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1 The Answer

In this document I derive the general relationship between the flux density of a source
and its image brightness temperature for an antenna beam measuring two different source
geometries, uniform disk and gaussian. For the impatient I give the answer here. For those
interested in the details, subsequent sections provide those details. For a point source,
measured with a gaussian antenna beam from an antenna with main reflector diameter
D, the relationship between the source’s flux density (S2°(Jy)) and its Rayleigh-Jeans
equivalent brightness temperature (74) is given by:
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2 Introduction

In the following I derive the relationship between the flux density of a source and its
brightness temperature for an antenna beam measuring two different source geometries,



uniform disk and gaussian. The general relation between the flux density of a source and

its brightness temperature is
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Note that Equation [2f assumes that the Rayleigh-Jeans approximation (hv < kT') applies.
In a way, then, this is a fictitious temperature which is useful for describing the output
power from a radio source using a relation that is linearly proportional to temperature.
For a source with brightness temperature distribution ¥ (&, n), we can define the source
solid angle as follows
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The solid angle of the source normalized by the primary beam pattern of the antenna
(f(&,7m)), sometimes called the “effective source solid angle”, is given by

fuzf/?@mwam%m, (4)

while the main beam solid angle is given by

%:/ F(&mded, (5)

and the full beam solid angle is given by
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As the main beam full-width at half-maximum (FWHM) beam width 05 is defined as
follows (see Baars 2007, “The Paraboloidal Reflector Antenna in Radio Astronomy and
Communication”, Chapter 4):
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it is convenient in the following to parameterize the main beam solid angle in terms of the
illumination taper employed by the measurements:
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where b is the illumination taper factor. For a Gaussian beam b = 1/4/In(2) ~ 1.2.

With measurements of the solid angle of the source normalized by the primary beam
pattern of the antenna (€2,), the primary (main) beam (£2,,), and the main beam efficiency
(Mmp), We can write the relation between the measured antenna temperature (74) and the
source brightness temperature (Tg) as follows
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Substituting for the quantity f TpdQl, = T, in Equationresults in the following general
relation between flux density and measured antenna temperature
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where we have defined the main beam efficiency 7,,, as follows:
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Note that the term gf defines the coupling of the measured source to the beam of the
antenna.

In the following I calculate % for two standard source distributions. For these calcu-
lations I use the simplification that the antenna beam is circular (0o = 0py, = 0p). This
is a common situation in practice, and avoids the need to include a position angle term in
our beam and source major (6p, and fg,) and minor (g, and Og;) axis termsﬂ

3 Elliptical Gaussian Source

For an elliptical Gaussian source with dimensions fs, 0s, and an elliptical beam with

FWHM 63,
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With Equations (12| and [13| the solid angle of the source multiplied by the primary beam
pattern of the antenna becomes
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!This entails including the scaling factor cos PA in all equations that include major and minor axis
variables.
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where I have used the fact that
/ exp(—r?x?)dr = ﬁ (15)
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We can now write the source correction factor defining the coupling between a Gaussian
source and a Gaussian beam as follows
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Inserting this value for % and using €2, = ﬂbie% in Equation (10| yields
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Note that for a point source 0g,, s, < 05, and Equation |17 becomes:
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Still assuming a point source, If you prefer to use the reflector diameter (D) rather
than the beam size (6p), Equation [18| can be written as follows
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4 Uniform Disk Source

For a uniform disk source, such as a planet or asteroid, with equatorial and poloidal angular
. . L R
sizes 0.4 and 0,,, and whose area, for a source radius R, is given by fo 2mrdr:
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where I have used the fact that
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Since the integral over the source is given by 2, = fORS 2rr = wR% we can write the
source correction factor defining the coupling between a disk source and a Gaussian beam

as follows
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2 in Equation (10] yields

Inserting this value for % and using €2, =
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Note that for a point source 0.4, 0,, < 0p, and Equation [23| becomes:
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which is exactly the same relation derived from the assumption of an elliptical gaussian
source and beam in Equation (L8| (as it should be).
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