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1 The Answer

In this document I derive the general relationship between the flux density of a source
and its image brightness temperature for an antenna beam measuring two different source
geometries, uniform disk and gaussian. For the impatient I give the answer here. For those
interested in the details, subsequent sections provide those details. For a point source,
measured with a gaussian antenna beam from an antenna with main reflector diameter
D, the relationship between the source’s flux density (Spointν (Jy)) and its Rayleigh-Jeans
equivalent brightness temperature (TA) is given by:

Spointν (Jy) =
πk

2 (ln(2)D)2

TA
ηmb

' 4513.90
TA

D2(m)ηmb
(K) (1)

2 Introduction

In the following I derive the relationship between the flux density of a source and its
brightness temperature for an antenna beam measuring two different source geometries,
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uniform disk and gaussian. The general relation between the flux density of a source and
its brightness temperature is

Sν =
2k

λ2

∫
TB(Ω)dΩ (2)

Note that Equation 2 assumes that the Rayleigh-Jeans approximation (hν � kT ) applies.
In a way, then, this is a fictitious temperature which is useful for describing the output
power from a radio source using a relation that is linearly proportional to temperature.
For a source with brightness temperature distribution ψ(ξ, η), we can define the source
solid angle as follows

Ωs =

∫ ∫
ψ(ξ, η)dξdη. (3)

The solid angle of the source normalized by the primary beam pattern of the antenna
(f(ξ, η)), sometimes called the “effective source solid angle”, is given by

Ω′s =

∫ ∫
f(ξ, η)ψ(ξ, η)dξdη, (4)

while the main beam solid angle is given by

Ωm =

∫ ∫
mb

f(ξ, η)dξdη, (5)

and the full beam solid angle is given by

ΩA =

∫ ∫
b

f(ξ, η)dξdη. (6)

As the main beam full-width at half-maximum (FWHM) beam width θB is defined as
follows (see Baars 2007, “The Paraboloidal Reflector Antenna in Radio Astronomy and
Communication”, Chapter 4):

θB =
bλ

D
, (7)

it is convenient in the following to parameterize the main beam solid angle in terms of the
illumination taper employed by the measurements:

Ωm =
π

4

(
bλ

D

)2

=
πb2θBaθBb

4
, (8)

where b is the illumination taper factor. For a Gaussian beam b = 1/
√

ln(2) ' 1.2.
With measurements of the solid angle of the source normalized by the primary beam

pattern of the antenna (Ω′s), the primary (main) beam (Ωm), and the main beam efficiency
(ηmb), we can write the relation between the measured antenna temperature (TA) and the
source brightness temperature (TB) as follows

TA =
Ω′s
Ωm

TBηmb (9)
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Substituting for the quantity
∫
TBdΩs = TBΩs in Equation 2 results in the following general

relation between flux density and measured antenna temperature

Sν =
2k

λ2
TAΩA

Ωs

Ω′s

=
2k

λ2

TA
ηmb

Ωm
Ωs

Ω′s
(10)

where we have defined the main beam efficiency ηmb as follows:

ηmb ≡
Ωm

ΩA

(11)

Note that the term Ωs

Ω′
s

defines the coupling of the measured source to the beam of the
antenna.

In the following I calculate Ωs

Ω′
s

for two standard source distributions. For these calcu-

lations I use the simplification that the antenna beam is circular (θBa = θBb = θB). This
is a common situation in practice, and avoids the need to include a position angle term in
our beam and source major (θBa and θSa) and minor (θBb and θSb) axis terms1.

3 Elliptical Gaussian Source

For an elliptical Gaussian source with dimensions θSa θSb and an elliptical beam with
FWHM θB,

ΩS =

∫ ∫ ∞
−∞

exp

[
−4 ln(2)

(
ξ2

θ2
Sa

+
η2

θ2
Sb

)]
dξdη

=
πθSaθSb
4 ln(2)

(12)

and

Ωm =

∫ ∫ ∞
−∞

exp

[
− 4

b2

(
ξ2

θ2
Ba

+
η2

θ2
Bb

)]

=
πb2θ2

B

4
. (13)

With Equations 12 and 13 the solid angle of the source multiplied by the primary beam
pattern of the antenna becomes

Ω′S =

∫ ∫ ∞
−∞

exp

[
−4 ln(2)

(
ξ2

θ2
Sa

+
η2

θ2
Sb

)]
exp

[
− 4

b2

(
ξ2 + η2

θ2
B

)]
dξdη

=
πbθ2

B

4
√

ln(2)

(
θ2
Sa

θ2
Sa + θ2

B

)1/2(
θ2
Sb

θ2
Sb + θ2

B

)1/2

, (14)

1This entails including the scaling factor cosPA in all equations that include major and minor axis
variables.
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where I have used the fact that ∫ ∞
0

exp(−r2x2)dx =

√
π

2r
. (15)

We can now write the source correction factor defining the coupling between a Gaussian
source and a Gaussian beam as follows

Ωs

Ω′s
=

π
4 ln(2)

(θSaθSb)

πbθ2B

4
√

ln(2)

(
θ2Sa

θ2Sa+θ2B

)1/2 (
θ2Sb

θ2Sb+θ2B

)1/2

=
1

b
√

ln(2)

(
θ2
Sa + θ2

B

θ2
B

)1/2(
θ2
Sb + θ2

B

θ2
B

)1/2

. (16)

Inserting this value for Ωs

Ω′
s

and using Ωm =
πb2θ2B

4
in Equation 10 yields

Sν(Jy) =
2kν2

c2

πb2θ2
B

4

(
θ2
Sa + θ2

B

θ2
B

)1/2(
θ2
Sb + θ2

B

θ2
B

)1/2
TA
ηmb

=
2k

c2
1023

[
(2π)(109)

(360)(3600)

]2
πb2ν2(GHz)θ2

B(arcsec)

4(
θ2
Sa + θ2

B

θ2
B

)1/2(
θ2
Sb + θ2

B

θ2
B

)1/2
TA
ηmb

(K)

= 5.669× 10−7b2ν2(GHz)θ2
B(arcsec)(

θ2
Sa + θ2

B

θ2
B

)1/2(
θ2
Sb + θ2

B

θ2
B

)1/2
TA
ηmb

(K)

Sgaussν (Jy) ' 0.750

(
bν(GHz)

115

)2
θ2
B(arcsec)

100(
θ2
Sa + θ2

B

θ2
B

)1/2(
θ2
Sb + θ2

B

θ2
B

)1/2
TA
ηmb

(K). (17)

Note that for a point source θSa, θSb � θB, and Equation 17 becomes:

Sν(Jy) =
2kν2

c2

πb2θ2
B

4

TA
ηmb

=
2k

c2
1023

[
(2π)(109)

(360)(3600)

]2
πb2ν2(GHz)θ2

B(arcsec)

4

TA
ηmb

(K)

= 5.669× 10−7b2ν2(GHz)θ2
B(arcsec)

TA
ηmb

(K)

Spointν (Jy) ' 0.750

(
bν(GHz)

115

)2
θ2
B(arcsec)

100

TA
ηmb

(K). (18)
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Still assuming a point source, If you prefer to use the reflector diameter (D) rather
than the beam size (θB), Equation 18 can be written as follows

Spointν (Jy) =
2kν2

c2

πb2

4

(
cb

νD

)2
TA
ηmb

=
πkb4

2D2

TA
ηmb

=
πkb4

2D2(m)

1023

(100)2

TA
ηmb

(K)

' 2168.718
b4TA

D2(m)ηmb
(K). (19)

4 Uniform Disk Source

For a uniform disk source, such as a planet or asteroid, with equatorial and poloidal angular
sizes θeq and θpol, and whose area, for a source radius Rs, is given by

∫ Rs

0
2πrdr:

Ω′S =

∫ Rs

0

2πr

[
exp

(
− 4r2

b2θ2
B

)]
dr

=
πb2θ2

B

4

[
1− exp

(
− θeqθpol

b2θ2
B

)]
, (20)

where I have used the fact that

d

dr

[
exp

(
− 4r2

b2θ2
B

)]
= − 8r

b2θ2
B

[
exp

(
− 4r2

b2θ2
B

)]
. (21)

Since the integral over the source is given by Ωs =
∫ Rs

0
2πr = πR2

s, we can write the
source correction factor defining the coupling between a disk source and a Gaussian beam
as follows

Ωs

Ω′s
=

πR2
s

πb2θ2B
4

[
1− exp

(
−θeqθpol
b2θ2

B

)]−1

=
θeqθpol
b2θ2

B

[
1− exp

(
−θeqθpol
b2θ2

B

)]−1

. (22)
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Inserting this value for Ωs

Ω′
s

and using Ωm =
πb2θ2B

4
in Equation 10 yields

Sν(Jy) =
2kν2

c2

πb2θ2
B

4

1

b2

θeqθpol
θ2
B[

1− exp

(
−θeqθpol
b2θ2

B

)]−1
TA
ηmb

=
2k

c2
1023

[
(2π)(109)

(360)(3600)

]2
πν2(GHz)θeq(arcsec)θpol(arcsec)

4[
1− exp

(
−θeqθpol
b2θ2

B

)]−1
TA
ηmb

(K)

= 5.669× 10−7ν2(GHz)θeq(arcsec)θpol(arcsec)[
1− exp

(
−θeqθpol
b2θ2

B

)]−1
TA
ηmb

(K)

Sdiskν (Jy) ' 0.749

(
ν(GHz)

115

)2
θeq(arcsec)θpol(arcsec)

100[
1− exp

(
−θeqθpol
b2θ2

B

)]−1
TA
ηmb

(K). (23)

Note that for a point source θeq, θpol � θB, and Equation 23 becomes:

Sν(Jy) =
2kν2

c2

πb2θ2
B

4

TA
ηmb

=
2k

c2
1023

[
(2π)(109)

(360)(3600)

]2
πb2ν2(GHz)θ2

B(arcsec)

4

TA
ηmb

(K)

= 5.669× 10−7b2ν2(GHz)θ2
B(arcsec)

TA
ηmb

(K)

Spointν (Jy) ' 0.750

(
bν(GHz)

115

)2
θ2
B(arcsec)

100

TA
ηmb

(K), (24)

which is exactly the same relation derived from the assumption of an elliptical gaussian
source and beam in Equation 18 (as it should be).
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