clippings panel lists all the clipping sets (folders) present within the “Clippings”
subfolder of BBEdit’s application support folder.

Filters
The Filters panel lists all the file filters you have defined for use with multi-file searches,
Find Differences, and disk browsers. You may click the plus (+) button to create a new
filter, double-click any filter item to edit its stored options (or rename it), or select a filter
and click the minus (-) button to remove it. (For more information on using file filters in
searches, see Chapter 7.)

Patterns
The Patterns panel lists all the grep patterns (regular expressions) you have stored via the
Grep pattern popup in the Find and Multi-File Search windows. These patterns are also
available in most commands which allow you to specify grep patterns, such as the Process
Lines commands in the Text menu.

You may click the plus (+) button to create a new pattern, double-click any pattern item to
edit its stored options (or rename it), or select a pattern and click the minus (-) button to
remove it.

Folders
The Folders panel lists all potential subfolders of BBEdit’s application support folder.
Double-clicking on a folder, or clicking the arrow next to a folder, will open that folder in
the Finder (creating it first, if necessary).

This panel makes it easier to access these folders since by default the OS hides your
account’s local “Library” folder in the Finder.
The Setup Window 227

228 Chapter 10: Preferences

 C H A P T E R

11
BBEdit HTML Tools
This chapter describes the use of BBEdit’s HTML Tools, a powerful suite of
utilities for creating and maintaining HTML documents and entire web sites.

In this chapter
Introduction to the HTML Tools . 229

Recommended Books – 230 • Recommended Online Resources – 230
What You Need – 230

Configuring Web Sites . 231
Creating a Web Site Project – 231 • Entering Site Settings – 231

Creating and Editing HTML Documents . 237
Creating a New Document – 238 • File Addressing – 240
Checking Syntax – 240 • Format Customization – 242

Previewing Pages . 242
Applying Preview Filters – 242
Applying Templates and Custom CSS – 243
Previewing Code and Text – 244 • Printing Previewed Pages – 244

HTML Tool Descriptions . 244
Edit Markup – 245 • Close Current Tag – 246
Balance Tags – 247 • Document Type – 247 • Character Set – 247
CSS submenu – 247 • Body Properties – 253 • Head Elements – 253
Block Elements – 254 • Lists – 256 • Tables – 256 • Forms – 257
Inline Elements – 259 • Phrase Elements – 262
Font Style Elements – 263 • Frames – 263 • Check – 264 • Update – 265
Includes – 265 • Utilities – 266 • Preview – 267

The HTML Tools Palette . 269
HTML Tools Palette Tips – 269 • HTML Tools Palette – 269
Other Palettes – 270

HTML Translation . 272
Convert Paragraphs – 272 • HTML Entities – 272
Remove Tags – 272

Templates . 272
Template Setup – 272 • Using a Template – 273

Introduction to the HTML Tools
IMPORTANT Please be sure to read both this introduction and the next section, “Configuring

the HTML Tools,” before attempting to create Web pages using these tools.

Already the most powerful set of utilities ever created for web developers,
BBEdit’s built-in HTML commands are more powerful than ever. These
commands streamline the process of creating HTML documents, help you check
for common usage errors, and speed up development time, without sacrificing
flexibility or forcing you to work within the limits of visual editing tools.
229

BBEdit’s HTML and CSS editing features and this chapter are written with the assumption
that you already understand HTML. If you do not, we suggest one or more of the references
listed below. None are published by or otherwise affiliated with Bare Bones Software, Inc.,
but other BBEdit users have found them useful for HTML usage and design issues.

Recommended Books
HTML for the World Wide Web with XHTML and CSS: Visual QuickStart Guide
(6th Edition), Elizabeth Castro. Peachpit Press, 2006. ISBN: 0-32143-084-0

Cascading Style Sheets: The Definitive Guide (2nd Edition), Eric A. Meyer. O’Reilly
and Associates, 2004. ISBN: 0-596-00525-3

Recommended Online Resources
HTML Help by The Web Design Group
http://www.htmlhelp.com/

The Bare Bones Guide to HTML by Kevin Werbach (no relation to Bare Bones Software)
http://werbach.com/barebones/

The W3 Consortium site
http://www.w3.org/

evolt.org — Browser Archive
http://browsers.evolt.org/

WebMonkey by Wired.com
http://www.webmonkey.com/

What You Need
Before you start, make sure you have the following available:

• A modern Web browser for previewing your pages. Safari is the obvious choice
since it’s supplied with the system, but you may want to try Firefox or Google
Chrome as well. (These are the most widely used browsers but they often do not
display pages the same way.)

• A general-purpose file transfer client such as CyberDuck, Fetch, Interarchy, or
Transmit. While BBEdit does have built-in support for opening and saving files
via FTP and SFTP, such dedicated applications are naturally more powerful, and of
course also allow you to upload things other than text files. You will find them
useful in creating and managing your web site.

• Access to a web server, either your own or someone else’s, where you will publish
your pages on the web. (Your Internet service provider can help you find the
answers to questions about using their server facilities, or obtaining your own
domain name, setting up your own dedicated server, and so on.)

You will also want to be familiar with BBEdit’s basic capabilities. The other chapters in
this manual will help you learn more about editing and searching text using BBEdit.
230 Chapter 11: BBEdit HTML Tools

http://www.webmonkey.com/
http://www.htmlhelp.com/
http://www.amazon.com/exec/obidos/ISBN=0321430840/elizabethcastroA/ref=nosim/
http://www.amazon.com/exec/obidos/ISBN=0321430840/elizabethcastroA/ref=nosim/
http://werbach.com/barebones/
http://www.w3.org/
http://browsers.evolt.org/
http://www.oreilly.com/catalog/css2/
http://www.htmlhelp.com/

Configuring Web Sites
Before you start creating a new web site, or making changes to an existing site’s contents,
we recommend you prepare a web site project to manage your files and provide BBEdit
some important details about them.

Creating a Web Site Project
To start, if you do not already have a local folder which contains working (draft) copies of
your HTML documents, please create such a folder and put any HTML documents which
belong to the site you are working on in this folder. (You can either move these files from
elsewhere on your Mac’s hard drive, or download them from your web site.)

Once you have created a web site content folder, launch BBEdit and create a new project
document by choosing “Project Document” from the New submenu of the File menu, then
add the local folder which contains your site’s contents to the project’s file list, and save the
project file to any desired location.

Next, click on the Site (cloud) action menu in the project’s sidebar, and choose the Site
Settings command:

to open a settings sheet in which you can specify key details about the current web site, and
(if desired) configure deployment options that BBEdit can use to upload your site’s
contents to a remote FTP or SFTP server.

Note Web site configurations are exclusively associated with project documents.

All of BBEdit’s HTML editing commands which generate or operate on links, such as Edit
Markup and Check Links, will recognize and take account of these site settings to ensure
the accurate construction and editing of links within the files you edit. (Please refer to later
sections of this chapter for further details on using these commands.)

Entering Site Settings
The site settings sheet contains four sections: General, Defaults, Update, and Deployment,
and the contents of each section are described below.
Configuring Web Sites 231

General Settings
The General section of the site settings sheet allows you to configure all the basic
properties associated with the current web site. (In many cases, this may be the only section
of the setting sheet that you need to complete.)

Server URL
Enter the URL of your web server here, such as “http://www.example.com/” in the figure.
BBEdit uses this information to determine which links are on (local to) your server.

Path on server
Enter the server path of your site’s main page here. For example, if your web site is at
“http://shared.example.com/foo/bar/”, you would enter
“http://shared.example.com/” for the Web Server Name (as noted above) and
“foo/bar/” for the Site Path on Server.

Default page
Specify the default name used by your server for the document that is sent to a web browser
when a browser accesses a directory without specifying a file name. Examples include
“index.html”, “index.php”, “index.shtml”, and “index”.

Addressing
You may use this option to specify how BBEdit should generate links for anchor and image
tags (and other tags with URI attributes) within all files contained by the current site. The
available methods are:

• Automatic: When the linked file is in the same folder as the document (or a
descendant of that folder), generate the link relative to the document. Otherwise,
generate the link relative to the site root directory.

• Relative to site root: Always generate the link relative to the site root directory.
232 Chapter 11: BBEdit HTML Tools

• Relative to document: Always generate the link relative to the document.

Local Site Root
Click the button to the left of this option and use the standard folder navigation dialog to
select the root folder containing your local copy of the web site’s content. To open the
current root folder in the Finder, double-click on the graphical path below this option.

Look for templates and include files in
Click the button to the left of this option and use the standard folder navigation dialog to
select the local folder that contains your HTML document templates and include files. To
open the current templates folder in the Finder, double-click on the graphical path below
this option.

Use local preview server
If you have a web server running on your Mac, you can preview HTML pages through it by
activating this option, and entering the base URL for your preview server. (Depending on
your needs, you can activate and manage OS X’s built-in Apache web server via the
command line, or install the OS X “Server” application (available in the Mac App Store),
or install and use a separate server package such as MAMP.)

Preview server URL
When you are configuring a new web site, if the local site root folder is located within the
“Sites” folder of your home folder (~/Sites/), BBEdit will create an appropriate local http
URL and enter it in this field. Otherwise, you can specify the local http URL for your site
root folder.

Note If your web content folders are not located within ~/Sites/, or if you want to use
virtual domains, need to enable PHP, etc., you must modify your machine’s Apache
config file accordingly, since BBEdit’s site configurations cannot directly enable such
an arrangement.
Configuring Web Sites 233

Defaults Settings
The Defaults section of the site settings sheet allows you to specify the default properties
that BBEdit should use when you create a new file within the current web site folder.

Insert DOCTYPE
When this option is checked, BBEdit will insert the selected DOCTYPE into the created
file. (This option is on by default.)

Insert XML declaration
When this option is checked, BBEdit will insert a suitable XML version declaration into
the created document. (This option is off by default.)

Give BBEdit credit
When this option is checked, BBEdit will insert a ‘meta name=generator’ tag containing a
notice with its own name and version number.

Language and Charset
These popup menus allow you to specify the default language type and character set
declarations which BBEdit should place into the created document.
234 Chapter 11: BBEdit HTML Tools

Update Settings
The Update section of the site settings sheet allows you to specify the default options that
BBEdit should use when you apply the Update Site Images command. (These options
match those available within the stand-alone Site Images command.)
Configuring Web Sites 235

Deployment Settings
The Deployment section of the site settings sheet allows you to specify the default actions
that BBEdit should perform before deploying (uploading) the contents of the current site
root folder to the designated FTP or SFTP server. .

To save time, BBEdit tracks the modification dates of uploaded files, and will only upload
files which have changed since the last deployment. (Any change to a file's content -- not
the modification date -- will trigger a reupload.)

Before Deploying
When one or more of these options are checked, BBEdit will perform the specified actions
before deploying the contents of the current site root folder.

Stop Deployment if Errors Occur...
When this option is checked and any of the specified deployment actions reports an error,
BBEdit will halt and display a corresponding error browser.

Upload Settings
These fields allow you to specify the FTP or SFTP server to which BBEdit should upload
the content of the current site root folder.

Server
This field should contain (only) the hostname of the desired FTP or SFTP server, for
instance: “host.example.com”. If this host is an SFTP server, you should also enable the
“SFTP” option below, or leave this option disabled for an FTP server.

(You may optionally include a port specification by appending it to the hostname with a
colon, e.g. “host.example.com:8080”.)
236 Chapter 11: BBEdit HTML Tools

User
This field should contain the user name of the server account that you wish to use.

Password
This field should contain the password for the server account that you wish to use. (BBEdit
will store this password in your login keychain.)

Path
If you need to upload to a directory other than the default (home) directory for the specified
server account, you may specify the path to that directory on the server in this field.

Creating and Editing HTML
Documents
There are three ways to use BBEdit’s HTML Tools commands: via the HTML Tools
floating palette, via the Markup menu, and directly via the Edit Markup command and
markup panel. These methods are functionally equivalent in most respects.

Many people find it easy to use the HTML Tools through the
palette. There are three basic types of buttons on the HTML
Tools palette:

• Those you simply click to perform an action or bring up a
settings dialog before performing an action—for example,
New Document, Close Current Tag, or Preview in BBEdit.

• Those that provide popup menus containing related
options—for example, Heading, List, Table, and Form.

• Those which bring up BBEdit’s markup panel to fill in
attributes and values—for example, Anchor, Image, or Div.

The second means of using the HTML Tools is from BBEdit’s
Markup menu. This allows you to make your own choice
between the drag and drop convenience of palettes, and the less
screen-intensive menus; either way, you will still be able to
access all of BBEdit’s capabilities. Most common tags, as well
as many utility functions, are available though items in the
Markup menu or one of its submenus. Key equivalents (if
assigned) are displayed next to the menu item. (You can change
or set key equivalents for menu commands in the Menus &
Shortcuts preference panel.)

Most of BBEdit’s HTML Tools commands apply to the
frontmost document—either at the current insertion point, or on
the current selection range, as appropriate. Some utility
functions, however, can operate on many documents. The Tool
Descriptions section provides more details on what each
command does.
Creating and Editing HTML Documents 237

The third way to use BBEdit’s HTML Tools is by choosing the Edit Markup command to
bring up BBEdit’s markup panel, in which you can directly add or edit tags and their
corresponding attributes and attribute values.

Creating a New Document
You can create an HTML document simply by taking any text file and adding HTML
markup to it, but there’s a better way. BBEdit includes a New Document command to
create the basic skeleton of an HTML document for you.

To create a new HTML document, you can do either of the following:

• Choose New from the File menu and then choose HTML Document from the New
submenu.

• Click the New Document button in the HTML Tools palette.

In either case, the following dialog appears:

In many cases, you can simply specify a title for the document and click OK, ignoring the
other options. However, we suggest that you fill out this dialog as completely as possible.
The function of each field is described below.

Insert DOCTYPE
Choose the type of this HTML document from the popup menu to have BBEdit insert an
SGML prolog containing the desired document type. This information is largely ignored by
browsers; however, HTML syntax checkers (such as the one built into BBEdit) use it to
determine which constructs are legal according to the HTML standard you select. Available
DOCTYPEs include:

• HTML5
• HTML 4.01 (Transitional, Frameset, and Strict versions)
• XHTML 1.0 (Transitional, Frameset, and Strict versions)
• XHTML 1.1
238 Chapter 11: BBEdit HTML Tools

Insert XML declaration
Choose this checkbox to have BBEdit insert an XML declaration. If the DOCTYPE
selected in the popup menu below is not an XML-based type (that is, is not an XHTML
version), this checkbox will be disabled.

Give BBEdit credit
This option generates a <META NAME="generator" CONTENT="BBEdit [VERSION]">
tag in the document, indicating that you used BBEdit to create it.

Title
Enter the HTML title for the document (which can be different from the file name) here.
This text will appear in the title bar of a browser’s window when this document is opened.

Lang
This option indicates the language this document is written in. This information can be
used by search engines and translation software to help Web users find pages in their own
language.

Charset
This option indicates the character set used by the document. If you do not specify a
character set, the character set chosen in the user’s browser will be used.

Note You can choose which character sets appear in this popup menu by using the Text
Encodings preference panel.

Base
Enter the URL for this document’s BASE tag. The BASE tag indicates the actual location
of the document on a server, and all relative URLs specified in the document will be
resolved by the browser relative to this location. No BASE tag is created if you leave this
field blank.

Meta
Enter the META tag to be included at the top of the document here, if any. (META tags can
be used for “client-pull” techniques, for indicating search keywords, and for a wide variety
of other purposes.)

Link
If you want to use a LINK tag to specify a relationship between this document and other
documents, an email address, style sheet, or other information about the document, enter
the desired information in this field.

Note If you use a template to create the HTML document, the template must include the
#META# and #LINK# placeholders to indicate the location at which this information
should be inserted into the generated document.

Template
This popup menu displays the templates specified in the “Templates & Includes” folder
associated with the selected web site. (The names of template files must end with “.tmpl” to
be displayed in this menu.) Selecting a template other than Default will use the specified
template to create a new document, potentially ignoring some or all of the settings specified
in this dialog.
Creating and Editing HTML Documents 239

File Addressing
Many HTML tags require you to specify the pathname or URL of a file or folder, such as to
identify a base address, style sheet, or hypertext link. When you edit such a tag in BBEdit’s
markup panel, you can type or paste the path directly or click the File button to the left of
the attribute value field to bring up an Open sheet in which you can select the desired file,
or (if the active document has been saved to disk) select the desired file from the popup
menu list of directories and files within the current document’s parent folder.

In general, URLs may be constructed in any of the following three ways:

• Full addressing specifies the complete URL, including the scheme (“http:”), the
server’s domain name, and the complete directory path leading to the file within
that server.

• Root addressing specifies just the file’s location within its host server.

• Relative addressing specifies the file’s location relative to that of the HTML
document referring to it.

For example, if the web site resides on a server named “www.example.com” in directory
“foo/bar,” and you are creating a document in that directory named “index.html” with a
link to file “target.html” in subdirectory “flapdoodle”, the full address would be

http://www.example.com/foo/bar/flapdoodle/target.html

the root address would be

/foo/bar/flapdoodle/target.html

and the relative address would be

flapdoodle/target.html

Checking Syntax
You can use BBEdit’s Check Syntax command (see page 264) to validate your HTML
documents to the specification defined in their <!DOCTYPE> prolog. BBEdit will apply
HTML5 rules when checking any document that does not contain a <!DOCTYPE>
specification,
240 Chapter 11: BBEdit HTML Tools

Note that an HTML document may display the way you expect it to in a browser and still
contain invalid HTML. Browsers are designed to be lenient in the markup they accept, so
you can get away with a certain amount of “sloppy” markup. However, producing well-
formed (syntactically correct) HTML documents is the best way to assure that your
document will display in some reasonable fashion in a wide variety of Web browsers, even
those you have not tested the page in.

Syntax Checking Partial Documents
BBEdit can check the syntax of either complete or partial HTML documents. You may find
the ability to check partial documents useful if you are preparing template sections for
inclusion into other documents, whether this is done locally or via a server-side
mechanism.

In order to check the syntax of a partial HTML document, the document must contain a
balanced portion of the content tree. For example, you can check a partial document which
contains a set of paragraphs or a table; you cannot check a partial document which contains
an unclosed <BODY> or <DIV>.

Additionally, for partial documents which do not contain a DOCTYPE, you can specify one
by means of a “#bbpragma doctype=” comment, which specifies what the root or parent
element of the partial page’s content is. For example, if your partial document consists of
<BODY> content:

<!-- #bbpragma doctype="-//W3C//DTD XHTML 1.0 Transitional//EN"
root_element="body" encoding="utf-8" -->

In this comment, you must use either the public identifier text for the DOCTYPE you wish
to check against (see above) or the “display name” for the document type used in the New
HTML Document dialog.

Finally, you may also specify an “encoding=” attribute to declare the encoding of the
partial document.

Ignoring Sections of Documents
You can mark sections of HTML documents to have BBEdit ignore these sections when
performing a syntax check. This can be useful for purposes such as checking documents
which must from necessity incorporate non-standard markup to support old browsers, or
which contain customized server constructs. To mark a section, enclose it with “#bbpragma
ignore_errors=” directives, as follows:

<!-- #bbpragma ignore_errors="on" -->

ignored markup

<!-- #bbpragma ignore_errors="off" -->

Note that when you check a document containing ignored sections, BBEdit’s syntax parser
still runs through the markup contained in these sections; it simply does not report errors
encountered there. You should thus be mindful of the following conditions:

• The presence of fragmentary tags or similarly malformed content in an ignored
section can cause a syntax check to fail.
Creating and Editing HTML Documents 241

• An error may still be generated for an unclosed element which resides within an
ignored section, if its lack of closure results in an error cascade which continues
beyond that section.

• If you terminate a document inside of an ignored section, an error will be
generated.

Format Customization
The “Pretty Print” option of BBEdit’s Format command is implemented internally using a
Dreamweaver-style source format profile. Advanced users may override the factory format
profile by placing an appropriately constructed file at:

~/Library/Application Support/BBEdit/SourceFormat.profile

Previewing Pages
IMPORTANT BBEdit’s Preview commands allow you to view your pages in one or more web browsers.

You can display an automatically-updated page preview directly within BBEdit by
choosing the Preview in BBEdit command, use the Preview in <Selected Browser>
command to use the current default browser, or choose a specific browser from the Preview
In submenu. You can also preview the page in all running browsers or in a text-only format.

In addition to static previews, BBEdit also supports live local previewing of web pages
through the web server built into Mac OS X. This capability enables you to easily preview
pages which are built using server-side technologies, for example, DHTML or PHP.

To enable live previewing for any web site project, you must turn on the “Use local preview
server” option and enter an appropriate “Path on server” in that site’s configuration (see
page 232). In addition, your Mac must be running a local web server, such as OS X’s built-
in Apache server or a third-party server such as MAMP.

Once you have done so, whenever you preview a file from that web site project using any
of the Preview In commands, BBEdit will have the selected browser load that file’s
corresponding page through the built-in web server.

Applying Preview Filters
BBEdit supports passing documents through a preview filter before displaying them in its
built-in Preview window. You can use the “Preview Filter” popup in a Preview window’s
navigation bar to route the document’s contents through the text filter of your choice before
display. The default choice is “(language default)”; in this case, the preview contains the
language module’s default HTML conversion, as before.

As an example, you could use BBEdit’s preview filter support to override the built-in
default Markdown-to-HTML conversion with something tailored more closely for your
own needs, e.g. MultiMarkdown. After installing the MultiMarkdown package, you could
create a symlink (or alias) from MultiMarkdown’s ‘mmd’ helper script at “/usr/local/bin/
mmd” to “~/Library/Application Support/BBEdit/Preview Filters/mmd”, at which point
you could choose “mmd” from the Preview Filter menu in the preview window.

Note If you wish to assign a keyboard equivalent for opening the Preview Filters menu, you
can do so in the Menus & Shortcuts preferences (look under “Preview Windows”).
242 Chapter 11: BBEdit HTML Tools

http://fletcherpenney.net/multimarkdown/

Creating and Using Preview Filters
Preview filters may consist of any of these three types:

• An AppleScript, with an entry point named “FilterTextForBBEditPreview”. This
entry point will receive a 'unicode text' object which is the document’s contents. If
there is no “FilterTextForBBEditPreview” entry point, the script’s run handler will
be called with the text. The script should return a 'unicode text' result.

• A Unix executable or a symlink to any such item. (For example, a copy of the
‘multimarkdown’ binary.)

• A Unix script; for example, a Perl, Python, Ruby, or shell script. (Any such script
should contain a shebang line.)

Both Unix scripts and Unix executables will receive the document’s contents as UTF-8 text
on STDIN and should return UTF-8 text (ordinarily, in the form of an HTML document) to
STDOUT. BBEdit will then display that output in the Preview window.

Preview filters may reside in one of two places: a “Preview Filters” folder within BBEdit's
application support folder, or within an installed package’s “Contents/Preview Filters/”
directory. (So, for example, if someone supplied a BBEdit package for MultiMarkdown, it
might conceivably contain a ‘multimarkdown’ executable that you could use immediately.)

By default, BBEdit will use the preview filter named “DefaultFilter_<language name>” (if
such an item exists) to process all files whose language type is “<language name> before
previewing them. In addition, BBEdit’s Preview window will remember the Preview Filter
selection on a per-document basis.

Unlike default preview templates and CSS (see below), the filename extension of the
preview filter is not significant; so the following examples will all work:

• DefaultFilter_Markdown (a compiled executable)

• DefaultFilter_Markdown.pl (a Perl script)

• DefaultFilter_Markdown.scpt (an AppleScript)

The default preview filter can also be a symlink or alias to a filter elsewhere.

Applying Templates and Custom CSS
You can apply document templates and customized CSS to pages displayed by the Preview
in BBEdit command. In order to do this:

• Place a fully structured HTML document in “~/Library/Application Support/
BBEdit/Preview Templates/”. This document may can contain anything you like
but should define the basic structure and appearance of your desired page. Within
the document, place this single placeholder: #DOCUMENT_CONTENT#.

• Make a new text document and add some content to it; you may add tagged
content, however, this document should not have a complete HTML tag structure.
Previewing Pages 243

• Choose Preview in BBEdit to preview the document. BBEdit’s Preview window
will display a row of items in the preview bar, including “Template:” and “CSS:”.
In the Template popup menu, you can choose the template that you saved in the
first step. When you do so, BBEdit will replace the #DOCUMENT_CONTENT#
placeholder in that template with the contents of the document that you previewed.

Thus, you can use this technique to preview a fragmentary document without having to
replicate the chrome defined in the template into that document.

Further, if you place a valid CSS document in “~/Library/Application Support/BBEdit/
Preview CSS”, that document will be available in the Preview window’s “CSS:” popup
menu and choosing it will apply that CSS to the Preview window’s contents.

Previewing Code and Text
BBEdit supports previewing documents which are not HTML (or HTML generators) via
the Preview in BBEdit command. For example, if you preview a C++ document, you will
see an HTML rendering of that document as BBEdit displays it in the editing window. (The
HTML displayed in the Preview window is the same HTML markup that you can generate
by using the Copy as Styled HTML or Save as Styled HTML commands.) This is useful in
situations where you want to typeset your code, and wish to experiment with different page
templates and styles.

When previewing documents in a particular language, you can specify a default CSS file
for BBEdit to use by placing an appropriately named CSS file in the “Preview CSS” folder
of BBEdit’s application support folder. The name of that file should follow the pattern
“DefaultCSS_*.css”, in which the “*” is replaced by the name of the language. For
example, to designate a default CSS file for previewing Markdown, you should name that
file “DefaultCSS_Markdown.css”.

Printing Previewed Pages
When a BBEdit preview window is frontmost, you can use the Page Setup and Print
commands to print a copy of the displayed page.

Note Due to limitations of the WebKit rendering engine which BBEdit employs, the format
of the printed output may not exactly match the screen rendition.

HTML Tool Descriptions
This section describes all of the HTML Tools commands as they appear in the hierarchical
Markup menu. For a description of the tools as they appear on the palette, see the HTML
Tool Palette Index, which appears after the tool descriptions.

Note Tools that create tags insert the tag at the insertion point unless otherwise specified.
Such tools also place an end tag automatically where appropriate.

You should already be familiar with HTML before using BBEdit’s HTML tools. BBEdit’s
markup panel will help you associate correct attributes with each tag, and provide shortcuts
to help you enter information; however, it does not (and cannot) know what intent or the
final results of your markup will be. There is no substitute for knowing HTML.
244 Chapter 11: BBEdit HTML Tools

Edit Markup
BBEdit presents a context-sensitive markup panel for creating and editing HTML tags.
When you choose the Edit Markup command from the menu, or invoke it by pressing
Control-Command-M, BBEdit will open the markup panel, in which you can select any tag
that is valid in the current HTML context of the insertion point and then add attributes and
attribute values to that tag.

For example, if the insertion point is positioned directly inside the document’s body section
(delineated by the <body> and </body> tags), the markup panel will open in tag selection
mode, and you can either use type-ahead or the arrow keys to select among any available
tag:

If you have selected a tag which does not require attributes or you don’t wish to add
attributes, you may click Apply or press the Return key to enter that tag into the document.
Choosing, for example, ‘audio’ will insert an <audio> tag at the insertion point, while
choosing ‘article’ will insert an <article></article> tag pair (with any additionally chosen
attributes) and leave the insertion point positioned between the two tags for easy content
entry. You can close the markup panel without taking any action by typing the Esc key.

If you select a tag which has required or optional attributes, just press the Tab key to move
the insertion point through the markup panel’s fields, where you can choose or type the
desired attributes and attribute values. To pre-insert all recommended attributes for a tag,
you may either click the Fill (gear) control in the upper right corner of the markup panel or
type Control-Command-M while the panel is open.

For example, here is the markup panel showing the DIV tag selected with pre-inserted
attributes:
HTML Tool Descriptions 245

BBEdit’s Edit Markup command also works within CSS. If the insertion point is within a
CSS selector or declaration, BBEdit will display a sheet containing suitable options for
editing the property (when possible). Invoking Edit Markup within a CSS context, but
when the insertion point is not within a CSS selector will cause BBEdit to insert a new
skeleton rule set.

BBEdit’s markup editing capabilities are also available through the contextual menu.
Simply Control-click at any point in your markup, and BBEdit will present all valid tags or
attributes for the context of the insertion point within the Insert Tag submenu of the
contextual menu.

Editing Existing Tags
You may also edit existing tags by placing the insertion point within them and choosing
Edit Markup in the Markup menu or the HTML Tools palette (or by typing Option-
Command-M). When you do this, BBEdit will bring up the markup panel pre-filled with all
existing attributes and attribute values of that tag. For example, here is the markup panel
invoked against an existing BODY tag:

Edit Markup also works with CSS. Choose Edit Markup while the insertion point is within
a selector’s property or value, and BBEdit will display a context-appropriate dialog for
editing many common properties.

Close Current Tag
The Close Current Tag command inserts a closing tag to match the nearest opening tag
preceding it. If the closing tag is placed on a new line, it will use the same indent level as
the opening tag. For instance, if the insertion point is preceded by a <P> (Paragraph) tag
plus some text content, Close Current Tag will insert a matching </P> tag to close the
paragraph.

Note If you frequently work with HTML documents, you may want to assign a key
equivalent to this command in the Menus & Shortcuts preference panel.
246 Chapter 11: BBEdit HTML Tools

Balance Tags
When Balance Tags is chosen, BBEdit expands the selection to encompass the content of
next outermost set of enclosing tags. The easiest way to understand how this works is to see
it in action. Place the insertion point in an HTML document’s <TITLE> element and
choose Balance Tags. The title will be selected, since it lies between the tags <TITLE> and
</TITLE>. Choose Balance Tags again, and BBEdit selects everything between <HEAD>
and </HEAD>, the next set of enclosing tags outside the <TITLE> element. Choosing the
command once more will select everything between <HTML> and </HTML>.

Use this command to quickly select an element for editing or just to check to see whether
all your nested elements are formed correctly. If BBEdit sounds the system alert beep when
you expect it to select text, it cannot find a matching set of tags around the selected text.

Document Type
The Document Type submenu allows you to select the desired document type (DTD) for
the current document. (If the document already contains a DOCTYPE declaration, that
option will be checked.) When you select a document type, BBEdit will insert the
corresponding declaration into the document.

Character Set
The Character Set submenu allows you to select the encoding (character set) of the current
document. When you select an encoding, BBEdit will insert the appropriate encoding
declaration into the document

Note You can specify which encodings appear in the menu via the Text Encodings
preference panel.

CSS submenu
This submenu allows you to create, edit, and format Cascading Style Sheet markup.
BBEdit has built-in support for CSS. When you are editing stand-alone CSS files or HTML
files with embedded CSS, syntax coloring is available, and the Function menu lists CSS
selectors, as well as CSS files referenced by @import directives and <link> tags. Choose
an external stylesheet from the Function menu and BBEdit will open that stylesheet for
editing.

IMPORTANT BBEdit supports all CSS 2.1 properties. Although there are no explicit dialog editors for
many such properties, you can create or modify them using the Tag Maker command, or by
using Insert Property from the contextual menu.

The CSS function parser supports the following syntax for laying a mark in the function
menu:

/* bbmark string to appear in the menu */
HTML Tool Descriptions 247

@media
The @media directive allows you to control which stylesheet should be used for different
output media, e.g. screen versus printer. You can use this dialog to add media rules, or
given an existing media rule, you can use the CSS editing dialogs or Edit Markup to edit
the rulesets within.

For example:

@media print {
body { font-size: 10pt; }

}

@media screen {
body { font-size: 13px; }

}

@media screen, print {
body { line-height: 1.2; }

@import
The @import directive instructs a web browser to load an external style sheet. This dialog
box allows you to select a file (or drag and drop one from the Finder) and choose whether
to use the optional “url” notation for specifying the location of the style sheet. (Remember
that @import must come before other CSS rules inside a <style> tag or in a stand-alone
CSS document; otherwise it will not work.)
248 Chapter 11: BBEdit HTML Tools

Format
The CSS Format command will reformat your CSS markup for easier reading.

In stand-alone CSS files, if there is a selection range, only the selected text is formatted. If
there is no selection range, the whole file will be formatted.

In HTML files with embedded CSS, if there is a selection range, only the selected text will
be formatted. If there is no selection range, BBEdit will format all CSS in the <style></
style> tag pair that encloses the insertion point. If the insertion point is outside a <style></
style> tag pair, or if the selection range spans a <style></style> tag pair, the formatter will
simply beep.

When formatting CSS embedded into HTML, BBEdit will indent the CSS based on the
indent level of the opening <style> tag, plus one additional tab stop for better readability.
BBEdit’s CSS markup tools (listed below) use the same rules for formatting as the Format
command.

Box
The Box sheet allows you to specify a selector’s width, height, and display properties.

Border
The Border sheet allows you to edit the border-width, border-color, and border-style
properties for a selector. The first row lets you specify values that apply to all four sides.
The color buttons let you select colors using the system color picker; the popup menus next
to them let you select colors by name. The icons on the left side of the dialog represent
(from top to bottom), the entire border, top, right, bottom, and left.
HTML Tool Descriptions 249

Padding/Margins
These identical sheets allow you to edit the padding and margin properties. In both cases,
the icons on the left in the dialogs represent the entire box, top, right, bottom, and left,
respectively.

When you are working with the individual margin fields in these dialogs as opposed to the
overall value, they behave the same way CSS value replication does:

• If right is missing, it takes on the value of top

• If bottom is missing, it takes on the value of top

• If left is missing, it takes on the value of right

so an empty field has special meaning - it means “replicate the related value”. If you want
to specify a value for any given side, you must enter it explicitly.

Layout
The Layout sheet allows you to edit the page layout properties of a selector.
250 Chapter 11: BBEdit HTML Tools

Position
The Position sheet allows you to edit the positioning properties of a selector.

Size & Constraints
The Size & Constraints sheet allows you to edit the size and constraint properties of a
selector.

Clipping
The Clipping sheet allows you to edit the clipping properties of a selector.
HTML Tool Descriptions 251

Effects
The Effects sheet allows you to edit the z-index, overflow, and visibility properties of a
selector.

Background
The Background sheet allows you to edit background-image, background-color,
background-repeat, background-position, and background-attachment properties. The
Image field allows you to select an image file by clicking the File button, or by using drag
and drop from the Finder.

Font
The Font dialog allows you to edit values for the following font properties: color, font-size,
line-height, font-family, font-style, font-weight, and font-variant. Note that BBEdit will
parse the “font:” shortcut property, but never generates it; instead, BBEdit generates
exploded values for font-style, font-variant, font-family, and font-weight.
252 Chapter 11: BBEdit HTML Tools

List
The List sheet allows you to edit the following list properties: marker image and addressing
format, marker type, and marker position.

Text
The Text sheet allows you to edit the following text properties: text-decoration, text-indent,
text-align, vertical-align, line-height, text-transform, word-spacing, letter-spacing, and
white-space.

Body Properties
This command selects the BODY tag in the current document, and brings up the markup to
edit it.

Head Elements
The commands in this submenu bring up the markup panel at an appropriate point within
the current document’s HEAD tag.

Base
The BASE tag determines the default location of documents referenced in the current
document. The recommended attribute for this tag is ‘href’ whose value is the document or
folder that all relative links within the document should be considered relative to. You can
enter the Href by typing it into the supplied field or by clicking the Folder button to select a
folder on your hard disk.
HTML Tool Descriptions 253

Link
The LINK tag tells the browser about a document related to the current document. The
most common use for this tag is to point to an externally defined CSS stylesheet document.
You can choose to indicate whether this link defines a REL (forward relation) or REV
(reverse relation), the type of the relation (for example, a stylesheet), the media, the URL of
the referenced file (including full, root, or relative addressing), and optional Type,
Hreflang, Target, and Charset attributes.

Meta
META tags are used to define browser-specific or optional information that is not a part of
the HTML specification. You can choose to create either a NAME or an HTTP-EQUIV
variation of the META tag. The latter is frequently used for “client-pull” applications in
browsers that support it, but more generically it makes most browsers behave as if the
specified line was received as part of the HTTP protocol header. After choosing the type of
META tag and the desired value of the NAME or HTTP-EQUIV field, enter a value for the
tag’s CONTENT attribute and optionally its SCHEME attribute.

Script
This command begins a section of client-side script code (by default, JavaScript, although
some browsers support other scripting languages). You can choose to execute a script
contained in an external file by entering a URL in the Source field (click File to choose the
file using an Open dialog). You can also enter values for the TYPE of script, the script
LANGUAGE it is written in, and the character set or CHARSET of the script.

Noscript
This command begins a section of HTML to be displayed only if the web browser does not
support client-side scripting; often used to provide alternate content following a <SCRIPT>
block. A matching </NOSCRIPT> tag is also inserted.

Style
This command begins a stylesheet declaration.

Block Elements
This submenu lets you add HTML elements that behave as paragraphs or other types of text
blocks. Since many block elements can be containers for other elements, most have an
explicit or implicit ending tag (for example, </P> to close a paragraph) as well as an
opening tag (for example, <P>). If text is selected when one of these commands is chosen,
these opening and ending tags are placed before and after the selection.

Paragraph
This command begins a new paragraph element. You can specify alignment, ID, a class (for
obtaining formatting cues from a stylesheet), and inline CSS style information.

Div
This command begins a new division. A division is a generic block of text containing one
or more paragraphs (or other block elements) that all have some type of structural attribute
in common. Use <DIV> when no predefined block type is appropriate. You can specify
alignment, ID, a class (for obtaining formatting cues from a stylesheet), and inline CSS
style information.
254 Chapter 11: BBEdit HTML Tools

Horizontal Rule
This command inserts a <HR> tag. You can specify the alignment, the thickness (size) of
the rule, its width, and whether it contains a three-dimensional “shade.”

Heading
This command inserts a heading of any level and allows you to specify the alignment of the
heading.

H1 through H6
These commands insert a heading of the specified level. (The alignment attribute used will
match the last one chosen when using the Heading tool.)

Address
This command inserts an <ADDRESS> block. The formatting of this element is browser-
dependent but it is usually used to indicate that a block of text is a postal address.

Blockquote
This command inserts a block quote—that is, several lines of text that have been quoted
from another document. (Most browsers display this as indentation, leading many authors
to use this tag to indent a section of text, although stylesheets are a more correct and
flexible way to accomplish this.) You may optionally indicate the document being quoted,
if it is available on the Web, using the Cite field.

Center
This command inserts a block centering tag. This tag, while permitted in current HTML
specifications, is deprecated since it includes no information about the content being
centered. It is generally considered better form to use stylesheets or P or DIV tag ALIGN
attributes instead.

Deleted Text
This command inserts a block formatted to indicate that the enclosed text has been deleted
(usually with a horizontal line through it—that is, “struck out”). You may optionally
specify a citation (indicating a reference to another file) and a date and time.

Inserted Text
This command inserts a block formatted to indicate that the enclosed text has been inserted
(usually by underlining the text). You may optionally specify a citation (indicating a
reference to another file) and a date and time.

Noscript
This command begins a section of HTML to be displayed only if the Web browser does not
support client-side scripting; it is often used to provide alternate content following a
<SCRIPT> block. A matching </NOSCRIPT> tag is also inserted.

Preformatted
This command begins a section to be reproduced with line breaks as specified in the HTML
document. (Normally, browsers convert line breaks to white space for display, breaking
lines only at <P> or
 tags.) Most browsers use a monospaced font for this type of
block.
HTML Tool Descriptions 255

Lists
These commands add numbered or bulleted lists to your HTML documents. If text is
selected, the selected text is converted to a list, with each line (terminated by a line break)
becoming a list item.

List
This command inserts a list. You can choose the type of list (unordered, ordered, definition,
menu, or directory) and also the type of marker for an unordered (“bulleted”) list. You can
also suggest a compact display format for the list. When converting existing text to a list,
you can choose to ignore blank lines in the text being converted, to mark up only list items
(and not insert the list header), and whether to indent the list items. When converting text to
a definition list, DT (term) and DD (definition) tags are applied to alternating lines in the
selection.

Unordered/Ordered/Definition/Menu/Directory
These commands convert the selected text to the indicated type of list, or insert a new list
(as with the List command) using the options set in the last List dialog displayed.

List Items
This command converts selected text to list items (one line becomes one item), or inserts an
 tag if no text is selected.

Tables
The commands on this submenu all have to do with building HTML tables. HTML tables
are frequently used for layout purposes as well as for the display of tabular data, although
strictly speaking their use for layout should be avoided as much as possible.

Table
This command inserts <TABLE> and </TABLE> tags around the selected text. You can
also specify border, width, spacing, padding, frame, ruling, alignment, and background
color.

Row
This command inserts <TR> and </TR> tags around the selected text (if any). You can
specify the desired horizontal and vertical cell alignment and a row background color. If
horizontal alignment to a specific character is specified, you can also indicate the character
that determines alignment and the character offset to the first alignment character in the
line.

TD, TH
These commands inserts a table data cell element or a heading cell element, respectively.
(Both have the same options, though most browsers render TH elements differently from
TD elements.) You can specify the width and height of the cell, the number of rows or
columns it should span, its vertical and horizontal alignment (including alignment to a
character and the offset to the first such character), whether the text in the cell should be
permitted to wrap, the background color of the cell, and the scope of the header information
256 Chapter 11: BBEdit HTML Tools

in this cell, if any. You can also specify the axes, an abbreviated version of the cell’s
content, and which header cells contain information about the current cell. Many of the less
familiar and infrequently used attributes have use in certain applications such as speech
accessibility. To provide maximum accessibility for tabular data, we suggest you consult
the appropriate HTML version specification.

Caption
This tag specifies a caption for a table. You may also optionally specify the caption’s
vertical alignment.

Colgroup, Col
These tags are used to define column and column groups. Browsers that understand HTML
4 tables can, for example, be told to format a number of columns the same way, or to place
rules between column groups, using this construction. The contents of a column group may
be one or more <COL> elements (or none at all, if the SPAN attribute is used). You can
specify the span of the column or group, its desired width, and its vertical and horizontal
alignment. Cells within this column group may inherit some or all of these attributes
depending on the attributes of the individual <TD> or <TH> elements.

THead, TFoot, TBody
These tags define an optional table section element, which can be used independently of the
<TH> tag. (The latter indicates that particular cells should be displayed in a heading
“style”, which is usually displayed by browsers as boldface.) <TH> may be used anywhere
in a table that a “heading look” is desired. In contrast, these three related tags define the
logical divisions of a table. Browsers might hold the table’s header or footer fixed on the
screen while scrolling a lengthy body up and down, for instance. All three tags allow you to
select vertical and horizontal alignment, which may be inherited by cells inside the element
depending on the attributes of <TR>, <TD>, and <TH> tags.

Create Table Shell
This command presents a sheet which offers various options for creating a prefabricated
HTML table structure.

Convert to Table
This command provides a quick way to convert tab-delimited or comma-delimited lines of
text to tables. You must specify the delimiter to be used (either tabs or commas), and you
can optionally have the entire first row of the table or the first cell of each row converted to
<TH> rather than <TD> elements. If One Cell Per Line is marked, each cell will be placed
on its own line in the resulting HTML; otherwise cells will be placed on a single line.

Forms
This submenu contains commands that help you build HTML forms, which are used for
accepting user data for processing by a client-side script or a server-side CGI program (or
other server-side technology, such as Active Server Pages).
HTML Tool Descriptions 257

Form
This tag defines a form. The Method can be either GET (encoding the form data in the
URL) or POST (sending the form data separately after the HTTP transaction header). The
Action should be the URL of the CGI program (or other server-side script, such as ASP).
Enctype and Accept-Charset define the encoding type and character set for the transaction
(usually, you will not need to use these fields). Use the On Submit and On Reset fields to
enter the names of JavaScript handlers to be used for the Submit and Reset buttons,
respectively. The Target field sets the frame to be used for the page returned by the CGI.

Button
This tag creates a form button. Choose a type (Submit, Reset, or Button), specify a name
and value for the form element, and set optional attributes such as Disabled, Tab Index (the
order in which the button will be reached by the Tab key), and Access Key (the key the user
can press to activate the button in the browser). (The latter two options are HTML 4
features and may not work on all popular browsers.) You can also enter the names of
JavaScript onFocus and onBlur handlers for the button.

Field Set, Legend
In HTML 4, you can group your form’s fields and other controls into sets of related fields
by using the FIELDSET container. Within the FIELDSET container, the LEGEND tag is
used to define a title for the field set. Browsers differ in how they represent field sets
visually, but some browsers may draw a rectangle around the related controls as in dialog
boxes. In this case the Align attribute of the LEGEND tag can be used to set the alignment
of the legend relative to the visual representation of the field set. (Browsers that do not
support these tags will ignore them, and the contents of the LEGEND container will be
displayed as any other text.)

Input
This tag defines an input field, which can be a text or password input, various types of
buttons, and even files, images or hidden fields. Specify the name and the default value of
these fields, and, if applicable, their size, maximum length, tab index, access key, and
disabled or read-only attributes. (Disabled, Read Only, Tab Index, and Access Key are
HTML 4 features and may not be supported by all popular browsers.) You may also specify
handlers for the JavaScript onFocus, onBlur, onSelect, and onChange handlers.

Label
HTML 4 allows you to specify that text next to a control is a Label, and in browsers that
understand the tag, clicking the label associated with a button activates the corresponding
control. BBEdit lets you create a <LABEL> tag, specifying the name of the control it
should be associated with, an optional keyboard equivalent to activate the control, and
onFocus and onBlur JavaScript handlers.

Select
This tag defines a scrolling list or popup menu. Enter the name of the control, the number
of items to display (leave the size blank for a popup menu rather than a scrolling list), and
whether the list allows multiple items to be selected. Optionally mark the control as
disabled and specify onFocus, onBlur, and onChange handlers.
258 Chapter 11: BBEdit HTML Tools

Option Group
Using the <OPTIONGROUP> tag, you can create submenus in popup menus in browsers
that support them. All <OPTION> tags within an <OPTIONGROUP> container are
displayed as items cascading from the specified submenu label. (In browsers that do not
understand <OPTIONGROUP>, users will see a simple straight list of all defined options.)

Option
This tag defines an option in a popup menu or a scrolling list. Enter the desired label and
value for the option, and mark the Selected checkbox to make the option the default or
initial choice.

Text Area
This tag defines a scrolling text area field for entering large amounts of data. You can
specify the name of the file, its size in rows and columns, and optional HTML 4-only
attributes such as Disabled, Read Only, Access Key, and Tab Index. You can also specify
script handlers for onFocus, onBlur, onSelect, and onChange events.

Inline Elements
Inline elements are HTML elements that can appear as part of a paragraph, such as anchors,
images, applets, client-side scripts, image maps, and more.

Anchor
This command inserts an HTML anchor (<A>) tag. Anchors can either be hyperlinks or be
used as the target of hyperlinks to provided multiple targets on a single page. The anchor
must have an associated URL in the HREF field to be a link; it must have a name in the
Name field to be a target. The Target field is used to specify which frame the linked page
should appear in.

Image
This command inserts an tag to display an image. As with the anchor tag, you can
select the Source by choosing a file or typing a URL.

After choosing an image file, you can specify alternate text (which will appear in browsers
that do not support images or for users who are surfing with image-loading turned off),
enter the Size of the image, select the amount of horizontal and vertical Space for wrapping
around the image, and choose the thickness of the border and the image’s alignment.
(Image height and width should be specified whenever possible to speed layout of the page
in the browser; BBEdit will enter these values for you automatically when you choose an
image file.)

If you drag and drop an image file into an HTML document, BBEdit will automatically
generate and insert an image tag at the drop point with the image’s actual dimensions pre-
filled.
HTML Tool Descriptions 259

Applet
This command inserts the <APPLET> tag for specifying a Java applet. You will need to
specify the location the folder that contains your main Java class file (the codebase) as well
as the name of the main class file. If the file is in a .ZIP or .JAR archive, you can specify its
name here as well. If you will control the applet via a client-side script, enter a name for it.
You should always enter the desired size for the applet’s display area. You can also specify
alignment and white space around the applet, along with ALT text to be displayed if the
applet cannot be used.

Object
The <OBJECT> tag is a generic tag for including almost any type of data in a page,
including images and Java applets. (It can also be used to insert ActiveX controls and data
intended to be used by browser plug-ins.) However, this tag may not be supported in all
popular browsers. For this reason we suggest using and <APPLET> for those types
of objects and use <OBJECT> only for embedding other types of data, such as that used by
plug-ins. For an example of this, see the Web Design Group’s HTML Help reference page:

http://www.htmlhelp.com/reference/html40/special/object.html

The <OBJECT> tag, like the and <APPLET> tags, allows you to reserve screen
space in the browser window, recommend an amount of white space between the object and
surrounding text, align the object, set its border, specify alt text to be displayed if the object
cannot be displayed, and so forth. You will also need to specify at least the codebase and
class ID of the object for ActiveX controls, and fill in the Data field for embedded objects
such as Shockwave animations which will be handled by browser plug-ins. The Standby
field can be used to tell browsers a text message to be displayed while the object is loading.
For more information on the <OBJECT> tag, consult the HTML 4 specification.

Param
To pass parameters to a Java applet, ActiveX control, or browser plug-in, the <PARAM>
tag can be used between the <OBJECT> and </OBJECT> (or <APPLET> and </
APPLET>) tags. Each parameter to be passed to the object requires a separate <PARAM>
tag. You must specify the name and value of each parameter; the actual parameter names
and values required will vary depending on the object being embedded.

Script
This tag begins a section of client-side script code (by default, JavaScript, although some
browsers support other scripting languages). You can choose to execute a script contained
in an external file by entering a URL in the Source field (click File to choose the file using
an Open dialog). You can also enter values for the TYPE of script, the script LANGUAGE
it is written in, and the character set or CHARSET of the script. Mark the DEFER
checkbox to add a DEFER attribute.

Note You can choose which character sets appear in the Charset popup menu by using the
Text Encodings preference panel.

Map
This tag embeds a client-side image map in the document. You must enter a name by which
the map can be referenced in the Use Map attribute of the Image tag. Individual clickable
areas within the image map are provided by the <AREA> tags inserted between the
<MAP> and </MAP> tags.
260 Chapter 11: BBEdit HTML Tools

http://www.htmlhelp.com/reference/html40/special/object.html

Area
This tag defines a clickable area within a client-side image map. Each clickable area
requires a separate <AREA> tag. You will need to specify the document to be loaded when
the area is clicked (or mark the No HREF checkbox to cause clicks in the area to be
ignored), along with its Target frame if the page is being used in a frameset. You can choose
the desired map shape (rectangular, circular, polygonal, or the default URL) using the
Shape popup menu and enter the desired coordinates of the shape in a comma-separated list
in the Coords field. (For rectangles this is in the order left, top, right, bottom; for circles it is
in the order X, Y, radius. For polygons this should be a comma-separated list of coordinates
in X, Y form.) You can also set the tab index of the field for keyboard control on browsers
that support it. You may also wish to specify JavaScript onFocus and onBlur handlers.

Break
This command enters a line break tag,
, into the document. If multiple lines are
selected, a line break tag will be inserted after each.

Font
This tag selects the font, size, and/or color for the selected text. This tag is deprecated and
should generally not be used; stylesheets are a more flexible and more content-oriented
way of achieving this end.

Base Font
This tag selects the default font, size, and/or color for the text in this document. Like
, this tag is deprecated; it is considered better form to use stylesheets.

Bidirectional Override
This command inserts a <BDO> tag to note that the enclosed text is in a language that
should be rendered in a different direction (either left-to-right or right-to-left) than the
default text order for the document’s primary language. You can specify the desired text
order and the language, so that savvy browsers can switch fonts or script systems to display
the text correctly.

Quotation
This command marks the selected text as a quotation. Use this only for short quotes within
a paragraph; use <BLOCKQUOTE> for quotations consisting of a paragraph or more of
text.

Span
This command marks the selection as belonging to a certain class of information—such as
a book title—usually so that its text style can be retrieved from a stylesheet. (In contrast
with <DIV>, which marks paragraph-level classes, marks character-level
classes.) You will be prompted for an ID for this span, a class name (which should
correspond to a stylesheet entry), and inline style information. All are optional.

The Span command can also create nested span elements. This means that in order to edit
an existing span element (since they can be nested), you must place the insertion point
within the open tag of the desired instance.

Subscript
This command marks the selected characters as a subscript (lowered below the baseline).
HTML Tool Descriptions 261

Superscript
This command marks the selected characters as a superscript (raised above the baseline).

Phrase Elements
Phrase elements are HTML tags that mark sentences or phrases within a block element
(such as a paragraph) with certain content-related styles, such as emphasis, strong
emphasis, citation, and so on. Indirectly this determines the displayed format of the
enclosed text (although exactly what “emphasis” and so on mean is left up to the browser
or the stylesheet).

Abbreviation
The enclosed text is an abbreviation.

Acronym
The enclosed text is an acronym.

Citation
The enclosed text is a citation of another document.

Computer Code
The enclosed text is computer source code.

Deleted Text
This command inserts a block formatted to indicate that the enclosed text has been deleted
(usually with a horizontal line through it—that is, “struck out”). You may optionally
specify a citation (indicating a reference to another file) and a date and time.

Defined Term
The enclosed text is term defined in a clippings.

Emphasis
The text should be displayed with visual emphasis (most browsers interpret this as italic
text).

Inserted Text
This command inserts a block formatted to indicate that the enclosed text has been inserted
(usually by underlining the text). You may optionally specify a citation (indicating a
reference to another file) and a date and time.

Input Text (Kbd)
The enclosed text is text to be entered on a computer keyboard (used in instructions).

Sample Output
The enclosed text is sample output from a computer program (used in instructions).

Strong Emphasis
The text should be displayed with strong emphasis (most browsers interpret this as
boldface).
262 Chapter 11: BBEdit HTML Tools

Variable
The text is a placeholder in an instruction or tutorial, and should be replaced with an actual
value of the appropriate type before actually performing the indicated operation.

Font Style Elements
Like Phrase Elements, Font Style Elements mark relatively short pieces of text within a
block element. However, they are concerned more with the appearance of the text than its
structural function in the document.

Big
This displays the enclosed text in a larger font than usual.

Small
This displays the enclosed text in a smaller font than usual.

Bold
This displays the enclosed text in boldface type.

Italic
This displays the enclosed text in italic type.

Strike-Through
This displays the enclosed text in a strike-through style.

Teletype Text
This displays the enclosed text in a monospaced font, as on a computer terminal or teletype.

Underline
This displays the enclosed text in an underlined style.

Frames
The commands in the Frames submenu help you design documents that use frames. The
first document loaded by the browser contains at least one <FRAMESET> tag and one or
more <FRAME> tags, which specify the number and sizes of the desired browser window
subdivisions and indicate the URLs of the files to be loaded into each.

Frame Set
This defines a frame set, a series of one or more frames. You indicate whether the frame set
divides the browser window vertically (ROWS) or horizontally (COLS), and then indicate
the size of each frame in a comma-separated list, using * to tell the browser to use whatever
space is left over from the other specified frames.

Frame sets can be nested. For example, if you want to create a framed Web page with three
rows, with the middle row divided into two independent columns, you would first define a
frame set consisting of three rows. Instead of defining the second row with a <FRAME>
tag, however, you would open another <FRAMESET> tag there, this time to specify the
two columns for the middle frame (which would then be specified by <FRAME> tags).
HTML Tool Descriptions 263

Frame
This defines a frame in a frame set document. You will need to specify the URL of the file
to be displayed in this frame (either using the button, or by drag and drop). If the frame will
be targeted by links in another frame, you will also need to give the frame a name. You can
optionally specify a long description for the frame, choose whether the frame can be
scrolled, and indicate whether the user should be able to resize the frame. You can also set
margins and borders for the frame. (Borders are the visible lines between frames. Margins
determine how far each frame’s content appears from its border or from the window edge.)

No Frames
HTML markup included between the <NOFRAMES> and </NOFRAMES> tags is
displayed by browsers that do not support frames. This is where you should include a link
to a non-frame (or text-only) version of the site. Although many current browsers support
frames, some users do not like the feature and intentionally disable it in their browser.

Check
The Check submenu contains utilities for finding errors in your HTML markup and
document links. You can run syntax or link checks on the current document, a specified
folder, or any currently available web site configuration. You can also perform a Balance
Tags operation on the current document.

When you are checking a folder or a site using these tools, a dialog like the one below
appears.

The popup menu to the right of the path strip includes all of the web sites which are
available within open projects; choosing any of these selects its designated site root folder
for checking. The Other entry on the popup menu displays an Open dialog, allowing you to
navigate to and choose any other desired folder. (You can also drag a folder from the Finder
directly into the path strip.)

If a Check Syntax or Check Links operation generates any errors or warnings, BBEdit will
display an error results browser listing. For more details on the error results browser
format, please refer to Chapter 9.

Syntax
This command invokes BBEdit’s syntax checker, which validates your HTML document to
the specification defined in the <!DOCTYPE> prolog at the top of the document. Errors are
displayed in an error results browser. Scroll through the list at the top of the window to see
the errors that have been found; click to see the text that caused the error in the lower part
of the window. Double-click an error message to open the file for editing.
264 Chapter 11: BBEdit HTML Tools

Links
This command causes BBEdit to scan your document, or a folder of documents, looking for
links and object references (such as images and Java applets) that cannot be resolved. Note
that BBEdit only looks at pages contained within your site’s root folder as defined in the
General section of the Site Settings sheet, not at any links that go offsite.

Update
The Update submenu contains commands for updating IMG tags, includes, and
placeholders in the current document, the selected folder, or the current site. BBEdit
displays a results browser after the operation so you can see what was changed.

For more details on the results browser format that BBEdit uses, please refer to Chapter 9.

Choose the Document, Folder, or Site command from the Update submenu to update all
includes and placeholders in the selected set of file(s). (Appendix C contains information
regarding the use of placeholders.)

Choose the Document Images, Folder Images, or Site Images command from the Update
submenu to update the HEIGHT and WIDTH attributes of image tags (and optionally to
insert empty ALT attributes when missing) in the selected set of file(s).

You can also update the dimensions of any specific image by Control-clicking (or right-
clicking) inside an image tag and choosing Update Image Dimensions in the contextual
menu.

When you are updating a folder or a site using either of these sets of tools, a dialog like the
one below appears.

The popup menu to the right of the path strip includes all currently-open projects which
contain website configurations; choosing any of these selects its designated site root folder
for updating. The Other entry on the popup menu displays an Open dialog, allowing you to
navigate to and choose any other desired folder. (You can also drag a folder from the Finder
directly into the path box.)

Includes
The Includes submenu contains commands for inserting one-time include directives,
“persistent” include directives, and placeholders. See Appendix C for more information.

Choosing Include or Persistent Include prompts you to choose a file using an Open dialog
and then inserts the appropriate markup. Choosing Placeholders displays a scrolling list of
available placeholders; selecting one and clicking Insert places it into the document.
HTML Tool Descriptions 265

Utilities
The Utilities submenu contains commands for automatically editing the current HTML
document for ease of editing and for consistency.

Format
This command formats the current HTML document for easier editing. The appearance of
the document in a browser is generally not affected (except in the case of Document
Skeleton). You can choose from among the following:

• Pretty Print: A balanced format suitable for general use

• Strict Hierarchical: All nested HTML structures are indented according to their
depth

Note This command may add white space, which can affect display in a browser

• Plain: Places each tag on a separate line with no indenting

• Compact: Absolute minimum white space

• Gentle Compact: A slightly more human-readable version of Compact

• Document Skeleton: A hierarchical view with all non-tag content removed

• Don’t Reorganize: Allows normalizing of case, quote, and entity settings, as well
as encoding entities within attributes, without otherwise changing the existing
structure

You can also have the Format command operate on the whole document or only the
selection, normalize the tags to uppercase or lowercase, normalize quote marks around
attributes, and encode special characters, or entities, found in attributes.

If you choose the “Format…” command (with the ellipsis), BBEdit displays a dialog
allowing you to choose the formatting options. If you choose the Format command
(without the ellipsis), BBEdit uses the previous options.

Optimize
This command reformats the document to use the absolute minimum of characters while
remaining syntactically valid. You will have difficulty editing your document in this format
(in fact, if you do not have Soft Wrap turned on in the text options, you might think most of
your document has vanished, because the command strips out all line breaks), but rest
assured that your document will appear the same in your browser as it always has. Use one
of the Format commands discussed above to put your page back into an editable format if
you need to make changes. This command also applies the various Cleaner tools
automatically.

Translate Text to HTML
This command allows you to translate plain text to HTML . The resulting sheet presents
flexible options for converting paragraphs and translating extended characters to HTML
entities. You can also choose to convert only the contents of the current selection or create a
new document containing the results. (See “HTML Translation” later in this chapter for
more information.)
266 Chapter 11: BBEdit HTML Tools

Translate HTML to Text
This command allows you to translate HTML to plain text. The resulting sheet presents
options for removing tags, converting tag-delimited paragraphs, and translating HTML
entities to extended characters. You can also choose to convert only the contents of the
current selection or create a new document containing the results. (See “HTML
Translation” later in this chapter for more information.)

Remove Comments or Markup
This command removes all HTML comments or HTML tags, respectively, from the
selection. Note that removing comments will not remove comment markers around client-
side scripts like JavaScript, where they are required for proper functioning of the page on
older browsers, but will remove the comment markers used by placeholders and indexes,
making these items difficult to update in the future.

Comment, Uncomment
Note These commands have both been superseded by the Un/Comment command in the

Text menu.

Raise Tag Case/Lower Tag Case
These commands convert all HTML tags in the document to either upper case or lower
case.

Tidy
IMPORTANT Tidy support has been retired from BBEdit due to the static nature of the Tidy library.

This includes the Tidy submenu of the Markup menu, Tidy scripting support, and Tidy
operations in text factories. (If you run a text factory containing Tidy operations,
those operations will have no effect.)

Preview
The Preview commands provide various options for previewing your HTML documents in
a web browser.

Preview in BBEdit
Choosing this command will open a live content preview window within BBEdit which is
linked to the document that was frontmost when you chose the command. You can go back
from the preview window to its corresponding source document by clicking on the
document icon button in the preview window, or by choosing the Show Document
command from the Markup menu.

The preview window uses WebKit (the standard OS-provided content display engine), and
automatically updates whenever you modify the document. Closing the document will also
close the preview window. (You can of course have multiple preview windows open on
multiple documents.)

The preview window will not automatically display changes made in any related files, such
as images or linked CSS files. However, you can use the Refresh BBEdit Preview
command (see below) to update the preview window’s display of both the source document
and all related files.
HTML Tool Descriptions 267

If you choose this command when the current document is a Markdown source file, BBEdit
will run that file through the Markdown script and generate a preview window which
reflects how that file would be rendered in a web browser. The contents of the preview
window will update as you edit the file.

Show Inspector
 The toolbar of every preview window contains a “Show Inspector” button, which when
clicked will display the WebKit inspector pane for code introspection.

Refresh BBEdit Preview
This command works in conjunction with the Preview in BBEdit command. How it
behaves depends on the situation in which it's invoked:

• If the front window is a BBEdit Preview window, its associated HTML file will be
reloaded, together with any related files which were changed behind the preview
window's back (e.g. images, linked CSS files).

• If the front window is a text document, and there exists a preview window
previously created by a "Preview in BBEdit" command on that document, then the
associated preview window will be reloaded.

• If the front window is a text document, and any preview windows are open, the
frontmost preview window will be reloaded, even if it does not necessarily belong
to the front document.

BBEdit Preview windows also contain a “Reload” button, which has the same effect as this
command. Finally, whenever you save a CSS file, BBEdit will automatically refresh all
open BBEdit Preview windows.

Preview in <Selected Browser>
This command will display the name of the current default web browser, and choosing it
will cause BBEdit to display the frontmost document in that browser.

You can choose a browser from the Preview In submenu, or select Preview in <Selected
Browser> to use the last chosen browser. You can also preview the page in all running
browsers or in a text-only format.

Preview in
The Preview in command provides a submenu listing all installed web browsers and
versions. You may add browsers which are not listed by using the Preview Helpers
preference panel (see page 219).

You can preview the frontmost document in any available browser by choosing that
browser in the menu. Making such a choice will also cause BBEdit to use that browser as
the default until you select a different browser.

Alternatively, you can choose the New Text Window item to generate a text-only rendering
within BBEdit, or the All Running Browsers item to preview the current document in all
running browsers.
268 Chapter 11: BBEdit HTML Tools

The HTML Tools Palette
The main HTML Tools Palette is the place from which you will probably access the HTML
Tools most frequently. You can invoke the HTML Tools palette at any time by selecting it
from the Palettes submenu in the Window menu. BBEdit remembers which palettes you
had open when you quit, so if you open the HTML Tools palette, it will remain open until
you close it again, even on subsequent uses of BBEdit.

HTML Tools Palette Tips
A list of all the tools that are available on the HTML Tools palette appears below. In most
cases, their behavior corresponds obviously with the tool descriptions in the previous
section. In the few cases where there are significant differences, these are noted.

Some palette buttons are actually popup menus (indicated by a small downward-facing
triangle on the right side), and clicking such a button will bring up a popup menu of options
you can choose.

HTML Tools Palette
Tool Menu-Based Equivalent

New Document File > New > HTML Document

Edit Markup Markup > Edit Markup

Close Current Tag Markup > Close Current Tag

Balance Tags Markup > Balance Tags

Doc Type Markup > Document Type

Character Set Markup > Character Set

Body Properties Markup > Head Elements > Body Properties

Anchor Markup > Inline Elements > Anchor

Image Markup > Inline Elements > Image

Break Markup > Inline Elements > Break

Paragraph Markup > Block Elements > Paragraph

Div Markup > Block Elements > Div

Heading Markup > Block Elements submenu

List Markup > Lists > List, Markup > Lists
submenu

Table Markup > Tables > Table, Markup > Tables
submenu

Form Markup > Forms submenu

Check Syntax Markup > Check > Document Syntax

Check Links Markup > Check > Document Links
The HTML Tools Palette 269

Other Palettes
In addition to the main HTML Tools palette, BBEdit includes three other palettes that may
be useful to HTML authors. These are the CSS palette, the Entities palette, and the Utilities
palette, and you can display (or close) each of these palettes via the Palettes submenu in the
Window menu.

CSS palette
Click any of the buttons in this palette to invoke the corresponding CSS editing dialog.

Font Style Elements palette
Click any of the buttons in this palette to invoke the corresponding command.

Update Markup > Update submenu

Preview in BBEdit Markup > Preview in BBEdit

Preview Markup > Preview in submenu

Tool Menu-Based Equivalent
270 Chapter 11: BBEdit HTML Tools

HTML Entities palette
In HTML, extended characters must be encoded as entities, since different computers
define the extended ASCII characters differently. The HTML Entities palette lists these
entities.

Entities can be inserted by name (“©” is the copyright symbol, ©) or number
(“&169;” for ©) by choosing the desired method from the small popup menu at the top of
the HTML Entities palette. (We suggest inserting entities by name, since they are more
readable, unless browser compatibility requires use of the decimal versions.)

Double-click an entity name to insert it into the active document, or click once to select the
desired entity and then click Insert.

The list of entities presented in the HTML Entities palette is sortable by decimal value,
name (case-insensitive, so “&ecaute;” and “É” are grouped together), or base
character (sorted by the character position after all diacriticals have been stripped, so that
all “a”s are grouped, and so on). Click on a column label to set the sort order accordingly.
(The default is to sort by decimal value.)

Utilities palette
Click any of the buttons in this palette to invoke the corresponding command.
The HTML Tools Palette 271

HTML Translation
BBEdit provides the Translate Text to HTML and Translate HTML to Text commands to
help you quickly transform existing content. Here is more information about how the
conversion options provided by these commands behave.

Convert Paragraphs
When converting text to HTML, BBEdit finds paragraphs in the same way as the Paragraph
command, and then adds opening and closing paragraph tags around them.

When converting HTML to text, BBEdit will (if necessary) place hard line breaks around
each paragraph in the resulting text.

HTML Entities
When this option is set, the Translate Text to HTML command will convert all extended
characters in the current document into HTML entities, using either names or the code (in
decimal or hexadecimal). You can specify whether the tool should ignore < and >. This is
useful when translating text already marked up as HTML. You can also specify that all
Unicode text should be converted to entities.

Remove Tags
When this option is set, the Translate HTML to Text command will remove all HTML tags
and comments.

Templates
In addition to providing many facilities for creation and markup of individual documents,
the HTML Tools also incorporate a Template facility, which can be used to quickly create
(or revise) a set of HTML documents that share a common format, structure, or content.
You can design a skeleton document, make a template from it, and then use that template
over and over again to produce new pages ready to fill with content, or to insert into
existing text documents to provide an uniform structure or appearance. Templates may also
employ placeholders and include files (see Appendix C), adding even more power to this
useful function.

Template Setup
By default, older versions of BBEdit created a folder named HTML Templates within their
application support folder. If this folder already exists, you may continue to use it as your
templates folder; otherwise, you may set up your own template folder(s) wherever you like.
(See “Look for templates and include files in” on page 233.) If you plan to maintain
multiple sets of templates for different projects, you may find this option very useful.
272 Chapter 11: BBEdit HTML Tools

Using a Template
A template is a simple text file that contains boilerplate text or HTML content that will
form the foundation for the document you are creating. Template files must have the file
name suffix “.tmpl” in order to be recognized.

When creating a template file, you can convert or reuse an existing document, or you can
write one from scratch. Simply rename the file by adding the suffix “.tmpl” to it, and then
move or copy it into your active templates folder.

Templates are always invoked using the New Document tool. The Template option appears
as a popup menu at the bottom left of the New Document dialog, and all template files in
the Templates folder appear in this menu. (The “Default” setting is not a template per se,
but rather a directive to create a blank HTML document framework containing whatever
Title, Base, Meta, Link, SGML Prologue (and so on) values you specify. It is always
available, regardless of the contents in your Templates folder.)

Once you have specified the appropriate settings and chosen Create, BBEdit will open an
new Untitled window containing the full text of the selected template file. Note that the
template file itself is never changed by this action; rather, its contents are simply copied
into the new document.

Note Templates can make full use of placeholders and include files, which are fully
documented in Appendix C.
Templates 273

274 Chapter 11: BBEdit HTML Tools

C H A P T E R

12
Using Clippings
This chapter describes BBEdit’s powerful Clippings command. Clippings provide
you an easy way to store and enter any sort of frequently used text, including
program code, HTML markup, or just about anything else. Clippings can be
language-sensitive, and their optional ability to run scripts and insert the results,
further extends their flexibility and usefulness.

In this chapter
The Clippings Menu. 275
The Clippings Palette . 276
Managing Clipping Sets . 276
Manually Sorting Clipping Sets . 277
Creating and Editing Clippings . 277
Inserting Clippings . 279
Assigning Key Equivalents to Clippings . 280
Clipping Substitution Placeholders . 281
Using Scripts in Clippings . 285

The Clippings Menu
The Clippings menu contains commands which you can use to insert and manage
text clippings. The Clippings menu also presents the contents of all available
clipping sets. You can choose any available clipping to insert its contents into the
active document, or use the Insert Clipping command. (See “Inserting Clippings”
on page 279.)
275

The Clippings Palette
Choosing the Clippings command from the Palettes submenu of the Window
menu opens the Clippings palette, shown below. This window lists the contents of
all available clipping sets. Clipping item names that are too long to fit within the
width of the window are truncated with ellipses (…).

“Hovering” the mouse over such a truncated name displays a tool tip showing the
full name. If you hold down the Option key, the tool tip will appear instantly, with
no hovering delay. Names that fit entirely within the window without truncation
do not display a tool tip.

Managing Clipping Sets
Although BBEdit does not install any clipping sets by default, you can find a
variety of customer-contributed clipping sets on our website:
http://www.barebones.com/support/bbedit/clippings_library.html

or create your own.

Installing New Clipping Sets
To install a new clipping set, just copy its folder into the “Clippings” folder within
your local BBEdit application support folder.

Language Sensitivity of Clipping Sets
IMPORTANT BBEdit no longer limits clipping use to the items contained within a single

“active clipping set”; instead, all available clippings are available at all times,
unless a particular clipping set’s name maps to an installed language. In that case,
the clippings from that set are available only when the effective language in the
active document matches the clipping’s language. (For example, clippings from a
clipping set “JavaScript.js” will by default only be available within JavaScript
documents or content areas.)
276 Chapter 12: Using Clippings

http://www.barebones.com/support/bbedit/clippings_library.html

You can override this default behavior by manually enabling clipping sets for any
desired set of languages via the Clippings pane of the Setup window. Select one
or more clipping sets, and click “Edit Enabled Languages” (or double-click the
selected items) to edit the languages for which the set(s) are to be enabled. Within
the “Edit Enabled Languages” panel, you can select multiple languages and turn
them on or off at once.

The “Universal Items” clipping set no longer enjoys special behavior; instead,
like all other clipping sets, it is automatically enabled for all languages by default,
while any clippings that you place loose in the top level of the Clippings folder
will automatically be available at all times.

These clipping selection and activation rules are intended to provide maximum
flexibility while automatically doing the right thing as often as possible.

Manually Sorting Clipping Sets
By default, the Clippings menu displays clipping sets and clipping items in
alphabetical order. However, you can force them to appear in any desired order by
including any two characters followed by a right parenthesis at the beginning of
their name: for example “00)Web template” would sort before “01)HTML
Template”. The first three characters of such names are not displayed in the menu.
You can also insert a divider by including an empty folder whose name ends with
the string “-***”. (You can use anything you want for the rest of the name, to
make it appear where you want it in the menu.)

Creating and Editing Clippings
You can create a clipping by typing or pasting any desired text, or text and
substitution placeholders, into a BBEdit document window and then choosing
Save As Clipping from the Clippings menu. BBEdit will display a sheet in which
you can name your clipping, and assign it to any existing or new clipping set.

You can also create a clipping from the current selection by choosing Save
Selection as Clipping from the Clippings menu, and using the clipping creation
sheet as described above. Using this command does not affect the name or
location of the document from which you create the clipping.
Creating and Editing Clippings 277

If you wish to further organize clippings within a set, choose Open Clippings
Folder from the Clippings menu. You can create multiple levels of subfolders
inside the Clippings folder, to better organize different types of content. The first
level of such subfolders appear in the Set popup menu of the Clippings palette,
allowing you to reveal only the group of clippings you wish to work with at a
given time. (Any clippings not placed in a subfolder are always shown in the
Clippings palette.)

You can edit a clipping by holding down the Option key and choosing the desired
item from the Clippings menu. You can also edit a clipping by selecting it in the
Clippings palette, then holding down the Option key so that the Insert button
changes to Edit, and clicking Edit, or by Option-double-clicking the clipping
directly.
278 Chapter 12: Using Clippings

Inserting Clippings
The quickest way to insert clippings is to use BBEdit’s text completion feature.
Just type a clipping item’s name (or the beginning of a name), then either pause or
invoke the Complete command by pressing F5 (or choosing it in the Edit menu)
and BBEdit will display any matching clippings, as well as other available
completions, in the completion popup.

You can select a clipping in the popup by using the up- and down-arrow keys and
type Return or Tab to insert that clipping, replacing the word or partial word.

You can also select and insert a clipping by choosing the Insert Clipping
command from the Clippings menu. You can either select a clipping by
navigating the list with the up and down arrow keys, or type in a complete or
partial string to filter the list of available clippings.

• If there is a single match, BBEdit replaces the word with the contents of
the matched clipping.

• If there are multiple matches, BBEdit brings up the Insert Clipping
popup (below) and lists all the matching clippings.

You can continue typing to further narrow the list and select a clipping,
or use the up- and down-arrow keys to select a clipping and type Return
to insert that clipping. You can also insert any listed clipping by double-
clicking its name in the panel.

• If there is no match, BBEdit brings up the Insert Clipping panel with
focus in the filter field, but does not filter the clipping list.

You can type in the filter field to narrow the list and select a clipping, or
use the up- and down-arrow keys to select a clipping, and then type
Return to insert the selected clipping. You can also insert any listed
clipping by double-clicking it. BBEdit replaces the word with the
contents of the clipping and closes the panel.
Inserting Clippings 279

You can also use wildcards with the Insert Clippings palette’s search box. (The
palette’s interpretation of the pattern is strict; “ab*” will only match clippings
whose names begin with “ab”, whereas a non-wildcard “ab” will match any
clipping whose name contains “ab”.

Typing Shift-Return and Option-Return in the Insert Clippings palette’s search
field will behave as the same modifiers do when choosing an item from the
Clippings menu: Shift-Return will reveal the clipping file in the Finder, while
Option-Return will open it for editing.

Note: If there is a word or partial word before the insertion point, BBEdit looks for
a clipping of the form ‘clipping name begins with partial word’. However,
when there is no word or partial word, BBEdit filters items in the Insert
Clipping panel based on whether their names contain the currently-entered
string. This makes it easier to filter clipping sets which contain many items
having common prefixes.

You can use the Clippings menu to insert any listed clipping at the insertion point,
or in place of the current selection, by choosing its name in the menu.

You can use the Clippings palette to insert any listed clipping by double-clicking
its name in the window. Alternatively, you can click a clipping’s name to select it
and then click the Insert button, or drag the clipping directly to the desired
location in a document window.

When you insert a clipping, BBEdit always reads the clipping file from disk—if a
clipping’s file is open and has unsaved changes, those changes will not be used.

Assigning Key Equivalents to
Clippings
The Set Shortcut button in the Clippings palette (see page 276) lets you assign
key equivalents for easy access to frequently used clippings. To assign a key to a
clipping:

1 Select the desired clipping in the Clippings palette.

2 Click the Set Shortcut button to activate key entry mode

A highlighted rectangular area will become active to the right of the desired
clipping.

3 Type the desired key equivalent.

You can use any combination of the Command, Shift, Option, and Control
keys in the key equivalent, provided that it must include at least the
Command or Control key to be valid. You can also use function keys, with or
without additional modifiers.

4 Click anywhere within the Clippings palette to end key input.

Note If you try to assign a key equivalent that is already used elsewhere, BBEdit
warns you that there is a conflict and asks you whether you want to reassign
that key equivalent to the new item.
280 Chapter 12: Using Clippings

To remove a key equivalent from a clipping:

1 Select the clipping in the Clippings palette.

2 Click the Set Shortcut button to activate key entry mode.

3 Type the Delete key.

4 Click anywhere within the Clippings palette to end key input.

Clipping Substitution
Placeholders
When you insert a clipping containing a placeholder into an editing window,
BBEdit replaces the placeholder with appropriate substitution text. This is similar
to the operation of BBEdit’s HTML Templates and Update features. The
following table shows the placeholders you can use in a clipping:

Placeholder Replaced by…

#BASENAME# The name
of the file stripped of its rightmost period-
delimited portion. For example, if the file is
named “test.html”, the base name is “test”,
while if the file is named “test.foo.html”, the
base name is “test.foo”.

#BLOCK# Inclusion of this placeholder guarantees that the
inserted text will begin and end with a line
break.

#CLIPBOARD# Contents of the current clipboard

#DATE# Current date, formatted according to your
Format settings in the International panel of the
System Preferences

#DATETIME XXX# Inserts a localized, region-aware date whose
format is specified by the ICU format string XXX
(see “Date Formats” below)

#DATETIME_GMT
XXX#

Inserts the universal, region-aware date whose
format is specified by the ICU format string XXX
(see “Date Formats” below)

#FILE# File name of the document into which the item
is inserted

#FILE_EXTENSION# The filename extension for the file (determined
as the rightmost period-delimited portion of the
filename, without the period). For example,
whether the file is named “test.html” or
“test.foo.html”, the filename extension is
"html".

#FUNCTION# If the item is being inserted into a source file,
the name of the current function
Clipping Substitution Placeholders 281

#GMTIME YYY# The current GMT time formatted according to
the parameters YYY (see “Time Formats” below)

#INDENT# When used in a clipping with multiple lines,
causes every line after the first to be indented
to the same whitespace level as the line in
which the item was inserted (see the supplied
WML clippings for examples)

#INLINE# Strips all trailing vertical white space from the
item before insertion

#INSERTION# Marks the place where BBEdit will place the
insertion point after inserting the item; if
multiple #INSERTION# placeholders are used,
the second and subsequent occurrences are
replaced with a placeholder “<##>”, which can
be used with Go to Next/Previous Placeholder in
the Go menu

#LOCALTIME YYY# The current local time formatted according to
the parameters YYY (see “Time Formats” below)

#LOCALE# This is the “short” locale code corresponding to
the “Language” option in the New HTML
Document dialog box, e.g. ‘en’, ‘de’, ‘x-klingon’,
and the like.

#NAME# The long name of the active user account.
(There is no intrinsic placeholder for the short
name, but you can use #inline##system
whoami# to obtain it.)

#PLACEHOLDERSTART
#label#PLACEHOLDER
END#

Inserts a placeholder “hop” point which you can
go to by using Next/Previous Placeholder.

#SCRIPT filename# Result of running the specified AppleScript

#SELECT# Selected text

#SELECTIONORINSER
TION#

If there was a selection when the clipping was
expanded, it will be put at this position;
otherwise, the insertion point will remain here.

#SELECTIONORPLACE
HOLDER label#

If there is an active selection, the placeholder
will be replaced with the selected text.

If there is no selection, a placeholder named
with the specified text (“label”) will be inserted
into the document.

This placeholder is particularly useful when
building clippings for insertion via both BBEdit’s
auto-completion mechanism and the clippings
palette (or direct key equivalent).

#SELSTART#
and
#SELEND#

Mark a range within the inserted material to be
selected after the insertion. You can use
multiple pairs of these placeholders within a
single clipping.

Placeholder Replaced by…
282 Chapter 12: Using Clippings

Placeholders are not case-sensitive. If you want to include a literal placeholder in
a clipping, escape the first # with a backslash, as in \#DATE#.

Note BBEdit no longer supports and will ignore the old expert preference key
“ClippingsIgnoreTrailingReturns”. Instead, use the #INLINE placeholder to
ensure that BBEdit ignores any trailing line breaks within a clipping item.

Selection and Insertion Placeholders
You can use multiple #SELSTART#/#SELEND# pairs together with any number
of #INSERTION# placeholders.

Example:

Suppose you have defined the following clipping which contains an insertion
placeholder:

typedef struct #SELECT#

{

#INSERTION#

} #SELECT#, *#SELECT#Ptr, **#SELECT#Handle;

If the selected text in your editing window is “MyStruct” and you insert this
clipping, BBEdit will insert the following in the editing window:

typedef struct MyStruct

{

|

} MyStruct, * MyStruct Ptr, ** MyStruct Handle;

(where the vertical bar marks the position of the insertion point).

Example:

#SYSTEM
shell_script#

Given the full path to a shell command or script,
BBEdit will run that command or script and
insert the result.

#TIME# Current time, formatted according to your
Format settings in the International panel of the
System Preferences

#UUID# A 128-bit UUID (universally unique identifier),
formed by combining a value unique to the
computer on which it was generated (usually
the Ethernet hardware address) with a value
representing the number of 100-nanosecond
intervals since October 15, 1582

Placeholder Replaced by…
Clipping Substitution Placeholders 283

Suppose you have defined the following clipping which contains multiple
pairs of selection placeholders:

MyFancyFunction(#selstart#arg1#selend#,
#selstart#arg2#selend#, #selstart#arg3#selend#);

When you insert this clipping, BBEdit will place the following text in the
editing window:

MyFancyFunction(arg1, <#arg2#>, <#arg3#>);

and the string “arg1” will be selected. You can then use the Go To Next/
Previous Placeholder commands from the Go menu to hop to the other
arguments and enter the desired values.

Jump Placeholder Format
When you apply a clippings item that contains multiple #INSERTION# cookies,
the second and subsequent cookies are replaced with special jump placeholder
strings. These strings have the form “<#...#>” where the content “...” between the
two # signs is either alphanumeric text, or empty.

You can also directly create and insert jump placeholders at any desired points
within a document.

Older versions of BBEdit generated temporary placeholders of the form “#•#” for
clippings containing multiple instances of #INSERTION#. If you have any
existing clippings which directly employ the old placeholder format, you will
need to modify them to use the supported placeholder format.

In addition to jump placeholders, you can also insert “optional” placeholders of
the form <#?#>. When the “Go to Next Placeholder” command would select such
a placeholder, BBEdit will place the insertion point at the specified position and
remove the optional placeholder.

Optional-Argument Placeholder Format
Optional-argument placeholders have the form “<#* ... #>” where the content
“...” between the two # signs is either alphanumeric text, or empty. These
placeholders may be used to represent optional arguments generated during
completion. You can select such placeholders in the usual fashion, but
additionally, if you delete a selected optional-argument placeholder with the
Backspace key, BBEdit will also delete any leading whitespace back to a
preceding comma (if there is one).
284 Chapter 12: Using Clippings

Date Formats
The #DATETIME XXX# and #DATETIME XXX# placeholders allow you to
insert the corresponding date and time values with flexible formatting. In order to
use these placeholders, you must substitute XXX with an ICU date/time format
string. ICU is the mechanism used by Mac OS X for date formatting. For full
details, please refer to the section “Formatting Dates and Times” in the ICU
documentation:

http://userguide.icu-project.org/formatparse/datetime

Examples:

#DATETIME EEE, MMM d, yy 'at' h:mm a#

produces:

Tue, Jul 3, 14 at 5:48 PM

#DATETIME_GMT EEE, MMM d, yy 'at' h:mm a#

produces:

Tue, Jul 3, 14 at 9:49 PM

#DATETIME EEEE 'at' h 'o''clock' a#

produces:

Tuesday at 5 o'clock PM

Time Formats
The #GMTIME YYY# and #LOCALTIME YYY# placeholders offer you the
option to insert the specified time value with flexible formatting.

In order to use these placeholders, you must substitute YYY with a time format
using the same expansion options offered by the ‘strftime’ routine (see ‘man
strftime’ for further details).

Examples:

#LOCALTIME %r %z on %A# produces: 06:50:13 PM -0400 on Monday

#GMTIME %r %z# produces: 10:50:13 PM +0000

Using Scripts in Clippings
The #script filename# placeholder is a powerful option which allows you to insert
variable or conditional content from a clipping, by invoking any compiled
AppleScript or Unix shell script.
Using Scripts in Clippings 285

http://userguide.icu-project.org/formatparse/datetime

The script itself can either be located in the same folder as the clipping that
invokes it (in which case you need only specify its name, such as
“MyDateScript”) or you can supply a full pathname to a script on any mounted
volume in either POSIX or classic Mac format. An instance of a placeholder
referencing the former would be

#script /Users/me/example/folder/Script.scpt#

and an instance referencing the latter would be:

#script Hard Drive:Users:me:example:folder:Script.scpt#

The script must return a text string (or a value that can be coerced to a string).
This result string can itself contain additional clippings placeholders, which will
be interpreted before the item is inserted in the current document.

WARNING Note that this makes it possible for one script to invoke another. You must
take care to not create a script execution loop, which could hang the
application!
286 Chapter 12: Using Clippings

C H A P T E R

13
Scripting BBEdit
BBEdit offers access to nearly all of its features and commands via AppleScript.
This chapter provides a brief overview of AppleScript, discusses BBEdit’s
scripting model, and explains how you can use scripts within BBEdit.

An excellent way to learn how to script BBEdit is to look at the scripts others
have written for it, or to turn on recording in your script editor while you perform
actions in BBEdit. The BBEdit Talk discussion group is also a good resource for
learning more about scripting.

http://groups.google.com/group/bbedit/

IMPORTANT Regardless of whether you are new to scripting BBEdit or are familiar with
scripting previous versions, we strongly recommend that you carefully review the
sections “BBEdit and AppleScript” and “Working with Scripts” in this chapter.

In this chapter
AppleScript Overview . 287

About AppleScript – 288
Scriptable Applications and Apple Events – 288
Reading an AppleScript Dictionary – 289
Recordable Applications – 294 • Saving Scripts – 295
Using Scripts with Applications – 295 • Scripting Resources – 296

Using AppleScripts in BBEdit . 297
Recording Actions within BBEdit – 297 • The Scripts Menu – 298
The Scripts Palette – 299 • Organizing Scripts – 299
Attaching Scripts to Menu Items – 299
Attaching Scripts to Events – 300

BBEdit’s Scripting Model . 305
Script Compatibility – 305 • Getting and Setting Properties – 307
Performing Actions – 308 • Common AppleScript Pitfalls – 313

AppleScript Overview
If you are familiar with AppleScript, you should have little difficulty scripting
BBEdit. It has a robust and highly flexible object model. If you do not know
much about scripting, though, read on for an introduction to the necessary
concepts.
287

http://groups.google.com/group/bbedit/

About AppleScript
AppleScript is an English-like language which you can use to write scripts that automate
the actions of applications, and exchange data between applications. Although
AppleScripts can manipulate applications’ user interfaces by taking advantage of the
system’s GUI Scripting capability, this is not their primary function. Rather, scripts talk
directly to a application’s internals, bypassing its user interface and interacting directly
with its data and capabilities.

If you want to insert some text into a document, emulating a user typing into an editing
window is not the most efficient way of accomplishing this. With AppleScript, you just tell
the application to insert the text directly. If you want the application to save the frontmost
document, you need not mime choosing Save from the File menu, but rather just tell the
application to save its frontmost document.

Note AppleScript is actually a specific language which resides atop the general Open
Scripting Architecture (OSA) provided by Mac OS X. Although AppleScript is by far the
most common OSA language, there are others, including a JavaScript variant. All OSA
languages are capable of accomplishing similar things, although the actual commands
used differ from one language to the next. In this chapter, we will focus exclusively on
AppleScript, since it is the standard scripting language, but you should bear in mind
that there are other options.

Scriptable Applications and Apple Events
Since AppleScripts must have direct access to an application’s internal data structures, any
application that will be used in an AppleScript must be designed to allow this access. We
say such applications are scriptable. BBEdit is scriptable, as are many, many other
programs. However, it is important to note that not every application is scriptable, and
AppleScripts are not the best solution for automating applications that are not.

What goes on in an application that is scriptable? The foundation of AppleScript is
something called the Apple Event. Macintosh applications are designed around an event
loop; they go around in circles waiting for you, the esteemed user, to do something (choose
a menu command, press some keys, and so on). These actions are passed to the application
by the operating system in the form of an event. The application decodes the event to figure
out what you did, and then performs an appropriate operation. After an event has been
handled, the application goes back to waiting for another one. (At this point, the Mac OS
may decide to give some time to another application on your computer.)

Apple Events are special events that applications send to each other, enabling a feature
called inter-application communication (IAC). (It’s a mouthful, but it just means
applications can talk to each other.) Apple Events are also the way AppleScripts tell
applications what to do, and which data to retrieve. So to be scriptable, an application must
first support Apple Events.

Apple Events in their naked form are raw and cryptic things—bits of hieroglyphics only a
programmer could love. So a scriptable application also has a scripting dictionary. The
scripting dictionary tells any application that lets you write AppleScripts, such as the
standard Script Editor, the English-like equivalent for each Apple Event and each event’s
parameters.
288 Chapter 13: Scripting BBEdit

It is important to note that because Apple Events were originally designed to allow
applications to communicate with each other, AppleScripts automatically inherit the ability
to talk to more than one application. It is common in the publishing industry, for instance,
to write scripts that obtain product information from a FileMaker Pro database and insert it
into an InDesign file. This integration is one of the Macintosh’s primary strengths.

You use AppleScript’s tell verb to indicate which application you are talking to. If you are
only sending one command, you can write it on one line, like this:

tell application "BBEdit" to count text documents

If you are sending several commands to the same application, it is more convenient to write
it this way:

tell application "BBEdit"
count text documents
repeat with x from 1 to the result

save text document x
end repeat

end tell

The Script Editor automatically indents the lines inside the tell block for you so you can
more easily follow the organization of the script.

Reading an AppleScript Dictionary
To display an application’s AppleScript dictionary, you can simply drag that application
onto the Script Editor icon, or use the Script Editor’s Open Dictionary command. As we
noted earlier, all scriptable applications include a dictionary that tells AppleScript how to
convert English-like commands into the Apple Events actually expected by the application.
The Script Editor uses this same information to display a sort of “vocabulary guide” that
helps you write your scripts.

We will naturally use BBEdit’s dictionary, shown below, to illustrate how to read a
dictionary.

(You will probably want to make the window bigger if you have room on your screen.)
AppleScript Overview 289

Down the left side is a list of every event and object supported by the application. An event
is a verb—it tells the application what to do. A class is a noun: a piece of data, or a
structured collection of data, inside the program. In BBEdit, for instance, classes are things
like files, windows, the clipboard, browsers, and so on.

Suites
The first thing you will notice is that the events and classes are divided into suites. A suite
is just a collection of related events and classes. Apple, for instance, has decreed that all
applications should support particular events, which together are called the Required Suite.
Another Apple-defined suite is the Standard Suite: if an application offers certain functions
which Apple considers to be common, it should use these standard terms, so that scripters
do not need to learn a new term for each application they work with. After that, it is a free-
for-all—each developer is free to organize their events and classes however they think best.

In addition to the Required and Standard suites, BBEdit has a Miscellaneous suite, a
BBEdit Suite, a Text suite, and an HTML Scripting suite.

Within each suite, events—verbs—are displayed in normal text, while classes—nouns—
are italicized. Most commands sent to BBEdit will start with one of the verbs. (In some
cases, get might be implied.)

Events
Let’s look more closely at one of the events—Save is a good one to start with. It is shown
below.

The right side of the window shows the syntax of the selected event, as well as a brief
description of its function. The boldface words are keywords; they must be included
exactly as shown or the script will not compile. The normal text tells you what kind of
information goes after each keyword. For example, after save you must give a reference;
the italicized comment next to that line indicates that it is a reference to the window to be
saved. In other words, some window object, which in BBEdit would be window 1 for the
frontmost window, or window "Text File" if you want to specify a window by name. (we
will show you how to figure all that out in a moment—you have to look at the window
class’s dictionary entry.)
290 Chapter 13: Scripting BBEdit

Anything in square brackets is optional. Most of the rest of the save event is optional, in
fact. The basic event just saves the frontmost window to the same file from which it was
opened. However, you can also optionally include the word to followed by a file reference.
(You specify a file simply by using the word file followed by the path name of the file, as in
file "Hard Disk:Users:BBSW:Documents:My file".) If you specify a file to save the window
to, the text will be saved into that file instead of the file it came from—like using Save As
instead of Save.

The last three optional parts of the save event are denoted as boolean. That means they take
either a true or a false value. In AppleScript, there are a couple of different ways to specify
boolean values. You can write saving as stationery true to tell BBEdit to save the file as a
stationery document. Or you can write with saving as stationery. You will notice that the
last two parameters default to true if you do not specify them as false. To do that, you
would use add to recent list false or without add to recent list. Whichever way you write it,
you will notice that when you compile the script, AppleScript rewrites it using “with” or
“without”. Since that is the syntax AppleScript seems to like best, that is probably the one
you should get used to thinking in.

Let’s take a look at another one: the prosaic get. Select get from BBEdit’s dictionary listing
and take a quick look at its class definition.You use get to retrieve information from an
application. You must specify a reference to the object you want to retrieve, and you can
specify a coercion—a condition that tells AppleScript to treat one type of data as if it were
another—by adding the as clause. However, after that is the Result: line, which we have not
seen before. This line tells you what type of value the command returns. (This value is
placed in the AppleScript system variable called the result.) Get can retrieve any kind of
object, so it can return anything, as indicated here. Other events might return a specific type
of result, or none at all. (Save did not have a Result: line in its dictionary entry, which
means it does not return a result.)
AppleScript Overview 291

Classes and the Class Hierarchy
Let’s look at a typical class definition: window will do nicely. It is in the BBEdit Suite,
toward the bottom.

All windows in BBEdit belong to this class. A class defines a particular kind of object; a
particular example of an object belonging to the class is said to be an instance of that class,
or just an object of that class. So here we are looking at the class itself; each individual
window object has all these properties.

After a tag line that tells you about the class (“an open window”) comes the plural form.
AppleScript lets you refer to windows either singly or as a group, so it needs to know what
the plural of every term is. For example, try this little script:

tell application "BBEdit" to count windows

The result of this script is the total number of window objects currently displayed by
BBEdit.

After the plural form comes a list of properties. Some objects do not have properties—for
example, a string—but many applications do. An object’s properties are merely a collection
of data that describes that particular object. For example, as you look down the list of
window properties, you will see that every window has a name, every window has a
position, every window has bounds (the area of the screen it covers), and so on.
292 Chapter 13: Scripting BBEdit

The first item on the list, though, is <inheritance> item. This tells you that a window is a
kind of item, and that it therefore has all the properties of an item. Take a quick look at
item’s class definition, shown below.

You will see three properties: properties, ID, and container. The first entry properties is a
record containing all the object’s properties. In other words, because a window is an item, it
has, in addition to all its listed properties, another property which returns all the other
properties as a record—a single piece of data that can be stored in a variable. Every class in
BBEdit is part of a hierarchy with the item class at the top, so every object in BBEdit
“inherits” the properties property. This catch-all property can be handy for making exact
duplicates of objects, among other uses.

You may realize that BBEdit has several kinds of windows; you can see their classes listed
in the dictionary: differences window, disk browser window, project window, text window,
tool window, and the like. Let’s look at text window:
AppleScript Overview 293

You can see that a text window inherits all the properties of the window class. And, since
the window class inherits all the properties of the item class, this means that the text window
class also has the properties property defined by the item class.

To make explicit what you might have already gathered, classes in AppleScript form a
hierarchy. That is, classes can be based on other classes. Such a class is called a subclass,
and the class on which a subclass is based is referred to as its parent class. (In AppleScript,
classes can only have one parent. Multiple inheritance is a feature found in more complex
languages.)

The idea of a class hierarchy makes it easier for us to add new features to BBEdit, since
when we want to create a new kind of window, half the work is already done. However,
when scripting, you may need to flip back and forth between two or more class definitions
to find all the properties of the object you are working with. (This is, technically speaking,
a limitation of Apple’s Script Editor. There is no reason the inherited properties could not
automatically be included in a subclass listing by a smarter editor, for example, Script
Debugger, which does this.)

Now that we have the class hierarchy under control, let’s look at the properties themselves
more closely. we will stick with the text window class at this point.

Properties of an object are referred to using the preposition of. For example, the following
line of script returns the font of the frontmost text window.

tell application "BBEdit" to get display font of
text window 1

Note In this specific example, you can just write get display font of window 1. AppleScript
will figure out that window 1 is more specifically a text window, and therefore has a
display font property, even though the generic window class does not have any such
property. All the properties of the object are available even if you did not use its
specific class name. However, in most cases, you should specify exactly the object you
want; this distinction is especially important when dealing with text documents
(content) versus text windows (display elements).

You can set the properties using the set event, like so:

tell application "BBEdit" to set display font of text
window 1 to "Courier New"

Let’s go back to the window class for a moment. Most of the properties of this class are
marked with the abbreviation [r/o]. That stands for Read-Only. In other words, you can
only get these properties, not set them.

Recordable Applications
Once an application accepts Apple Events, it actually makes a good deal of sense for an
application to be designed in two parts: the user interface that you see, and the “engine”
that does all the work. (An application designed this way is sometimes said to be factored.)
The user interface then communicates with the engine via Apple Events.

The design of the Apple Event system makes it possible to “record” events into a script.
This feature not only lets you automate frequently performed tasks with little hassle, it also
can be an enormous aid in writing larger and more complicated scripts, because the
application tells you what events and objects to use for the kind of task you record.
294 Chapter 13: Scripting BBEdit

Because of the important recording functionality they enable, applications that have been
factored and use Apple Events to let the two halves communicate are said to be recordable.
It is important to note that not all scriptable applications are recordable.

Saving Scripts
Any AppleScript can be saved in what’s called a compiled script file. A compiled script file
contains the actual Apple Events; by generating these events when you save the file, the
operating system does not have to convert your English-like commands into events each
time you run the script, which means it loads faster. When double-clicked in the Finder, a
compiled script file automatically opens in the Script Editor, where it can be run. A script
can also be saved as a stand-alone application, or applet, in which case double-clicking the
script’s Finder icon automatically runs the script. Both types of files can be saved with or
without the English-like source code; if you save it without the source code, other users
you give the script to will not be able to make any changes to it (of course, you should also
keep a copy of the script with the source for yourself).

Using Scripts with Applications
Although you can place a script applet in the global Scripts menu, or in any folder, and use
it any time you need it, many applications (including BBEdit) provide a special menu that
lets you launch compiled scripts intended specifically for use with that one application.
Since you do not have to save them as applets, they take up less disk space and launch more
quickly. They also show up only in the application you use them with, rather than cluttering
your global Scripts menu.

Some applications go even further, allowing you to define scripts to be run when certain
things happen in the program. For example, an application might let you define a script to
be executed when the user chooses any menu item. The script might then perform some
pre-processing, and then exit by telling the application whether to continue with the menu
command or to cancel it. As a simple example, a script might check to see what printer is
selected when the user chooses the Print command. If it is the expensive color dye-
sublimation printer, on which printing a page costs several dollars, the script could remind
the user of that fact and confirm their intention (through an alert) before continuing with
the print operation.

An application that supports such a feature (or any method of integrating user-written
scripts seamlessly into its user interface) is said to be attachable, because the scripts
become “attached” to the features of the program. (BBEdit is attachable; more details about
using this feature are provided later in this chapter.)
AppleScript Overview 295

Scripting Resources
Covering all the details you might need to write your own AppleScripts is not something
we can reasonably do in this manual. AppleScript, despite its deceptively simple English-
like syntax, is a sophisticated object-oriented language with many subtleties. For this
reason, we suggest you consult supplemental documentation and resources if you are a
beginning scripter.

A good place to start is with someone else’s script: find a script that does almost what you
want it to and repurpose it. Even if you cannot find a script that does anything close to what
you want, reading others’ scripts is a good way to learn how AppleScript “thinks” and how
BBEdit’s particular AppleScript implementation behaves.

In addition to the basic AppleScript documentation included with the system, you may find
the following resources useful in your quest to understand scripting.

Books
AppleScript: The Definitive Guide (Second Edition), Matt Neuberg. O’Reilly and
Associates, 2006. ISBN: 0-596-10211-9

Discussion Groups

BBEdit Talk
 http://groups.google.com/group/bbedit
The BBEdit Talk discussion group is an excellent place to ask BBEdit-specific scripting
questions.

Mac Scripting
http://listserv.dartmouth.edu/scripts/wa.exe?A0=MACSCRPT
Unofficial list covers AppleScript and other Macintosh scripting languages, with
occasional forays into peripheral topics.

Web Sites

AppleScript: The Language of Automation
http://www.macosxautomation.com/applescript/

MacScripter.Net
http://macscripter.net/
A good selection of AppleScript-related news and topics, including the “AppleScript FAQ”
and discussion forums.

ScriptWeb
http://www.scriptweb.com/
This site covers all scripting languages, not just AppleScript. Also, it has an extensive
directory of scripting additions.
296 Chapter 13: Scripting BBEdit

http://www.macosxautomation.com/applescript/
http://groups.google.com/group/bbedit
http://listserv.dartmouth.edu/scripts/wa.exe?A0=MACSCRPT
http://www.oreilly.com/catalog/applescpttdg/index.html
http://macscripter.net/
http://www.oreilly.com/catalog/aplscptian/
http://www.scriptweb.com/

Software

Script Debugger
http://www.latenightsw.com/
Despite its name, Script Debugger is more than a debugger; it is actually an enhanced
replacement for Apple’s Script Editor, featuring variable monitoring, step/trace debugging,
an object browser for an application’s objects, and much more.

Using AppleScripts in BBEdit
BBEdit has been scriptable for years, and we have continually worked to refine its level of
scripting support. In addition to providing extensive script access to its commands and
data, BBEdit is both attachable and recordable.

This section describes how you can create and employ AppleScripts within BBEdit via
recording and BBEdit’s various scripting facilities, while the following section covers
BBEdit’s scripting commands and other issues related to preparing scripts for use.

Recording Actions within BBEdit
Any language is easier to read than to write, easier to understand than to speak. AppleScript
is no different. That’s because, even though all the commands it uses are English words
arranged in ways that more or less make grammatical sense, you still have to know (or find
out from the application’s dictionary) exactly which words to use, and what order they
should go in. But it is easy to get started making scripts by recording them.

First, launch both BBEdit and the Script Editor.

When you launch the Script Editor, a new, blank script window appears. Click the Record
button, circled in the illustration below.
Using AppleScripts in BBEdit 297

http://www.latenightsw.com/

Now switch to BBEdit and perform your task. Remember that the Script Editor is recording
everything you do in every recordable application you are running, not just BBEdit. If you
do something in the Finder, for instance, that will get recorded too. Since almost everything
you do is recorded, remember that if you make an error, and then Undo it, your recorded
script will faithfully make the same mistake and undo it when you run it later. It will be
possible to fix minor errors later, but things always go more smoothly if you do not make
any mistakes, so take your time and try to do it right the first time.

Now switch back to the Script Editor and click the Stop button. After a brief pause, your
script is compiled and ready for use. Try clicking the Run button to see it work. (It might
not work correctly. If you recorded a search and replace operation changing every “cat” to
“dog”, you already changed the document while recording the script, and of course the
script will not do anything when you run it.)

Finally, save the script in the BBEdit Scripts folder so that it shows up in BBEdit’s script
menu. Choose Save As from the File menu, and then use the Script Editor’s Save dialog to
put the script in your BBEdit Scripts folder. Now try selecting it from the script menu in
BBEdit.

The Scripts Menu
The Scripts menu (left) in BBEdit’s menu bar contains several commands. It also lists all
AppleScripts (as well as Automator actions, text factories, and Unix scripts) present in the
Scripts folder within BBEdit’s application support folder, providing a quick way to access
frequently used scripts. You can place scripts within subfolders (up to 4 levels deep) of the
Scripts folder to organize them.

Note AppleScripts written for use in as BBEdit filters or scripts should be saved as compiled
(data fork) script files, not script applications.

In addition to the list of available scripts, the Scripts menu provides the following
commands.

Open Script Editor
Choose this item to switch to the system’s default AppleScript editor. If the script editor is
not running, BBEdit launches it.

Open Scripting Dictionary
Choose this item to switch to your preferred AppleScript editor and open BBEdit’s
scripting dictionary for viewing. If the script editor is not running, BBEdit launches it.

Open Scripts Folder
Choose this item to open the Scripts folder which is located within BBEdit’s application
support folder. (See “Scripts” on page 33.)

Running and Editing Scripts
Choose the item corresponding to any script to run that script. Hold down the Option key
when choosing a script item to have BBEdit open the script for editing in your preferred
script editor, or hold down the Shift key when choosing a script item to have BBEdit reveal
the script file in the Finder. If you choose a folder node rather than a script item, BBEdit
will open the corresponding folder in the Finder.
298 Chapter 13: Scripting BBEdit

The Scripts Palette
The Scripts command, located in the Palettes submenu of the Window menu, opens a
palette listing all available scripts. Names that are too long to fit within the width of the
window are truncated with ellipses (…).

“Hovering” the mouse over such a truncated name displays a tool tip showing the full
name. If you hold down the Option key, the tool tip will appear instantly, with no hovering
delay. Names that fit entirely within the window without truncation do not display a tool
tip.

Organizing Scripts
Items in the Scripts menu and Scripts palette are displayed in alphabetical order by default,
but you can force them to appear in any desired order by including any two characters
followed by a right parenthesis at the beginning of their name. (For example “00)Save All”
would sort before “01)Close All.”) For names of this form, the first three characters are not
displayed in the window.

You can also insert a divider into the Scripts menu by including an empty folder whose
name ends with the string “-***”. (The folder can be named anything, so it sorts where
you want it.)

Note Any dividers you add will appear in the Scripts menu, but not the Scripts palette.

Attaching Scripts to Menu Items
BBEdit lets you attach scripts to menu items. By this, we mean that you can write scripts
that BBEdit automatically calls before or after performing a menu command. For example,
if you want BBEdit’s Open from FTP/SFTP Server command to launch your favorite FTP
client, you can simply attach a script to that menu item. Scripts can return a value that tells
BBEdit whether to continue with the command that was selected, or to cancel the operation
(in which case only the script is executed).

Scripts attached to BBEdit menu items must be stored in the Menu Scripts folder of
BBEdit’s application support folder. These files should be compiled scripts, not script
applications. Scripts are named to indicate which menu item they go with: first the name of
the menu (or the submenu) upon which the item is immediately located, then a bullet “•”
(Option-8) character, then the name of the menu item. For example, to attach a script to the
Open from FTP/SFTP Server menu item, you would name it “File•Open from FTP/SFTP
Server”, while to attach a script to the New Document menu item, you would name it
“New•Text Document”.

Some of BBEdit’s menus have icons rather than names. BBEdit uses the following names
for its icon menus: “#!” [the ‘Shebang’ menu], “Compiler”, and “Scripts”. Furthermore, the
New With Stationery submenu is named “Stationery” for purposes of attachability.

When you choose a menu command which has an attached script, BBEdit will pass the
menu name and command (item) name to the script’s MenuSelect handler, if it has one. If
the script contains no MenuSelect handler, BBEdit executes the script’s run handler.
Using AppleScripts in BBEdit 299

The script’s MenuSelect handler can tell BBEdit to skip performing the chosen command
by returning “true”, or have it continue on and perform the command by returning “false”.
If MenuSelect returns “false”, BBEdit will call the script’s PostMenuSelect handler, if it
has one, after it performs the menu command.

Here is a simple example, which adds a confirmation dialog to the Save command
(addressed as “File•Save”). Note that we test the menu and item names to make sure the
script is attached to the Save command—if it is attached to some other command, it does
nothing.

on menuselect(menuName, itemName)
if menuName = "File" and itemName = "Save" then
set weHandledCommand to true
display dialog "Are you sure you want to save?" ¬
buttons {"No", "Save"} default button 2
if button returned of the result is "Save" then
-- the application should do its work
set weHandledCommand to false
else
-- we handled the command, app does no work,
-- postmenuselect doesn't get called
display dialog "The document was not saved." ¬
buttons {"OK"} default button 1

end if
return weHandledCommand

end if
end menuselect

on postmenuselect(menuName, itemName)
-- this is called after the application has processed
-- the command
display dialog "The document was saved." ¬
buttons {"OK"} default button 1

end postmenuselect

Attaching Scripts to Events
IMPORTANT BBEdit offers script attachability, which means you are not limited to menu commands but

can attach scripts directly to the app which will take effect whenever selected application
and/or document events occur.

To access these events, your attachment scripts must contain function names which
correspond to the names of the events’ attachment points. Except when otherwise noted, all
of the following considerations apply:

• Every function takes a single argument which is a reference to the object in
question: the application for application entry points, or the document being
opened/closed/saved/etc for document entry points.

• Any function associated with an attachment point whose name contains ‘should’
must return a Boolean result: ‘true’ or ‘false’. If it returns ‘true’, the operation will
continue. If it returns ‘false’ or throws an error (see below) then the operation will
be cancelled. So, for example, ‘applicationShouldQuit’ returning ‘true’ will allow
the application to quit; returning ‘false’ will not.
300 Chapter 13: Scripting BBEdit

• If an attachment script causes a scripting error and does not handle it within the
script itself, BBEdit will report the error. In the case of functions which are used to
allow a ‘should’ action, this will prevent the action from occurring.

Here are the available attachment points:

Application attachment points
• applicationDidFinishLaunching: called when the application has completed

startup.

• applicationShouldQuit: called when you choose the Quit (or the application
receives a ‘quit’ event for any other reason).

• applicationDidQuit: called when the application has finished shutting down and is
about to exit.

• applicationDidSwitchIn: called when BBEdit has been brought to the foreground.

• applicationWillSwitchOut: called when BBEdit is being put into the background.
You could use this (for example) to save outstanding changes to the front
document.

NOTE You should avoid using ‘show dialog’ or similar verbs during applicationWillSwitchOut,
because that will leave you with something on screen until you switch back to BBEdit
(and in the event you have also defined an attachment for applicationDidSwitchIn,
that will likewise run so you'll really be in the soup).

Document attachment points
• documentDidOpen: called when a document has been opened and is ready for use.

(Since BBEdit supports multiple types of documents, your script should allow for
the argument to be a document of any type.)

• documentShouldClose: called when the application is preparing to close a
document.

• documentDidClose: called when the application has closed a document.

• documentShouldSave: called when the application is trying to determine whether a
given document should be saved.

• documentWillSave: called when the application is about to begin saving a
document. (note that this will only be called after a successful return from a
‘documentShouldSave’.

• documentDidSave: called after a document has been saved successfully.

• documentWillUnlock: called when BBEdit is going to make a document writeable.
(For example, when you click the pencil to unlock a document)

• documentDidUnlock: called when BBEdit has successfully made a document
writeable.

• documentWillLock: called when BBEdit is going to make a document read-only.

• documentDidLock: called when BBEdit has successfully made a document read-
only.
Using AppleScripts in BBEdit 301

Using Attachment Scripts
Scripts attached to events must be stored in the “Attachment Scripts” folder of BBEdit’s
application support folder (see page 31).

You can write one script to handle each attachment point, or one script to handle the
attachment points for an entire class of objects, or one script to handle all of the attachment
points for the entire application.

You can also mix and match scripts to meet specialized needs: for instance, by using one
script to implement a particular attachment point for documents, and a second script to
handle the remaining attachment points.

BBEdit associates scripts to attachment points by means of the script’s file name. There are
three ways to specify a script’s role:

1 <ObjectClass>.<entryPoint>

2 <ObjectClass>

3 <ApplicationName>

The first form is the most specific: the ‘ObjectClass’ may be either “Application” or
“Document”, while the ‘entryPoint’ is one of the attachment points described above
appropriate to that object class.

For example, a script which implemented only the documentDidSave attachment point
should have the name “Document.documentDidSave.scpt” and contain a subroutine named
‘documentDidSave’, thus:

on documentDidSave(myDoc)

-- do something useful and appropriate

end documentDidSave

Note Adding the filename suffix ‘.scpt’ is not mandatory, but you should follow the current
system conventions suggested when creating scripts with the AppleScript Editor (or
any other script editor such as Script Debugger).

The second form allows you to implement all of the attachment points for a single object
class in a single script file, if desired.

For example, you could create a script named “Application.scpt” containing subroutines for
as many of the application attachment points as you wish:

on applicationDidFinishLaunching

-- do something relevant

end applicationDidFinishLaunching

on applicationShouldQuit

-- hello world

return (current date as string contains “day”)

end applicationShouldQuit
302 Chapter 13: Scripting BBEdit

Likewise, to implement all of the attachment points for the Document class, you could
create a script named “Document.scpt”, and put subroutines in it for the document
attachment points:

on documentDidSave

-- do something relevant

end documentDidSave

...

on documentWillClose

...

end documentWillClose

The third form allows you to write a single all-encompassing script which contains
subroutines for all of the attachment points in the application. To do this, name the script
“BBEdit.scpt” and include whatever subroutines you wish to implement. For example:

on applicationShouldQuit

-- hello world

return (current date as string contains “day”)

end applicationShouldQuit

on documentWillClose

...

end documentWillClose

When figuring out which script to run, BBEdit will first look for a script whose name
exactly matches the attachment point, e.g. “Document.documentShouldSave.scpt”. If there
is no such script, BBEdit will then look for a script whose name matches the object class at
the attachment point, e.g. “Document.scpt”. Finally, if there are no scripts with either an
exact or a class match, BBEdit will look for an application-wide script: “BBEdit.scpt”.

Note You do not have to implement attachment subroutines for all attachment points, or
for all classes—only the ones you need. If there is no attachment script or subroutine,
BBEdit proceeds normally.
Using AppleScripts in BBEdit 303

Using an Attachment Script to Perform Authenticated Saves
BBEdit supports a special attachment point for the Document class:
documentShouldFinalizeAuthenticatedSave. This attachment point will be called whenever
an authenticated save is necessary (for text documents only).

The following sample script illustrates how to use this facility (the comments are
important, so please read them!):

on documentShouldFinalizeAuthenticatedSave(theDocument,
tempFilePath, destinationPath)

-- on input: tempFilePath points to the contents
-- of the document written to a temp file, ready
-- to move to the destination; destinationPath is
-- where the file should be copied.

-- on exit: if the operation succeeded, delete the
-- temp file (or else the application will assume
-- the operation failed) and return YES for success

-- this is pretty straightforward:
-- "cp tmpFilePath destinationPath"

do shell script "cp" & " " & quoted form of tempFilePath
& " " & quoted form of destinationPath with administrator
privileges

-- now remove the temp file, this indicates to
-- the application that we did the work

 do shell script "rm" & " " & quoted form of tempFilePath

return true

end documentShouldFinalizeAuthenticatedSave

Filtering Text with AppleScripts
The Text Filters folder in BBEdit’s application support folder contains executable items,
such as compiled AppleScripts, Automator workflows, and Unix filters, which you may
apply to the active document via the Apply Text Filter submenu of the Text menu, or to the
contents of the clipboard via the Paste Using filter submenu of the Edit menu.

When you apply such an item, BBEdit will pass either the selected text (or the contents of
the active document, if there is no selection) as a reference to a ‘RunFromBBEdit’ entry
point within your AppleScript, and your script should return a string which BBEdit will use
to replace the selected text (or the contents of the document). If your script does not contain
a ‘RunFromBBEdit’ entry point, BBEdit will call its run handler, again passing a reference
to the current selection range.
304 Chapter 13: Scripting BBEdit

BBEdit’s Scripting Model
This section provides a high-level overview of BBEdit’s scripting model that will, where
appropriate, contrast the current scripting framework against older versions of BBEdit, and
suggest how you can modify your existing scripts for compatibility.

IMPORTANT Because BBEdit’s scripting dictionary changes whenever we add features, it should be
considered the definitive reference in any situation where it and this document differ. We
have found Script Debugger from Late Night Software to be an excellent tool for browsing
and navigating BBEdit’s scripting dictionary, as well as for preparing and testing scripts.

http://www.latenightsw.com/

Script Compatibility
Since BBEdit’s scripting model has changed over time, scripts prepared for much older
versions may need revision in order to work properly. For example, since BBEdit allows
multiple documents to be open within a single text window, you may need to revise
existing scripts which presume documents and windows are identical.

Distinguishing Between Script Elements
Because different applications handle different types of data, you should be aware that the
actual data, or the interface items, referred to by a particular name may not be consistent
from application to application. The following sections describe how several common
elements are handled in BBEdit.

Applying Commands to Text
Since BBEdit supports opening multiple documents within a single text window, all
scripting commands which operate on text must specifically target the text contents of a
window, or a document within that window, rather than the window itself.

For example, you may use:

count lines of text of text window 1

or:

count lines of active document of text window 1

but not:

count lines of window 1

Documents vs. Windows
In substantially older versions of BBEdit, the object classes document and window could be
used interchangeably, and generally had the same properties listed in the scripting
dictionary. This is no longer the case.

The class window corresponds to a window (of any type—text or otherwise) on screen, and
thus the properties of the window class refer strictly to properties of a window on screen. If
a document is associated with a window, the document is accessed as the document
property of the window:

document of text window 1
BBEdit’s Scripting Model 305

http://www.latenightsw.com/
http://www.latenightsw.com/

The class document refers to a document, and as with a window, the document’s properties
pertain strictly to the condition of a document (that is, something that can be saved to disk
and opened later). Note that this does not mean a document must be saved to a file, only
that it could be.

As a rule, documents and windows are associated with each other, but it is important to
remember that there is not a one-to-one correspondence between windows and documents.
For example, the About box is a window which has no document associated with it.
Furthermore, in current versions of the application, there is no such thing as a document
with no associated window.

Here is a general overview of the object classes used in BBEdit:

Classes of Windows

• window: the basic window class contains properties that can be fetched and set for
any window on screen: position, size, and so forth.

• palette: the palette class refers to windows that float above all others on the screen;
the HTML tools palette, scripts list, and so on.

• text window: the text window class provides properties which are specific to text-
editing windows as on-screen entities. These properties pertain mostly to the
display of text in the window: show invisibles, auto_indent, and so on. In addition
to the text-editing-specific properties, the basic window properties are also
accessible.

• project window: provides a way to reference windows corresponding to open
projects. A group window does not present any properties beyond the basic
window class, but provides a way to differentiate project windows from other types
of window.

• disk browser window: provides a way to reference windows corresponding to open
disk browsers. A disk browser window does not present any properties beyond the
basic window class, but provides a way to differentiate disk browser windows from
other types of window.

• results browser: provides a way to reference results generated by a batch
operation. A results browser does not present any properties beyond the basic
window class, but provides a way to differentiate results windows from other types
of window.

• search results browser: a subclass of results browser, referringspecifically to the
results of a single-file Find All command or a multi-file search.

Classes of Document
As with windows, there are various classes of document:

• document: the basic document class contains properties that apply to any sort of
document: whether it has unsaved changes, the alias to the file on disk, and so on.

• text document: text documents contain information specific to text files opened for
editing in BBEdit.
306 Chapter 13: Scripting BBEdit

• group document: refers to a document corresponding to an open project. A project
document does not present any properties beyond the basic document class, but
provides a way to differentiate project documents from other types of document.

• picture document: refers to a document corresponding to an open picture file. A
picture document does not present any properties beyond the basic document class,
but provides a way to differentiate picture documents from other types of
document.

• movie document: refers to a document corresponding to an open QuickTime movie
file. A movie document does not present any properties beyond the basic
“document” class, but provides a way to differentiate movie documents from other
types of document.

• QuickTime document: refers to a document corresponding to an imported
Quicktime image file. A QuickTime document does not present any properties
beyond the basic “document” class, but provides a way to differentiate QuickTime
documents from other types of documents.

“Lines” and “Display_lines”
The “line” element refers to a “hard” line, that is, a stream of characters that begins at the
start of file or after a line break, and which ends at the end of file or immediately before a
line break. This is consistent with the semantics of “line” in hard-wrapped documents, and
these semantics also apply within soft-wrapped documents.

The “display_line” element refers to a line of text as displayed on screen (bounded by soft
and/or hard line breaks).

The “startLine” and “endLine” properties of a text object always refer to the “hard” start
and end of lines. In other words, if a text object crosses multiple soft-wrapped lines, the
startLine and endLine properties will be the same.

Both “startDisplayLine” and “endDisplayLine” properties are part of the text object class.
These serve the same purpose as the startLine and endLine semantics for soft-wrapped
views in older versions of BBEdit.

Getting and Setting Properties
One significant improvement in BBEdit’s new scripting framework is the ability to get and
set multiple properties of an object with a single scripting command. Every object has a
property called properties. This property returns a record which contains all of the
properties which can be fetched for that object. For example, the script command

properties of text window 1

will return a result like this one:

{{id:55632400, container:application "BBEdit", bounds:{31, 44,
543, 964}, closeable:true, collapsed:false, index:1,
modal:false, file:alias "Hard
Disk:Users:Shared:doc_examples:index copy.html", modified:false,
name:"index copy.html", position:{31, 44}, resizable:true,
selection:"", contents:"..."}
BBEdit’s Scripting Model 307

Conversely, to set one or more properties at once is very easy:

set properties of text window 1 to { show invisibles: true, show
spaces : true, soft wrap text : true }

Only the properties specified will be changed. The rest will not be modified.

It is important to note that when setting properties in this fashion, you can only set
modifiable properties. If you attempt to set any read-only properties, a scripting error will
result:

set properties of text window 1 to { show invisibles: true,
modal: false, expand tabs: true }

The above script command will turn on Show Invisibles and then report a scripting error,
since modal is a read-only property.

Performing Actions
The following sections provide basic information on how to perform various common
actions via AppleScript.

Scripting Searches
The ability to script searches presents you with a very powerful tool, since you can prepare
a script which instructs BBEdit to perform a whole series of search or search and replace
operations.

Consider the scripting command below:

tell application "BBEdit"

find "BBEdit(.+)$" searching in document of text window 1 ¬
 options { search mode: Grep } with selecting match

end tell

In substantially older versions, the find command always operated on the front window. In
BBEdit 12, however, you must explicitly specify the text to be searched, either by
specifying an explicit tell target, or by supplying a searching in parameter. So the following
scripts are equivalent:

tell application "BBEdit"
 find "BBEdit" searching in document of text window 1
end tell

and

tell application "BBEdit"
 tell document of text window 1
 find "BBEdit"
 end tell
end tell
308 Chapter 13: Scripting BBEdit

Note that either the tell-target or the searching in parameter must resolve to something that
contains text. As a shortcut, you can specify a window, and if the window contains text, the
search can proceed. You can also specify a text object:

find "Search Text" searching in (lines 3 thru 5 of document of
text window 2)

Please also bear in mind that the defaults for parameters not specified in the find command
are independent of those visible within the user interface (that is, the Find and/or Multi-File
Search windows).

When performing a find, BBEdit will return a record describing the results of the search.
This record contains a Boolean which indicates whether the search was successful, a
reference to the text matched by the search, and the text string matched by the search.
Given the first example above, the results might look like this (after reformatting for
clarity):

{found:true,
found object:characters 55 thru 60 of text window 1 of
application "BBEdit",
found text:"BBEdit"}

Scripting Single Replaces
To do a single find and replace via AppleScript, you can write:

tell application "BBEdit"

set result to (find "BBEdit" searching in text of ¬
 text window 1 with selecting match)

 if (found of result) then
 set text of (found object of result) to "Replacement"
 end if

end tell

When performing a grep search, you cannot just replace the matched pattern with a
replacement string; the grep subsystem needs to compute the substitutions. The grep
substitution event is provided for this purpose; given a preceding successful Grep search, it
will return the appropriate replacement string. So if you perform a grep search, the script
would look like:

tell application "BBEdit"

set result to find "BBEdit(.+)$" searching in text of ¬
 text window 1 options {search mode:grep}

 if (found of result) then
 set text of (found object of result) to ¬
 grep substitution of "\\1"
 end if

end tell
BBEdit’s Scripting Model 309

Note that when using a backslash “\” character in AppleScript, it needs to be “escaped” by
means of another backslash; thus, in the above example, “\\1” used in the script, will
become the grep replacement string “\1” when passed to BBEdit.

Scripting Multi-File Searches
In BBEdit, a multi-file search is a simple extension of the find scripting command. To
search a single file or folder for all occurrences matching the search parameters, specify the
file or folder as the searching in parameter of the search.

For example, to find all occurrences of “index.html” in a web site, one might use the
following scripting command:

find "index.html" searching in (alias "Files:WebSite:")

Likewise, to find JavaScript line comments:

find "//.+$" searching in (alias "Files:WebSite:") ¬
 options {search mode: Grep}

To search in a single file:

find "crash" searching in (alias "Files:WebSite:index.html")

Scripting the Clipboard
BBEdit has multiple clipboards. These are fully accessible via the scripting interface. Due
to operating system constraints, most clipboard operations require BBEdit to be frontmost.

Here are some examples:

count clipboard

• Returns the number of clipboards supported by the application

clipboard 1

• Returns {index:1, contents:"Files:WebSite:", length:14, is multibyte:false, display
font:"ProFont", display font size:9, style:{plain}}

clipboard 1 as text

• Returns "Files:WebSite:"

clipboard 1 as reference

• Returns clipboard 1 of application "BBEdit"

current clipboard

• Returns the current clipboard as a record (you can coerce it to reference or text or
get individual properties)

To set the text in a given clipboard to literal text:

set contents of clipboard 3 to "foobar"

To set the text in a clipboard to text represented by an object specifier:

set contents of clipboard 3 to selection of window 2
310 Chapter 13: Scripting BBEdit

To copy the contents of one clipboard to another:

set contents of clipboard 5 to clipboard 3

or, to set the current clipboard to the contents of a different clipboard, (thus making it
exportable to the system clipboard):

set current clipboard to clipboard 3 as text

or finally, with even less typing involved:

set current clipboard to clipboard 5

To make any clipboard the current clipboard, select it:

select clipboard 5

Scripting Text Factories
You can apply a text factory to a file via the AppleScript interface. The minimum
invocation is:

apply text factory <file reference> to <reference>

The "to" parameter can be a single reference or a list of references, as for the multi-file
"find" or "replace" events.

Optional parameters include "filter", "saving", "recursion", "text files only", "search
invisible folders", all with the same meanings as in the multi-file "replace" event.

Setting Text Encodings
When specifying the encoding to use for opening or saving a file, you may either use the
encoding’s internet name, or its exact display name (as shown in the Read As popup menu).

For example:

open {file "Hard Disk:Users:Shared:example.txt"} reading as
"Western (ISO Latin 1)"

open {file "Hard Disk:Users:Shared:example.txt"} reading as
"iso-8859-1"

Arranging Documents and Windows
BBEdit provides considerable control for handling windows and documents both directly
and via AppleScript.

Opening Documents
The “open” command supports additional options, which allow you to override your
window handling preferences on a case by case basis:

open aFileList opening in <value>

As in previous releases, <value> may be a reference to an existing text window. However,
you may instead specify “front_window”, “new_window”, or “separate_windows”, which
have the following effect:

• front_window: All files in aFileList are opened in the frontmost text window. (If
there is no text window open, BBEdit will create a new one.)
BBEdit’s Scripting Model 311

• new_window: All files in aFileList are opened into a new text window.

• separate_windows: Each file in aFileList is opened into its own text window.

Moving Documents
The “move”command can be used to move text documents between text windows. For
example:

tell application "TextWrangler"
 if (count of text windows) > 0 then
 select text window 1
 repeat while (count of text windows) > 1
 set ct to count documents of text window 2
 repeat with i from 1 to ct
 move document 1 of text window 2 to text window 1
 end repeat
 end repeat
 else
 beep
 end if
end tell

Referencing Documents
Previously, documents were indexed inside of multi-document windows by their display
order in the sidebar. This meant that “document 1” of the application might not be the
active document, which in turn required scripts to make special provisions to deal with the
presence of multiple documents in a single window.

In order to handle this, BBEdit 8.0 introduced the “active document” property, which you
could always use to specify the currently active document of a given text window. For
example:

active document of text window 1 of application “BBEdit”

Although BBEdit still supports the “active document” property, this is no longer necessary.
Instead, if a text window is frontmost, the following references:

document 1 of application "BBEdit"

document 1 of text window 1 of application "BBEdit"

active document of text window 1 of application "BBEdit"

 all resolve to the same document. The side effect of this change is that if you wish to
access documents within a text window by index, that index is:

a) not related to the visual ordering of documents in the sidebar, and,

b) documents’ indexes may change over time

This situation is effectively no different than handling documents which are contained in
individual text windows, i.e. the index will change over time when you select different
windows. If your script needs to keep a permanent references to a particular document, you
should refer to that document by its id rather than its index.
312 Chapter 13: Scripting BBEdit

Common AppleScript Pitfalls
Here are some things to watch out for when scripting BBEdit with AppleScript.

The Escape Issue
AppleScript uses the backslash character as an escape character. You can use \n or \r to
specify a literal line break or \t to indicate a tab character. More importantly, you can use \"
or \' to include a quote mark or apostrophe in a string that is delimited by quotes or
apostrophes. If you want to specify a literal backslash, you must write \\ i.e. a pair of
backslashes.

That’s not all that confusing until you start writing AppleScripts that call on BBEdit’s
powerful grep searching capability. BBEdit also uses the backslash as an escape character.
If you want to search for an actual backslash in a document, you have to tell BBEdit to
search for \\. However, if you do that in AppleScript, you must keep in mind that
AppleScript will first interpret the backslashes before passing them to BBEdit. To pass one
backslash to BBEdit from AppleScript, you must write two in AppleScript.

So to tell BBEdit to search for a single literal backslash from an AppleScript, you must
write no fewer than four backslashes in the script. Each pair of backslashes is interpreted as
a single backslash by AppleScript, which then passes two backslashes to BBEdit. And
BBEdit interprets those two backslashes as a single one for search purposes. (This
proliferation of backslashes can make your scripts look a bit like a blown-over picket
fence.)

The Every Item Issue
When writing a script that loops through every item of a BBEdit object (for example, every
line of a document), do not do it like this:

repeat with i in every line of text document 1
-- do stuff here...

end repeat

This forces BBEdit to evaluate “every line of document 1” every time through the loop,
which will slow your script significantly. Instead, write

set theLines to every line of text document 1
repeat with i in theLines

-- do stuff here...
end repeat
BBEdit’s Scripting Model 313

314 Chapter 13: Scripting BBEdit

C H A P T E R

14
Working with
Development Tools
This chapter describes how to set up BBEdit to work with development
environments. BBEdit offers a arsenal of capabilities in support of development
tasks, beginning with syntax coloring and function browsing support for
numerous languages, as well as support for Exuberant Ctags. BBEdit also offers
direct integration with the system-supplied Perl, Python, and Ruby environments,
as well as shell scripts and other Unix scripting tools, and with the Subversion and
Perforce source control systems. Additionally, you can invoke BBEdit from the
command-line via optional tools, or employ shell worksheet windows to store and
execute frequently used commands.

In this chapter
Configuring BBEdit for Development Environments . 316

Syntax Coloring – 316 • Ctags for Enhanced Language Support – 316
Switching Between Counterpart Files – 319 • Working with Kite – 319

BBEdit and the Unix Command-Line . 319
Shell Worksheets – 319
Installing the Command Line Tools – 321
The “bbedit” Command Line Tool – 322
The “bbdiff” Command Line Tool – 322
The “bbfind” Command Line Tool – 323
The “bbresults” Command Line Tool – 323

Unix Scripting: Perl, Python, Ruby, Shells, and more! . 325
Using Unix Scripts – 325 • Language Resources – 325
Line Endings, Permissions and Unix Scripts – 326
Configuring Perl – 327 • Configuring Python – 327
Configuring Ruby – 327 • Shebang Menu – 327
Filters and Scripts – 328 • Filters – 329 • Scripts – 330
Additional Notes – 330

Working with Git . 331
Configuring Git – 331 • Command-Line Integration – 331
Git Commands – 331

Working with Perforce . 334
Perforce Commands – 334

Working with Subversion. 336
Configuring Subversion – 336 • Command-Line Integration – 336
Subversion Commands – 336
315

Configuring BBEdit for
Development Environments
By default, BBEdit will display separate menus for Git, Subversion, and Perforce if these
tools are installed on your Mac in their standard locations. You can enable or disable
display of any tool’s menu by checking or unchecking its entry in the Menus & Shortcuts
preference panel.

Note If your svn or p4 clients are installed in a non-standard location, you can either add
them to your PATH, or directly configure BBEdit to use them as described in “Expert
preferences Help page” on page 226.

Syntax Coloring
Syntax coloring is the practice of drawing keywords and other language elements in colors
which differ from the standard text color to add emphasis and improve the readability of
your code. BBEdit offers built-in syntax coloring support for a wide range of programming
languages and other types of structured content. You can adjust BBEdit’s default text colors
or define color schemes in the Text Colors preference panel, or assign a color scheme to a
specific language in the Languages preference panel.

Ctags for Enhanced Language Support
In addition to its native function browsing capability, BBEdit supports the use of
information from ctags ‘tag’ files for navigating source code files. While older versions
used Exuberant Ctags, BBEdit 12’s ‘ctags’ and ‘readtags’ tools are built from a fork of
Universal Ctags:

https://ctags.io

which includes various additions and improvements to ctags generation and language
support. Source for the implementation used by BBEdit is available within the application
package, or from our web site.

http://www.barebones.com/support/develop/ctags.html

Using ctags
BBEdit allows you to generate and use tags files as text completion sources, and will
recognize any tags files associated with your documents.

You may place tags files generated via ‘bbedit --maketags’ in the Completion Sources
folder of BBEdit’s application support folder (see page 31) for use as text completion
sources.

If one or more tags files are found in the same directory as the front document, or in any
parent directory up the chain from the front document, you can employ the ctag
information by selecting a word, and either choosing Find Definition from the Search
menu, or by Control-clicking and accessing the Definitions submenu of the contextual
menu.
316 Chapter 14: Working with Development Tools

https://ctags.io
http://www.barebones.com/support/develop/ctags.html

If you choose Find Definition, BBEdit will use any available ctags information (either from
completion sources or associated with the current document) to find definitions of the
selected word, and open a sheet from which you can choose the desired definitions to view.
Select a definition to open it, or use the Show All button to open a search results browser
showing all of the available definitions.

If you use the contextual menu, the Definitions submenu will contain a list of the available
definitions. Select a definition to open it, or choose Show All to open a search results
browser showing all of the available definitions.

Tag File Discovery
BBEdit does not rely solely on directory scanning to discover tags files but instead uses
Spotlight whenever possible. Thus, any file whose name is “tags” or whose name ends in
“.tags” or “.ctags” (see below) is eligible, and if it resides in the ancestor directory
hierarchy of the document, its symbols will be available for code completion and syntax
coloring. Since “tags” is a filename extension, you can have multiple tags files available for
the same directory hierarchy, e.g. “Mac OS X 10.12 SDK.tags” and “Project Sources.tags”.

BBEdit exports the UTI 'com.barebones.bbedit.ctags-data', which conforms to 'public.utf8-
plain-text', for files whose extensions are “tags” and “ctags”. This UTI drives the Spotlight
support.

If you have disabled Spotlight on your local disk (or for the directory tree containing your
source files) or if your Spotlight index is incomplete, BBEdit will discover “tags” files the
old-fashioned way, and the old limitations will apply (only files named “tags” will be
discovered, and so you can have only one tags file at any level in the directory tree).

Tag File Generation and Updating
Because individual workflows and setups vary widely, BBEdit does not attempt to generate
or update ctags information; it only uses existing tags files.

• You can generate tags files for whatever fields you wish. BBEdit requires the
signature (--fields=+S) to build the definitions menu. For our own source
code, we include class members (+a) and function implementations (+m) in
addition to the required fields.

• BBEdit looks for tags files starting in the same folder as the current document, and
crawls upwards from there.

In order to keep your tags up to date, we recommend incorporating a suitable script into
your build system, or employing some other mechanism such as a cron task. Xcode’s
documentation contains information on creating build phases that run shell scripts and
similar solutions should be possible for other IDEs.
Configuring BBEdit for Development Environments 317

For example, we use the below Python script to update the tags for our source code
whenever a build is started in Xcode. Since ctags is efficient, this script only takes a few
seconds to run, and will update the tags even if one or more files does not compile.

#!/usr/bin/python
import os
import sys

TAGS_TEMP_FILE = '/tmp/tags'

projectDir = os.environ['SRCROOT']
projectName = os.environ['PROJECT_NAME']

ctagsExecutablePath = "/Applications/BBEdit.app/Contents/
Helpers/ctags"

baseArgs = '--excmd=number --tag-relative=no --
fields=+a+m+n+S -f /tmp/tags -R'
appendArg = '--append'

os.chdir('/')

sourceDir = os.path.join(projectDir, "ApplicationSource")
tagsFile = os.path.join(projectDir, 'tags')

create the project's tags in '/tmp'
if os.access(sourceDir, os.F_OK):

buildTagsCommand = ''''%s' %s '%s' ''' %
(ctagsExecutablePath, baseArgs, sourceDir)

output = os.popen(buildTagsCommand).read()

move it where it goes
os.rename(TAGS_TEMP_FILE, tagsFile)

Tag Files as Completion Sources
You can add tags files to specific locations to make symbols available as completion data
sources when editing in desired languages. In particular:

• When you build a (coded) language module, if you place a file named “tags” in the
language module’s “Resources” directory, BBEdit will use those tags as
completion sources.

• You can generate a tags file (using exuberant ctags or “bbedit --maketags”) and
place the resulting file in Application Support/BBEdit/Completion Data/
<language name>/, where “<language name>” is the name of the language as it
appears in the list of installed languages (or on the Languages popup menu).

So, for example, if you were to generate a tags file for the 10.11 SDK so that you could add
completion data when editing Objective-C files, the file would go in Application Support/
BBEdit/Completion Data/Objective-C/.

Tags files can be given any appropriate name, so you can have multiple tags files for a
single language, and they will all be examined when generating completions.
318 Chapter 14: Working with Development Tools

Locating Unix tools via PATH
When locating Unix tools for various purposes, BBEdit will honor your account’s PATH
environment variable (provided it is available and not empty). This should result in more
predictable outcomes when using aftermarket installations of open-source tools as well as
for alternative installations of tools included with the system (such as Python).

If you modify your PATH, you must quit and relaunch BBEdit for those changes to take
effect. Note also that if your PATH contains entries relative to the current working
directory, those entries are not likely to work since $PWD is undefined for a GUI
application, though absolute paths will work.

Switching Between Counterpart Files
When editing any source file which has a counterpart (header), you can press the
Counterpart button in the navigation bar or type Control-Option-up arrow to switch to its
counterpart file, or vice versa. (BBEdit uses the suffix mapping options in the Languages
preference panel to determine whether a particular file is a source or header file.)

Working with Kite
BBEdit offers built-in support for Kite, an “artificial pair programmer” which assesses
code as one edits. Kite provides advanced code completion, error correction, and
contextual documentation for library and API calls. To make use of this support, you need
only install Kite and give it permission to work with BBEdit. More information on Kite is
available at:

https://kite.com/

BBEdit and the Unix Command-Line
This section describes BBEdit’s facilities for interacting with the Unix command-line: shell
worksheets for issuing commands to the Unix shell and the “bbedit”, “bbdiff”, and
“bbfind” command-line tools for invoking BBEdit from the command-line.

Shell Worksheets
BBEdit allows you to store and execute Unix command-lines by means of a “shell
worksheet.” Choose Shell Worksheet in the New submenu of the File menu to open a new
worksheet using your default Unix shell (generally ‘bash’).

Shell worksheets are stored in a private document format which is not text-based. This
format allows BBEdit to store auxiliary data in the worksheet file’s data fork, thus ensuring
that worksheets can safely be stored in version control systems that are not resource fork
aware.
BBEdit and the Unix Command-Line 319

https://kite.com/

Using Worksheets
You can type, delete, and edit text in a worksheet window just as in an ordinary BBEdit
document window. To invoke a Unix command, type the command, then press the Enter
key or Control-Return, or click in the status area at the bottom-left of the worksheet
window. (Keep in mind that Enter and Return are different keys; pressing Return by itself
inserts a line break instead of executing a command.) You can execute more than one
command at a time by selecting multiple lines and pressing Enter or Control-Return. The
output will appear in the worksheet window below the line or lines containing the
commands executed. Unlike a terminal, this does not have to be at the end of the document:
you can type commands anywhere in the worksheet window, or place the insertion point
back in a previously executed command to run it again.

If the selection range is non-empty, only the exact text selected will be executed; if there is
just an insertion point, the entire line containing it will be executed (even if it is not at the
end of the line).

Note Command-Return will no longer execute commands within shell worksheets by default
since BBEdit instead uses this shortcut as the default key equivalent for the New Line
After Paragraph command. You can however use Control-Return for the same
purpose, or alternatively, you can manually reassign this key shortcut to the new
“Send Command” placeholder in the Shell Worksheet group of the Menus & Shortcuts
preference pane.

The status area at the bottom-left of the worksheet window shows the name of the Unix
process currently executing (or the name of the shell itself when no process is running).
This can be useful for seeing what is going on when a process hangs or takes a long time to
complete. You can kill the currently running process by typing Control-C or Command-
Period in the worksheet window. Also, clicking in the status area sends the currently
selected text (or the line containing the insertion point) as a command to the Unix shell.

Keep in mind that shell worksheets are not terminal windows. If you have ever used MPW,
you will probably feel right at home using shell worksheets. If you are only familiar with
terminal emulators, however, you will find that shell worksheets work quite differently.
Command line editing gestures do not work, nor will any Unix commands that expect to be
dealing with terminals. (For example, try running “emacs” in a shell worksheet.)
320 Chapter 14: Working with Development Tools

When you drag files or folders into a worksheet window, the behavior is different than
when dragging these items into an ordinary document window. An unmodified drag of a
single file or folder will insert the POSIX-style path of that item at the drop location.
Additionally, rather than selecting the inserted text as in a normal editing window, the
insertion point will be left at the end of the current line, so you can easily continue entering
additional information or execute the line as a command.

Dragging multiple files and folders will produce a set of paths for those items, with spaces
for separators rather than line breaks. This makes it easier to add arguments to a line for
immediate execution as part of a command.

If you hold down the Command key while dragging, it will cause the file’s contents to be
inserted (or a folder listing, if the item you are dragging is a folder).

The default working directory for new worksheet windows is the user’s home directory.
This directory is also used as the search directory for any Open Selection or Open File by
Name operations executed from within the worksheet. New shell windows are colored
using the “Unix Shell Script” language.

New shell worksheets initially run in normal user mode as the currently logged-in user, but
if you invoke ‘sudo’ within a shell worksheet, BBEdit will automatically prompt you (if
necessary) to enter your password.

WARNING If you are not familiar with Unix command-line tools, we strongly urge you to obtain
and read an introductory guide to using a Unix shell. Command-line tools can be very
useful, but if used incorrectly, they can render files, or even your entire system,
unusable.

Default Worksheet Stationery
When creating a new worksheet window, BBEdit will look for a worksheet stationery file
named “Default Worksheet Stationery”. This file is located in the Stationery folder of
BBEdit’s application support folder. (See Chapter 2 for more information regarding
BBEdit’s application support folder.) If the default worksheet stationery exists, you will see
the contents of this file in every new worksheet window you create.

BBEdit ships with a default worksheet stationery file that provides a small tutorial on using
worksheet windows. When you grow tired of seeing this tutorial in every new worksheet,
you can either remove the “Default Worksheet Stationery” file from the Stationery folder,
or replace it with one of your own.

Exporting a Worksheet’s Contents
When a (non-empty) shell worksheet is active, the Export command in the File menu will
become Export to Text, and you can select this command to save a text-only representation
of the active worksheet’s contents.

Installing the Command Line Tools
The first time you run BBEdit after installation, it will offer to install the “bbedit”, “bbdiff”,
and “bbfind” command-line tools for you. If you choose not to do so, you can choose
“Install Command-Line Tools” from the BBEdit (application) menu at any time to install
(or re-install) the current version of each command line tool.

If older versions of the tools are installed, choosing this command will update them; it will
not overwrite existing versions of the tools with older versions.
BBEdit and the Unix Command-Line 321

The “bbedit” Command Line Tool
You can use the “bbedit” command line tool to open files into BBEdit via the Unix
command line.

To open a file into BBEdit from the command line, type

bbedit filename

where filename is the name of the file to be opened. You may also specify a complete FTP
or SFTP URL to a remote file or folder to have BBEdit open the file, or an FTP/SFTP
browser to the folder.

To launch BBEdit without opening a file (or to activate the application if it is already
running), type

bbedit -l

You can also pipe STDIN to the “bbedit” tool, and it will open in a new untitled window in
BBEdit: for example,

ls -la | bbedit

If you just type

bbedit

with no parameters, the tool will accept STDIN from the terminal; type Control-D (end-of-
file) to terminate and send it to BBEdit.

The basic command line syntax for the “bbedit” tool is

bbedit [-<short-form options> --<long-form options>] [-e
<encoding_name>] [-t <string>] [+<n>] [file (or) <S/FTP
URL> ...]

See the “bbedit” tool’s man page (“man bbedit”) for a complete description of the available
switches and options.

The “bbdiff” Command Line Tool
You can use the “bbdiff” command line tool to apply BBEdit’s Find Differences command
to a pair of files or folders specified on the Unix command line.

To invoke the Find Differences command from the command line, type

bbdiff oldfile newfile

or

bbdiff oldfolder newfolder

where oldfile and newfile are the names of the files, or oldfolder and newfolder are the
names of the folders, to be compared. You can also specify options for how the Find
Differences command will be applied, which correspond to those available in the dialog.

The complete command line syntax for the “bbdiff” tool is

bbdiff [--<options>] [OLDFILE NEWFILE | OLDFOLDER NEWFOLDER
]

322 Chapter 14: Working with Development Tools

See the “bbdiff” tool’s man page (“man bbdiff”) for a complete description of the available
switches and options.

Invoking “bbdiff” as an External Helper
When using “bbdiff” as an external diff helper for any other program, e.g. Perforce or
Subversion, you should invoke it with the --wait option.

The “bbfind” Command Line Tool
You can use the “bbfind” command-line tool to access BBEdit’s powerful multi-file search
from the Unix command line.

To perform a multi-file search from the command line, type

bbfind search-string search-path

where search-string is your search string (or pattern) and search-path is a list of path(s) to
search. You can also specify options which control how the search should be performed;
these options correspond to those available in the Multi-File Search window.

If no search paths are specified on the command line, “bbfind” will attempt to read them
from standard input. This makes it easy to process the output of other tools such as “find”.
For example:

`find . -name "*.py" -print | bbfind blah`

takes the paths printed by “find” and searches those files.

By default, “bbfind” expects that input will be separated by Unix newlines (\n). If instead,
the input is being generated programmatically and contains “NUL”-separated paths, you
can specify the “-0” option. Again using “find” as an example input source:

`find . -name "*.py" -print0 | bbfind blah -0`

The complete command line syntax for the “bbfind” tool is

bbfind search-string [-cEghInRSvVwZ0 --<long_form_switches>
search-path]

See the “bbfind” tool’s man page (“man bbfind”) for a complete description of the
available switches and options.

The “bbresults” Command Line Tool
You can use the “bbresults” command-line tool to pass error results to BBEdit from the
Unix command line.

This tool reads data from STDIN which is expected to be typically formed Unix error
messages and passes that data to BBEdit, which will create a results browser to provide
convenient navigation of errors and warnings.

For example:

proselint --demo | bbresults

(you can learn more about `proselint` at http://proselint.com) or

flake8 foobar.py | bbresults --pattern flake8
BBEdit and the Unix Command-Line 323

or even

grep -n void *.c | bbresults

See the “bbresults” tool’s man page (“man bbresults”) for a complete description of the
available switches and options as well as information on how to employ this tool.
324 Chapter 14: Working with Development Tools

Unix Scripting: Perl, Python, Ruby,
Shells, and more!
BBEdit provides robust integration with numerous Unix scripting environments, including
Perl, Python, Ruby, and shell scripts.

Using Unix Scripts
BBEdit works directly with the native Perl, Python, and Ruby environments provided by
Mac OS X, and supports similar integration with shell scripts and any other Unix scripting
language.

BBEdit’s Unix scripting features are accessed via the Shebang menu: “#!”. (Why
“Shebang”? Because executable Unix scripts traditionally start with the two-character
sequence “#!”. Some people pronounce these two characters “hash-bang,” others say
“sharp-bang,” but the most common pronunciation is simply “shebang.”)

The “shebang line” is the first line of the script, and includes a Unix-style path to the
interpreter for the language—for example, “#!/usr/bin/perl”, or “#!/usr/local/bin/python”.

While BBEdit does not entirely depend upon the accuracy of the shebang line (if your
script file has an accurate language mapping), it is always a good practice, and sometimes
necessary, to specify the full path to the executable in the shebang line.

Language Resources
Perl is an acronym for Practical Extraction and Report Language (or alternatively,
Pathologically Eclectic Rubbish Lister) and was developed by Larry Wall. If you are
interested in learning Perl, the quintessential Perl references are:

Learning Perl (4th Edition), by Randal L. Schwartz & Tom Phoenix.
O’Reilly and Associates, 2005. ISBN: 0-596-10105-8

Programming Perl (3rd Edition), by Larry Wall, Tom Christiansen, Jon Orwant. O’Reilly
and Associates, 2000. ISBN: 0-596-00027-8

The following are excellent Internet resources for the Macintosh implementation of Perl,
and Perl in general:

Perl.com from O’Reilly and Associates
http://www.perl.com/

Perl Mailing Lists
http://lists.cpan.org/

Python is a portable, interpreted, object-oriented programming language, originally
developed by Guido van Rossum. If you are interested in learning Python, consider the
following Internet resources as a starting point:

Python home page
http://www.python.org

Python Cookbook
http://aspn.activestate.com/ASPN/Cookbook/Python
Unix Scripting: Perl, Python, Ruby, Shells, and more! 325

http://www.perl.com/
http://lists.perl.org/
http://www.python.org
http://aspn.activestate.com/ASPN/Cookbook/Python

Ruby is an interpreted scripting language with an emphasis on object-oriented
programming, which has fast become a favorite of Web developers. Ruby was created by
Yukihiro Matsumoto. If you are interested in learning Ruby, consider the following books:

Programming Ruby: The Pragmatic Programmer's Guide (2nd Edition), by Dave
Thomas, with Chad Fowler and Andy Hunt. Pragmatic Bookshelf, 2004.
ISBN: 0-9745140-5-5

Ruby Cookbook, by Lucas Carlson & Leonard Richardson. O’Reilly and Associates,
2006.
ISBN: 0-596-52369-6

Internet resources for Ruby:

Ruby home page
http://www.ruby-lang.org/

RubyGarden Wiki
http://wiki.rubygarden.org/Ruby

Setting Environment Variables for GUI Apps
BBEdit reads your account’s command-line environment directly; thus, you need not
employ any special mechanisms to pass environment settings to it.

Line Endings, Permissions and Unix Scripts
To execute scripts, the script interpreter for any given language requires source code to be
encoded with native line endings, i.e. Unix line breaks for Perl and most other shell
scripting languages. BBEdit will warn you if you attempt to run a script which does not
have Unix line endings.

Additionally, to execute scripts anywhere outside of BBEdit (e.g. in the Terminal), the
system requires that the script file have ‘execute’ permissions set. Thus, when you first
save any script file which contains a shebang (#!) line, BBEdit will automatically set
execute permissions for your login account (a+x, as modified by the umask) on that file.
326 Chapter 14: Working with Development Tools

http://www.ruby-lang.org/
http://wiki.rubygarden.org/Ruby

Configuring Perl
BBEdit can make full use of the system’s default Perl install with no need for further
configuration. However, if you wish to install and work with multiple versions of Perl, you
will need to specify the appropriate version in your scripts’ shebang lines.

Search Paths
By default, Perl looks for modules in its standard library path and in the current directory.
You may also use modules from other locations by specifying their paths in the PERL5LIB
environment variable.

Configuring Python
BBEdit expects to find Python in /usr/bin, /usr/local/bin, or /sw/bin. If you have installed
Python elsewhere, you must create a symbolic link in /usr/local/bin pointing to your copy
of Python in order to use pydoc and the Python debugger.

Configuring Ruby
BBEdit can make full use of the system’s default Ruby install with no need for further
configuration. However, if you wish to install and work with multiple versions of Ruby,
you will need to specify the appropriate version in your scripts’ shebang lines.

Shebang Menu
The commands in this menu allow you to run Unix scripts directly within BBEdit.

Check Syntax
Checks the syntax for the frontmost window. Errors are displayed in a standard BBEdit
error browser (see Chapter 9, “Browsers,” for more details on working with error
browsers). This command is only available for Perl and Python scripts.

Run
Runs the script in the frontmost window by default. If this script has an associated disk file,
BBEdit will automatically set the current working directory to the directory containing the
script file, and any output from the script (on STDOUT) will be displayed in BBEdit’s
“Unix Script Output” window. By default, errors for Perl and Python scripts are displayed
in an error browser, while errors for other languages will be written into a new document.

Run with Options...
Displays the Run sheet, which allows you to set options before running the script in the
frontmost window.
Unix Scripting: Perl, Python, Ruby, Shells, and more! 327

Output to: Choose to display output in a new document, to direct it to the Unix Output file,
or to write it to an equivalently-named log file (“{script name}.log”) in BBEdit’s Logs
folder (~/Library/Logs/BBEdit/).

Output Options: Mark these checkboxes to clear the output file before writing and to save
it after writing, respectively.

Run in Terminal
This command will run the script in a new Terminal window, regardless of the settings in
the Run a Script dialog.

Run in Debugger
Runs the script in the interpreter’s debugger, regardless of whether the Use Debugger
option is set for the Run command; also, any output options set in the Run command will
be ignored. The Run in Debugger command is only available for Perl and Python.

Run File
Runs a script from an arbitrary file rather than from a BBEdit window. The Run a Script
File dialog appears. You can select a file by clicking the File button or by dragging a file to
the path box at the top of the dialog from the Finder. The options are the same as the ones
described above for the Run a Script dialog.

Show POD/Show Module Documentation
When the frontmost document is a Perl file and you invoke the Show POD command,
BBEdit will process the document contents using by the command-line ‘pod2text’ tool and
display the result in a new text window.

Note POD stands for Plain Old Documentation, and is the standard Perl documentation
format.

When the frontmost document is a Python file, the name of this command will change to
Show Module Documentation, and if you invoke it, BBEdit will display the module
documentation.

Filters and Scripts
Before you begin using Unix filters and scripts with BBEdit, you should locate and
familiarize yourself with the Text Filters and Scripts folders, which resides within BBEdit’s
application support folder. (See Chapter 2 for details.).

The contents of the Text Filters and Scripts subfolders are presented respectively in the
Apply Text Filters submenu and the Scripts menu, as well as the Text Filters and Scripts
floating palettes.

Document State
For convenience, BBEdit sets some runtime environment variables to provide information
about the front document’s state right before a Unix filter or script is run:

Variable Description

BB_DOC_LANGUAGE Name of the document’s current language
(not set if language is "none")
328 Chapter 14: Working with Development Tools

Note Selection ranges and other offsets are expressed in characters, not bytes.

Filters
Text filters operate on the selected text of the frontmost document, or on the whole
document if there is no selection, or on the current contents of the clipboard (if invoked via
Paste Using Filter).

BBEdit will pass either the selected text (if any) or the contents of the entire document as
input to the filter on STDIN as UTF-8 text (no BOM), while any output generated by the filter
on STDOUT will replace the selection (or document contents), and anything written to
STDERR will be logged in a separate document.

Note This method represents a change from the method used by much older versions,
where BBEdit wrote a temporary file and passed it on ‘argv[0]`. Thus, if you have any
existing Unix filters (in the “Text Filters” folder) which were based on that method,
you will need to modify those filters to accept input from STDIN before you can use
them.

There two ways to apply filters: to the current document through the Apply Text Filters
submenu in the Text menu or via the Text Filters palette, or to the current contents of the
clipboard via the Paste Using Filter submenu of the Edit menu.

To open the Text Filters palette, select it from the Palettes submenu in the Window menu.
You can run a filter by selecting it from the list and clicking the Run button, or you can
simply double-click the filter name in the list.

BB_DOC_MODE Emacs mode of the document’s current
language

BB_DOC_NAME name of the document

BB_DOC_PATH path of the document (not set if the
document is unsaved)

BB_DOC_SELEND (zero-based) end of the selection range (not
set if not text document)

BB_DOC_SELEND_COLUM
N

(one-based) de-tabbed column number of
BB_DOC_SELEND

BB_DOC_SELEND_LINE (one-based) line number of
BB_DOC_SELEND

BB_DOC_SELSTART (zero-based) start of the selection range (not
set if not text document)

BB_DOC_SELSTART_COLU
MN

(one-based) de-tabbed column number of
BB_DOC_SELSTART

BB_DOC_SELSTART_LINE (one-based) line number of
BB_DOC_SELSTART

Variable Description
Unix Scripting: Perl, Python, Ruby, Shells, and more! 329

Hold down the Option key while double-clicking a filter or selecting it from the menu to
open the file for editing instead of running it. You can also hold down the Shift key while
selecting a filter item from the Apply Text Scripts submenu to reveal the file in the Finder,
or you can select a folder node from the menu to open that folder in the Finder.

Passing Arguments to a Filter
Text filter scripts may present a dialog box allowing the user to specify arguments to the
filter (which the filter script may then use to modify its operation on the input). This is done
by creating a Cocoa nib file in Xcode, and placing it in a specific location relative to the
script being run (namely, “../Resources/<script base name>.xib”").

For complete details on using this capability, please see the Developer section of our
website:

http://www.barebones.com/support/bbedit/

Scripts
Scripts do not operate on the text of the frontmost window, but rather run directly. You can
also run scripts from the Scripts menu or the Scripts palette, and edit the selected script or
assign a keyboard shortcut to it by clicking the corresponding buttons in the Scripts palette.

Additional Notes
In addition to the features detailed above, BBEdit offers some additional options which it
may help you to be aware of.

Setting Menu Keys for Scripts
The Filters and Scripts palettes both have a “Set Shortcut” button at the top. Select a filter
or script in the list and click this button to set a keyboard shortcut for the selected item. You
may also assign key equivalents to scripts or filters within the Menus & Shortcuts
preference panel.

Manually Sorting the Text Filters and Script Menus
By default, items in the Apply Text Filters submenu and the Scripts menu display in
alphabetical order. However, you can force items to appear in any desired order by
including any two characters followed by a right parenthesis at the beginning of their name.
(For example “00)Foo” would sort before “01)Bar.”) For such files, the first three
characters are not displayed in BBEdit. You can also insert a divider by including an empty
folder whose name ends with the string “-***”. (The folder can be named anything, so it
sorts where you want it.)

Canceling Filter or Script Execution
You can press the Cancel button in the progress dialog or type Command-. (Command-
period) to cancel a task directly from within BBEdit. Since BBEdit must kill the spawned
Unix process with a SIGINT, any unflushed data in open filehandles (including STDOUT
and STDERR) will be lost unless the script takes measures to prevent this.
330 Chapter 14: Working with Development Tools

http://www.barebones.com/support/bbedit/

Working with Git
BBEdit offers integrated support for the Git distributed version control system.

http://www.git-scm.com/

Configuring Git
In order to enable BBEdit’s Git integration, the ‘git’ command-line tool must be available
in any standard location, such as the OS X default installation in ‘/usr/bin/git’. Provided
this condition is met, BBEdit will display a Git menu in the menu bar, and you can perform
various operations when the active document corresponds to a file that is in a local Git
working copy, or apply appropriate commands to any such working copy.

BBEdit’s Git integration is not intended to replace a full-featured Git client, but rather to
enable you to easily perform common tasks on the file(s) you're working on without having
to switch to the command-line or a dedicated GUI client.

Command-Line Integration
You can use the “bbdiff” command-line tool as an external diff tool for Git by specifying it
in your Git config (~/.gitconfig) as appropriate, e.g.

[difftool "bbdiff"]

cmd = /usr/local/bin/bbdiff --wait --resume "$LOCAL" "$REMOTE"

Git Commands
You can use most Git commands on either the active document, or the selection in a results
browser or disk browser; however, these commands are always available:

• Commit Staged Changes...

• Commit Working Copy...

• Show Working Copy Status...

• Fetch from Remote...

• Pull from Remote...

• Push to Remote...

• Open Log File
Working with Git 331

http://www.git-scm.com/

Check Out Branch
Displays a dialog allowing you to select and check out any available branch.

Add
Schedules the current file, or all files selected in the sidebar, for addition to the repository. (You
must perform a Commit to add the file(s) to the repository.) This command will not be available
if the selected files are already part of the repository.

Discard Changes
Discards local changes to the active document’s file, reverting it back to BASE. Has no effect if
there are no local modifications to the file.

Remove
Removes the current file from the working copy.

Remove from Index
Removes the current file from the index.

Stash
Performs git stash on the current file’s working copy.

Apply Stash
Performs git stash apply on the current file’s working copy.

Pop Stash
Performs git stash pop on the current file’s working copy.

Commit
Commits the local file to the repository. BBEdit will display a Git commit window into which
you can enter your commit message. This window will be prefilled with form text below the
insertion point, consisting of a special separator line and a listing of the files which are about to
be committed and their status. This separator line, and all lines below it, will be removed and
will not appear as part of the commit message.

Commit Staged Changes
Commits all currently staged changes to the repository. BBEdit will display a Git commit
window into which you can enter your commit message. This window will be prefilled with
form text below the insertion point, consisting of a special separator line and a listing of the files
which are about to be committed and their status. This separator line, and all lines below it, will
be removed and will not appear as part of the commit message.

Commit Working Copy
Commits all changed files in the current file’s working copy or the selected working copy to the
Git repository.

Show Working Copy Status
If invoked while a document is active, BBEdit will show the status of the working copy to which
that document belongs; otherwise, BBEdit will present a standard folder selection dialog in
which you can choose the desired working copy.
332 Chapter 14: Working with Development Tools

Compare Revisions
Displays a sheet which allows you to select any previous/future revision of the current file in the
repository and perform a Find Differences between that revision and the local revision.

Compare Arbitrary Revisions
Displays a dialog which allows you to choose any two revisions of the current file and perform a
Find Differences on those revisions.

Compare with Staging/Compare with Previous/Compare with
Head
These are convenience commands which allow you to compare the current file with BASE,
PREV or HEAD revisions respectively.

Fetch from Remote
Fetches all branches and/or tags from any configured repositories.

Pull from Remote
Incorporates changes from a configured remote repository into the current branch.

Push to Remote
Updates remote refs using local refs to the configured remote repository.

Show Blame
Brings up a temporary document showing what revision and author last modified each line
of the current file.

Show Revision History
Brings up a temporary document which contains the revision history of the current file.

Open Log File
Opens BBEdit's Git log file (/Users/<username>/Library/Logs/BBEdit/ Git.log).
Working with Git 333

Working with Perforce
BBEdit features integrated support for the Perforce source control system.

http://www.perforce.com/

In order to enable BBEdit’s Perforce integration, you must have the “p4” command-line
tool installed. Once you have configured Perforce, you can work with files and folders in
client spaces using the commands on BBEdit’s P4 menu. You can apply many commands
to the current document. You can also select one or more files from a results browser
window, such as a search results browser, or the results browser for the Show Opened
command, and apply commands.

If you have an open document which BBEdit does not recognize as being associated with
any client space, BBEdit will look for $P4CONFIG in its environment. If BBEdit finds
such a value, and finds a config file in an appropriate directory, then it will honor that
configuration.

 The config file should contain P4CLIENT and P4USER, plus anything necessary to your
setup, and (often) P4DIFF and P4 EDITOR. For complete details, please see:

http://www.perforce.com/perforce/doc.031/manuals/cmdref/
env.P4CONFIG.html#1040647

Note In any such case, you must first open a document associated with the configuration,
so that BBEdit knows where to set the working directory, before any commands on
the Perforce menu, even non file-specific commands, will become enabled.

Perforce Commands
BBEdit’s Perforce menu contains the following commands.

Edit
Performs a ‘p4 edit’ on the frontmost document, or the selected files.

Revert
Performs a ‘p4 revert’ on the frontmost document, or the selected files.

Revert & Sync To Head
Performs a ‘p4 revert’ followed by a ‘p4 sync’ on the frontmost document. or the selected
files.

Sync To Head
Performs a ‘p4 sync’, passing the file path of the frontmost document, or of the selected
files in a results browser, to the command.

Sync To Revision…
Displays a revision list for the frontmost document, and then syncs it to the chosen revision

Sync All
Performs a ‘p4 sync’ with no additional arguments.

Submit...
Opens a change list editor window, and then submits the changes described within.
334 Chapter 14: Working with Development Tools

http://www.perforce.com/perforce/doc.031/manuals/cmdref/env.P4CONFIG.html#1040647
http://www.perforce.com/

Show Opened
Displays a results browser showing all the files opened or added to the repository. You can
select files in this browser, and apply many other commands to them.

Compare Revisions…
Displays a revision list for the frontmost document, and then compares the contents of that
document to the revision you chose from the list.

Compare Arbitrary Revisions…
Displays two revision lists, and then compares the two revisions you choose to each other
without changing the version you have checked out.

Compare with Base
Compares the contents of the frontmost document to the revision it is derived from.

Compare with Head
Compares the frontmost document to the head revision.

Show Annotation
Opens a window containing the results of a ‘p4 annotate’.

Show Revision History
Shows the revision history for the current document. (Equivalent to a ‘p4 filelog’.)

Add
Adds the frontmost document to the P4 repository. As with the command-line tool, you
must then perform a Submit to register this change with the server.

Delete
Deletes the frontmost document from the P4 repository. As with the command-line tool,
you must then perform a Submit to register this change with the server.

Revert & Delete
Performs a ‘p4 revert’ on the chosen document file prior to performing a deletion, allowing
modified files to be discarded.

Go to Previous/Next Conflict
Note These commands have been removed from the Perforce menu and superseded by the

Previous Conflict and Next Conflict commands in the Go menu.

Open Log File
Opens the log file which contains the output from BBEdit’s Perforce commands (~/Library/
Logs/BBEdit/Perforce.log).
Working with Perforce 335

Working with Subversion
BBEdit features integrated support for the Subversion source control system.

http://subversion.apache.org/

Configuring Subversion
In order to enable BBEdit’s Subversion integration, a Subversion client must be installed
and available in any conventional location. (We recommend using Subversion 1.7 or later.)
You must also have a Subversion working copy which has been checked out via the
command-line.

Command-Line Integration
You can use the “bbdiff” command-line tool as an external diff tool for Subversion. You
can do so either directly, e.g.:

svn diff --diff-cmd bbdiff --extensions "--resume --wait" -rPREV
<FILE>

or by specifying the tool as the default “diff-cmd” in your Subversion config (~/
.subversion/config) as appropriate.

Subversion Commands
You can use most Subversion commands on either the active document, or the selection in
a results browser or disk browser. Exceptions are as follows.

These commands are always available:

• Update Working Copy...

• Commit Working Copy...

• Show Working Copy Status...

• Open Log File

These commands require either an open document, or that you have selected a single item
in a results browser or disk browser:

• Compare Revisions (all variants)

• View Annotation

• View Revision History

Revert
Discards local changes to the active document’s file, reverting it back to BASE. Has no
effect if there are no local modifications to the file.

Update to Head
Updates the active document’s file to the HEAD revision, merging local changes with the
head revision, and marking conflicts as necessary. The first conflict in the file, if present,
will be selected after the command successfully runs.
336 Chapter 14: Working with Development Tools

http://subversion.apache.org/

Revert & Update to Head
Discard local modifications before updating to HEAD.

Commit...
Commits the local file to the repository. BBEdit will display a Subversion commit window
into which you can enter your commit message. This window will be prefilled with form
text below the insertion point, consisting of a special separator line and a listing of the files
which are about to be committed and their status. This separator line, and all lines below it,
will be removed and will not appear as part of the commit message.

Update Working Copy…
Updates all the files contained in a working copy (folder tree) to the HEAD revision.
BBEdit will display a dialog in which you can select the desired working copy, by either
dragging and dropping a folder to the folder well, or by using the popup menu on the right
which allows you to select any defined Subversion config, or any recently-accessed folder
which is under Subversion’s control.

Commit Working Copy...
Commits all changed files in a working copy to the Subversion repository. Uses a working
copy selection dialog like that for the Update Working Copy command (above).

Show Working Copy Status...
Shows pending changes/status of the selected working copy. If you choose to show
updates, BBEdit will query the server and also display files for which there are newer
revisions on the server. Uses a working copy selection dialog like that for the Update
Working Copy command (above).

Compare Revisions...
Displays a dialog which allows you to select any previous/future revision of the current file
in the repository and perform a Find Differences between that revision and the local
revision.

Compare Arbitrary Revisions...
Displays a dialog which allows you to choose any two revisions of the current file from the
repository and perform a Find Differences on those revisions.

Compare with Base/Compare with Previous/Compare with
Head
These are convenience commands which allow you to compare the local revision with
BASE, PREV or HEAD revisions respectively.

Resolved
Marks the current file as resolved if it was previously marked as in conflict with updates
received from the repository.

Show Annotation
Displays the content of the file line by line with author and revision information.
Working with Subversion 337

Show Revision History...
Brings up a sheet on which you can display options, and then displays the revision history
of the local file. You can hold down the Option key when selecting this command to use the
last settings.

Add
Schedules the current file, or all files selected in a browser, for addition to the repository.
(You must perform a Commit to add the file(s) to the repository.) This command will not be
available if the selected files are already part of the repository.

Delete
Schedules the current file, or all files selected in a browser, for deletion from the repository.
(The local file(s) will be deleted immediately, but you must perform a Commit to
permanently delete them from the repository.)

Revert & Delete
Reverts local changes to the current file, or all files selected in a browser, then schedules
the file(s) for deletion from the repository. (The local file(s) will be deleted immediately,
but you must perform a Commit to permanently delete them from the repository.)

Go to Previous/Next Conflict
Note These commands have been removed from the Subversion menu and superseded by

the Previous Conflict and Next Conflict commands in the Go menu.

Open Log File
Opens BBEdit's Subversion log file (/Users/<username>/Library/Logs/BBEdit/
Subversion.log).
338 Chapter 14: Working with Development Tools

C H A P T E R

15
Language Modules
and Packages
Language modules are special files that you can install to add support for syntax
coloring, and optionally, function browsing, for programming languages beyond
those built in. Many people have prepared language modules for BBEdit, and
these modules are available from various web sites (including our own).

Packages are collections of related supporting items, such as filters, scripts, and
language modules, which you can add to BBEdit to extend it.

This chapter describes the basic procedures for installing and using language
modules and packages, and provides references to information about producing
such items.

In this chapter
Codeless Language Modules . 340

Installing Language Modules – 339
Overriding Existing Modules – 340
Codeless Language Modules – 340
Code-based Language Modules – 340
Language Module Compatibility – 340

Packages . 341

Language Modules
Language modules are add-on items which provide syntax coloring and function
browsing for programming languages that BBEdit does not natively support.

There are two types of language modules: coded, and codeless. Coded language
modules must be prepared according to the requirements of BBEdit’s language
module interface. (See Appendix D.) Codeless language modules are text
documents prepared in a specific plist format. (See below.)

After you install a language module and relaunch BBEdit, syntax coloring and
function browsing will be available for the language(s) supported by that module.
To verify that a language module is active, or to modify or add file suffix
mappings for the language(s) it provides, use the Languages preference panel (see
page 217).

Installing Language Modules
To install a language module, move or copy the module file into the Language
Modules subfolder of your BBEdit application support folder. If no such folder
exists, you may create it.
339

After installing a new language module, you must quit and relaunch BBEdit in order to use
it.

To remove an installed language module, you must remove the item’s file from the
Language Modules subfolder of your BBEdit application support folder, then quit and
relaunch BBEdit.

Overriding Existing Modules
Language modules can override existing language definitions, including the built-in
definitions. If there is more than one module present which supports a given language,
BBEdit will use the module with the most recent modification date.

Codeless Language Modules
A codeless language module is a specially-formatted text file which allows you to describe
the properties of a source code language via a set of basic parameters. BBEdit will then use
these parameters to perform syntax coloring and function navigation for the specified
language.

Codeless language modules are written as “property lists” (or “plists”), which is anXML
format that Mac OS X uses for many purposes. You can create or edit codeless language
module files with BBEdit itself, with the Mac OS X Property List Editor (located in /
Developer/Applications/Utilities/if you have installed the Apple Developer Tools
package), or with a third-party editor such as PlistEdit Pro.

http://www.fatcatsoftware.com/plisteditpro/

You can find complete specifications for creating codeless language module in the
Developer Information section of our web site.

http://www.barebones.com/support/develop/clm.html

Code-based Language Modules
BBEdit also supports producing code-based language modules to handle more complex
languages or document formats. You can find complete specifications for creating code-
based language modules in the Developer Information section of our web site.

http://www.barebones.com/support/develop/

Language Module Compatibility
IMPORTANT You will not be able to use any third-party language modules which do not support

Unicode text, or which were built in CFM format. If BBEdit encounters such a module, it
will not load that module, and will log a message to the system console.

Contact the developers of such a module, or visit the Bare Bones Software web site (see
above) for more information on the availability of updated modules.
340 Chapter 15: Language Modules and Packages

http://www.barebones.com/support/develop/clm.html
http://www.barebones.com/support/develop/index.shtml
http://www.fatcatsoftware.com/plisteditpro/

Packages
BBEdit supports installing “packages” of items to extend its functionality. A package is
simply a pre-defined group of the sort of items you can individually place into BBEdit’s
application support folder (and subfolders) to extend BBEdit; however, the package format
makes it easier to handle and install sets of related items.

Each package is a folder whose name must ends in “.bbpackage”, and the items within this
folder must conform exactly to the following requirements.

The package folder must contain the following item:

• Contents [folder]

The “Contents” folder may contain these two items (which are currently not required, and
are reserved for future use):

• Resources [folder]

• Info.plist [file]

The “Contents” folder may also contain any or all of the following subfolders:

• Clippings

• Language Modules

• Preview CSS

• Preview Filters

• Preview Templates

• Scripts

• Text Filters

The items contained within each subfolder will behave as though they were present within
the subfolder of the same name inside BBEdit’s application support folder. (These
subfolders are all optional, though obviously a package which contains none of them will
be of no benefit.)

In order to use a populated package, you should place it within the “Packages” subfolder of
BBEdit’s application support folder (~/Library/Application Support/BBEdit/Packages/).

In addition to a “Preview Filters” directory, packages can also contain “Preview
Templates” and “Preview CSS” directories, within their “Contents” directory. Items placed
within these folder will follow the same rules as those placed in the global “Preview
Templates” and “Preview CSS” folders within BBEdit’s application support folder and will
appear on the appropriate menus in preview windows.
Packages 341

342 Chapter 15: Language Modules and Packages

A P P E N D I X

A
Command Reference
This appendix provides a quick reference for key assignments and a
comprehensive list of the commands that are available from BBEdit’s user
interface.

In this appendix
Keyboard Shortcuts for Commands . 343
Assigning Keys to Menu Commands. 344

Available Key Combinations – 344
Listing by Menu and Command Name . 345
Listing by Default Key Equivalent . 357

Keyboard Shortcuts for
Commands
Many of BBEdit’s commands have pre-defined keyboard shortcuts. BBEdit also
lets you reassign the shortcuts for any menu command, clipping item, text filter,
or script to suit your own way of working.

To change the keyboard shortcut for any menu command, you can use the Menus
& Shortcuts preference panel. (See “Assigning Keys to Menu Commands” on the
following page.)

Many other BBEdit features can have keyboard shortcuts assigned as well. Here’s
how to set them:

To display any of BBEdit’s floating palette windows, use the Palettes submenu in
the Window menu.

Feature Set Keys in…

Menu commands Menus & Shortcuts preference panel

Clippings Clippings palette

Text filters Menus & Shortcuts preference panel, or
the Text Filters palette

Scripts Menus & Shortcuts preference panel, or
the Scripts palette

Stationery Menus & Shortcuts preference panel
343

Assigning Keys to Menu Commands
You can assign your own keyboard shortcuts (key equivalents) to any of BBEdit’s menu
commands, as well as items on the Text Options popover, and the Markers and Line Breaks
popup menus, by choosing Preferences from the BBEdit menu to bring up the Preferences
window, then selecting the Menus & Shortcuts preference panel.

To set the key equivalent for a menu command, locate and select the entry for the command
under the appropriate menu section, then double-click on the right-hand part of the line
containing that command, and type the desired keystroke. To remove an existing key
equivalent from a command, double-click on the existing key combination and press the
Delete key. To restore all key equivalents to their default values (as listed in this Appendix),
click the Restore Defaults button.

Available Key Combinations
All menu key combinations must include either the Command key or the Control key (or
both), except function keys, which may be used unmodified. The Help, Home, End, Page
Up and Page Down keys can be used in menu key combinations as well. The Help key can
be assigned without modifiers; the others must be used in combination with at least either
the Command or Control key.
344 Appendix A: Command Reference

Listing by Menu and Command Name
BBEdit Menu
About BBEdit
Preferences Cmd-,
Setup
License
Check for Updates...
Install Command Line
Tools...
Services (submenu)
Hide BBEdit Cmd-H
Hide Others/Show All Cmd-Opt-H
Quit BBEdit Cmd-Q

File
New (see next page)
New With Stationery (submenu)
Open… Cmd-O
Open from FTP/SFTP
Server...

Cmd-Ctl-O

Open File by Name... Cmd-D
Reveal Selection Cmd-Opt-D
Open Counterpart Cmd-Opt-uparrow
Open Recent (submenu)
Reopen Using Encoding (submenu)
Close Window Cmd-Shift-W
Close All Windows Cmd-Opt-W
Close Document Cmd-W
Close All in Project Cmd-Ctl-W
Close All Documents Cmd-Opt-Shift-W
Close & Delete
Save Cmd-S
Save All Cmd-Opt-S
Save As… Cmd-Shift-S
Save a Copy…
Save as Styled Text…
Save as Styled HTML…
Save to FTP/SFTP Server…Cmd-Ctl-S
Save a Copy to FTP
Server…

Cmd-Opt-Ctl-S

Revert
Reload from Disk
Save Project
Export
Hex Dump File
Hex Dump Front
Document..

Page Setup…
Print… Cmd-P
Print All Cmd-Opt-P
Print One Copy Cmd-Opt-Shift-P
Print Selection

Edit
Undo <action> Cmd-Z
Redo <action> Cmd-Shift-Z
Clear Undo History Cmd-Ctl-Z
Cut Cmd-X
Cut & Append Cmd-Shift-X
Copy Cmd-C
Copy & Append Cmd-Shift-C
Copy as Styled Text
Copy as Styled HTML
Paste Cmd-V
Paste (submenu)
Clear
Select All Cmd-A
Select (submenu)
Complete F5
Lines (submenu)
Columns (submenu)
Insert (submenu)
Copy Path (submenu)
Previous Clipboard Ctl-[
Next Clipboard Ctl-]
Text Options… Cmd-Opt-,
Normalize Options…
Spelling (submenu)
Start Speaking
Start Dictation...
Emoji & Symbols
Listing by Menu and Command Name 345

File --> New
Text Document Cmd-N
 (with selection)
 (with Clipboard)
HTML Document... Cmd-Ctl-N
Text Window Cmd-Shift-N
Project...
Disk Browser Cmd-Opt-N
FTP/SFTP Worksheet
Shell Worksheet
Text Factory

Edit --> Paste
and Select Opt-Cmd-V
Previous Clipboard Shift-Cmd-V
and Match Indentation Opt-Shift-Cmd-V
Column Ctl-Cmd-V
Using Last Filter

Edit --> Select
Line Cmd-L
Paragraph Cmd-Opt-L
Up Ctl-Shift-Up arrow
Down Ctl-Shift-Dn arrow
Clear List Selection Cmd-Shift-A

Edit --> Lines
New Line Before
Paragraph

Cmd-Shift-Return

New Line After Paragraph Cmd-Return
Move Line Up Ctl-Up arrow
Move Line Down Ctl-Dn arrow
Delete Line Ctl-Shift-Delete
Duplicate Cmd-Shift-D

Edit --> Columns
Cut Columns
Copy Columns
Clear Columns
Rearrange Columns

Edit --> Insert
File Contents...
File/Folder Paths...
Folder Listing...
Page Break
Short Time Stamp
Full Time Stamp
Emacs Variable Block...

Edit --> Copy Path
Copy Path
Copy Full Path
Copy URL
Copy Name

Edit --> Spelling
Find Next Misspelled Word Cmd-;
Find All Misspelled Words Cmd-Opt-;
Clear Spelling Errors
Check Spelling as You Type
Show/Hide Spelling Panel Cmd-Shift-;
346 Appendix A: Command Reference

Text
Apply Text Filter (submenu)
Apply Text Filter [last
filter]
Exchange Characters
Exchange Words (Option)
Change Case…
Change Case (submenu)
Shift Left Cmd-[
Shift Left One Space Cmd-Shift-[
Shift Right Cmd-]
Shift Right One Space Cmd-Shift-]
Un/Comment Lines Cmd-/
Un/Comment Block Cmd-Opt-/
Hard Wrap… Cmd-\
Hard Wrap Cmd-Opt-\
Add Line Breaks
Remove Line Breaks
Educate Quotes
Straighten Quotes
Add/Remove Line
Numbers...
Add/Remove Line Numbers (Option)
Prefix/Suffix Lines…
Prefix/Suffix Lines (Option)
Sort Lines…
Sort Lines (Option)
Process Duplicate Lines…
Process Duplicate Lines (Option)
Process Lines Containing…
Process Lines Containing (Option)
Canonize...
Increase Quote Level
Decrease Quote Level
Strip Quotes
Zap Gremlins…
Zap Gremlins (Option)
Entab…
Entab (Option)
Detab…
Detab (Option)
Normalize Line Endings

View
Show/Hide Navigation Bar
Show/Hide Editor
Show/Hide Sidebar Cmd-0
Show/Hide Open
Documents
Show/Hide Worksheet &
Scratchpad
Text Display (submenu)
Balance Cmd-B
Balance & Fold Cmd-Shift-B
Fold Selection
Unfold Selection
Collapse Enclosing Folds
Collapse Top-Level Folds
Collapse All Folds
Collapse All Folds Below
Level

(submenu)

Expand All Folds
Previous Document Cmd-Opt-[
Next Document Cmd-Opt-]
Move to New Window Cmd-Opt-O
Open in Additional
Window
Get Info
Reveal in Finder
Reveal in Project List
Go Here in Terminal
Go Here in Disk Browser-
Enter Full Screen

View -> Text
Display
Show/Hide Fonts Cmd-T
Soft Wrap Text
Show/Hide Page Guide
Show/Hide Tab Stops
Show/Hide Line Numbers
Show/Hide Gutter
Show/Hide Invisibles
Show/Hide Spaces
Actual Size
Zoom In
Zoom Out
Split Text View
Listing by Menu and Command Name 347

Search
Find… Cmd-F
Multi-File Search Cmd-Shift-F
Search in [Document’s
Folder]
Search in [Project or Disk
Browser]
Live Search Cmd-Opt-F
Find Next Cmd-G
Find Previous Cmd-Shift-G
Find All Cmd-Opt-G
Extract Cmd-Ctl-G
Find Selected Text
Find Previous Selected
Text

Cmd-Shift-H

Use Selection for Find Cmd-E
Use Selection for Find
(grep)

Cmd-Shift-E

Use Selection for Replace Cmd-Opt-E
Use Selection for Replace
(grep)

Cmd-Opt-Shift-E

Replace Cmd-=
Replace All Cmd-Opt-=
Replace All in Selection Cmd-Ctl-=
Replace to End Cmd-Shift-=
Replace & Find Next
Next Occurrence of
Selected Text
Previous Occurrence of
Selected Text
Find Differences…
Compare Two Front
Windows
Compare Against Disk File
Compare Against
Previous Version…
Apply to Left Cmd–left arrow
Apply to Right Cmd–right arrow
Compare Again
Find Definition Cmd-hyphen
Find in Reference Cmd-Shift-hyphen

Go
Line Number… Cmd-J
Line Number Cmd-Opt-J
Center Line Cmd-Shift-J
Named Symbol Cmd-Ctl-J
Functions
Reveal Start
Reveal End
Go to Previous
Go to Next
Markers
Jump Points
Previous
Next
Set
Previous Error Cmd-Ctl–uparrow
Next Error Cmd-Ctl–dnarrow
Previous Conflict
Next Conflict
Previous Placeholder Ctl-Shift-‘
Next Placeholder Ctl-‘

Markup See “Markup” on
page 352.

Window
Minimize Window Cmd-M
Minimize All Windows Cmd-Opt-M
Bring All to Front
Palettes (submenu)
Show Scratchpad
Show Unix Worksheet
Save Default [type of]
Window
Cascade Windows
Tile Two Front Windows (Option)
Arrange (submenu)
Cycle Through Windows Cmd-‘
Cycle Through Windows
Backwards

Cmd-Shift-‘

Exchange With Next
Synchro Scrolling
(Open windows)
348 Appendix A: Command Reference

Window -> Palettes
Show/Hide Palettes
Character Inspector
Clippings
Colors
Scripts
Text Filters
Windows
HTML Markup Tools
 CSS
 Entities
 Font Style Elements
 Utilities

Shebang (#!)
Check Syntax
Run
Run with Options...
Run in Terminal
Run in Debugger
Show Module/POD
Documentation
Listing by Menu and Command Name 349

Git
Check Out Branch...
Add
Discard Changes...
Remove...
Remove from Index... (Option)
Stash...
Apply Stash...
Pop Stash...
Commit...
Commit Staged
Changes...
Commit Working Copy...
Show Working Copy
Status...
Compare Revisions...
Compare Arbitrary
Revisions...
Compare with Staging
Compare with Previous
Compare with Head
Fetch from Remote...
Pull from Remote...
Push to Remote...
Show Blame
Show Revision History
Open Log File

Subversion
Revert
Update to Head
Revert & Update to Head (Shift)
Update to Revision…
Commit…
Update Working Copy…
Commit Working Copy…
Show Working Copy
Status…
Compare Revisions…
Compare Arbitrary
Revisions…
Compare with Base
Compare with Previous
Compare with Head
Resolved
Show Annotation
Show Revision History…
Show Revision History (Option)
Add
Delete
Revert & Delete (Shift)
Open Log File
350 Appendix A: Command Reference

Scripts
Open Script Editor
Open Scripting Dictionary
Open Scripts Folder
(Installed scripts &
factories)

Clippings
Open Clippings Folder
Insert Clipping…
Save as Clipping…
Save Selection as
Clipping…
(Available clippings)

Help
Search
BBEdit Help
User Manual
Tutorial
Service and Support

Toolbar (in-window)
Text Options (popup menu)
Soft Wrap Text
Show/Hide Page Guide
Show/Hide Tab Stops
Show/Hide Line Numbers
Show/Hide Gutter
Show/Hide Invisibles
Show/Hide Spaces
Use Typographer’s Quotes
Auto-Expand Tabs

Navigation Bar (in-window)
Open Files Menu Ctl-Opt-F
Open Function Menu Ctl-Opt-N
Open Includes Menu Ctl-Opt-I
Open Marker Menu Ctl-Opt-M
Markers (popup menu)
Set Marker…
Set Marker (Option)
Clear Markers…
Clear All Markers (Option)
Find & Mark All…
Find & Mark All (Option)

Status Bar (in-window)
Open Language Menu
Open Text Encodings
Menu
Open Breaks Menu Ctl-Opt-B
Line Breaks (popup menu)
Macintosh
Unix
DOS

Miscellaneous
Commands
Zoom Window
Zoom All Windows
Zoom Window Full Screen
Zoom All Windows Full
Screen
Open URL (Cmd-click in

URL)
Listing by Menu and Command Name 351

Markup
Edit Markup… Cmd-Ctl-M
Close Current Tag
Balance Tags Cmd-Opt-B
Document Type…
Character Set...
CSS (see below)
Body Properties…
Head Elements (see below)
Block Elements (see next column)
Lists (see next column)
Tables (see page 354)
Forms (see page 354)
Inline (see page 354)
Phrase Elements (see page 355)
Font Style Elements (see page 355)
Frames (see page 355)
Check (see page 355)
Update (see page 356)
Includes (see page 356)
Utilities (see page 356)
Preview in BBEdit Cmd-Ctl-P
Refresh BBEdit Preview
Show Document
Preview in <Default
Browser>
Preview in (see page 356)

Markup --> CSS
@import…
@media…
Box…
 Padding…
 Border…
 Margins…
Layout…
 Position…
 Size & Constraints…
 Clipping…
 Effects…
Background…
Font…
List Style…
Text…
Format
352 Appendix A: Command Reference

Markup --> Head Elements
Base…
Link…
Meta…
Script…
Noscript
Style…

Markup --> Block Elements
Paragraph…
Paragraph (Option)
Div…
Horizontal Rule…
Horizontal Rule (Option)
H1
H2
H3
H4
H5
H6
Address
Blockquote…
Center
Deleted Text…
Inserted Text…
Noscript
Preformatted

Markup --> Lists
Unordered
Ordered
Definition
Menu
Directory
List Item
List Items
Listing by Menu and Command Name 353

Markup --> Tables
Table… Cmd-Ctl-T
Row…
Row (Option)
 TD…
 TD (Option)
 TH…
 TH (Option)
Caption
Colgroup…
Col…
THead…
TFoot…
TBody…
Create Table Shell...
Convert to Table…

Markup --> Forms
Form…
Button…
Field Set
 Legend…
Input…
Label…
Select…
 Option Group…
 Option…
Text Area…

Markup --> Inline
Anchor… Cmd-Ctl-A
Image… Cmd-Ctl-I
Applet…
Object…
 Param…
Script…
Map…
 Area…
Break… Cmd-Ctl-B
Break
Font…
Base Font…
Bidirectional Override…
Quotation
Span…
Subscript
Superscript
354 Appendix A: Command Reference

Markup --> Phrase Elements
Abbreviation
Acronym
Citation
Computer Code
Defined Term
Deleted Text…
Emphasis
Inserted Text…
Input Text (Kbd)
Sample Output
Strong Emphasis
Variable

Markup --> Font Style Elements
Big
Small
Bold
Italic
Strike-Through
Teletype Text
Underline

Markup --> Frames
Frame Set…
Frame…
No Frames

Markup --> Check
Document Syntax Cmd-Ctl-Y
Document Links Cmd-Ctl-K
Folder Syntax…
Folder Links…
Site Syntax…
Site Syntax (Option)
Site Links…
Site Links (Option)
Listing by Menu and Command Name 355

Markup --> Update
Document Cmd-Ctl-U
Folder…
Site (Option)
Document Images…
Document Images (Option)
Folder Images…
Site Images…
Site Images (Option)

Markup -->
Includes
Persistent Include…
Include…
Placeholders…

Markup --> Utilities
Format… Cmd-Opt-Shift-F
Format
Optimize
Translate Text to HTML
Translate HTML to Text
Remove Comments
Remove Markup
Raise Tag Case
Lower Tag Case

Markup --> Preview In
New Text Window
in All Running Browsers
(Installed browsers)
356 Appendix A: Command Reference

Listing by Default Key Equivalent
Key Command

Cmd-0 View: Show/Hide Files

Cmd-A Edit: Select All

Cmd-B Text: Balance

Cmd-C Edit: Copy

Cmd-D File: Open Selection
or
File: Open File by Name

Cmd-E Search: Use Selection for Find

Cmd-F Search: Find…

Cmd-G Search: Find Again

Cmd-H Search: Find Selection
or

BBEdit: Hide BBEdit

Cmd-J Go: Line Number…

Cmd-L Edit: Select Line

Cmd-N File: New: Text Document

Cmd-O File: Open…

Cmd-P File: Print…

Cmd-Q BBEdit: Quit BBEdit

Cmd-S File: Save

Cmd-T View: Text Display: Show/Hide
Fonts

Cmd-V Edit: Paste

Cmd-W File: Close Document/Close Window

Cmd-X Edit: Cut

Cmd-Z Edit: Undo

Cmd-, BBEdit: Preferences

Cmd-` Window: Cycle Through Windows

Cmd-- Search: Find Definition

Cmd-; Text: Find Next Misspelled Word

Cmd-[Text: Shift Left

Cmd-] Text: Shift Right

Cmd-/ Un/Comment Lines
Listing by Default Key Equivalent 357

Cmd-= Search: Replace

Cmd-\ Text: Hard Wrap…

Cmd–left arrow Search: Apply to New

Cmd–right arrow Search: Apply to Old

Cmd-Return New Line After Paragraph

Cmd-Ctl-A Markup: Inline: Anchor…

Cmd-Ctl-B Markup: Inline: Break…

Cmd-Ctl-F (Switch to/out of full screen mode)

Cmd-Ctl-I Markup: Inline: Image…

Cmd-Ctl-J Go: Named Symbol…

Cmd-Ctl-K Markup: Check: Document Links

Cmd-Ctl-L Markup: Lists: List…

Cmd-Ctl-M Markup: Edit Markup...

Cmd-Ctl-N File: New: HTML Document…

Cmd-Ctl-O File: Open from FTP/SFTP Server…

Cmd-Ctl-P Markup: Preview in BBEdit

Cmd-Ctl-S File: Save to FTP/SFTP Server…

Cmd-Ctl-T Markup: Tables: Table…

Cmd-Ctl-U Markup: Update: Document

Cmd-Ctl-V Edit: Paste Column

Cmd-Ctl-W File: Close All in Project

Cmd-Ctl-Y Markup: Check: Document Syntax

Cmd-Ctl-Z Edit: Clear Undo History

Cmd-Ctl-, Edit: Document Options

Cmd-Ctl-= Search: Replace All in Selection

Cmd-Ctl–Down
arrow

Go: Previous Error

Cmd-Ctl–Up arrow Go: Next Error

Cmd-Ctl-Shift-S File: Save a Copy to FTP Server…

Key Command
358 Appendix A: Command Reference

Cmd-Opt-B Markup: Check: Balance Tags

Cmd-Opt-D File: Reveal Selection

Cmd-Opt-E Search: Use Selection for Replace
(grep)

Cmd-Opt-F Search: Live Search

Cmd-Opt-G Search: Find All

Cmd-Opt-H BBEdit: Hide Others

Cmd-Opt-J Go: Line Number

Cmd-Opt-L Edit: Select Paragraph

Cmd-Opt-M (Minimize all windows)

Cmd-Opt-N File: New: Disk Browser

Cmd-Opt-O View: Move to New Window

Cmd-Opt-P File: Print All

Cmd-Opt-R Compiler: Run

Cmd-Opt-S File: Save All

Cmd-Opt-V Edit: Paste & Select

Cmd-Opt-W File: Close All Windows

Cmd-Opt-, Edit: Text Options

Cmd-Opt-; Edit: Find All Misspelled Words

Cmd-Opt-[View: Previous Document

Cmd-Opt-] View: Next Document

Cmd-Opt-= Search: Replace All

Cmd-Opt-/ Un/Comment Block

Cmd-Opt-\ Text: Hard Wrap

Cmd-Opt–up arrow File: Open Counterpart

Cmd-Opt-Shift-E Search: Use Selection for Replace
(grep)

Cmd-Opt-Shift-F Markup: Utilities: Format…

Cmd-Opt-Shift-P File: Print One Copy

Cmd-Opt-Shift-V Edit: Paste : Match Indentation

Cmd-Opt-Shift-W File: Close All Documents

Key Command
Listing by Default Key Equivalent 359

Cmd-Shift-A Edit: Select None

Cmd-Shift-B View: Balance & Fold

Cmd-Shift-C Edit: Copy & Append

Cmd-Shift-D Edit: Duplicate

Cmd-Shift-E Search: Use Selection for Find
(grep)

Cmd-Shift-F Search: Multi-File Search

Cmd-Shift-G Search: Find Previous

Cmd-Shift-J Search: Go to Center Line

Cmd-Shift-N File: New: Text Window

Cmd-Shift-P File: Page Setup

Cmd-Shift-S File: Save As…

Cmd-Shift-V Edit: Paste Previous Clipboard

Cmd-Shift-W File: Close Window {special}

Cmd-Shift-X Edit: Cut & Append

Cmd-Shift-Z Edit: Redo

Cmd-Shift-‘ Misc.: Cycle Through Windows
Backwards

Cmd-Shift-- Search: Find in Reference

Cmd-Shift-; Text: Show Spelling Panel

Cmd-Shift-[Text: Shift Left One Space

Cmd-Shift-] Text: Shift Right One Space

Cmd-Shift-Return New Line Before Paragraph

Key Command
360 Appendix A: Command Reference

Ctl-‘ Go: Next Placeholder

Ctl-[Edit: Previous Clipboard

Ctl-] Edit: Next Clipboard

Ctl-Tab (switch focus to next pane)

Ctl-Down arrow Edit: Move Line Down

Ctl-Up arrow Edit: Move Line Up

Ctl-Opt-C Navigation Bar: Open Counterpart
Menu

Ctl-Opt-F Navigation Bar: Open Files Menu

Ctl-Opt-I Navigation Bar: Open Includes
Menu

Ctl-Opt-M Navigation Bar: Open Marker Menu

Ctl-Opt-N Navigation Bar: Open Function
Menu

Ctl-Shift-‘ Go: Previous Placeholder

Ctl-Shift-Delete Edit: Delete Line

Ctl-Shift-Dn arrow Edit: Select Down

Ctl-Shift-Up arrow Edit: Select Up

Key Command
Listing by Default Key Equivalent 361

362 Appendix A: Command Reference

A P P E N D I X

B
Editing Shortcuts
In BBEdit you can perform many editing functions (including word selection or
deletion) directly from the keyboard. Chapter 4 contains complete details on
BBEdit’s text editing features. This appendix provides a quick reference to
available keyboard and mouse shortcuts for word selection and deletion.

In this appendix
Mouse Commands . 363
Arrow and Delete Keys . 364
Emacs Key Bindings . 365

Using universal-argument – 366

Mouse Commands

Triple-clicking is the same as clicking in a line and then choosing the Select Line
command from the Edit menu.

Holding down the Command or Option keys as you click or double-click triggers
special actions:

No Modifier Shift

Click move insertion
point

extend selection

Double-
click

select word extend selection to
word

Triple-click select line –none–

Option Command Command/
Option

Click –none– Open URL –none–

Double-
click

–none– –none– find next
instance of the
selected text
363

Arrow and Delete Keys
You can use the arrow keys to move the insertion point right, left, up, and down. You can
augment these with the Command and Option keys to move by word, line, or screens, or
with the Shift key to create or extend selections. For example, pressing Shift-Option-Right
Arrow selects the word to the right of the insertion point.

You can hold down the Control key while using the arrow keys to scroll through editing
windows without moving the position of the insertion point.

Note The meaning of the Command and Option modifiers listed above may be exchanged,
depending on which settings you have selected for Exchange Command and Option
Key Behavior in the Keyboard preference panel .

Key Modifier Action

(left/right) Arrow Move 1 character left/right

(left/right) Arrow Option Move 1 word left/right

(left/right) Arrow Command Move to beginning/end of line

(left/right) Arrow Control Jump to the previous/next character
transition from lower case to upper
case OR the next word boundary

(up/down) Arrow Move up/down 1 line in file

(up/down) Arrow Command Move to top/bottom of file

(up/down) Arrow Option Move to previous/next screen page

(up/down) Arrow Control Scroll view up/down

[any of the
above]

Shift Make or extend a selection range

Delete Deletes selection range, or
character preceding (to the left of)
the insertion point.

Delete Command Deletes all characters backwards to
beginning of line

Delete Option Deletes all characters back to
beginning of word

Delete Shift (same as Forward Delete)

Forward Delete Deletes selection range, or
character after (to the right of) the
insertion point

Forward Delete Command Deletes all characters forward to
end of the current line

Forward Delete Option Deletes all characters forward to
end of word

Forward Delete Shift (same as Forward Delete alone)
364 Appendix B: Editing Shortcuts

Emacs Key Bindings
The Keyboard preference panel contains an option labelled Use Emacs Key Bindings.
When this option is on, BBEdit will accept the following Emacs-style keyboard navigation
commands. The Escape key is used in lieu of the Emacs “Meta” key; to type these key
equivalents, press and release the Escape key followed by the specified letter key—for
example, to type “Esc-V” press and release the Escape key and then type the letter V.

Key
Sequence Action

Ctl-A beginning-of-line (Move insertion point to start of
current line)

Ctl-B backward-char (Move insertion point backward 1
place)

Ctl-D delete-char (Delete forward 1 character)

Ctl-E end-of-line (Move insertion point to end of current
line)

Ctl-F forward-char (Move insertion point forward 1 place)

Ctl-G keyboard-quit (cancel pending arguments)

Ctl-K kill-line (Cut)

Ctl-L recenter (Scrolls the current view so the selection is
centered on screen)

Ctl-N next-line (Move insertion point down one line)

Ctl-O open-line (Inserts line break without moving
insertion point)

Ctl-P previous-line (Move insertion point up one line)

Ctl-R isearch-backward (Live Search backward)

Ctl-S isearch-forward (Live Search forward)

Ctl-T transpose-chars (Exchange Characters)

Ctl-U universal-argument (See note below)

Ctl-V scroll-up (Page down)

Ctl-W kill-region (Cut)

Ctl-Y yank (Paste)

Ctl-_ undo (Undo)
Emacs Key Bindings 365

Using universal-argument
The universal-argument command (Ctl-U) does not work quite the same way as it does in
Emacs. In BBEdit, it is a simple repeat-count. For example, if you type Ctl-U, then a 3, and
then Ctl-N, the insertion point will move down three lines. There is no visual feedback as
you type the number, and no way to backspace or otherwise edit the number. If you make a
mistake, the best you can do is type Ctl-G (keyboard-quit) and start over.

Ctl-X Ctl-C save-buffers-kill-emacs (Quit)

Ctl-X Ctl-F find-file (Open file)

Ctl-X Ctl-S save-buffer (Save current document)

Ctl-X Ctl-W write-file (Save As)

Esc-< beginning-of-buffer (Move insertion point to start of
document)

Esc-> end-of-buffer (Move insertion point to end of
document)

Esc-Q fill-paragraph (Hard Wrap with current settings)

Esc-T transpose-words (Exchange Words)

Esc-V scroll-down (Page up)

Esc-W copy-region-as-kill (Copy)

Esc-Y yank-pop (Paste Previous Clipboard)

Key
Sequence Action
366 Appendix B: Editing Shortcuts

A P P E N D I X

C
Placeholders and
Include Files
This appendix lists the placeholder tokens used by BBEdit templates and include
files, and describes the use and capabilities of include files.

In this appendix
Placeholders . 367

Date Formats – 370 • Using the #RELATIVE# Placeholder – 371
Include Files . 372

Simple Includes – 372 • Persistent Includes – 373
Include Files with Variables – 373 • Including AppleScripts – 374
Including Unix Scripts – 375 • Other Include Notes – 377

Placeholders
Placeholders are processed under the following circumstances:

• When a new HTML document is created from a template, the
placeholders in the template are replaced with their current values. (The
new document receives the substituted text; the original template file is
not modified.)

• When the Update Document command (part of the HTML Tools) is
invoked, any placeholders in the documents being updated are replaced
with their current values. (Since the placeholders are replaced,
subsequent updates do not update the substituted text.) Although this
command is part of the HTML Tools, it can be used in any document
whenever you want to use placeholders.

• When a file is included in another file using the #bbinclude directive (or
a related directive), any placeholders in the included file are replaced
with their current values before the text is included. (The include file
itself is not changed, only the included text is substituted.) All of the
above methods of invoking placeholders can also invoke included files,
which can have placeholders of their own.

Note The placeholders described in this chapter are only available for use with the
HTML Tools’ Update command. They cannot be used with BBEdit’s Clippings
command, nor can Clippings placeholders be used in include or template
files.
367

BBEdit supports the following placeholders. Placeholders are not case-sensitive.

Placeholder Replaced By…

#ABBREVDATE# Abbreviated date—e.g., Sun, Aug 16, 2009

#BASE# The BASE tag as entered using the New HTML
Document command

#BASENAME# The name of the file stripped of its rightmost
period-delimited portion. For example, if the file
is named “test.html”, the base name is “test”,
while if the file is named “test.foo.html”, the
base name is “test.foo”.

#BASE_URL# The value of the BASE URL specified in an HTML
document’s header (useful if you want to refer
to the document’s location on the server)

#CHARSET# The character set specified in the New HTML
Document command

#COMPDATE# Compact Date format—e.g., 16-Aug-09

#CREATIONDATE# The creation date of the current file—e.g., 16-
Aug-09

#CREATIONTIME# The creation time of the current file, formatted
according to your Format settings in the
International panel of the System Preferences

#DATETIME XXX# Inserts a localized, region-aware date whose
format is specified by the ICU format string XXX
(see “Date Formats” below)

#DATETIME_GMT
XXX#

Inserts the universal, region-aware date whose
format is specified by the ICU format string XXX
(see “Date Formats” below)

#DIRPATH# The path on the server as specified in the
General panel of the Site Settings sheet. Strips
any leading slash from the path string

#DOCSIZE# The size of the current document plus included
images in bytes

#DOCTITLE# The title of the current document as extracted
from the <TITLE> tag

#DONT_UPDATE# Marks a document so that the HTML Update tool
will ignore it during processing

#FILE_EXTENSION# The filename extension for the file (determined
as the rightmost period-delimited portion of the
filename, without the period). For example,
whether the file is named “test.html” or
“test.foo.html”, the filename extension is
"html".

#FILENAME# The file name of the current file

#GENERATOR# Generator name used for “Give BBEdit Credit” in
New HTML Document function (e.g., “BBEdit
12”)
368 Appendix C: Placeholders and Include Files

#GMTIME YYY# The current GMT time formatted according to
the parameters YYY (see “Time Formats” below)

#LANGUAGE# The language specified in the New HTML
Document command, in format
(space)lang=”en”

#LINK# The LINK tag as entered using the New HTML
Document command

#LOCALPATH# The full local path to the current file

#LOCALTIME YYY# The current local time formatted according to
the parameters YYY (see “Time Formats” below)

#LONGDATE# Long Date format—e.g., Sunday, September 27,
2014

#MACHINE# The machine name as specified in the Sharing
section of the System Preferences.

#META# Any META tag entered using the New HTML
Document command

#MODIFIEDDATE# Modification date of the current file—e.g., 16-
Aug-09

#MODIFIEDTIME# Modification time of the current file, in the
format specified in the International section of
the System Preferences

#MONTHDAYNUM# Numeric value of the day of the month

#MONTHNUM# Numeric value of the current month

#PATH# Path to access your documents from the Web
server, as specified in your HTML Web Site
preferences

#PREFIX# As #DIRPATH# but does not strip the leading
slash of the path

#REAL_URL# The real URL for the current document in its
current location

#RELATIVE# The relative path from the current file back up
to the Local Server Root (inserts a path of the
form
“../../” to tell the browser to “back up” to the
site’s root directory)

#ROOT# Path to the Local Site Root, as specified in your
HTML Web Site preferences

#ROOTPATH# The file’s path relative to the Local Server Root
specified in the HTML Web Site preferences to
the current file

#SERVER# URL of your Web server, as specified in your
HTML Web Site preferences.

#SHORTDATE# Short Date. Day, month, year—e.g., 08/16/09

Placeholder Replaced By…
Placeholders 369

Date Formats
The #DATETIME XXX# and #DATETIME_GMT XXX# placeholders allow you to insert
the corresponding date and time values with flexible formatting.

In order to use these placeholders, you must substitute XXX with an ICU date/time format
string. ICU is the mechanism used by Mac OS X for date formatting. For full details, please
refer to the section “Formatting Dates and Times” in the ICU documentation:

http://userguide.icu-project.org/formatparse/datetime

Examples:

#DATETIME EEE, MMM d, yy 'at' h:mm a#

produces:

Tue, Jul 3, 09 at 5:48 PM

#DATETIME_GMT EEE, MMM d, yy 'at' h:mm a#

produces:

Tue, Jul 3, 09 at 9:49 PM

#DATETIME EEEE 'at' h 'o''clock' a#

produces:

Tuesday at 5 o'clock PM

Time Formats
The #GMTIME YYY# and #LOCALTIME YYY# placeholders offer you the option to
insert the specified time value with flexible formatting.

In order to use these placeholders, you must substitute YYY with a time format using the
same expansion options offered by the ‘strftime’ routine (see ‘man strftime’ for further
details).

#SHORTUSERNAME# Returns the login (short) name instead of the
full user name

#TIME# Current time, according to your Format settings
in the International panel of the System
Preferences

#TITLE# Title of the current document as entered using
the New HTML Document command

#USERNAME# The owner name (for the currently logged in
user)

#YEARNUM# The current year—e.g., 2009

Placeholder Replaced By…
370 Appendix C: Placeholders and Include Files

http://userguide.icu-project.org/formatparse/datetime

Examples:

#LOCALTIME %r %z on %A#

produces:

06:50:13 PM -0400 on Monday

#GMTIME %r %z#

produces:

10:50:13 PM +0000

Using the #RELATIVE# Placeholder
When dealing with large web sites that have multiple content folders, it is often useful to
specify relative rather than absolute paths for linking documents. The #RELATIVE#
placeholder allows you to easily generate relative references in templates and include files
by providing a virtual path that uses the “..” construction to “back up” the hierarchy to the
root directory of the site.

To use this placeholder, write your links as if they were all relative to the top of your web
site, including #RELATIVE# as the first “directory” in the path. For example, consider that
you have the following file structure, where each page includes a file which references the
separate GIF image.

My_Web_Site:
 Folder1:
 File1.html
 Folder2:
 File2.html
 File3.html
 Folder3:
 Folder4:
 Folder5:
 File4.html
 Graphics:
 Buttons:
 my_footer_button.gif

If you write a relative link as follows:

<img src="#relative#Graphics/Buttons/my_footer_button.gif"
alt="">

and then run the Update command, the following links will be generated.

In File1.html,

 ../Graphics/Buttons/my_footer_button.gif

In File2.html,

 ../Graphics/Buttons/my_footer_button.gif
Placeholders 371

In File3.html,

 ../Graphics/Buttons/my_footer_button.gif

In File4.html,

 ../../../Graphics/Buttons/my_footer_button.gif

Include Files
An include file, or just an “include,” is a special form of placeholder whose substitution
happens to be the contents of another file. If you have used C or certain other programming
languages, you may already be familiar with the concept. Using includes, you can reuse
standard bits of text content or HTML markup in several templates or clippings entries
without having to revise all of those individual files whenever you revise the included text.

Include File Locations
BBEdit looks for include files first in the same directory as the document containing the
directive, then in the same directory as the document into which the processed document is
being inserted, and finally in the HTML Templates folder specified by the configuration for
the current web site in the General section of the Site Settings sheet.

Simple Includes
A simple include takes the following form:

#bbinclude "filename"

where filename is the full name of the file whose contents you wish to include. When such
an include is present in a template or clippings entry, it is replaced with the contents of the
specified file when the template is used to build a new document, or when the clippings
entry is inserted. (The original template or clippings file is not changed.)

Imagine that you have ten different templates, each of which contains your name, address,
phone number, email address, and a copyright statement with the current year in them.
Rather than pasting this info into all ten templates, you can create a file named
“address.html”, put it in your Templates folder, and include this statement:

#bbinclude "address.html"

in each of the templates, at the appropriate point. Later, when the new year arrives, or you
move, you only have to update one file, not all ten templates. (You could use the
#YEARNUM# placeholder for the year and only need to update the include file when you
move!)

Headers and footers are probably the most common uses for include files, but any template
or clippings entry may use as many include statements as you wish. Included files
themselves may also use #bbinclude directives, up to 16 levels deep.
372 Appendix C: Placeholders and Include Files

Persistent Includes
Simple includes are appropriate for use situations where you want the inclusion to happen
only once. Once the file has been included, however, it cannot be changed in any automated
fashion. Since the #bbinclude directive is replaced by the included text, the Update tool
cannot tell the included text is any different from any other text.

Includes become even more powerful, however, when you can update existing files to
incorporate revised include text at a later date. For example, suppose you generate several
dozen HTML documents using a template that uses an #bbinclude directive to insert a
standard footer containing your email address. Later, you change your email address. After
you change it in the footer document, only new HTML files you create from the template
will include your new address. What you would really like to be able to do is update all the
files you have already created to include the revised footer.

Since this capability is needed primarily in web site maintenance, BBEdit lets you embed
the include directive in an HTML comment. An “end bbinclude” comment is also required.
The included text is inserted between the two comment markers, but the comments
themselves remain in place. The comments are not shown in the browser. This is known as
a persistent include.

A persistent include looks like this:

<!-- #bbinclude "filename" -->
<!-- end bbinclude -->

The first time a persistent include is processed, it is handled much like a simple include.
However, since the include directives remain in place, and because they mark the
beginning and end of the inserted text, the Update tool can “rip out” the obsolete included
text and replace it with the updated file. Using persistent includes and the Update Folder or
Update Site commands, you can easily make these sorts of changes to entire sites in
moments.

IMPORTANT Any changes you have made to the included text after its initial inclusion will be
discarded when the persistent include is updated, even if you have not changed the
include file.

Inline versus Block Includes
By default, BBEdit places included content in the document as a block, to ensure that it
does not occupy the same line as the include directives. However, if you wish to override
this behavior and have BBEdit place the included content inline, you may do so by adding
the special option #bbincludeoptions#="inline=true" to the include directive.

<!-- #bbinclude "filename" #bbincludeoptions#="inline=true" -->
<!-- end bbinclude -->

Include Files with Variables
Include files can be extended even further through the use of variables, which provide a
means of inserting arbitrary text when the included file is processed, so that not all
instances of the included file are exactly the same. Variables are essentially placeholders
that you make up yourself. Some possible uses are to insert names, taglines, alt strings for
images, or file names (for files other than the current document) into documents.
Include Files 373

Note A variable name consists of a string of alphanumeric characters, enclosed in number
signs (the ‘#’ character). Spaces are not allowed in variable names, but underscores
may be used to represent word breaks.

Variables can be placed anywhere in an include file, just like placeholders. When you
include that file in a document, you specify the variable names and values with it. Consider
an include file named "footer.html", which contains the following

<HR>

<H1>#MY_TITLE#</H1>
<BIG>This document copyright 1998-2009 by Sid Zookim.</BIG>

In your document, the Include reference would look like this:

…
<BODY>
…
<!-- #bbinclude "footer.html"
#MY_GRAPHIC#="test1.gif"
#MY_ALT_DESC#="a test image"
#MY_TITLE#="A Test Title"
-->
<!-- end bbinclude -->
…
</BODY>
…

Note that the values of placeholders are specified inside the HTML comment of a persistent
include, using a #PLACEHOLDER#=”Value” syntax. The quote marks around the value
are mandatory; if you need to include a quote mark in the actual value, escape it with a
backslash.

Including AppleScripts
BBEdit allows included files to be compiled AppleScript scripts. The script should contain
an “on include” handler which is passed two parameters: a reference to the file from which
the script is being called, and a record containing one field for each variable passed in the
#bbinclude directive. Scripts can of course also retrieve information from BBEdit, other
scriptable applications, or the system. The handler’s return value is inserted into the file
that included it.

Given the HTML document below:
374 Appendix C: Placeholders and Include Files

<html>
<head>
 <title>Include Test</title>
 <meta name="generator" content="BBEdit 12">
</head>
<body>

<!-- #bbinclude "foo.script" #x#="3" #author#="JEK"-->

<!-- end bbinclude -->

</body>
</html>

The following script inserts three lines: the first containing the file’s path, the second
containing the parameter “x” passed to it in the #bbinclude directive, and the third
containing the parameter “author.”

on include(f, vars)
 set s to f as text
 set s to "File Path: " & s & return & return as text
 set s to s & "x: " & x of vars & return & return as text
 set s to s & "Name: " & author of vars & return as text
 return s
end include

The resulting document might look like this:

<html>
<head>
 <title>Include Test</title>
 <meta name="generator" content="BBEdit 12">
</head>
<body>

<!-- #bbinclude "foo.script" #x#="3" #author#="JEK"-->
File Path: Boot:Desktop Folder:incl_test.html

x: 3

Name: JEK
<!-- end bbinclude -->

</body>
</html>

Including Unix Scripts
BBEdit lets you include scripts written in Perl, Python, Ruby, or any other Unix scripting
language. The complete path name of the file being processed is passed to the script as its
first argument, and any variables in the include statement are passed as additional
arguments. (For Perl, all these can be retrieved by your script via @ARGV.)
Include Files 375

Any text sent to STDOUT by the script will be taken as the value of the #bbinclude
operation and inserted into the HTML file. If an error occurs while running the script, the
STDERR output, if any, will be inserted into the file along with the STDOUT, and a single
line indicating the error will be added to the error browser.

For example, enter this directive in your HTML file:

<!-- #bbinclude "foo.pl" #length#="2" #width#="3" -->
<!-- end bbinclude -->

Then use this source code for “foo.pl”, and save it in the same folder as the HTML file, or
in the “Templates and Includes” folder specified in this web site’s configuration:

#!/usr/bin/perl -w
my $file = shift @ARGV;
my %args = @ARGV;
my $area = $args{"length"} * $args{"width"};
print "Filename: $file\n";
print "Area: $area\n";

When you run the Update command, BBEdit will place the file name in the script’s
variable $file and the “length” and “width” variables in the associative array (hash) %args.

After the update, the BBEdit file will look like this:

<!-- #bbinclude "foo.pl" #length#="2" #width#="3" -->
Filename: Mac HD:Desktop Folder:sample.html
Area: 6
<!-- end bbinclude -->

In addition, BBEdit will pass information about the current HTML Tools settings to the
script in the following environment variables:

BBEditServerURL
BBEditServerPath
BBEditDefaultFileName
BBEditTemplateDirectory
BBEditRootDirectory
BBEditLowercaseTags
BBEditLowercaseAttributes
BBEditAlwaysQuoteAttributes

To access these in your Perl code, use the %ENV environment variable hash. For example,
this line of Perl will print the web server name specified by this web site’s configuration:

print $ENV{BBEditServerURL};
376 Appendix C: Placeholders and Include Files

Here’s an example Python include script.

#!/usr/local/bin/python
import os
import string
import sys

print "Hello Python World!"
print "==================="
print "File being updated: ", sys.argv[1]
print

userVariables = {}
for i in range(2, len(sys.argv), 2):

userVariables[sys.argv[i]] = sys.argv[i+1];

print
print "Dumping the user variables passed to the script"
print "==="
print
keys = userVariables.keys();
keys.sort()
for k in keys:

print "%-30s %s" % (k, userVariables[k])

print
print "Dumping the environment variables set by BBEdit"
print "==="
print
for k, v in os.environ.items():

if (string.find(k, 'BBEdit') == 0):
print "%-30s %s" % (k, os.environ[k])

Other Include Notes
IMPORTANT Some old versions of BBEdit supported the use of “#include” as an alternative to

“#bbinclude”. However, this syntax made it difficult to mix BBEdit includes and Microsoft
Active Server Page (ASP) directives, so it is no longer supported. If you have existing
documents which use this syntax, simply change “#include” and “end include” to
“#bbinclude” and “end bbinclude” to continue using them.
Include Files 377

378 Appendix C: Placeholders and Include Files

A P P E N D I X

D
Codeless Language
Modules
The information previously contained in this appendix is superseded by the
Codeless Language Module Reference on our website:
http://www.barebones.com/support/develop/clm.html
379

http://www.barebones.com/support/develop/clm.html

380 Appendix D: Codeless Language Modules

Index

Symbols
“Home” and “End” Keys 215
#bbpragma 241

A
A (anchor) tag 259
ABBR tag 262
active windows 74
ActiveX controls 260
ADDRESS tag 255
alternation 178
Anchor command 259
AppleScript 35, 42

attaching scripts to menu items 299
in HTML documents 374
pitfalls 313
reading dictionary 307
recording 299

APPLET tag 260
application launch

overriding default action 210
application launch behavior 210
Application Preferences 209
Apply to New command 162
Apply to Old command 162
AREA tag 261
Arrange command 144
arranging windows 143
arrow keys 364
ASCII table

see Character Inspector 142
attaching scripts to menu items 299
autocomplete 31, 100, 205, 211, 217, 279, 316, 318

see also text completion 100
autocorrect 211
automatic spell checking 214
Automator 136

available actions 137

B
B (bold) tag 263
backups 70
Balance Tags command 265
BASE tag 239, 253
BASEFONT tag 261
#basename# placeholder 281
bbdiff 112
bbdiff tool 322

BBEdit Scripts folder 33
BBEdit Startup Items folder 32
bbedit tool 322
BBEdit-Talk mailing list 168
bbfind tool 323
bbresults tool 323
BDO tag 261
bi-directional override 261
BIG tag 263
binary plist files 52
Block Elements submenu 254
BLOCKQUOTE tag 255
BODY tag 253
BOM. see byte-order mark 50, 58
Bonjour 60
bookmarks 60
BR tag 261
broken links 265
browser plug-ins 260
browsers 197

differences 112
disk browser 199
file list panel 200
search results 151, 201
splitter 198
status bar 199
text panel 198

BUTTON tag 258
byte-order mark 50, 58
byte-swapped. see Little-Endian 58
bz2-compressed files 52

C
C programming language 129
camel case. see CamelCase 93
CamelCase 93

keyboard navigation of 93
Cancel button 24
capitalize

lines 121
sentences 121
words 121

CAPTION tag 257
Cascade Windows command 143
Cascade Windows, see also Arrange 144
Cascading Style Sheets 247
case sensitivity 148
case transformations 182
CENTER tag 255
381

changing case 121
character classes 172
Character Inspector 142
character offset specification 53
character set encoding 45, 50, 58
check spelling as you type 214
Check submenu 264
checking links 265
CITE tag 262
Clear command 24, 74
Clear key 74
clearing a marker 115
client-pull 254
client-side image maps 260, 261
client-side scripts 254, 255, 260
Clipboard 75
clipboard 75
#clipboard# placeholder 281
clipboards, multiple 75
Clipping popup 279
clipping sets

sorting 277
clippings 275

creating 277
editing 278
inserting 279
manually sorting 277
organizing 278
substitutions 281

Clippings menu 275
Clippings palette 276
Close Current Tag command 246
CODE tag 262
codeless language modules 340, 379
COL tag 257
COLGROUP tag 257
colored text 104
columns

see rectangular selection 94
command keys

assigning to menu items 343
in dialogs 24
in menus 23
listing by default key 357
listing by menu 345
shortcuts 363

Command-Period 24
comments

removing 267
Compare Again command 162
Compare Against Disk File 113
Compare Two Front Windows 110
comparing files 110

multiple files 113
completion 205

complex patterns 176
concatenate 109
context-sensitive HTML 245, 246
contextual menu, in disk browsers 69, 200
control characters 128
Convert to ASCII 122, 129
Convert to Client Side Map command 261
Convert to Table command 257
Copy & Append command 75
Copy as Styled HTML 48
Copy as Styled Text 48
Copy command 24, 75
Copy Path 69
Counterpart button 80
counterparts

overriding defaults 56
Create Table Shell 257
creating documents 43

from templates 273
HTML documents 43, 238
with clipboard 43
with selection 43

CSS 247
@import 248
format 249

cursor movement 92
using arrow keys 93

custom markup 273
Cut & Append command 75
cut and paste 74
Cut command 24, 74

D
#date# placeholder 281
#datetime xxx# placeholder 281
#datetime_gmt xxx# placeholder 281
DD tag 256
default window position

setting 143
defined term 262
definition list 256
DEL tag 255, 262
Delete key 74, 97, 364
deleted text 255
deleting text 74
Detab command 129
development environments 315

configuring BBEdit for use with 316
DFN tag 262
dialog keyboard shortcuts 24
dictionary, AppleScript 307
Differences command 112
directory list (HTML) 256
disclosure triangles 85
Disk Browser 44
382 Index

disk browsers 35, 42, 44, 49, 199
file list panel 200
status bar 199

DIV (division) tag 254
DOCTYPE 238
document proxy icon 91
documents

comparing 110
creating 43
editing text 74
inserting text 109
opening 381
saving 43, 44
window anatomy 77
window handling 381

documents drawer. see sidebar 83
DOS line breaks

see Windows line breaks 45
double-clicking 49
drag-and-drop

in document windows 75
to BBEdit application icon 49
to Windows floating window 49

drawer. see sidebar 83
DT tag 256
dynamic menus 23

E
Edit Tag command 246
editing clippings. see clippings, editing 278
editing text 74

shortcuts 363
Editor Defaults 207
EM tag 262
Emacs Key Bindings 216, 365
Emacs variables 47

x-counterpart 56
encoding 45, 50, 58
End key 99
Entab command 129
Enter key 24
escape codes 169
Escape key 24
Exchange with Next command 144
expanding tabs 102
extending the selection 93, 98
Extract command 160

F
F keys 98
Favorites 36
FIELDSET tag 258
file filters 155
File Group

see Projects 44
file groups 43

see Projects 65
file list panel 200
file list. see sidebar 83
#file# placeholder 281
file transfer format, FTP/SFTP 62
#file_extension# placeholder 281
Filter (magnifying glass) popup menu 67
Filters 329
filters, file 155
Find & Mark All command 115
Find & Replace All Matches 157
Find Again command 147, 160
Find All 147, 151
Find command 145, 148, 159
Find dialog

see Find window 146
Find Differences command 162
Find in Reference command 162
Find Selection command 160
Find window 146
finding text

see searching
floating windows

ASCII table 142
HTML Entities 271
HTML Tools 237, 269
window list 142

fold indicator 86, 90
FONT tag 261
foreign text 119
FORM tag 257, 258
Format command 266
Forms submenu 257
Forward Delete key 97, 98
Frame Printing Area 71
FRAME tag 264
Frames submenu 263
FRAMESET tag 263
freezing line endings 106
FTP

alternate ports 62
FTP Browsers 64
function keys 98
function navigation. see function popup 79
#function# placeholder 281
function popup 79

G
Go To Center Line command 163
Go to Line (see Line Number) 98
Go To Previous Error command 164
gremlins 128
grep 148
Index 383

alternation 178
backreferences 186
character classes 172
comments 189
complex patterns 176
conditional subpatterns 193
entire matched pattern 180
escape codes 169, 173
examples 183
excluding characters 172
longest match issue 178
lookahead assertions 192
lookbehind assertions 192
marking a mail digest 185
marking structured text 184
matching delimited strings 184
matching nulls 186
matching white space 183
matching words and identifiers 183
named backreferences 177
named subpattern 176
non-capturing parentheses 188
non-printing characters 173
non-repeating subpatterns 194
numbered backreferences 177
once-only subpatterns 194
pattern modifiers 190
positional assertions 191
POSIX character classes 187
quantifiers 175
ranges 172
rearranging name lists 185
recursive patterns 196
repetition 175
replacement patterns 180
replacing with subpatterns 181
setting markers with 115
subpatterns 176, 180
wildcards 170

Grep Patterns.xml 34
gutter 85
gzip-compressed files 52

H
Hard Wrap command 105, 107
hard wrapping 105, 107, 122
Head Elements submenu 253
headers 71
heading tags 255
hex escapes 149, 173
hexadecimal 129
hidden files

on FTP servers 61
Highlight Insertion Point 223
highlighting of text 74

Home key 98
HR tag 255
HTML

books on 230
CSS 247
document title 239
Web sites about 230

HTML document, creating 43
HTML Entities palette 271
HTML Templates folder 272
HTML Tools 229

Block Elements 254
checking HTML 264
custom markup 273
Edit Tag 246
entities 271
forms 257
frames 263
Head Elements 253
include files 372
inline elements 259
lists 256
Markup menu 237
miscellaneous 267
new document 238
optimizing documents 266
palette 237, 269
phrase elements 262
preferences 231
reformatting documents 266
scripts 374
tables 256
Tag Maker 245
templates 272
tool descriptions 244
translation 266, 272
updating documents 265
utilities 266
variables 373

human interface 23

I
I (italic) tag 263
image maps 260, 261
IMG tag 259
include files 372

variables 373
see also templates

incremental search
see Live Search 158

#indent# placeholder 282
indenting 121
Inline Elements submenu 259
#inline# placeholder 282
INPUT tag 258
384 Index

input, text filter 329
INS tag 255, 262
inserted text 255
inserting files 109
inserting folder listings 110
inserting page breaks 110
inserting text 109
#insertion# placeholder 282
insertion point 74
Install Command Line Tools 64, 321
installing BBEdit 27
international text 45, 50, 58, 119
invisible characters 104
invisible files 53

on FTP servers 61

J
Java applets 260
JavaScript 254, 255, 260
jump placeholders 165, 284

K
KBD tag 262
Key Equivalent 357
keyboard shortcuts 344, 363

in dialogs 24

L
LABEL tag 258
language module 379
language, source code 103
launching BBEdit 42
LEGEND tag 258
LI tag 256
line breaks 45, 122
line breaks, default 45
line ending format 45
line endings 45
Line Number command 98, 163
line number specification 53
line numbers

show on printout 71
link checker 265
LINK tag 239, 254
list items (HTML) 256
Lists submenu 256
Little-Endian 58
Live Search 158
longest match issue 178
lower case 121

M
Macintosh Drag and Drop 75

see also drag-and-drop
MAP tag 260
Mark pop-up menu 115
Markdown 268
Marker popup menu 80
markers

clearing 115
setting 115

Markup menu 237
menu list (HTML) 256
menus 23
Menus & Shortcuts preference panel 23
Menus preference panel 343
META tags 239, 254
Misc submenu 267
monospaced font 255, 263
mouse shortcuts 363
moving text 74
moving the cursor 92

using the arrow keys 93
multi-byte text 45, 50, 58, 119
multi-file comparisons 113
multi-file search 149
Multi-File Search command 145
MultiMarkdown 242
multiple clipboards 75
multiple Undo 76

N
#name# placeholder 282, 369
named subpattern 176
navigation

functions 79
navigation bar 78
nested folds 85
New Window with Selection 44
NOFRAMES tag 264
Non-Greedy Quantifiers 179
non-printing characters 104, 148
NOSCRIPT tag 254, 255
numeric keypad 97

O
OBJECT tag 260
OL tag 256
Open command 49

options 51
Open dialog 53
Open File by Name command 57
Open from FTP/SFTP Server 53

Show Files Starting with "." 61
Open Hidden

see Show Hidden Items 53
Open Recent command 49, 56
Index 385

Open Recent menu 209
Open Selection 53
Open Selection command 49, 53
Opening 49

binary plists 52
bz2-compressed files 52
gzip-compressed files 52

Opening Existing Documents 49
optimizing HTML 266
OPTION tag 259
Option-¥ on Japanese Keyboards 216
OPTIONGROUP tag 259
ordered lists 256
outdenting 121

P
P (paragraph) tag 254
page breaks 110
Page Down key 99
Page Guide 214
page guide 103
Page Up key 99
paragraph (definition) 74
Paragraph Fill option 108
PARAM tag 260
Paste command 24, 75
Paste Previous Clipboard 366
Paste Previous Clipboard command 75
pattern matching

see grep
Perl 325
Perl scripts 325
Perl/Unix Filters palette 343
persistent includes 373
Phrase Elements submenu 262
placeholder strings 165, 284
placeholders 367

#RELATIVE# 285, 370
AppleScript 285
in glossaries 281

popup menu
Filter 67
Recent 67
Site 67

POSIX-Style Character Classes 187
PRE tag 255
Preferences 203

Application 209
Function Popup 319
Printing 71

Prefix/Suffix Lines plug-in 123
preformatted text 255
Previewing in Windows browsers 220
previewing Markdown content 268
Print Color Syntax 71

Print Line Numbers 71
Print One Copy command 70
Print Selection 70
printing 70
Process Lines Containing plug-in 126
Project, creating 44
pull-down menus 23
Python 325

configuration 327
Python scripts 325

Q
Quick Search

see Live Search 158
QUOTATION tag 261

R
range end indicators 86
Recent (clock) popup menu 67
recording scripts 299
rectangular selection 94
Redo command 76
reflowing paragraphs 107
reformatting HTML 266
refresh open files 209
regular expressions

see grep
#RELATIVE# placeholder 371
remember recently used items 209
Remove Line Breaks command 105
removing comments 267
Rendezvous. see Bonjour 60
Reopen Documents 210
Reopen documents, preventing 210
repetition metacharacters 175
Replace 147
Replace & Find Again command 148, 162
Replace All 147, 151, 157, 161
Replace All in Selection 161
Replace to End 148
replacing text 74

see also searching
Return key 24
Ruby 325

S
SAMP tag 262
Save a Copy command 45
Save a Copy to FTP Server command 63
Save As command 44
Save As options

line breaks 45
Save As Stationery 45

Save as Styled HTML 48
386 Index

Save as Styled Text 48
Save command 44
Save Selection command 45
Save to FTP Server command 62
Saved Sources.xml 37
Scratchpad 143
#script# placeholder 282, 283, 285
script systems 119
SCRIPT tag 254, 260
Scripts 330
Scripts palette 33, 343
scrolling, synchronized 144
search results window 151, 201
search sources 37
searching 146

all open documents 153
case sensitive 148
for non-printing characters 148
for whole words 148
grep 148

see also grep
in a folder 153
in multiple files 149
in results of a previous search 154
in selection only 148
menu reference 159
non-printing characters 173
replacing in multiple files 157
results window 151, 201
search set 152
wrap around 148

Select All command 24, 74
Select Line command 74
Select Paragraph command 74
#select# placeholder 282
SELECT tag 258
selected text 74
selecting text 74, 92

by clicking 92
extending the selection 93
rectangular selection 94

#selend# placeholder 282
#selstart# placeholder 282
Services menu 44
Set (jump mark) 164
Set Marker command 115
Set Menu Keys. see Menus & Shortcuts preference panel
23
setting markers 115

using grep 115
SGML 230

prologue 238
Shell scripts 325
shell scripts 325
Shell Worksheet, creating 44

shell worksheets 319
shifting text 121
Show Files Starting with "." 61
Show Hidden Items 53
Show Page Guide 207
sidebar 83
simple includes 372
Site (cloud) popup menu 67
SMALL tag 263
soft wrapping 103, 105, 106

as default 106
Software Update 209
Sort Lines plug-in 124
SPAN tag 261
spell checking 117
split bar 84

in browsers 198
splitting a window. see split bar 84
startup

window handling 210
startup items 42
stationery 69

creating 45, 69
Stationery folder 35
using 69

status bar
hiding 103
in disk browsers 199

STRIKE tag 263
STRONG tag 262
STYLE tag 254
stylesheets 254
SUB (subscript) tag 261
subpatterns 176
substitution

in glossaries 281
SUP (superscript) tag 262
Synchro Scrolling command 144
syntax checking 264
syntax coloring 104

on printout 71

T
tab width 207
TABLE tag 256
Tables submenu 256
tables, creating 257
tables, editing 257
tabs

converting to and from spaces 129
Tag Maker command 245
tarballs 52
TBODY tag 257
TD tag 256
templates
Index 387

for HTML documents 239, 272
scripts 374
see also stationery 239
variables 373

text completion 31, 100, 279, 316, 318
Text Display menu 89
Text Document, creating 43
text encoding

choosing 50
Text Encodings preference panel 50
text factories 131
text filters 329
text folding

disclosure triangles 85
fold indicator 86
gutter 85
nested folds 85
range end indicators 86

text highlighting 74
text transformation 105
text wrapping 105
TEXTAREA tag 259
TFOOT tag 257
TH tag 256
THEAD tag 257
#time# placeholder 283
time stamps 71
TR tag 256
transformations, case 182
translation

HTML 266, 272
TT tag 263
typing text 74
typographer’s quotes 102

U
U (underline) tag 263
UL tag 256
Un/Comment command 121
Un/Comment plug-in 131
Undo command 76
Unicode 45, 50, 58, 119
universal-argument 366
Unix line breaks 45
Unix shell scripts 325
unordered lists 256
Update submenu 265
URL clippings 62
user interface 23
Using Language Modules 340
UTF-16 50, 58
UTF-8 50, 58
Utilities submenu 266

V
validation 264, 265
VAR tag 263
variables 373
verify open files 209
VMWare Fusion 220

W
WebKit 268
wildcards 170
window list 142
windows

arranging 143
exchanging with next 144
split bar 84

Windows floating window 49
Windows line breaks 45
Windows menu 141
worksheets, shell 319
wrap around 148
Wrap while Typing option 105
wrapping text 103, 105

X
XML declaration 239

Y
yank-pop 366

Z
Zap Gremlins command 128
388 Index

	Title Page
	Credits
	Copyrights & Trademarks
	BBEdit License Agreement
	Info-ZIP License
	Table of Contents
	Chapter 1 - Welcome to BBEdit
	Getting Started
	What Is BBEdit?
	How Can I Use BBEdit?
	Development Environments
	Writing HTML Documents

	Human Interface Notes
	Dynamic Menus
	Bypassing Options Dialogs
	Keyboard Shortcuts for Commands
	Contextual Menus
	Dialog Box and Sheet Key Equivalents

	Feature Highlights
	Info on New Features

	Discussion Group
	Support Services
	How to contact us

	Chapter 2 - Installing BBEdit
	Basic Installation
	System Requirements
	Installing BBEdit
	Automatic Relocation
	Launching BBEdit
	Activating BBEdit
	Checking for Updates
	Upgrading from a Previous Version
	Converting from TextWrangler

	BBEdit’s Application Support Folder
	Application Support Folder Contents
	Attachment Scripts
	Auto-Save Recovery
	Clippings
	Color Schemes
	Completion Data
	Custom Keywords
	HTML Templates
	Language Modules
	Menu Scripts
	Packages
	Readme.txt [file]
	Scratchpad [file]
	Scripts
	Setup
	File Filters.filefilters
	FTP Bookmarks.xml
	Grep Patterns.xml
	Menu Shortcuts.xml
	Not Menu Shortcuts.xml

	Shutdown Items
	Startup Items
	Stationery
	Text Filters
	Unix Worksheet.worksheet
	Superseded App Support Folders

	Preference Files and Folders
	BBEdit Preferences File
	BBEdit Preferences Folder
	Auto-Save Recovery
	Document State.plist
	Recent Files & Favorites
	Recent Folders & Favorites
	Save Application State.appstate
	Saved Sources.xml
	Sleep State.appstate

	Sharing Application Support & Preferences Data via Dropbox
	Sharing Application Support & Backups via iCloud Drive

	Chapter 3 - Working with Files
	Launching BBEdit
	Startup Items

	Creating and Saving Documents
	Saving a Copy of a File
	File Saving Options
	Save As Stationery
	Line Breaks
	Encoding
	Encoding and File Type Codes

	File State
	EditorConfig
	Emacs Local Variables
	Saving with Authentication
	Saving Compressed Files as bz2 or gzip
	Saving as Styled Text or HTML

	Crash Auto-Recovery
	Opening Existing Documents
	Front Window versus Separate Windows
	Choosing the Encoding for a Document
	Using the Open Command
	Show Hidden Items
	Read As
	Open In
	Translate Line Breaks

	Reload from Disk
	Opening and Editing Files within Zip Archives
	Opening bz2, gzip, and tar Files and Binary plists
	Opening Hidden Files
	Using the Open from FTP/SFTP Server Command
	Using the Open Selection Command
	Using the Open File by Name Commands
	Using the Open Counterpart Command
	Using the Open Recent Command
	Using the Reopen using Encoding Command

	Quitting BBEdit
	An International Text Primer
	International Text in BBEdit
	Unicode
	Saving Unicode Files
	Opening Unicode Files

	Accessing FTP/SFTP Servers
	Opening Files from FTP/SFTP Servers
	Specifying Alternate Ports
	Specifying a Login Path
	Storing Passwords
	Using SSH Key Files
	Transfer Formats
	Working with URL Clippings

	Saving Files to FTP/SFTP Servers

	Using BBEdit from the Command Line
	Using Projects
	Creating a Project
	Project Commands
	Using projects
	Creating Files and Folders within a Project
	Removing Files from a Project
	Contextual Menu Commands
	Script Access to Project Contents

	Using Stationery
	Manually Sorting the Stationery List

	Hex Dump for Files and Documents
	Making Backups
	Printing
	Printing Options
	Page Options:
	Print page headers
	Print full pathname
	Time Stamp

	Chapter 4 - Editing Text with BBEdit
	Basic Editing
	Moving Text
	Multiple Clipboards
	Drag and Drop

	Multiple Undo
	Window Anatomy
	Full Screen Mode
	Toolbar
	The Navigation Bar
	Choosing the Active Document
	Function Navigation
	Manually Defined Functions
	Navigation with Markers
	Opening Counterparts
	Opening Included Files
	The Document Info Panel
	Key Equivalents for Navigation Bar Menu Items

	The Sidebar
	The Split Bar
	The Gutter and Folded Text Regions
	Folding Controls

	The Status Bar
	Cursor Position
	Language
	Text Encoding
	Line Break Type
	Document Lock State
	Document Save Date
	Document Statistics
	Magnification
	Key Equivalents for Status Bar Items

	The View Menu
	Text Display
	Show/Hide Fonts
	Soft Wrap Text
	Show/Hide Page Guide
	Show/Hide Tab Stops
	Show/Hide Line Numbers
	Show/Hide Gutter
	Show/Hide Invisibles
	Show/Hide Spaces

	Show/Hide Navigation Bar
	Show/Hide Editor
	Show/Hide Sidebar
	Show/Hide Open Documents
	Show/Hide Worksheet & Scratchpad
	Balance
	Balance & Fold
	Fold Selection
	Unfold Selection
	Collapse Enclosing Fold
	Collapse All Folds
	Expand All Folds
	Collapse All Folds
	Collapse Folds Below Level
	Previous Document/Next Document
	Move to New Window
	Open in Additional Window
	Reveal in Finder
	Reveal in Project List
	Go Here in Terminal
	Go Here in Disk Browser

	Cursor Movement and Text Selection
	Clicking and Dragging
	Arrow Keys
	CamelCase Navigation
	Rectangular Selections
	Working with Rectangular Selections
	Example: Moving a Column
	Filling Down
	Further Details

	Scrolling the View
	Accelerated Scrolling

	The Delete Key
	The Numeric Keypad
	Line Number Command
	Function Keys
	Resolving URLs

	Text Completion
	Invoking Completion
	Completion Symbols

	Text Options
	Editing Options
	Use typographer’s quotes
	Auto-expand tabs
	Soft wrap text
	Language

	Display Options
	Line numbers
	Gutter
	Navigation bar
	Page guide
	Tab stops
	Show invisibles
	Syntax Coloring

	How BBEdit Wraps Text
	Soft Wrapping
	Soft Wrapping with Indentation
	Exporting Soft-Wrapped Text
	Soft Wrapping in Browsers
	Soft Wrapping and Line Numbers

	Hard Wrapping
	Hard-Wrapping Soft-Wrapped Text
	Hard Wrapping and Filling Text

	The Insert Submenu
	Inserting File Contents
	Inserting File & Folder Paths
	Inserting a Folder Listing
	Inserting a Page Break
	Inserting Time Stamps
	Inserting an Emacs Variable Block

	Comparing Text Files
	Reviewing and Applying Differences
	Preserving a List of Differences
	Comparisons by Other Means
	Compare Against Disk File
	Multi-File Compare Options
	List identical files
	Flatten hierarchies
	Only compare items in common
	Skip (…) folders
	Only compare text files
	Use file filter

	Using Markers
	Setting Markers
	Clearing Markers
	Using Grep to Set Markers

	Speaking & Spell Checking Text
	Speaking Text
	Spell Checking Text
	Check Spelling As You Type
	Manual Spell Checking
	The Spelling Panel

	Chapter 5 - Text Transformations
	Text Menu Commands
	Apply Text Filter
	Apply Text Filter <last filter>
	Exchange Characters
	Change Case
	Shift Left / Shift Right
	Un/Comment Lines & Un/Comment Block
	Hard Wrap
	Add Line Breaks
	Remove Line Breaks
	Convert to ASCII
	Educate Quotes
	Straighten Quotes
	Add/Remove Line Numbers
	Prefix/Suffix Lines
	Sort Lines
	Process Duplicate Lines
	Process Lines Containing
	Canonize
	Increase and Decrease Quote Level
	Strip Quotes
	Zap Gremlins
	Non-ASCII characters
	Control characters
	Null (ASCII 0) characters
	Delete
	Replace with code
	Replace with <character>

	Entab
	Detab
	Normalize Line Endings

	Text Factories
	Creating and Configuring Text Factories
	Choosing Targets
	Defining Actions

	Applying Text Factories to Files
	Applying Text Factories to Open Documents
	HTML Processing Actions

	Automator Actions
	Using BBEdit with Automator
	Available Actions
	Add/Remove Line Numbers
	Change Case
	Convert Spaces to Tabs
	Convert Tabs to Spaces
	Convert to ASCII
	Delete Lines Containing
	Educate Quotes
	Extract Lines Containing
	Get Contents of BBEdit Document
	New BBEdit Document
	Normalize Line Breaks
	Prefix/Suffix Lines
	Remove Duplicate Lines
	Remove Prefix
	Remove Suffix
	Search and Replace
	Set Contents of BBEdit Document
	Sort Lines
	Straighten Quotes
	Zap Gremlins

	Other Transforms
	Columnar Text Manipulations
	Extract
	Paste Using Filter

	Chapter 6 - Windows & Palettes
	Window Menu
	Minimize Window
	Bring All to Front
	Palettes
	Character Inspector
	Clippings
	Colors
	Scripts
	Text Filters
	Windows
	HTML Markup Tools

	Workspace
	Show Scratchpad
	Show Unix Worksheet
	Save Default <type of >Window
	Cascade Windows
	Arrange
	Cycle Through Windows
	Exchange with Next
	Synchro Scrolling
	Window Names
	Zoom (key equivalent only)

	Chapter 7 - Searching
	Search Windows
	Basic Searching and Replacing
	Search Settings
	Case Sensitive
	Entire Word
	Grep
	Selected Text Only
	Wrap Around

	Special Characters

	Multi-File Searching
	Starting a Search
	Find All and Multi-File Search Results
	Specifying the Search Set
	Searching the files in a folder
	Searching the frontmost project
	Searching all open documents
	Searching the contents of compressed archives
	Searching the files contained in a results browser
	Searching the files in a project

	Saved Search Sources
	Multi-File Search Options
	File Filters
	New Filter
	Filtering by Name
	Temporary Filters
	Editing and Deleting Filters

	Searching SCM Directories

	Multi-File Replacing
	Live Search
	Search Menu Reference
	Find
	Multi-File Search
	Search in [Document’s Folder]
	Search in [Project or Disk Browser]
	Live Search
	Find Next/Previous
	Find All
	Extract
	Find Selected Text/Previous Selected Text
	Use Selection for Find
	Use Selection for Find (grep)
	Use Selection for Replace
	Use Selection for Replace (grep)
	Replace
	Replace All
	Replace All in Selection
	Replace to End
	Replace & Find Again
	Find Differences
	Compare Two Front Windows
	Compare Against Disk File
	Compare Against Previous Version
	Apply to New
	Apply to Old
	Compare Again
	Find Definition
	Find in Reference

	Go Menu Reference
	Line Number
	Center Line
	Named Symbol
	Functions
	Reveal Start/End
	Go to Previous/Next
	Markers
	Jump Points
	Previous
	Next
	Set
	Previous/Next Error
	Previous/Next Placeholder

	Chapter 8 - Searching with Grep
	What Is Grep or Pattern Searching?
	Recommended Books and Resources
	Mastering Regular Expressions, 3rd Edition
	BBEdit Talk

	Writing Search Patterns
	Most Characters Match Themselves
	Escaping Special Characters
	Wildcards Match Types of Characters
	Other Positional Assertions

	Character Classes Match Sets or Ranges of Characters
	Matching Non-Printing Characters
	Other Special Character Classes
	Quantifiers Repeat Subpatterns
	Combining Patterns to Make Complex Patterns
	Creating Subpatterns
	Using Backreferences in Subpatterns
	Using Alternation
	The “Longest Match” Issue
	Non-Greedy Quantifiers

	Writing Replacement Patterns
	Subpatterns Make Replacement Powerful
	Using the Entire Matched Pattern
	Using Parts of the Matched Pattern
	Case Transformations

	Examples
	Matching Identifiers
	Matching White Space
	Matching Delimited Strings
	Marking Structured Text
	Marking a Mail Digest
	Rearranging Name Lists

	Advanced Grep Topics
	Matching Nulls
	Backreferences
	In Search Patterns
	In Character Classes
	In Replacement Patterns

	POSIX-Style Character Classes
	Non-Capturing Parentheses
	Perl-Style Pattern Extensions
	Comments
	Pattern Modifiers
	Positional Assertions
	Conditional Subpatterns
	Once-Only Subpatterns
	Recursive Patterns

	Chapter 9 - Browsers
	Browser Overview
	List Pane
	Navigation Bar
	Text View Pane
	Splitter

	Disk Browsers
	Disk Browser Controls
	Directory Menu
	Action Menu
	Filter Menu
	Toggle Editor Button

	Contextual Menu Commands
	Dragging Items
	Using the List Pane in Disk Browsers

	Search Results Browsers
	Error Results Browsers

	Chapter 10 - Preferences
	The Preferences Window
	Searching the Preferences
	Restore Defaults

	Appearance Preferences
	Toolbar
	Navigation Bar
	Text options
	Document navigation
	Marker menu
	Counterpart button
	Included files menu
	Document status
	Function menu

	Editing Window
	Tab stops
	Line numbers
	Gutter
	Page Guide at N characters
	Guide Contrast

	Text Status Bar
	Cursor position
	Language
	Text encoding
	Line break type
	Document lock state
	Document save date
	Document statistics
	Text magnification

	Sidebar
	Automatically show:
	Show icons

	List Display Font Size

	Application Preferences
	Open documents into the front window...
	Automatically refresh documents as they change on disk
	Remember the N most recently used items
	Always Show Full Paths in “Open Recent” Menu

	When BBEdit becomes active
	Do Nothing
	New text document
	Reopen documents that were open at last quit
	Restore unsaved changes
	Include documents on servers

	Automatically check for updates

	Completion Preferences
	Show text completions
	Include dictionary words in completion list
	Include system text replacements in completion list
	Insert matching delimiters while typing
	Surround selected text

	Editing Preferences
	Display instances of selected text
	Show tick marks in scroll bars
	Use “hard” lines in soft-wrapped views
	Soft-wrapped line indentation
	Line spacing
	Extra vertical space in text views
	Allow pinch-to-zoom to change magnification

	Editor Defaults Preferences
	Auto-indent
	Balance while typing
	Use typographer’s quotes
	Auto-expand tabs
	Show invisible characters
	Show Spaces

	Check spelling as you type
	Default font
	Tab width
	This option controls the default number of spaces that BBEdit uses to represent the width of a tab character.
	Soft wrap text To

	Keyboard Preferences
	Use Tab key to navigate Placeholders
	“Home” and “End” Keys
	Scroll to Beginning and End of Document
	Move Cursor to Beginning and End of Current Line
	Progressive (BRIEF Compatible)

	Enter key generates Return
	Allow Tab key to indent text blocks
	Enable Shift-Delete for forward delete
	Enable macOS “Help” key
	When auto-indenting, remove leading white space from indented line
	Allow Page Up and Page Down keys to move the insertion point
	Option-¥ on Japanese keyboards
	Emulate Emacs key bindings
	Display status window
	Enable meta sequences
	Allow the Escape key to trigger text completion

	Languages Preferences
	Installed Languages
	Custom Extension Mappings

	Menus & Shortcuts Preferences
	Menu Key Equivalents and Item Visibility
	Available Key Combinations

	Simple Menus/Full Menus
	Restore Defaults

	Preview Helpers Preferences
	Web Browsers Available for Previewing
	Previewing in Windows browsers through VMWare

	Printing Preferences
	Print using document’s font
	Printing font
	Frame printing area
	Print page headers
	Print full pathname
	Print line numbers
	1-inch Gutter
	Print color syntax
	Time stamp
	Wrap printed text to page

	Text Colors Preferences
	Selecting and Saving Color Schemes
	How to Change an Element’s Color
	Language-Specific Colors
	Global Colors
	Background
	Misspelled words
	Spaces
	Other invisibles
	Differences
	Use custom highlight colors
	Highlight insertion point

	Text Encodings Preferences
	Default text encoding for new documents
	If file’s encoding can’t be guessed, try

	Text Files Preferences
	Line breaks
	Ensure file ends with line break
	Strip trailing whitespace
	Backups
	Make backup before saving
	Keep historical backups
	Preserve file name extension
	Controlling Backups with Emacs Variables

	Expert Preferences
	Expert preferences Help page

	Website configurations
	The Setup Window
	Bookmarks
	Clippings
	Filters
	Patterns
	Folders

	Chapter 11 - BBEdit HTML Tools
	Introduction to the HTML Tools
	Recommended Books
	Recommended Online Resources
	What You Need

	Configuring Web Sites
	Creating a Web Site Project
	Entering Site Settings
	General Settings
	Defaults Settings
	Update Settings
	Deployment Settings

	Creating and Editing HTML Documents
	Creating a New Document
	Insert DOCTYPE
	Insert XML declaration
	Give BBEdit credit
	Title
	Lang
	Charset
	Base
	Meta
	Link
	Template

	File Addressing
	Checking Syntax
	Syntax Checking Partial Documents
	Ignoring Sections of Documents

	Format Customization

	Previewing Pages
	Applying Preview Filters
	Creating and Using Preview Filters

	Applying Templates and Custom CSS
	Previewing Code and Text
	Printing Previewed Pages

	HTML Tool Descriptions
	Edit Markup
	Editing Existing Tags

	Close Current Tag
	Balance Tags
	Document Type
	Character Set
	CSS submenu
	@media
	@import
	Format
	Box
	Border
	Padding/Margins
	Layout
	Position
	Size & Constraints
	Clipping
	Effects
	Background
	Font
	List
	Text

	Body Properties
	Head Elements
	Base
	Link
	Meta
	Script
	Noscript
	Style

	Block Elements
	Paragraph
	Div
	Horizontal Rule
	Heading
	H1 through H6
	Address
	Blockquote
	Center
	Deleted Text
	Inserted Text
	Noscript
	Preformatted

	Lists
	List
	Unordered/Ordered/Definition/Menu/Directory
	List Items

	Tables
	Table
	Row
	TD, TH
	Caption
	Colgroup, Col
	THead, TFoot, TBody
	Create Table Shell
	Convert to Table

	Forms
	Form
	Button
	Field Set, Legend
	Input
	Label
	Select
	Option Group
	Option
	Text Area

	Inline Elements
	Anchor
	Image
	Applet
	Object
	Param
	Script
	Map
	Area
	Break
	Font
	Base Font
	Bidirectional Override
	Quotation
	Span
	Subscript
	Superscript

	Phrase Elements
	Abbreviation
	Acronym
	Citation
	Computer Code
	Deleted Text
	Defined Term
	Emphasis
	Inserted Text
	Input Text (Kbd)
	Sample Output
	Strong Emphasis
	Variable

	Font Style Elements
	Big
	Small
	Bold
	Italic
	Strike-Through
	Teletype Text
	Underline

	Frames
	Frame Set
	Frame
	No Frames

	Check
	Syntax
	Links

	Update
	Includes
	Utilities
	Format
	Optimize
	Translate Text to HTML
	Translate HTML to Text
	Remove Comments or Markup
	Comment, Uncomment
	Raise Tag Case/Lower Tag Case

	Tidy
	Preview
	Preview in BBEdit
	Show Inspector
	Refresh BBEdit Preview
	Preview in <Selected Browser>
	Preview in

	The HTML Tools Palette
	HTML Tools Palette Tips
	HTML Tools Palette
	Other Palettes
	CSS palette
	Font Style Elements palette
	HTML Entities palette
	Utilities palette

	HTML Translation
	Convert Paragraphs
	HTML Entities
	Remove Tags

	Templates
	Template Setup
	Using a Template

	Chapter 12 - Using Clippings
	The Clippings Menu
	The Clippings Palette
	Managing Clipping Sets
	Installing New Clipping Sets
	Language Sensitivity of Clipping Sets
	Manually Sorting Clipping Sets

	Creating and Editing Clippings
	Inserting Clippings
	Assigning Key Equivalents to Clippings
	Clipping Substitution Placeholders
	Selection and Insertion Placeholders
	Jump Placeholder Format
	Optional-Argument Placeholder Format
	Date Formats
	Time Formats

	Using Scripts in Clippings

	Chapter 13 - Scripting BBEdit
	AppleScript Overview
	About AppleScript
	Scriptable Applications and Apple Events
	Reading an AppleScript Dictionary
	Suites
	Events
	Classes and the Class Hierarchy

	Recordable Applications
	Saving Scripts
	Using Scripts with Applications
	Scripting Resources
	Books
	Discussion Groups
	Web Sites
	Software

	Using AppleScripts in BBEdit
	Recording Actions within BBEdit
	The Scripts Menu
	Open Script Editor
	Open Scripting Dictionary
	Open Scripts Folder
	Running and Editing Scripts

	The Scripts Palette
	Organizing Scripts
	Attaching Scripts to Menu Items
	Attaching Scripts to Events
	Application attachment points
	Document attachment points
	Using Attachment Scripts
	Using an Attachment Script to Perform Authenticated Saves

	Filtering Text with AppleScripts

	BBEdit’s Scripting Model
	Script Compatibility
	Distinguishing Between Script Elements
	Applying Commands to Text
	Documents vs. Windows
	“Lines” and “Display_lines”

	Getting and Setting Properties
	Performing Actions
	Scripting Searches
	Scripting Single Replaces
	Scripting Multi-File Searches
	Scripting the Clipboard
	Scripting Text Factories
	Setting Text Encodings

	Arranging Documents and Windows
	Opening Documents
	Moving Documents
	Referencing Documents

	Common AppleScript Pitfalls
	The Escape Issue
	The Every Item Issue

	Chapter 14 - Working with Development Tools
	Configuring BBEdit for Development Environments
	Syntax Coloring
	Ctags for Enhanced Language Support
	Using ctags
	Tag File Discovery
	Tag File Generation and Updating
	Tag Files as Completion Sources

	Locating Unix tools via PATH
	Switching Between Counterpart Files
	Working with Kite

	BBEdit and the Unix Command-Line
	Shell Worksheets
	Using Worksheets
	Default Worksheet Stationery
	Exporting a Worksheet’s Contents

	Installing the Command Line Tools
	The “bbedit” Command Line Tool
	The “bbdiff” Command Line Tool
	Invoking “bbdiff” as an External Helper

	The “bbfind” Command Line Tool
	The “bbresults” Command Line Tool

	Unix Scripting: Perl, Python, Ruby, Shells, and more!
	Using Unix Scripts
	Language Resources
	Setting Environment Variables for GUI Apps
	Line Endings, Permissions and Unix Scripts
	Configuring Perl
	Search Paths

	Configuring Python
	Configuring Ruby
	Shebang Menu
	Check Syntax
	Run
	Run with Options...
	Run in Terminal
	Run in Debugger
	Run File
	Show POD/Show Module Documentation

	Filters and Scripts
	Document State

	Filters
	Passing Arguments to a Filter

	Scripts
	Additional Notes
	Setting Menu Keys for Scripts
	Manually Sorting the Text Filters and Script Menus
	Canceling Filter or Script Execution

	Working with Git
	Configuring Git
	Command-Line Integration
	Git Commands
	Check Out Branch
	Add
	Discard Changes
	Remove
	Remove from Index
	Stash
	Apply Stash
	Pop Stash
	Commit
	Commit Staged Changes
	Commit Working Copy
	Show Working Copy Status
	Compare Revisions
	Compare Arbitrary Revisions
	Compare with Staging/Compare with Previous/Compare with Head
	Fetch from Remote
	Pull from Remote
	Push to Remote
	Show Blame
	Show Revision History
	Open Log File

	Working with Perforce
	Perforce Commands
	Edit
	Revert
	Revert & Sync To Head
	Sync To Head
	Sync To Revision…
	Sync All
	Submit...
	Show Opened
	Compare Revisions…
	Compare Arbitrary Revisions…
	Compare with Base
	Compare with Head
	Show Annotation
	Show Revision History
	Add
	Delete
	Revert & Delete
	Go to Previous/Next Conflict
	Open Log File

	Working with Subversion
	Configuring Subversion
	Command-Line Integration
	Subversion Commands
	Revert
	Update to Head
	Revert & Update to Head
	Commit...
	Update Working Copy…
	Commit Working Copy...
	Show Working Copy Status...
	Compare Revisions...
	Compare Arbitrary Revisions...
	Compare with Base/Compare with Previous/Compare with Head
	Resolved
	Show Annotation
	Show Revision History...
	Add
	Delete
	Revert & Delete
	Go to Previous/Next Conflict
	Open Log File

	Chapter 15 - Language Modules and Packages
	Language Modules
	Installing Language Modules
	Overriding Existing Modules
	Codeless Language Modules
	Code-based Language Modules
	Language Module Compatibility

	Packages

	Appendix A - Command Reference
	Keyboard Shortcuts for Commands
	Assigning Keys to Menu Commands
	Available Key Combinations

	Listing by Menu and Command Name
	Listing by Default Key Equivalent

	Appendix B - Editing Shortcuts
	Mouse Commands
	Arrow and Delete Keys
	Emacs Key Bindings
	Using universal-argument

	Appendix C - Placeholders and Include Files
	Placeholders
	Date Formats
	Time Formats
	Using the #RELATIVE# Placeholder

	Include Files
	Include File Locations
	Simple Includes
	Persistent Includes
	Inline versus Block Includes
	Include Files with Variables
	Including AppleScripts
	Including Unix Scripts
	Other Include Notes

	Appendix D - Codeless Language Modules
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

