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policy constraints. The effects of counterfactual policies are described by a structural

econometric model governed by an unknown parameter. The experimenter has access

to some pilot data, and has the opportunity to collect additional data through an

experiment. The joint experimental design and policy choice problem is a dynamic

optimization problem with a very high-dimensional state space, since the chosen policy

depends on the realized data. We propose a low-dimensional approximation to the

solution and show it is asymptotically optimal under Bayes expected welfare. The

method applies to policies allocating discrete as well as continuous treatments, such as

cash transfers, prices, or tax credits, which may be targeted on the basis of covariates.

We demonstrate the method using the conditional cash transfer program Progresa,

showing how to design an experiment to help choose a policy aimed at increasing

graduation rates and reducing gender disparities in education. Compared to the original

Progresa experiment, the optimal experiment requires 60% fewer observations to obtain

equally effective policies.
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1 Introduction

Economists often use experiments to evaluate, compare, and choose policies. Given data from an

experiment and an econometric model, decision makers can evaluate counterfactual policies and

choose the one that maximizes some measure of welfare. Experimental design can play an important

role in this process, as better estimates of the effects of counterfactual policies can minimize the

chances of choosing suboptimal policies. For a finite experimental budget, some experimental

designs will be more informative about the optimal policy than others. Such experiments should

be preferred when the ultimate goal of the experiment is to inform policy choice.

Despite the fact that choosing policies is a ubiquitous objective for decision makers, very little is

known about how to optimally design experiments for this purpose. Instead, much of the guidance

on experimental design assumes the objective of maximizing the precision of parameter or treatment

effect estimates (see Athey and Imbens (2017), as well as Section 1.1 below for a review). However,

not all parameters are equally important for choosing policies. For example, estimating the average

effect of a welfare benefits program may not be helpful for choosing how to target benefits based

on income or the number of dependents. Likewise, for the purpose of policy choice it is not helpful

to estimate heterogeneous effects across dimensions that the policy cannot influence. Instead, the

experiment should focus on learning about the effects of counterfactual policies on the policymaker’s

objective, prioritizing policies that are most likely to be welfare-enhancing. Because the objective

and constraints of a policy choice problem differ from those of a parameter estimation problem, an

experiment designed around one objective may not be well-suited for the other.

This paper provides a method for designing experiments specifically for the objective of policy

choice. We consider an experimenter who wants to choose a policy to maximize expected welfare

subject to budget or other policy constraints. The effects of counterfactual policies are described

by a structural econometric model governed by an unknown finite-dimensional parameter. The

experimenter has access to some pilot data, and has the opportunity to collect another wave of

experimental data to learn about the parameter. Our goal is to design this wave to be as helpful as

possible for choosing the best policy. Our proposed method uses pilot data to characterize the parts

of the policy space that are likely to be effective, and then designs the main wave of the experiment

to learn which of these policies is best. By taking into account both the objective and constraints
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of the policy choice problem, the method identifies the most valuable margins for experimentation.

The resulting experiment delivers data which is maximally informative for choosing the best policy.

Experimental design for the purpose of policy choice is a dynamic decision problem which

is difficult to solve due to the high-dimensionality of the state space. In the first period, the

experimenter designs the main wave of the experiment based on pilot data. In the second period,

the experimenter chooses a policy based on the experimental data, subject to constraints. Since the

policy depends on the realized data, a naive approach requires the experimenter to specify which

policy they would choose for every possible dataset that the experiment could generate. Even in

simple cases, the state can consist of thousands of continuous variables. As a practical matter,

solving this problem directly is not possible.

We propose a tractable method for finding the optimal experiment based on two approximations

justified by asymptotic theory. First, we approximate the finite-sample experiment with a limit

experiment in which the experimenter observes only a Gaussian estimate of model parameters. This

reduces the question of selecting an experimental design to that of selecting a variance-covariance

matrix for the Gaussian estimate. Second, we use a quadratic approximation to the welfare function.

Under this quadratic approximation, the optimal policy depends only on a low-dimensional linear

function of parameter estimates— namely, the marginal effect of adjusting the policy. Together,

these two approximations suggest that the intractable finite-sample experimental design problem

can be replaced with a tractable, low-dimensional problem in which only estimates of the marginal

effect of the policy are observed. This enables us to develop an efficient algorithm to solve for the

optimal experiment in practice.

We justify our proposed method by showing that it leads to the best possible welfare asymptot-

ically, as the size of the experiment grows. Specifically, an experimenter who (i) uses our method

to select the experimental design, and (ii) uses the resulting data to choose a policy, will have

the highest possible limiting welfare across all possible experimental designs. We achieve this by

validating the two approximations underlying our method as the size of the experiment grows large.

We validate the first approximation by characterizing the asymptotic behavior of policies as the

experimental design varies. We provide a limit-of-experiments result (Le Cam 1972) that shows

that any policy is asymptotically equivalent to a policy in a Gaussian environment, uniformly over

all designs. We validate the second approximation by showing that the policy choice problem in the
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limit experiment is equivalent to solving a quadratic program. Together, these results imply that

our method is asymptotically equivalent to directly solving the intractable, finite-sample decision

problem.

We demonstrate the method in an application to the Progresa conditional cash transfer exper-

iment (Schultz 2004, Gertler 2004, Gertler, Martinez, and RubioCodina 2012, Parker and Todd

2017). As an example of a possible objective, consider an experimenter who wants to maximize

school completion and minimize gender disparities in graduation rates. The policy choice problem

is to choose the amount of the subsidy, which can vary by grade and gender, to maximize this

objective subject to a budget constraint. The experimenter has a limited budget with which to

learn about the optimal policy. Our goal is to design an experiment which most effectively helps

the experimenter select the optimal policy.

In this application, we estimate that our method requires 60% fewer observations than the

original experimental design to obtain equally effective policies. This dramatic improvement in the

cost-effectiveness of the experiment comes from (i) focusing the experiment on subpopulations most

responsive to the transfer, as indicated by pilot data, and (ii) delivering more precise estimates of the

effect of the cash transfer on welfare on these subpopulations. We find that the optimal experiment

only experiments on secondary school children, since this is where the marginal effect of the subsidy

is highest (Todd and Wolpin 2006, Attanasio, Meghir, and Santiago 2012). The optimal experiment

offers a large subsidy to children in secondary school, which delivers more precise estimates of the

marginal effect of the subsidy for this group.

Our approach applies to a wide range of possible objectives, policies, and constraints. The

method is applicable to both discrete and continuous treatments, so long as the set of policies under

consideration exhibits some decreasing returns. Since the subsidy is continuous in the Progresa

application, this means we require that educational attainment is concave in the size of the subsidy.

For a binary treatment, the policy may exhibit decreasing returns when the treatment is targeted

based on a continuous variable. For example, if the treatment effect is a decreasing function of

a continuous covariate like income, then increasing the threshold for treatment eligibility exhibits

decreasing returns.

The objective can be any function of the policy and the parameters of the model. This allows

the experimenter to target objectives that may not be simple reduced-form functions of the data.
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For example, anti-poverty programs in developing countries may aim to maximize the long-run

subjective utility of the recipients. Firms may seek to maximize long-run profits, mediated through

the choices of forward-looking agents. Finally, a government may not be able to directly experiment

with a minimum wage, but may be able to choose the best minimum wage policy by learning about

labor supply elasticities through a cash transfer experiment. The methods of this paper therefore

enable experimenters to take advantage of the “best of both worlds” described by Todd and Wolpin

(2023) to leverage experimental variation and economic structure to efficiently learn about policies

and quantities of interest.

1.1 Related Literature

This paper links two complementary literatures in econometrics: experimental design and policy

choice. The questions of how to design experiments, and of how to choose policies based on the

results of experiments, are often treated separately.

The optimal design of experiments constitutes a vast literature in many fields. The classic

approach aims to estimate the parameters of a parametric model under various optimality criteria

(Silvey 2013, Pukelsheim 2006, Chaudhuri and Mykland 1993, Chaloner and Verdinelli 1995).

More recent works in econometrics have focused on experimental design with the aim of efficiently

estimating treatment effects with binary or discrete treatments in semiparametric settings. This

literature is reviewed in Athey and Imbens (2017). Examples include Hahn, Hirano, and Karlan

(2011), Bai (2022), Viviano (2022), Tabord-Meehan (2023), Cytrynbaum (2024), Bai et al. (2024).

The methods proposed by these papers, like the method proposed here, rely on large pilot samples

to inform the design of the main experiment. When this assumption fails, such methods can

have poor finite-sample properties (Cai and Rafi 2024). Asymptotic efficiency bounds for ATE

estimation across experimental designs are studied in Armstrong (2022). Our setting is parametric,

but we emphasize that our contribution of an asymptotically optimal experiment for policy choice

in parametric models is both novel and a necessary first step towards designing experiments for

policy choice in more flexible settings.

Another large literature in econometrics focuses on policy choice, given experimental or ob-

servational data. This is often done in a nonparametric or semiparametric setting (Manski 2004,

Bhattacharya and Dupas 2012, Kitagawa and Tetenov 2018, Athey and Wager 2021, Mbakop and
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Tabord-Meehan 2021, Sakaguchi 2024, among others) or a Gaussian environment motivated by

asymptotic theory (Stoye 2009, Stoye 2012). Counterfactual evaluation and policy choice is also

a central goal of structural econometric models. Some examples in development economics which

use structural models in conjunction with experiments to evaluate counterfactual policies include

Todd and Wolpin 2006, Attanasio, Meghir, and Santiago 2012, and Duflo, Hanna, and Ryan 2012).

This approach is surveyed in Todd and Wolpin (2023).

The econometric policy choice literature takes the data-generating process to be outside the

control of the decision maker. We complement this literature by providing guidance on how to

design an experiment that will be used to choose a policy. That is, we show how to choose the most

favorable data-generating process for the policy choice problem from a given class of experiments.

In particular, we extend the asymptotic analysis of treatment choice rules as in Hirano and Porter

(2009), Hirano and Porter (2020), and Xu (2024) to general nonlinear constrained decision problems

and optimize the value of this problem across experimental designs.

Adaptive experiments are commonly used to choose welfare-maximizing policies, with the multi-

armed bandit literature providing many algorithms for both in-sample and out-of-sample welfare

maximization (see Lattimore and Szepesvári (2020) and Russo et al. (2018) for recent surveys). In

econometrics, statistical properties of multi-armed bandits have been studied in Hirano and Porter

(2023) and Chen and Andrews (2023). The literature on optimal policies in bandits is vast, with

examples including Adusumilli (2024), Kasy and Sautmann (2021), Krishnamurthy et al. (2023),

Cesa-Bianchi, Colomboni, and Kasy (2024), and Viviano and Rudder (2024). The results of this

paper are most closely related to Hirano and Porter (2023) and Adusumilli (2024). Both papers,

like ours, work in a limit experiment framework to characterize the asymptotic behavior of adaptive

experiments. As a result, we obtain policies which are optimal in the limit experiment, in contrast

to the rate-optimality results in much of the multi-armed bandit literature. Unlike our paper,

which considers a nonlinear welfare function, nonlinear constraints, and policies which may assign

continuous treatments on the basis of covariates, the aforementioned papers work in a multi-armed

bandit setting where the decision is how many units to assign to each arm.
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1.2 Outline

In Section 2, we describe the general framework and the decision problem faced by the experimenter,

and find that an exact solution is infeasible. In Section 3, we describe a tractable solution method

where the difficult decision problem is replaced by a simpler Gaussian experiment with quadratic

loss and linear constraints. In Section 4, we show the proposed method is asymptotically optimal,

using a limit experiment framework. In Section 5, we study the application to Progresa in more

detail. In Section 6, we discuss extensions to robust Bayes preferences and multi-wave experiments.

2 Environment and decision problem

In this section we present the decision problem faced by the experimenter. There are two decisions

the experimenter has to make: how to design the main wave of the experiment, and what policy to

choose after observing the results of the experiment. This constitutes a two-period dynamic decision

problem which in principle can be solved by backwards induction, but is far too high-dimensional

to solve in practice.

We describe each component of the decision problem in turn. They are (1) the set of exper-

imental designs available, (2) the data-generating process as described by an econometric model,

(3) the set of possible policies, and (4) the welfare or objective of the experiment. We then combine

these components to formally state the decision problem. Finally, we discuss some specific settings

in which the framework can be applied.

2.1 Experimental designs

The experimenter designs the main wave of the experiment by deciding how to randomly assign

treatment to the sample on the basis of covariates.

Specifically, the experimenter has access to n experimental units indexed by i ∈ {1, . . . , n}. The

first n0 units constitute the pilot sample, and the remaining n1 = n− n0 units constitute the main

sample. Associated with each observation is a vector of covariates xi, a treatment assignment zi,

and an outcome yi. The experimenter has no control over how the pilot sample is chosen, but can

choose the design of the experiment for the main sample.

The assignment of treatment zi can depend on covariates xi. If the treatment is discrete, the
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experimenter can choose the probability of treatment as a function of covariates. If the treatment

is continuous, the experimenter may choose both the probability of treatment and the magnitude

of treatment as a function of covariates. In general, the experimental designs are represented by

conditional distributions of the form

pz|x(zi | xi; δ)

where δ is a finite-dimensional design vector parametrizing this distribution. For the n0 units in

the pilot sample, δ is fixed to some value δ0 outside the control of the experimenter. In contrast,

the experimenter can choose δ governing the treatment assignment of the remaining n1 units in

the main sample.

The choice of design is subject to some constraints. For example, the experimenter may have a

budget constraint which limits the total cost of the experiment, or there may be constraints that

a continuous treatment such as a price or subsidy must be nonnegative or bounded. We represent

these constraints by the inequalities

f(δ) ≤ 0.

Remark 2.1 (Endogenous sample size): The experimenter need not observe all n1 units in the

main sample. In particular, if sampling units is costly a smaller experiment may be preferred. We

can accommodate this by allowing δ to include a probability of sampling each unit. In this case it

is required that this probability be bounded away from zero. ♦

Remark 2.2 (I.i.d sampling): We restrict attention to i.i.d. sampling, where the treatment

of unit i is independent of the treatment of any other unit conditional on xi. This simplifies

the asymptotic analysis of Section 4. We defer the analysis of designs with dependence, such as

complete randomization, biased-coin designs, and matched-pair designs, to future work. ♦

By changing δ, the experimenter can change the design of the experiment along many dimen-

sions, including probability of treatment and the size or dosage of continuous treatments. We give

a few examples of policies that may be used in practice.
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Example 2.3 (Binary treatment): Many interventions, such as a job training program, are imple-

mented as binary treatments. In this case, the experimenter can choose the probability of treatment

as a function of covariates. This may be desirable if the cost of treatment or variance of outcomes

depends on covariates. One possible design is to assign treatment with probit probabilities, where

treatment is assigned according to

zi = 1[x′iδ + νi > 0]

where xi is a vector of covariates and νi is a standard normal random variable independent of

xi. ♦

Example 2.4 (Continuous-valued treatments): Prices, subsidies, unemployment benefits, and

many other treatments can take on a continuum of values. Such treatments can be assigned

according to a continuous distribution, or may be discretely distributed with support points chosen

by the experimenter. If a continuous distribution is desired, one can assign treatment by

zi = x′iδ1 + νi × δ2

where δ = (δ1, δ2) and νi is a randomization device with a continuous distribution, such as a

standard normal random variable.

On the other hand, it may be more practical to administer an experiment which implements

only finitely many treatment values. For example, the experimenter may divide the population into

treated and control groups and assign a treatment value which is a linear function of (potentially

discretized) covariates within the treatment group. This takes the form

zi = x′iδ1 × 1[νi ≤ δ2]

where δ = (δ1, δ2) and νi is a uniformly distributed randomization device which determines whether

the unit is in the treatment group. This class of designs is used in the Progresa example of Section

5. ♦

Example 2.5 (Rankings and combinatorial treatments): Our approach can also handle high-
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dimensional discrete treatments like rankings in online search results (Ursu 2018, Compiani et

al. 2023). Suppose xi = (xi1, . . . , xiJ) is a vector of covariates for J alternative products. The

experimenter wants to assign zi which is a permutation of {1, . . . , J} designating the position of

each product in a list. This is a discrete treatment with J ! possible values. We can parametrize

the distribution of zi by the ranked logit probabilities, given by

pz|x(zi = z | xi; δ) =

J−1∏
j=1

exp(x′izjδ)∑J
j′=j exp(x′izj′

δ)
.

where zj ∈ {1, . . . , J} is the jth element of the permutation z. ♦

2.2 Model

While the experimenter chooses the design governing the distribution of treatment, the experimenter

must learn about the data-generating process for the outcome through the experiment.

The data-generating process is described by a model describing the distribution of the outcome

yi conditional on treatment zi and covariates xi. The model for the outcome is given by a conditional

distribution

py|z,x(yi | zi, xi;θ)

parametrized by θ ∈ R`. As discussed in Section 1 and as will be discussed in examples throughout

the paper, the model may encode key identifying assumptions as well as economic primitives used

for welfare calculations.

Together, the model and the choice of design determine the data-generating process conditional

on covariates, denoted

p(yi, zi | xi;θ, δ) = py|z,x(yi | zi, xi;θ)pz|x(zi | xi; δ)

for each unit i. We do not model the data-generating process for covariates, and perform the analysis

conditional on covariates since the experimenter observes covariates before assigning treatment.

Below, when writing expectations, we will leave the conditioning on covariates implicit.
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Example 2.6 (Discrete choice): Suppose yi is a discrete choice generated by a multinomial logit

model conditional on price zi and covariates xi. The data-generating process for yi is

yi = argmaxj uij

uij = x′ijθ1 + z′ijθ2 + εij

where θ = (θ1, θ2) and εij is a T1EV random variable. This model specifies the distribution of yi

conditional on zi and xi. The experimenter can choose a design to vary the price zi along the lines

of Example 2.4. ♦

Example 2.7 (Welfare participation): As a special case of the discrete choice model, consider a

simple model of labor supply in a welfare program. Utility in the non-working and working states,

respectively, are

ui0 = vi + (1 + θ1)zi

ui1 = vi + wi

where zi is the benefit level and xi = (vi, wi) are the non-labor income and potential wage of the

individual (assumed to be observed for this example). The term θ1zi represents a potential stigma

effect of receiving benefits, whereby benefits may be valued differently than equivalent sources of

income. The decision of whether to work, indicated by yi, is given by

yi = 1[θ2 + θ3(ui1 − ui0) > εi]

where εi is a random utility shock. Variation in the treatment zi is needed to identify the stigma

effect θ1. Under a distributional assumption on εi, the welfare and employment effects of counter-

factual benefit levels can be estimated. While this simple model is static, one could alternatively

use a dynamic model of labor supply (e.g. Card and Hyslop (2005)) to estimate the effects of

benefits programs and maximize social returns over longer horizons. ♦
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2.3 Policies

After the experiment is conducted, the experimenter chooses a policy which will be applied to the

population. We assume the experimental sample is drawn from the same population to which the

policy will be applied.

In contrast to the experimental design, the policy assigns the treatment as a deterministic

function of covariates. That is, policies govern the value of zi assigned to the population as a

deterministic function of covariates through the function

zi = z(xi;π)

for a known function z parameterized by π ∈ Rk. This policy will assign treatment to units outside

the experiment.

Just as the experimental design is subject to constraints, the policy may also be subject to

constraints, denoted by

g(π) ≤ 0.

While it is natural that some constraints such as nonnegativity of the treatment are shared between

the design and the policy, the policy may also be subject to constraints that are not present in the

experimental design, or vice versa. Also, the budget constraint may differ between the experiment

and the policy.

Example 2.8 (Targeted treatment): Many interventions are tested with the goal of choosing how

to allocate the invervention on the basis of covariates. In this case, the policy will be a deterministic

assignment of the same treatment that was tested in the experiment. Following the examples of

Section 2.1, the policy may take the form

zi = 1[x′iπ > 0]
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for binary treatments and

zi = x′iπ.

for continuous treatments. ♦

Example 2.9 (Incentive schemes): Some policies allocate a treatment based on outcomes rather

than (or in addition to) covariates. For example, Duflo, Hanna, and Ryan (2012) experimentally

evaluate the effect of financial incentives and monitoring on teacher attendance. Using a dynamic

discrete choice model, they estimate the effects of counterfactual incentive schemes. They consider

policies which give a bonus of π1 rupees per day to teachers who attend school, for every day above

a threshold π2. These policies take the form

zi = π1 ×max(yi − π2, 0)

where yi is the number of days attended in a given month. ♦

Remark 2.10 (Mapping experimental variation to policy counterfactuals): We can accommodate

settings where the policy manipulates a different variable than the experiment. Specifically, suppose

zi = (zi1, zi2) and the experiment only manipulates zi1 while the policy only manipulates zi2. So

long as variation in zi1 identifies the effect of zi2, the experimenter can use the experiment to choose

the best policy. For example, Todd and Wolpin (2006) uses variation in wages to estimate the effect

of a conditional cash transfer. Our method allows the experimenter to determine the best way to

experiment with zi1 to learn about and choose the best policy for zi2. ♦

2.4 Welfare

The experimenter’s ultimate objective is to maximize the expected welfare resulting from the policy

chosen at the end of the experiment. The experimenter has some welfare function

W (θ,π)

12



which gives the welfare of choosing the policy π when the true parameter is θ. Since θ is unknown,

the experimenter aggregates over possible values of θ using a prior distribution q(θ) to obtain an

objective function. This means the experimenter seeks to maximize

Eδ[W (θ,π)]

where the expectation is taken with respect to the prior distribution q(θ) as well as the data-

generating process for the pilot data and the main wave of the experiment. The decision maker’s

actions consist of the design δ, which can depend on the pilot data, and the policy π, which can

depend on both the pilot and main data.

Remark 2.11 (Identification and the role of the prior): The experimenter observes the pilot data

before choosing either the design or the policy. If θ is identified from the pilot data, the influence

of the prior on the posterior conditional on the pilot data vanishes as the pilot sample grows.

Motivated by this asymptotic result, our proposed method ignores the prior when designing the

experiment and choosing the policy. Instead, the design of the experiment and the chosen policy

depend only on data observed in either the pilot or the main wave of the experiment. Our focus on

Bayes welfare is motivated by analytical tractability rather than a reliance on prior information.

When pilot data does not identify θ or the pilot sample is small, the role of the prior does not

vanish. In Section 6, we discuss a possible extension of our method to these settings. In these

extensions, an informative prior will play a role. ♦

Remark 2.12 (Maximin welfare and minimax regret): Other commonly used decision criteria

include maximin welfare and minimax regret, where regret is the difference between the welfare of

the first-best policy when θ is known and the welfare of the chosen policy. See Manski 2021 for an

overview of these approaches. ♦

In many treatment choice problems, the welfare function is the expectation of the outcome yi

when the true parameter is θ and the policy π is chosen, although this need not be the case. By

considering welfare functions that depend on θ in more general ways, we allow the experimenter to

target objectives such as agent welfare, consumer surplus, or counterfactual outcomes. As a special

case, we can use our framework when the objective is to precisely estimate a particular parameter
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or counterfactual.

Example 2.13 (Average outcome): In the case that a direct measure of welfare is observed, such

as mortality, revenue, or criminal recidivism, welfare is given by

W (θ,π) = Eθ,π[yi].

where Eθ,π denotes the expectation when the parameter is θ and the policy is governed by π. ♦

Example 2.14 (Consumer surplus): Consider the discrete choice setting of Example 2.6. If the

experimenter is interested in maximizing consumer surplus, the welfare function is

W (θ,π) = Eθ,π log
∑
j

exp
(
x′ijθ1 + z′ijθ2

)
up to a constant. ♦

Example 2.15 (Parameter or counterfactual estimation): Suppose the experimenter wants to pre-

dict the effect of a counterfactual policy but cannot directly experiment with that policy. However,

combining the experimental variation pz|x(zi | xi; δ) with a model of the outcome py|z,x(yi | zi, xi;θ)

allows the experimenter to identify the effect of the counterfactual policy. This counterfactual can

be expressed as a function of the underlying parameters, so that some γ(θ) is the object of interest.

The goal of the experimenter is to form an estimate of this effect, leading to the welfare function

W (θ,π) = (π − γ(θ))2.

Using this welfare function is equivalent to minimizing the posterior variance on γ(θ). ♦

2.5 Decision problem

We now combine the previous components to formally state the decision problem the experimenter

wants to solve. This is a two-period dynamic decision problem and in principle can be solved by

backwards induction; however, this is practically impossible.
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The experimenter seeks to solve

max
δ,π

Eδ[W (θ,π)] s.t. f(δ) ≤ 0, g(π) ≤ 0 (1a)

where the expectation is taken over the posterior distribution of θ as well as over the data generated

by both the pilot and the main wave of the experiment. Specifically, the data-generating process

is described by

(yi, zi) ∼ p(yi, zi | xi;θ, δ0) i = 1, . . . , n0

(yi, zi) ∼ p(yi, zi | xi;θ, δ) i = n0 + 1, . . . , n

θ ∼ q(θ)

(1b)

where δ0 describes the (fixed) design of the pilot sample, δ is a function of the pilot data, and π is

a function of both the pilot and main data.

The problem (1a)-(1b) is a two-period dynamic decision problem, which in principle can be

solved by backwards induction. Since π can depend on the data, the optimal policy maximizes the

posterior expected welfare conditional on the full dataset. The value function characterizing the

optimal policy as a function of the data is

Vn({yi, zi}ni=1) = max
π

E[W (θ,π) | {yi, zi}ni=1] s.t. g(π) ≤ 0 (2a)

Likewise, the optimal design maximizes the posterior expected value conditional on the pilot data

only. This means the optimal δ solves

max
δ

E[Vn({yi, zi}ni=1) | {yi, zi}n0
i=1] s.t. f(δ) ≤ 0 (2b)

and the law of motion for the state is the data-generating process in (1b).

One could imagine trying to solve (2a)-(2b) by standard dynamic programming methods. How-

ever, since the dependence of π on previously observed data is unrestricted, the state space of

Vn is the set of possible datasets that the main wave of the experiment could generate. This is
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extremely high-dimensional even for moderate-sized experiments and low-dimensional variables1.

For example, if n1 = 1000 and y and z are one-dimensional then the state space of Vn is R2000.

This problem is a general feature of dynamic experiments, and features prominently in multi-

armed bandit literature. More broadly, it is a feature of statistical decision problems where a

decision maker must specify a decision rule which may depend on realizations of the data (Manski

2021). For this reason, much of the literature on adaptive experimentation has proposed algorithms

which are approximate solutions to (2a)-(2b) (Lattimore and Szepesvári 2020).

We propose a general-purpose solution method for this problem motivated by asymptotic ap-

proximations. In contrast to much of the existing literature on adaptive experimentation, our

method is not specific to a particular objective or model, such as the multi-armed bandit setting,

but accomodates general constrained nonlinear decision problems of the form (1a)-(1b). Moreover,

our method provides guarantees not just on the rate of convergence but on the asymptotic optimal-

ity of the method among rate-optimal experimental designs and policies. That is, no experimental

design can achieve higher expected welfare asymptotically than the one we propose. This method

is the subject of the next section.

Remark 2.16 (Parameter estimation): When the experimenter’s objective is to estimate a pa-

rameter, the value function simplifies. This is a commonly studied problem in the literature,

especially with respect to estimating the average treatment effect in semiparametric models (Hahn,

Hirano, and Karlan 2011, Bai 2022, Tabord-Meehan 2023, Cytrynbaum 2024, Bai et al. 2024).

Suppose the experimenter’s objective is to estimate the linear function of parameters a′θ. Then

welfare function is

W (θ,π) = −(a′θ − π)2

and the optimal “policy” is the estimator

π = E[a′θ | {yi, zi}ni=1].

1Alternatively, one could use the posterior on θ as the state, but if the likelihood and prior are not conjugate the
state space will be the set of probability distributions on R`, which is infinite-dimensional. For ` small enough, it
may be feasible to use approximation methods to represent the posterior.
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As a result, in this case the value function (2a)-(2b) has the closed-form expression

Vn({yi, zi, xi}ni=1) = −Var(a′θ | {yi, zi}ni=1).

Hence, the optimal experimental design for parameter estimation problems focuses on minimizing

the posterior variance, or minimizing the semiparametric efficiency bound for the parameter of

interest in semiparametric models under a local asymptotic minimaxity criterion.

A similar situation arises when the welfare function is approximately quadratic and there are

no constraints on the policy. Then the optimal policy is the solution to a first-order condition and

is approximately equal to a linear function of parameters. Asymptotically optimal policies in such

settings are overviewed in Hirano and Porter (2023). The present paper extends such results to

optimize over experimental designs as well as policies.

For constrained decision problems, which are the focus of the present paper, the optimal policy

is not a smooth function of the parameters and there is no such closed-form solution to the value

function. This means that the value function must be approached by either brute-force solution,

which is infeasible, or an approximate solution method. The multi-armed bandit literature provides

a number of approximate solution methods for various objectives and models. Adusumilli (2024)

provides an approximation for the multi-armed bandit problem with many waves which is moti-

vated by asymptotic theory and hence is asymptotically optimal. The present paper is similar in

spirit but instead focuses on constrained, nonlinear policy choice problems with only one adaptive

wave. Like Adusumilli (2024), our approximation is motivated by asymptotic theory and is likewise

asymptotically optimal for the class of problems we consider. ♦

2.6 Applications

The framework described above is general and can be used in a variety of situations. Here we

present some examples to illustrate the breadth of applications.

Progresa Application: In the Progresa experiment, children in rural Mexico were randomly

assigned to be eligible to receive a cash transfer conditional on attending school. The size of the

transfer depended on the child’s current grade level and gender. Here zi is a vector describing the

amount of the transfer offered to child i at every grade level, xi is a vector of covariates including
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the child’s current grade level and gender, and yi is an indicator for whether the child attended

school.

We consider experimental designs and policies similar to Example 2.4 of the form

zi = x′iδ1 × 1[νi ≤ δ2]

where νi is a uniformly distributed randomization device, and policies of the form

zi = x′iπ.

We use a dynamic school choice model for children’s schooling decisions. Similar models have

been used to the analyze the Progresa experiment by Todd and Wolpin (2006) and Attanasio,

Meghir, and Santiago (2012). The model relates observed schooling decisions yi to long-run educa-

tional attainment, which is only observed for older children in the sample. by capturing the dynamic

effect of offering future subsidies in later school grades on children’s schooling decisions in earlier

grades. This dynamic effect is found to be a key mechanism through which the effectiveness of the

subsidy operates by both Todd and Wolpin (2006) and Attanasio, Meghir, and Santiago (2012).

One possible objective, considered in Section 5, is the goal of designing a subsidy schedule to max-

imize the eventual educational attainment of children and reduce gender disparities in graduation

rates. Other objectives, like the subjective welfare of households, could also be considered.

The experimenter faces a budget constraint for both the experiment and the policy, although

the budgets for each stage of the decision problem may differ. For a given experimental budget,

the experimenter can offer large subsidies to a small treatment group or small subsidies to a large

treatment group. Within the treatment group, giving higher subsidies to girls results in fewer

resources available to give to boys, and likewise for earlier/later grade levels. Additionally, the

subsidy must be nonnegative. ♦

Consumer Search Application: Expedia, an online platform for booking hotels, ran an experi-

ment in 2012-2013 in which they varied the order in which hotels were displayed to consumers. The

treatment zi is an ordered list of J hotels and the observed covariates xi contains attributes of the

consumer and the hotels associated with a particular query. The outcome yi is multidimensional
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and for each hotel in the query indicates whether the consumer clicked on the hotel and whether

they booked the hotel.

Although the treatment zi is extremely high dimensional, with possible values being the set

of permutations of subsets of hotels satisfying the query, we can parametrize distributions over zi

using the ranked logit policy class from Example 2.5. The experimenter chooses the vector δ which

determines the importance of product characteristics, such as ratings or price, in determining the

order of the search results.

We can use a model of consumer search with recall as in Weitzman (1979), Ursu (2018), and

Compiani et al. (2023) to model py|z,x(yi | zi, xi;θ). These models impose structure on the relation-

ship between rankings and consumer behavior, allowing the experimenter to evaluate counterfactual

policies without having to estimate the effect of every possible ranking, of which there are J !. The

model also allows the experimenter to evaluate consumer surplus.

A natural objective in this setting is revenue maximization. However, as discussed in Compiani

et al. (2023), the experimenter may also be interested in maximizing consumer surplus in order to

maximize the user base of the platform. Constraints on the experiment and policy may include a

budget constraint, an incentive compatibility or participation constraint for hotels (i.e. a guarantee

of a minimum level of visibility), or a restriction on how attributes of the consumer can affect the

ranking. ♦

3 Solution method

Since the finite-sample problem is intractable, we propose an approximation to this problem that

is low-dimensional and straightforward to solve. This approximation has two components: first, re-

placing the high-dimensional data with a low-dimensional Gaussian estimate, and second, replacing

the nonlinear welfare with a quadratic approximation.

This section presents the method as it is implemented in practice. Formal justification of the

approximations and the asymptotic optimality of the method are given in Section 4.

19



3.1 Gaussian approximation

The first step of the approximation is to assume that rather than observing the full pilot data and

main data, the experimenter only observes a Gaussian estimate from each wave. The question of

how to design the experiment is then reduced to the question of choosing the variance-covariance

matrix of this estimate. Whereas the state of the finite-sample problem is the full data, the state

of the Gaussian approximation to the problem is the posterior mean and variance on the model

parameters.

After the pilot experiment, suppose the experimenter only observes

θ̂0 ∼ N
(
θ,

1

n0
J−1

0

)

where J0 is the Fisher information matrix for the pilot experiment. Note that this is the limiting

distribution of the maximum likelihood estimator, so we can interpret θ̂0 as the maximum likelihood

estimator for the pilot data. Then, after the main wave of the experiment, the experimenter observes

θ̂1 ∼ N
(
θ,

1

n1
J(δ)−1

)

where J(δ) is the Fisher information matrix when the design δ is chosen.

By varying the experimental design δ, the experimenter varies the variance-covariance matrix

of the resulting estimate θ̂1. The following example illustrates how the different designs affect the

variance-covariance matrix of estimates of group means.

Example 3.1 (Group means): Suppose yi, zi and xi are all binary. Let θz,x be the probability

that yi = 1 for units with zi = z and xi = x so that

py|z,x(yi = 1 | zi, xi;θ) =
∑

z,x∈{0,1}

θz,x1[zi = z, xi = x].

Suppose treatment is assigned by

pz|x(zi = 1 | xi; δ) = δ0(1− xi) + δ1xi,
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where δ0 and δ1 are the treatment assignment probabilities for units with xi = 0 and xi = 1. Also

suppose that the probability that xi = 1 is 1
2 . The Fisher information matrix for this model is

given by

J(δ) =
1

2



1−δ0
θ0,0(1−θ0,0) 0 0 0

0 δ0
θ1,0(1−θ1,0) 0 0

0 0 1−δ1
θ0,1(1−θ0,1) 0

0 0 0 δ1
θ1,1(1−θ1,1)


This will be singular whenever δ0 ∈ {0, 1} or δ1 ∈ {0, 1}, corresponding to a treatment assignment

that does not randomize for the subpopulations characterized by xi = 0 or xi = 1. ♦

The variance-covariance matrix J(δ) affects the welfare of the policy chosen at the end of

the experiment by determining the information available to the experimenter when choosing the

policy. This is captured by the posterior distribution of the parameter of interest conditional on

the Gaussian estimates θ̂0 and θ̂1. So long as J0 is nonsingular, the prior is dominated by the pilot

data as n0 grows large and the posterior after observing θ̂0 is approximately Gaussian with mean

and variance given by

µ0 = θ̂0 Σ0 =
1

n0
J−1

0 .

We take this as the starting point for the main wave of the experiment, and in doing so ensure

our method is insensitive to the prior q. Then, after picking the design δ and observing θ̂1, the

posterior is also Gaussian and is characterized by the Bayesian updating formula

µ1 =
(
Σ−1

0 + n1J(δ)
)−1

(
Σ−1

0 µ0 + n1J(δ)θ̂1

)
Σ1 =

(
Σ−1

0 + n1J(δ)
)−1

.

(3)

Designs which are more informative about particular parameters will lead to posteriors which

are more informative about those parameters. Whether a particular δ is optimal in terms of its

information depends on the objective and constraints of the experimenter. For a given policy choice

problem, some parameters may be more important than others and it may be desirable to estimate
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them more precisely.

We now present the value function under the Gaussian approximation. In the second period of

the decision problem, the experimenter chooses a policy π to maximize posterior expected welfare,

leading to the value function

V G
n (µ1,Σ1) = max

π
E
[
W (θ,π) | θ̂0, θ̂1

]
s.t. g(π) ≤ 0 (4a)

where θ ∼ N(µ1,Σ1) given θ̂0 and θ̂1. To solve for the optimal design, the experimenter must first

compute the value function V G
n for each possible state (µ1,Σ1). Then, the experimenter picks the

design which maximizes the expected value of V G
n . That is, in the first period the optimal design

solves

max
δ

E
[
V G
n (µ1,Σ1) | θ̂0

]
s.t. f(δ) ≤ 0 (4b)

where the law of motion for (µ1,Σ1) is given by the Bayesian updating formula (3). The expectation

is taken over the distribution of θ̂1, which is governed by the choice of δ through J(δ), as well as

over θ ∼ N(µ0,Σ0) given θ̂0. We use the G superscript to reflect the Gaussian approximation, and

the n subscript because the variances of θ̂0 and θ̂1 depend on the sample size.

Restricting attention to this Gaussian estimate reduces the state space of the dynamic program

significantly. In fact, the state space no longer depends on the sample size. Rather, it depends on

the dimension of the parameter θ. To solve V G
n , it is necessary to keep track of the posterior mean

µ1 and the lower triangular part of the posterior covariance matrix Σ1. For θ ∈ R`, this state is of

dimension `+`(`+1)/2. This can still be large. For example, in the Progresa application discussed

in Section 5, ` = 15 and the state space is R135. However, a further simplification is achieved by

using a quadratic approximation to the welfare function. We discuss this next.

Remark 3.2 (Singular Fisher information): It is possible that the Fisher information matrix J(δ)

is singular for some choices of δ. In fact, this may be the case for the optimal design. To see this,

consider the setting of Example 3.1. Suppose that the pilot data gives a precise estimate of the

control outcomes θ0,0 and θ0,1, but very imprecise estimates of the treatment outcomes θ1,0 and

θ1,1. Then the optimal design may set δ1 = δ2 = 1, so that the entire population is treated in the
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main wave. This leads to a singular J(δ) in the main wave, but by combining the pilot data and

the main data, the experimenter obtains a good estimate of both treatment and control outcomes

to inform the policy choice.

When J(δ) is singular, the MLE is not well-defined. To account for this possibility, our results

in Section 4 will rely on the sample average of the scores. When J(δ) is nonsingular, observing

the sample average of the scores is equivalent to observing the MLE. Otherwise, using the sample

average of the scores allows us to generalize V Q
n to remain valid in the case of singular J(δ). The

law of motion for (µ1,Σ1) when J(δ) is singular is given by

µ1 =
(
Σ−1

0 + n1J(δ)
)−1 (

Σ−1
0 µ0 +A1

)
Σ1 =

(
Σ−1

0 + n1J(δ)
)−1

where A1 ∼ N
(
J(δ)θ, 1

n1
J(δ)

)
. When J(δ) is nonsingular, A1 = J(δ)θ̂1 and this law of motion is

exactly the same as the standard Bayesian updating formula (3). ♦

3.2 Quadratic approximation

The second simplification is to replace the nonlinear welfare function with a quadratic approxi-

mation. Under this approximation, the optimal policy depends on the unknown parameter only

through a low-dimensional linear function of parameters interpreted as the marginal effect of chang-

ing the policy. This reduces the dimension of the state from the posterior mean and variance on

the entire parameter to only the posterior mean on this marginal effect.

Suppose that the true parameter θ is in a neighborhood of some θ0. This neighborhood will be

formalized in Section 4. Let the optimal policy under θ0 be

π0 = arg max
π

W (θ0,π) s.t. g(π) ≤ 0. (5)

We construct a quadratic approximation to the welfare function around (θ0,π0). Let

C = ∇πW (θ0,π0)

D = ∇2
πθW (θ0,π0)
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H = ∇2
ππW (θ0,π0)

be the marginal effect of the policy on welfare, the cross-partial derivative of welfare, and the second

derivative of welfare with respect to π, evaluated at (θ0,π0). Since the choice of policy is subject to

constraints, it will not generally be true that C = 0. Using these quantities, we define the quadratic

welfare function

WQ(θ,π) = (π − π0)′[C +D(θ − θ0)] +
1

2
(π − π0)′H(π − π0).

This approximation is similar to a second-order Taylor expansion of welfare around (θ0,π0), but

ignores terms which do not involve π, since these terms will not affect the choice of policy π.

The key property of WQ is that θ enters the decision problem only through the linear function

Dθ. This quantity has the intuitive interpretation of capturing the marginal effect on welfare of

changing the policy from π0 to some other policy π. To see this, recall that in the main wave of

the experiment the experimenter will observe some Gaussian estimate

θ̂1 ∼ N
(
θ,

1

n1
J(δ)−1

)
.

By the Delta method, when θ is close to θ0 and n1 is large, the maximum likelihood estimate of

the marginal effect of the policy ∇πW (θ,π0) is approximately distributed as

√
n1(∇πW (θ̂1,π0)−∇πW (θ,π0)) ∼ N(0, DJ(δ)−1D′).

which is the same distribution as
√
n1(Dθ̂1 −Dθ). Thus, estimates of θ affect the choice of policy

only by providing estimates of (a linear approximation to) the marginal effect of the policy on

welfare.

The intuition behind this quadratic approximation is that when choosing a policy, estimates

of the parameters of the model are only relevant insofar as they are informative about the effects

of counterfactual policies. For policies close to π0, the marginal effect of changing the policy

characterizes these counterfactuals. Thus, when choosing a policy, the experimenter need only

consider the posterior on this marginal effect. In the Progresa example, this marginal effect is the
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increase in graduation rates resulting from giving an extra peso to primary school children versus

giving an extra peso to secondary school children, or to girls versus boys.

This intuitive interpretation has important practical implications as well. Since WQ is linear

in Dθ we can write expected welfare under the quadratic approximation as a function only of the

posterior mean on Dθ:

E
[
WQ(Dθ,π) | θ̂0, θ̂1

]
= WQ(Dµ1,π)

and therefore Dµ1 is a sufficient state variable for the policy choice problem in the second period.

That is, if the experimenter knows Dµ1, then no other data is needed to choose the policy which

maximizes posterior expected welfare. Since Dθ characterizes the marginal effect of the policy π,

Dµ1 is of the same dimension as π. For many policy classes used in the literature (see Kitagawa

and Tetenov (2018) or Athey and Wager (2021) for examples), π is low-dimensional, perhaps much

lower-dimensional than θ.

We now present the value function under the additional quadratic approximation. In the second

period, the value function is defined by choosing the policy to maximize posterior expected welfare,

leading to the value function

V Q
n (Dµ1) = max

π
WQ(Dµ1,π) s.t. g(π) ≤ 0. (6a)

To solve for the optimal design, the experimenter must first compute the value function V Q
n for

each possible state Dµ1. Then, the experimenter picks the design which maximizes the expected

value, integrating over possible values of Dµ1. That is, in the first period the optimal design solves

max
δ

E
[
V Q
n (Dµ1) | θ̂0

]
s.t. f(δ) ≤ 0 (6b)

where the law of motion for (µ1,Σ1) is given by the Bayesian updating formula (3). As before, the

expectation is taken over both the distribution of θ̂1, which is governed by the choice of δ through

J(δ), as well as θ ∼ N(µ0,Σ0) given θ̂0.

This value function is extremely tractable. Recall that the finite-sample value function Vn has

a state space with potentially thousands of dimensions, increasing with the sample size. Using only
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the Gaussian approximation, we obtained a value function V G
n with a state space of dimension

`+`(`+1)/2. Using both the quadratic approximation and the Gaussian approximation, we obtain

a value function V Q
n with a state space of dimension k, where k is the dimension of the policy π. In

the Progresa application discussed in Section 5, the policy π is six-dimensional. This means that

the quadratic approximation reduces the state space of the decision problem from R135 to R6. The

difficulty of solving the experimental design-policy choice problem is therefore dependent on the

complexity of the policy π, rather than the complexity of the model described by θ.

In practice, θ0 and π0 are unknown, making solving V Q
n infeasible. Instead, we use a consistent

estimate of these quantities from the pilot data. Following the steps above, we solve for the policy

π̂0 which is optimal for θ̂0 and construct Ĉ, D̂, Ĥ by using (θ̂0, π̂0) in place of (θ0,π0). We can

then define ŴQ and V̂ Q
n analogously to WQ and V Q

n , and solve for an estimate of the optimal

design by maximizing the expected value of V̂ Q
n .

In the next section, we justify both the Gaussian and quadratic approximations, as well as the

use of pilot data to estimate V̂ Q
n . We show that the error of these approximations is asymptotically

negligible as n0 and n1 grow, and solving V̂ Q
n yields an asymptotically optimal experiment for policy

choice.

Remark 3.3 (Computation with linear constraints): Solving V̂ Q
n is especially tractable when the

constraints g(π) ≤ 0 are linear, as is the case in the Progresa application in Section 5. When con-

straints are linear, V̂ Q
n (Dµ1) is a quadratic program for any value of Dµ1. To solve for V̂ Q

n , we solve

this quadratic program for many possible values of Dµ1 and interpolate the corresponding values

with a neural network. This is very fast when Dµ1 is low-dimensional, such as the six-dimensional

policy in the Progresa application. We discuss the specifics of our algorithm in Appendix F. ♦

Remark 3.4 (Approximating nonlinear constraints): When the constraints are nonlinear, con-

structing V̂ Q
n can be performed by solving a nonlinear program for each value of Dµ1, where the

objective is quadratic and the constraints are nonlinear. Since this is more computationally in-

tensive than the quadratic program we obtain with linear constraints, we provide a method for

approximating the nonlinear constraints with linear constraints in Appendix C. Since V Q
n may be

only twice directionally Hadamard differentiable at θ0 (Shapiro 1985, Shapiro 1991), “naive” esti-

mates of V Q
n may not be consistent (Fang and Santos 2018). To obtain a consistent estimate of
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V Q
n , we need a consistent estimate of the active set of constraints at θ0. The method we propose

in Appendix C achieves this at the expense of introducing an additional tuning parameter. ♦

4 Limit experiment and asymptotic optimality

The solution method presented in the previous method is asymptotically optimal. We establish this

by showing that both the Gaussian and quadratic approximations have negligible error as the sizes

of the pilot the main experiment grow. Together, these results imply that solving the approximated

value function leads to experiments and policies which are asymptotically optimal.

4.1 Local asymptotic framework

The Gaussian and quadratic approximations are justified in an asympotic decision environment

called the limit experiment. The limit experiment describes the possible asymptotic behaviors

of any design and policy in the finite-sample environment. The benefit of working in the limit

experiment is that it is much simpler than the finite-sample problem, allowing us to characterize

the best possible design and policy in the limit.

The limit experiment is constructed in a local asymptotic framework. Local asymptotics are

commonly used to study optimality of estimators, tests, and the consequences of model misspeci-

fication, among other econometric and statistical problems (see Le Cam (1972) and Van der Vaart

(2000) for classic results on estimation and testing and Staiger and Stock (1994) for a seminal

analysis of weak instruments in a local asymptotic framework). In local asymptotics, we analyze

the performance of our method under parameter values that are difficult to distingish from each

other even in large samples. In particular, we model

θ = θ0 + h/
√
n

for some “local parameter” h and reference value of the parameter θ0. The 1/
√
n scaling means

that the difference between θ and θ0 is of the same order of magnitude as the standard error of

typical estimators of θ. Likewise, we will consider local alternatives to the policy π, where

π = π0 + c/
√
n
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so that the experimenter considers policies in a neighborhood of the reference policy π0 of the same

order of magnitude as sampling uncertainty.

Like all asymptotics, local asymptotics are not meant to reflect a data-generating process that

is literally changing as the sample size grows, but rather is intended to capture the finite-sample

property that θ is difficult to distinguish from θ0 at the current sample size in two senses which

are material for our approximation. First, θ0 is the value at which the Fisher information matrix

is evaluated. Therefore, for local asymptotics to be accurate we need the covariance matrix of

θ̂1 to be well-approximated by J(δ), the Fisher information at θ0. Second, θ0 is used to define

the quadratic approximation to welfare. Therefore we need θ to be close enough to θ0 that the

quadratic approximation is valid. Since we use the pilot estimate θ̂0 to construct J(δ) and the

quadratic approximation in practice, we may gauge the strength of this assumption on the basis of

whether these approximations seem reasonable for values of θ that are difficult to distinguish from

θ̂0 in the pilot data.

4.2 Justifying the Gaussian approximation

To justify the Gaussian approximation of V G
n in (4a)-(4b), we show that any sequence of policies

πn in the finite-sample problems indexed by n converges in distribution to a policy that depends

only on Gaussian estimates of the parameter.

Our first result characterizes the asymptotic behavior of any sequence of policies in the finite-

sample experiment. To apply asymptotic analysis to both waves of the experiment, we require that

both the size of the pilot experiment and the size of the main experiment grow at the same rate.

Assumption 4.1 (Large waves): The pilot sample size n0 satisfies 0 < limn→∞ n0/n < 1.

A key (and standard) assumption for local asymptotic optimality results is that the model is

smooth in θ in the sense of differentiability in quadratic mean, allowing for local approximations

to the model.

Assumption 4.2 (Differentiability in quadratic mean): There exists a function ψ(y, z, x), called

the score of the outcome model py|z,x at θ0, such that

sup
z,x

∫ [√
py|z,x(y | z, x;θ + h)
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−
√
py|z,x(y | z, x;θ0)− 1

2
h′ψ(y, z, x)

√
py|z,x(y | z, x;θ0)

]2

dλ(y)

= o(‖h‖2)

as h→ 0, for some dominating measure λ.

At a high level, this means the square root of the density is differentiable in θ at θ0. This

condition allows us to approximate the model py|z,x(y | z, x;θ) by a Gaussian model for values of θ

in a neighborhood of θ0. Typically, the score ψ(y, z, x) is the gradient of the log-likelihood of the

model:

ψ(y, z, x) = ∇θ log p(y | z, x;θ0).

See Van der Vaart (2000) Lemma 7.6 for sufficient conditions for this formulation.

Because an experimenter may find it optimal to choose a policy δ that does not point-identify

θ in the main wave (for example, if there is no need to experiment on certain sub-populations in

Example 3.1), our results use the sample average of the scores as a sufficient statistic for each wave

which remains well-defined even when the maximum likelihood estimator is not. We assume that yi

and zi are generated by a potential outcome model where yi = y(zi, xi, εi;θ) where εi is a structural

error term and zi = z(xi, νi; δ) where νi is a randomization device. Define the stochastic process

A1,n(·) by

A1,n(δ) =
1
√
n1

n1∑
i=n0+1

ψ

(
y
(
z(xi, νi; δ), xi, εi;θ0

)
, z(xi, νi; δ), xi

)
.

The following assumption is needed to ensure that the sample average of the scores is asymp-

totically Gaussian.

Assumption 4.3 (Lindeberg condition): For any δ and for every ε > 0,

1

n1

n1∑
i=n0+1

Eθ0,δ

[
‖ψ(yi, zi, xi)‖21

{
‖ψ(yi, zi, xi)‖ > ε

√
n1

}]
→ 0

n1∑
i=n0+1

Eθ0,δ

[
ψ(yi, zi, xi)ψ(yi, zi, xi)

′
]
→ J(δ).
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and likewise, for the pilot wave,

1

n0

n0∑
i=1

Eθ0,δ

[
‖ψ(yi, zi, xi)‖21

{
‖ψ(yi, zi, xi)‖ > ε

√
n0

}]
→ 0

1

n0

n0∑
i=1

Eθ0,δ

[
ψ(yi, zi, xi)ψ(yi, zi, xi)

′
]
→ J0.

If there are no covariates xi or there is a parametric model for covariates, the scores ψ(yi, zi, xi)

are i.i.d. and Assumption 4.2 is enough to ensure that the central limit theorem applies with J(δ)

being the Fisher information matrix. When conditioning on covariates, the scores are not i.i.d. and

the assumption of finite variance must be strengthened to Assumption 4.3.

In addition, we will restrict our attention to designs and models for which the mapping between

δ and the sample average of the scores is well-behaved in the following sense:

Assumption 4.4 (Equicontinuity of scores): The sample average of the scores A1,n(δ) is stochas-

tically equicontinuous.

Stochastic equicontinuity is a high-level condition that ensures that the score A1,n has relatively

smooth sample paths for large enough n. Many lower-level sufficient conditions are available in the

literature (e.g. Andrews (1994), Van der Vaart and Wellner (2013)). Assumption 4.4 is a joint

restriction on both the treatment assignment mechanism pz(zi | xi; δ) and the outcome model

py|z,x(yi | zi, xi;θ). Both the treatment assignment and the model must be smooth enough that

small changes in δ lead to small changes in the score A1,n. In Appendix B we give a precise definition

of stochastic equicontinuity, give lower-level sufficient conditions which are natural for our setting,

and verify that they are satisfied for the class of polices and model which we use in the Progresa

application in Section 5. Specifically, we show that for a class of designs nesting Example 2.4,

the treatment assignment mechanism has finite bracketing entropy. Combined with a smoothness

condition on the score of the model which we verify, this implies stochastic equicontinuity of A1,n.

Our first result states that under these assumptions, any convergent design and policy in the

finite-sample experiment converges to some design and policy in the limit experiment. The limit

experiment is the Gaussian environment discussed in Section 3. When we say (δ, c) is a design

and policy in the limit experiment, we mean δ = δ(A0, U0) and c = c(A0, A1(δ), U0, U1) where

A0 ∼ N(J0h, J0), A1(·) is a Gaussian process which is the limit of A1,n(·), and U0 and U1 are
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uniformly distributed randomization devices.

Lemma 4.5: Suppose Assumptions 4.1, 4.2, 4.3, and 4.4 hold. Let (δn,πn) be a sequence of

designs and policies in the finite-sample experiment, and define cn =
√
n(πn−π0). Suppose δn and

cn jointly converge in distribution under θ0. Then there exists an experimental design and policy

(δ, c) in the limit experiment such that

(δn, cn)
h
 (δ, c)

where
h
 denotes convergence in distribution along the sequence θ = θ0 + h/

√
n.

Proof. See Appendix A.1.

This result shows that any weakly convergent sequence of decisions in the finite-sample problem

is asymptotically equivalent in distribution to a design and policy in the limit experiment, where

only the Gaussian random variables A0 and A1 are observed. This suggests that to find an asymp-

totically optimal policy, we find the optimal policy in the limit experiment. This is the reason that

V G
n depends only on Gaussian estimates.

Remark 4.6 (Relation to previous work): Lemma 4.5 is related to previous work on asymptotic

representation theorems for statistical models. For the standard case, see Le Cam (1972) and Van

der Vaart (2000). For static, binary treatment choice problems with fixed data distribution, Hirano

and Porter (2009) derive optimal treatment rules in a limit experiment framework.

Hirano and Porter (2023) establish an asymptotic representation theorem for batched multi-

armed bandits. In Section 6 we will show that our result extends to dynamic experiments as well.

The main distinction between our result and Hirano and Porter (2023) is the latter’s focus on the

multi-armed bandit setting. Our result builds on this work by extending their argument to more

general decision problems, including settings with a continuum of treatments or targeting based on

covariates. This generality comes at the expense of the additional Assumption 4.4, which is not

required in the multi-armed bandit setting. Part of our contribution is verifying this high-level con-

dition for a class of experimental designs with continuous treatments in Appendix B. Finally, Hirano

and Porter (2023) do not solve for optimal policies, which motivates the quadratic approximation

of the next section. ♦
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For our purposes, Lemma 4.5 is helpful because it implies that the welfare of any sequence

(δn, cn) in the finite-sample environment converges to the welfare of some policy in the Gaussian

environment of V G
n . We now state regularity conditions on the decision problem that ensure the

Gaussian value function V G
n is a good approximation to the finite-sample value function Vn. Before

doing so, we define the regret of a policy π, since some of our regularity conditions will be stated

in terms of regret. The regret of a policy π is

R(θ,π) =

[
max
π̃

W (θ, π̃) s.t. g(π̃) ≤ 0

]
−W (θ,π).

This is the difference between the welfare of the optimal policy and the welfare of the chosen

policy π. Because regret recenters welfare, it is does not diverge as n → ∞, which is convenient

for asymptotic analysis. Since the recentering term in brackets does not involve π, policies which

maximize welfare also minimize regret. We also define (δ∗n,π
∗
n) as the optimal design and policy

in the finite-sample problem Vn, and (δGn ,π
G
n ) as the optimal design and policy in the Gaussian

problem V G
n .

Assumption 4.7: 1. Welfare is continuous in θ and π at (θ0,π0).

2. The prior density q(θ) is continuous and positive at θ0.

3. Let π̃Gn be the finite-sample analog of πGn , where A0 and A1 are replaced by A0,n and A1,n.

There exists a function W̄ (θ) such that R(θ, π̃Gn ) ≤ n−1W̄ (θ) and
∫
|W̄ (θ)|1+ιdQ(θ) < ∞

for some ι > 0.

4.
√
n(π∗n − π0) is bounded in probability for any θ = θ0 + h/

√
n.

5. The set of δ satisfying f(δ) ≤ 0 is compact.

Continuity and nonnegativity of the prior ensures that the post-pilot posterior is well-approximated

by the flat-prior posterior used in the Gaussian problem V G
n . The dominance condition ensures that

the regret of the feasible policy π̃Gn , which is greater than the regret of π∗n, is uniformly integrable.

The n−1 rate is the natural rate for regret when welfare is approximately quadratic and estimates

are
√
n-consistent. The assumption that

√
n(π∗n − π0) is bounded in probability likewise ensures
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that the
√
n scaling of the limit experiment is appropriate. Finally, the compactness of the feasible

set for δ could be replaced by an assumption that δ∗n is bounded in probability.

Theorem 4.8: Suppose Assumptions 4.1, 4.2, 4.3, and 4.4 hold. Additionally assume that πGn is

continuous in A0 and A1 and that J0 is nonsingular. Then

Eδ∗n [Vn({yi, zi}ni=1)] = EδGn

[
V G
n (µ1,Σ1)

]
+ o(n−1)

Proof. See Appendix A.1.

This result justifies the Gaussian approximation of the value function V G
n in (4a)-(4b) by showing

the solution to the finite-sample problem is asymptotically equivalent to the solution to the Gaussian

problem in terms of welfare. The additional assumption that πGn are continuous in A0 and A1 is

implied by the regularity conditions we assume for the quadratic approximation below.

Remark 4.9 (Estimating policies at the parametric rate): While the assumption that the op-

timal policy be
√
n-rate estimable often holds in parametric models, it can fail in nonparametric

empirical welfare maximization problems as in Kitagawa and Tetenov (2018) and Athey and Wager

(2021). In a semiparametric setting, Bhattacharya and Dupas (2012) discusses
√
n-rate estimation

of the optimal policy under parametrized treatment effects and kernel smoothing of the covariate

distribution, as well as the slower convergence rate in the nonparametric case. In fully parametric

structural models,
√
n-rate estimation of optimal policies is less demanding, so long as the optimal

policy is a continuous (though not necessarily differentiable) function of θ. ♦

4.3 Justifying the quadratic approximation

To justify the quadratic approximation of the value function V Q
n in (6a)-(6b), we show that solving

the policy choice problem is equivalent to solving a quadratic program in the limit experiment. This

further requires that the welfare and constraints are smooth, so that the quadratic approximation

exists and is accurate in a neighborhood of θ0.

Assumption 4.10: W (θ,π) is twice continuously differentiable at (θ0,π0), and g(π) is twice

continuously differentiable at π0.
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In addition to smoothness of the welfare and constraints, the decision problem must satisfy

a number of regularity conditions in a neighborhood of θ0. Let λ0 be the Lagrange multipliers

corresponding to π0.

Assumption 4.11: The decision problem (5) under θ0 satisfies the following:

1. There exists a number α and a compact set S ⊂ Rk such that α > −W (θ0,π0) and {π :

g(π) ≤ 0, −W (θ,π) ≤ α} ⊆ S for all θ in a neighborhood of θ0.

2. The optimal π0 in (5) is unique.

3. The rows of ∇g(π0) are linearly independent.

4. Let J1 be the set of indices j such that λ0j > 0. Let J2 be the set of indices j such that

gj(π0) = 0 and λ0j = 0. For every nonzero vector c in C = {c : ∇gj(π0)′c = 0, j ∈

J1; ∇gj(π0)′c ≤ 0, j ∈ J2} we have that c′Hc < 0.

The first assertion of Assumption 4.11 requires the decision problem to be feasible and bounded

in a neighborhood of θ0. The third assertion is equivalent to uniqueness of the Lagrange multipliers

corresponding to π0 and ensures the feasible set under the linear constraints is nonempty (Shapiro

1985). The fourth is a strict second-order sufficient condition which ensures that the Lagrangian is

locally convex in π at (θ0,π0,λ0).

Another common regularity condition for sensitivity analysis of nonlinear optimization prob-

lems is the strict complementary slackness condition, which ensures that all constraints may be

treated as equality constraints in a neighborhood of θ0. This condition is not necessary for the

quadratic approximation to yield an accurate approximation of the decision problem, which means

our asymptotic analysis reflects finite-sample uncertainty about which constraints are binding.

However, when strict complementary slackness does not hold, the value function may be only twice

Hadamard directionally differentiable (Shapiro 1985).

Lemma 4.12: Suppose Assumptions 4.1, 4.10 and 4.11 hold, and that J0 is nonsingular. Then

V G
n (µ1,Σ1)− V Q

n (Dµ1) = W (θ0,π0) + (µ1 − θ0)′∇θW (θ0,π0)

+
1

2

(
trace(Σ1∇2

θθW (θ0,π0)) + (µ1 − θ0)′∇2
θθW (θ0,π0)(µ1 − θ0)

)
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+ op(n
−1)

Proof. See Appendix A.2.

Asymptotic analysis of statistical decision rules often employ local quadratic approximations to

loss functions (Hirano and Porter 2020). Lemma 4.12 is a generalization of this idea to constrained

optimization problems. The particular form of the quadratic approximation is a consequence of

results in sensitivity analysis of nonlinear optimization (Shapiro (1985), Shapiro (1988), Bonnans

and Shapiro (2013)). This result shows that V Q
n is a second-order approximation to V G

n in a

neighborhood of θ0, up to terms which do not depend on π and therefore do not affect the chosen

design and policy.

Our next result establishes that solving V̂ Q
n is asymptotically equivalent to solving V G

n . We

define (δQn ,π
Q
n ) as the optimal design and policy in the quadratic approximation V Q

n , and (δ̂Qn , π̂
Q
n )

as the estimated counterparts.

Theorem 4.13: Suppose Assumptions 4.1, 4.7, 4.10, and 4.11 hold. Assume there exists a

function W̄ (θ) such that R(θ, π̃Qn ) ≤ n−1W̄ (θ) and
∫
|W̄ (θ)|1+ιdθ <∞ for some ι > 0. Then

EδGn

[
V G
n (µ1,Σ1)

]
= E

δQn

[
V Q
n (Dµ1) +M(µ0,Σ0)

]
+ o(n−1)

where M(µ0,Σ0) = W (µ0,π0) + 1
2 trace(Σ0∇2

θθW (µ0,π0)). Further,

E
δQn

[
V Q
n (Dµ1)

]
= E

δ̂Qn

[
V̂ Q
n (Dµ1)

]
+ o(n−1)

Proof. See Appendix A.2.

This result shows that the estimated quadratic approximation is asymptotically equivalent to

the Gaussian value function, up to a term M(µ0,Σ0) which does not depend on the chosen design

δ or policy π. This means that solving V̂ Q
n and implementing the resulting design and policy is

asymptotically equivalent to solving V G
n . The additional dominance assumption ensures that regret

is uniformly integrable in the Gaussian problem where dQ(θ) is replaced by Lebesgue measure.

Assumption 4.7 ensures this only for the finite-sample problem with the original prior dQ(θ).
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4.4 Asymptotic optimality

We now combine Theorems 4.8 and 4.13 to show that the solution to V Q
n provides an upper

bound for the asymptotic performance of any sequence of designs and policies in the finite-sample

experiment. We also show our method attains this bound– solving V̂ Q
n and using the resulting

design in the main wave is asymptotically optimal. This establishes that no other feasible design

and policy in the finite-sample can asymptotically outperform the solution to V̂ Q
n .

Theorem 4.14: Maintain the assumptions of Theorems 4.8 and 4.13. Then V Q
n provides an

asymptotic upper bound on the welfare of any sequence of designs and policies in the finite-sample

experiment. That is, if (δn,πn) is a sequence of feasible designs and policies in the finite-sample

experiment with cn =
√
n(πn − π0), then

lim sup
n→∞

Eδn [W (θ,πn)] ≤ E
δQn

[
WQ
n

(
Dθ,πQn

)
+M(µ0,Σ0)

]
+ o(n−1)

where M(µ0,Σ0) is as in Theorem 4.13. Moreover, this upper bound is attained by solving V̂ Q
n ,

using δ̂Qn in the main wave and then solving resulting finite-sample policy choice problem:

lim
n→∞

E
δ̂Qn

[Vn({yi, zi, xi}ni=1)] = E
δQn

[
WQ
n (Dθ, c∞) +M(µ0,Σ0)

]
+ o(n−1)

i.e. the design δ̂Qn is asymptotically optimal.

Proof. See Appendix A.3.

This is the main result of the paper, which justifies the use of the method proposed in Section 3.

While stated as a theorem, it is a straightforward consequence of Theorems 4.8 and 4.13. The first

assertion of Theorem 4.14 states that no feasible design and policy in the finite-sample experiment

can achieve higher welfare than V Q
n with the optimal design δQn . However, V Q

n describes a decision

problem in the fictional limit experiment in which only the Gaussian random variables A0 and

A1 are observed, and in which the quadratic approximation to welfare is constructed around the

unknown parameter θ0. This bound is useful only insofar as the design and policy we use in practice

can actually attain this bound.

To this end, the second assertion of Theorem 4.14 establishes that the design δ̂Qn obtained
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from solving V̂ Q
n achieves this bound. An experimenter who (i) implements δ̂Qn in the main wave

of the experiment and then (ii) solves a policy choice problem conditional on the data from this

experiment will asymptotically achieve the welfare of the limit experiment. We may restate the

second result of this theorem by saying that for any sequence of designs δn in the finite-sample

experiment,

lim sup
n→∞

Eδn

[
Vn({yi, zi, xi}ni=1)

]
≤ lim

n→∞
E
δ̂Qn

[
Vn({yi, zi, xi}ni=1)

]
.

Therefore, this theorem shows that using δ̂Qn is asymptotically equivalent to solving the finite-sample

problem by backwards induction exactly.

Remark 4.15 (Binary treatment choice): Theorems 4.8 and 4.13 rely on the continuity of the

policy cQn in the design δ. This is established in the proof of Theorem 4.13. This highlights a

distinction between the types of decision problems considered here versus the problem of whether

to administer a binary treatment to a population (e.g. Hirano and Porter (2009)). In such settings,

the payoff is the average treatment effect which implies the welfare function is linear in the policy.

This leads to a discontinuous cutoff rule. With a linear payoff the strict second-order sufficient

condition in Assumption 4.11 is not satisfied. To apply the results of this section, it is necessary

that the welfare function be strictly concave in the policy. This may still be satisfied in settings

with a binary treatment if the policy assigns treatment on the basis of continuous variables, as in

Bhattacharya and Dupas (2012). ♦

5 Application to Progresa

We demonstrate how to apply our method in practice in an application to the Progresa cash

transfer program in Mexico. We consider the policy choice problem of choosing the size and

targeting of the cash transfer to maximize the secondary school completion rate and reduce gender

disparities in school completion. We consider counterfactual experiments that an experimenter

could have conducted to learn about the optimal policy. We estimate that designing the experiment

optimally for this policy choice problem can deliver equally effective policies as the original Progresa

experiment with 60% fewer observations.
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Figure 1: Progresa subsidy schedule

Note: The Progresa subsidy schedule that was used in both the experimental evaluation and the
subsequent policy rollout.

5.1 Setting

Progresa was a conditional cash transfer program administered by the Mexican government be-

ginning in 1998. The program gave cash to households for every child enrolled in school. The

size of the transfer depended on children’s gender and grade of enrollment, and the magnitude

was economically significant— the ninth grade subsidy constituted about 40% of an adult male’s

wage and about 66% of a child’s wage (Schultz 2004). The government conducted an experimental

evaluation of the program before a larger rollout in 2000.

Figure 1 shows the original subsidy schedule used in the Progresa experiment. 62% of the

experimental sample was treated. After observing the results of the experiment, the government

enacted a policy that gave the exact same subsidy that was used in the experiment to a wider set

of villages.

5.2 Model

We analyze the effect of the subsidy on graduation rates using a dynamic school choice model

similar to those of Todd and Wolpin (2006) and Attanasio, Meghir, and Santiago (2012). There are

two key considerations captured in the dynamic model. First, households may be forward-looking

in their schooling decisions. Subsidies offered in secondary school may affect the decision to enroll
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in primary school. Also, the decision to enroll in school one period can have affect future schooling

decisions through dynamic complementarities in human capital accumulation (Cunha and Heckman

2007). Hence, the dynamic structure of the subsidy is a key mechansim through which the subsidy

affects graduation rates. The second consideration captured by the model is that graduation rates

are a long-term outcome that is not observed in the short-run experiment. A dynamic model allows

us to forecast the long-term effect of the subsidy on graduation rates using short-run experimental

data (see Athey et al. (2019) for a related but less structural approach to this problem).

We now describe the model, supressing the unit index i for simplicity. At each age τ before age

18, households may choose whether or not a child in grade sτ will attend school, denoted yτ = 1

or yτ = 0. If the child attends school, they recieve a subsidy zsτ which depends on the grade of

enrollment. Otherwise, the child works and earns a wage wτ,sτ which can depend on age as well

as education level. Covariates xτ = (wτ,sτ , bτ ) include the wage as well as variables bτ consisting

of age τ , current grade of enrollment sτ , gender, and interactions. We model the choice-specific

utilities as

u1τ = θ0 + θ′1bτ + θ2zsτ + θ′3bτzsτ + ε1τ

u0τ = θ4wτ,sτ + θ′5bτwτ,sτ + ε0τ .

where both the wage and the subsidy are interacted with covariates, allowing the subsidy to have

different effects on different subpopulations.

Housholds choose a sequence of school attendance yτ to maximize long-term utility. The level

of schooling completed by age τ is sτ . Each period, if the child was enrolled in school they may

advance a grade with probability r(τ, sτ ) depending on age and grade, or they may fail and remain

at the same grade. Failure is assumed to be exogenous. Finally, at age τ = 18 households obtain a

terminal value

v18 = θ61[s18 ≥ 6] + θ71[s18 = 9]

which depends on whether the child completed primary school and whether the child completed
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secondary school. This results in the following optimization problem that households solve:

max
{yτ}17τ=6

17∑
τ=0

βτE [yτu1τ + (1− yτ )u0τ ] + β18E [v18]

sτ+1 = sτ + yτBernoulli(r(τ, sτ ))

We assume that εyτ have a type 1 extreme value distribution, which enables us to compute the

value function for the households by backwards induction. We can then estimate the model by

maximum likelihood from a cross-section of children so long as there is sufficient variation in the

subsidy for the model to be identified.

Remark 5.1 (Stigma effect and lack of identification in pilot data): If money is fungible to the

household, we may expect that the coefficients on the wage and the subsidy are equal in magnitude

but opposite in sign. The model considered here allows for the possibility that the subsidy has a

different effect on utility than the wage. This “stigma effect” means that the model is not identified

without variation in the subsidy (Todd and Wolpin 2006, Attanasio, Meghir, and Santiago 2012).

In this section, we assume the pilot data follows the original Progresa experimental design and

therefore the model is identified from pilot data. If the stigma effect is not identified (for example,

if the pilot data contains no variation in the subsidy) then we cannot construct the pilot estimate

θ̂0 and the method of Section 3 cannot be applied. One possible approach is to make an additional

identifying assumption (for example, that money is fungible to the household). The experiment

may be used to learn about possible local failures of this assumption and subsequently choose a

policy that is robust to these failures. We discuss this more in Section 6. ♦

5.3 Decision problem

The experimenter’s decision problem is to choose (i) an experimental design and (ii) a policy

that maximizes the fraction of children graduating from secondary school while minimizing the

discrepancy in graduation rates between boys and girls. The welfare function we use is

W (θ,π) = (1− κ)Pθ,π[s18 ≥ 9]− κ (Pθ,π[s18 ≥ 9 | boy]− Pθ,π[s18 ≥ 9 | girl])2
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where κ is a preference parameter that trades off how much the experimenter cares about the

overall graduation rate versus gender inequality in graduation rates. We will present results for a

variety of values of κ ∈ [0, 1].

We suppose the experimenter has access to some pilot data and wants to run a bigger exper-

iment to learn about the optimal policy. This pilot experiment consists of a sample of n0 = 500

children from the original Progresa experiment as described above. However, the design of the

main experiment can differ from the original Progresa experiment in two regards. The first way

in which the design can differ is that the experimenter can change the peso amount of the subsidy

offered to children in each grade. We consider subsidies which are piecewise linear in grade, and

which differ by gender. The subsidy is 7-dimensional, consisting of the subsidy amount in grades

s = 3 through s = 9, and is given by

zs =


π1 + π2s+ π3(s− 6)1[s > 6] if boy

π4 + π5s+ π6(s− 6)1[s > 6] if girl

The entire 7-dimensional vector of subsidies by grade is relevant to the household’s decision because

households are forward-looking in the model and subsidies in later grades may affect the decision

to enroll in school in the current period. The second way in which the design can differ from the

original Progresa experiment is that the experimenter can let the probability of treatment vary

by gender and by whether the child is in primary or secondary school. We will consider several

possible sample sizes for the main wave of the experiment, from n1 = 500 (equal to the size of the

pilot wave) to n1 = 4000.

Having run the main experiment, the experimenter will choose how to structure the subsidy

policy across grade levels to maximize expected welfare. As in the experiment, the peso amount of

the subsidy is piecewise linear in grade and varies by gender.

Both the experimental subsidy and the chosen policy subsidy are subject to constraints. First,

the total amount of the chosen subsidy cannot exceed the total amount of the original Progresa

subsidy, although the experimenter can allocate the subsidy differently across gender. Second, the

subsidy must be nonnegative, preventing the experimenter from taxing children in some grades

to subsidize children in other grades. Both of these constraints bind in practice, although the
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Figure 2: Optimal experimental design

Note: the lines show the optimal experimental subsidy and the points show the actual Progresa subsidy.
The corresponding treated fraction is 0% for primary school boys and girls, 67% for secondary school boys,
and 77% for secondary school girls.

experimenter may be unsure about for which grades the nonnegativity constraint will bind and for

which grades there will be a strictly positive subsidy.

5.4 Optimal experiment

We now present the result of applying our solution method to this decision problem. Implementation

details are provided in Appendix F.

We begin by presenting the optimal experiment for a small main wave of n1 = 500 children

and an inequality weight of κ = 0.5. We show the optimal experimental subsidy in Figure 2. The

optimal experimental subsidy is zero in primary school, and increases steeply in secondary school.

The total amount of the experimental subsidy is also larger than Progresa, which is feasible because

the experimenter is not offering the subsidy (including the promise of subsidies in future grades) to

primary school children. The optimal treatment probabilities are 67% for secondary school boys,

77% for secondary school girls, and 0% for primary school children. Results for other values of n1

and κ are presented in Appendix F and are broadly consistent with these results.

The expected welfare resulting from the optimal experiment for κ = 0.5 across a variety of

values of n1 is shown in Figure 3. The gains from the optimal experiment are substantial. Using

the original Progresa experimental design requires n1 = 2000 observations to obtain the welfare

attained by the optimal experiment with only n1 = 500. By focusing the experiment on the policies
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Figure 3: Expected welfare from optimal experiment

Note: The expected welfare from the optimal experiment when κ = 0.5 is shown for a variety of values of
n1. “Oracle” refers to the expected welfare from the infeasible, optimal policy given the true parameter
values. “Optimal” refers to the expected welfare from running the optimal experiment. “Actual” refers to
the expected welfare from running the original Progresa experiment.

and subpopulations where the subsidy is most likely to be effective, the optimal experiment makes

much more effective use of the experimental budget. In Appendix F, we show results for other

values of κ and decompose these results into the increase in graduation rates and the reduction

in gender disparities. Most of the gains from the optimal experiment come from reducing gender

disparities, which requires precise estimates of the response of boys and girls in secondary school

to the subsidy.

We compute expected regret of both the optimal experiment and the original Progresa exper-

iment in Table 1. Expected regret is the difference between the welfare of the optimal policy (i.e.

the policy that we would choose if θ were known exactly) and the welfare of the policy chosen with

the experimental estimates. Across a wide range of values of n1 and κ, regret is often less than half

as large for the optimal experiment as for the Progresa experiment.

To interpret these results, we discuss how the pilot estimates inform the optimal experiment.

When considering how to structure the subsidy across grades, there are two competing effects to

43



Table 1: Expected regret from optimal experiment

κ = 0.0 κ = 0.1 κ = 0.5 κ = 0.9
n1 Optimal Actual Optimal Actual Optimal Actual Optimal Actual

500 0.09 0.14 1.12 2.54 6.25 14.4 11.45 26.03
1000 0.05 0.1 0.65 1.79 3.59 10.16 6.74 18.54
1500 0.04 0.08 0.46 1.39 2.51 7.84 4.78 14.43
2000 0.03 0.06 0.35 1.13 1.92 6.37 3.71 11.82
2500 0.03 0.05 0.28 0.95 1.56 5.36 3.03 10.02
3000 0.02 0.05 0.24 0.82 1.3 4.62 2.56 8.69
3500 0.02 0.04 0.2 0.72 1.12 4.06 2.22 7.67
4000 0.02 0.04 0.18 0.64 0.98 3.62 1.96 6.87

Note: Expected regret is computed via Monte Carlo simulation over the post-pilot posterior and is
therefore conditional on the pilot data.

consider. First, there is the option value of subsidies in later grades. Even if a child is not currently

offered a subsidy, offering a subsidy in later grades may induce the child to enroll in school in the

current period so they have the option of receiving the subsidy in later grades. This potentially

makes subsidies in later grades more effective. Second, there is the dynamic effect of human capital

accumulation. If a child is offered a subsidy in the current period and enrolls in school, they may

be more likely to enroll in school in future periods. This potentially makes subsidies in early grades

more effective. Which effect dominates in practice is an empirical question.

Our pilot estimates of the dynamic model indicate that the first effect dominates the second.

This is in line with the results of Todd and Wolpin (2006) and Attanasio, Meghir, and Santiago

(2012). Our estimates indicate that increasing the subsidy in later grades is more effective at

increasing graduation rates than increasing the subsidy in early grades. As a result, after observing

the pilot data the experimenter is confident that the optimal policy will involve offering a subsidy

in later grades, and does not need to experiment with sub-optimal policies that offer subsidies in

early grades. Full pilot estimates of parameters are presented in Appendix F.

To see this, we plot the post-pilot posterior on the effect of adjusting our policy on graduation

rates in Figure 4. Our policy is a piecewise linear subsidy in grade, where π consists of a constant,

a slope, and an increase in slope starting in secondary school, separately for boys and girls. We

consider increasing each of these parameters by 1 peso, and plot draws from the post-pilot posterior

on the resulting increase in graduation rates in Figure 4. For both boys and girls, it is clear that

increasing the steepness of the subsidy in secondary school is more effective than adjusting the
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Figure 4: Pilot estimates of marginal effects

Note: draws from the post-pilot posterior on the effect on graduation rates of increasing the subsidy in
each dimension of the policy. These effects are highly correlated (> 0.9) within gender, but essentially
uncorrelated across gender.

policy in other dimensions. The principle question that remains for the experimenter is whether

this effect is larger for boys or girls.

Given that subsidies in later grades are likely to be more effective, the optimal experiment

focuses on learning about the effects of making marginal adjustments to this pilot estimate. This

is where the value of information is highest, and therefore the optimal experiment focuses on

discerning the differential effect of secondary school subsidies on boys versus girls. Compared to

the original Progresa experiment, the posterior variance on these marginal effects is 57% smaller.

Hence, the optimal experiment is more effectively able to learn about the decision-relevant marginal

effect of adjusting the subsidy policy.

To summarize, the optimal experiment is more effective for two reasons. First, the optimal

experiment focuses on learning about the effects of counterfactual policies through the marginal

effect of policy changes. To choose optimal policies, the experimenter only needs to know the effect

of increasing the subsidy along each dimension of the policy. In this setting, this is the effect of

increasing the slope of the subsidy with respect to grade. Second, the optimal experiment takes

into account policy constraints to determine which of these marginal effects are most important to

learn about. The pilot data indicates that policies which give money to primary school children
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are unlikely to be implemented, so this marginal effect is less important to learn about than the

effect of changing the secondary school subsidy. By focusing the experiment on learning about

the decision-relevant marginal effects of policy changes, the optimal experiment is able to more

effectively learn about the optimal policy.

6 Extensions

In this section we provide some extensions of our method to three practically relevant settings.

First, we consider a multi-wave experiment in which the experimenter can design several waves

of an experiment after observing pilot data to sequentially refine estimates of the optimal policy.

Second, we consider a situation in which pilot data only weakly or does not identify all parameters

of the model. We approach this by supposing the experimenter has a family of priors even after

observing pilot data, and wants to be robust to this family. Third, we consider situations where

formulating a prior about the marginal effect of the policy is feasible, but the experimenter does

not want to commit to a full prior on the model parameters.

6.1 Multi-wave experiments

If the experimenter has the opportunity to run several waves of experimentation, it may be beneficial

to sequentially adjust the design of the experiment as the experimenter learns more about the

optimal policy.

Suppose the experiment lasts for T waves, each consisting of nt experimental units. We will

assume nt
n has a strictly positive limit as n → ∞ for every t ∈ {1, . . . , T}, allowing asymptotic

analysis to apply to each wave. For each wave t ∈ {1, . . . , T}, the experimenter chooses a design δt.

In the last period T + 1, the experimenter chooses a policy π. The benefit of revising the design

δt throughout the experiment is that the experimenter can refine the estimate of the optimal

policy and the marginal effect of the policy. For example, the experimenter can stop treating

certain subpopulations if the treatment is not effective for them, and reallocate the budget to other

subpopulations which are more relevant for the policy choice problem.
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The multi-wave generalization of (6a)-(6b) is

V Q
T+1,n (DµT+1) = max

π
WQ(DµT+1,π) s.t. g(π) ≤ 0. (7a)

The optimal design in each period t ∈ {1, . . . , T} solves

V Q
t,n (µt,Σt) = max

δt
E
[
V Q
t+1,n (µt+1,Σt+1) | θ̂1, . . . , θ̂t−1

]
s.t. f(δt) ≤ 0 (7b)

where θ ∼ N(µt,Σt) given θ̂1, . . . , θ̂t−1 and the standard Bayesian updating formula (3) is used to

update the posterior every period.

In Appendix E, we show that the solution to (7a)-(7b) delivers an asymptotically optimal exper-

iment and policy. However, compared to the single-period case, the optimal dynamic experiment

and policy in (7a)-(7b) can be difficult to solve in practice. While the terminal value function V Q
T+1,n

is just as low-dimensional as in the single-period case, the intermediate value functions V Q
t,n depend

on the full posterior distribution of θ characterized by (µt,Σt) rather than the lower-dimensional

(Dµt, DΣtD
′). As was seen in Section 3, the full posterior distribution can be high-dimensional

enough to make this difficult.

Therefore, these results provide a benchmark against which many heuristic methods for dynamic

experiments can be compared in a simpler Gaussian environment than the finite-sample experiment.

These results may also open the door to new heuristic methods based on the Gaussian and quadratic

approximations we propose.

6.2 Lack of identification and multiple priors

Thus far we have considered the problem of designing an optimal experiment when the posterior

after observing pilot data is well approximated by a unique Gaussian distribution. This requires

that J0 be nonsingular so that
√
n-consistent estimates of θ are available. As a result, the solution

method described in Section 3 does not depend on the pre-pilot prior q. This may not be the case,

for example, if pilot data only consists of a pre-treatment survey, with no variation in treatment

status.

We propose placing a family of priors on the unidentified parameters. It is required that these
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priors are asymptotically non-vanishing, i.e. that the prior is on the local parameter h of Section

4. For this section, we will take as given the Gaussian-quadratic limiting environment described in

Section 4 and consider modifications of the value function V Q
n to account for these concerns.

We specify a family of priors which are close to a reference prior q0 in the sense of Kullback-

Leibler divergence. Kullback-Leibler balls have been fruitfully employed in dynamic decision envi-

ronments under ambiguity in macroeconomics; see Hansen and Sargent (2001), Hansen and Sargent

(2008), and Hansen and Sargent (2010). For a given preference parameter κ ≥ 0 governing the

degree of concern for misspecification, the value function is given by

V Q
κ,n

(
θ̂1, J(δ)

)
= max

π
min
q

Eq[WQ
n (Dθ,π)]− κ

∫
log

q(θ)

q0(θ | θ̂1, J(δ))
q(θ)dθ

s.t. g(π) ≤ 0

(8a)

where θ ∼ q and q is penalized for being far from the posterior under the reference prior. Having

computed the value function V Q
κ,n, the optimal design solves

max
δ

min
q

Eq
[
V Q
κ,n

(
θ̂, J(δ)

)]
− κ

∫
log

q(θ)

q0(θ)
q(θ)dθ

s.t. f(δ) ≤ 0

(8b)

where θ ∼ q and q is penalized for being far from the reference prior. In both periods, q ranges

over all possible distributions on θ.

The value function (8a)-(8b) appears difficult to solve due to the max-min structure and the lack

of a single prior on Dθ characterizing the state. However, we show in Appendix D that the solution

to (8a)-(8b) is given by a simpler value function. A standard calculation for entropy-regularized

optimization problems (e.g. Dupuis and Ellis (2011)) characterizes the least favorable prior in each

period and the corresponding value function.

Remark 6.1 (Dynamic consistency): In dynamic decision problems with multiple priors, dynamic

consistency is a concern. That is, having decided on a contingency plan by solving the ex-ante

problem under commitment, the experimenter may find it optimal to deviate from this plan in the

second period. This means the decision problem cannot be solved by backwards induction. We

follow Hansen and Sargent (2001) in solving a “multiplier problem” each period where the worst-
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case prior is implicitly chosen by penalizing the distance between the adversarially chosen prior q

and the reference prior q0. This amounts to allowing the decision maker to consider a different

worst-case prior at each stage of the decision tree. ♦

Remark 6.2 (Choice of reference prior): The choice of reference prior is important. One way

of constructing a reference prior involves specifying a restricted model which is identified with

the pilot data, and for which preliminary estimates can be obtained. The experimenter then

considers relaxing the model to allow for misspecification of the restricted model. Details are given

in Appendix D. ♦

6.3 Robustness to nuisance parameters

An experimenter may not wish to commit to a prior on the full parameter vector θ. Because of

this, it is often desireable to be robust to a wide class of priors. While a fully minimax analysis

is outside the scope of this paper, it is possible to be minimax over all parameters which do not

directly enter the policy choice problem. As with the previous section, we will take as given the

Gaussian-quadratic limiting environment described in Section 4 and consider modifications of the

value function V Q
n to account for these concerns.

The method presented in Section 3 and the results of Section 4 demonstrate that θ enters the

policy choice problem only through Dθ. We can therefore consider Dθ as the parameter of interest

and D⊥θ as the nuisance parameter, where the rows of D⊥ constitute an orthonormal basis for the

null space of the rows of D.

Suppose the experimenter can specify a prior on the marginal effect of the policy, but struggles

to specify a prior on the full model. We seek an experimental design which is robust to the set of

all priors on θ which imply the same prior on Dθ. That is, we consider the set of priors

Q =

{
q :

∫
1[Dθ ∈ B]q(θ)dθ =

∫
1[Dθ ∈ B]q0(θ)dθ ∀ Borel B ⊆ Rk

}

where q0(θ) = dN(θ;µ0,Σ0). This is the set of priors q which have the same marginal distribution

on Dθ as the reference prior q0.

Example 6.3 (Progresa): It is possible that an experimenter or policymaker is be able to express

beliefs about the effect of giving an extra peso to boys versus girls, but struggle to express beliefs
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about model primitives such as household preferences. Recall that θ is 15-dimensional and includes

utility parameters such as the stigma effect of the subsidy and subjective costs of primary versus

secondary school attendance. In contrast, a prior on Dθ can be constructed by eliciting beliefs

about the effects of different subsidy levels on overall graduation rates. ♦

With this set of priors, the value function the experimenter solves is

V Q
⊥,n

(
θ̂1, J(δ)

)
= max

π
inf
q∈Q

Eq[WQ
n (Dθ,π) | θ̂1] s.t. g∞(π) ≤ 0 (9a)

where θ ∼ q(θ | θ̂1). The optimal design solves

max
δ

inf
q∈Q

Eq
[
V Q
⊥,n

(
θ̂, J(δ)

)]
s.t. f(δ) ≤ 0 (9b)

where θ ∼ q(θ).

This value function, like (8a)-(8b), appears difficult to solve due to the max-min structure and

the lack of a single prior on Dθ characterizing the state. However, we show in Appendix D that

the solution to (9a)-(9b) is given by a simpler value function. The optimal design ignores estimates

of the nuisance parameter and updates the prior as if only estimates of Dθ were available. For

any particular prior q on the full vector θ, this update will not generally coincide with the correct

Bayesian updating formula for the full posterior. However, Theorem D.2 shows that this updating

formula coincides with that of the least favorable prior in Q.

The intuition behind this result is that the least favorable prior in Q is one which is uncorrelated

with the parameters of interest. This is because prior correlation between parameters of interest

and nuisance parameters can only help the experimenter in formulating a more precise posterior.

Therefore, the least favorable prior places no correlation between the parameters of interest and

the nuisance parameters and estimates of the nuisance parameters will not affect the posterior on

the parameters of interest. In response, the experimenter will ignore the nuisance parameter when

forming the posterior. The resulting design is minimax over all priors in Q.
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A Proofs of main results

A.1 Proof of Theorem 4.8

We first set some notation for the proofs. Let

p1,n,θ(δ) =
n∏

i=n0+1

py|z,x(yi | zi, xi;θ)pz|x(zi | xi; δ)

be the density of the data generated by the main wave of the experiment, as a function of the

design. Likewise, let

p0,n,θ =

n0∏
i=1

py|z,x(yi | zi, xi;θ)pz|x(zi | xi; δ0)

be the density of the pilot wave at the fixed pilot design δ0. We also use the shorthand

ψi(δ) = ψ(yi(zi(δ)), zi(δ), xi)

where yi(zi) = y(zi, xi, εi;θ) and zi(δ) = z(xi, νi; δ).

We now present the proof of the asymptotic representation result.

Lemma 4.5: Suppose Assumptions 4.1, 4.2, 4.3, and 4.4 hold. Let (δn,πn) be a sequence of

designs and policies in the finite-sample experiment, and define cn =
√
n(πn−π0). Suppose δn and

cn jointly converge in distribution under θ0. Then there exists an experimental design and policy

(δ, c) in the limit experiment such that

(δn, cn)
h
 (δ, c)

where
h
 denotes convergence in distribution along the sequence θ = θ0 + h/

√
n.

Proof. We begin by deriving the weak limit of A1,n(·). First, by the Lindeberg-Feller central limit

theorem, for every finite set of points b, . . . , bK ∈ ∆ the random vector (A1,n(b1), . . . , A1,n(bK))

converges in distribution in RK to a Gaussian vector with mean zero and covariance

Cov

(
A1,n(bj), A1,n(bj′)

)
= Cov

(
ψi(bj), ψi(bj′)

)
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for i ∈ {n0 + 1, . . . , n}. Second, A1,n(·) is stochastically equicontinuous by assumption. From these

two claims it follows by Van der Vaart (2000) Theorem 18.14 that

A1,n(·) θ0 A1(·)

in L∞(∆) for some tight random element A1(·). Specifically, A1(·) is a Gaussian process with mean

zero and covariance

Cov

(
A1(b), A1(b′)

)
= Cov

(
ψi(b), ψi(b

′)

)
.

for b and b′ in ∆, and where i ∈ {n0 + 1, . . . , n}. In particular, for any h ∈ R`,

h′A1,n(·)− 1

2
h′J(·)h θ0 h′A1(·)− 1

2
h′J(·)h

We use this to derive the limiting distribution of the log-likelihood ratio for the main wave.

Specifically,

log
p1,n,θ0+h/

√
n(·)

p1,n,θ0(·)
=

(
log

p1,n,θ0+h/
√
n(·)

p1,n,θ0(·)
− h′A1,n(·) +

1

2
h′J(·)h

)
+ h′A1,n(·)− 1

2
h′J(·)h

θ0 h′A1(·)− 1

2
h′J(·)h

because the first two terms converge to zero in probability in L∞(∆) by Lemma A.1 below. We

establish that

log
p0,n,θ0+h/

√
n

p0,n,θ0

θ0 h′A0 −
1

2
h′J0h

by a similar argument, the only difference being that δ0 is fixed so that A0 is a random variable

rather than a process.

We next establish the limiting distribution of cn =
√
n(πn − π0) under θ0. Since (δn, cn) con-

verges in distribution and the log-likelihood ratios of both waves converge marginally in distribution

under θ0, these four random elements are jointly uniformly tight. By Prohorov’s theorem (Van der
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Vaart (2000) Theorem 18.12), there exists a subsequence along which

(
δn, cn, log

p0,n,θ0+h/
√
n

p0,n,θ0

, log
p1,n,θ0+h/

√
n(·)

p1,n,θ0(·)

)
θ0 

(
δ, c, h′A0 −

1

2
h′J0h, h

′A1(·)− 1

2
h′J(·)h

)
.

Along this subsequence, continuity of the sample paths of A1(·) and uniform convergence of A1,n(·)

to A1(·) implies that

(
δn, cn, log

p0,n,θ0+h/
√
n

p0,n,θ0

, log
p1,n,θ0+h/

√
n(δn)

p1,n,θ0(δn)

)
θ0 

(
δ, c, h′A0 −

1

2
h′J0h, h

′A1(δ)− 1

2
h′J(δ)h

)

Since the log-likelihood ratio of the entire experiment is the sum of the log-likelihood ratios of the

two waves, we have established joint convergence of (δn, cn) and the log-likelihood ratio along this

subsequence.

We can now apply Le Cam’s third lemma (Van der Vaart (2000) Theorem 6.6) to derive the

limiting distribution of (δn, cn) along this subsequence under local alternatives. For any Borel set

B ⊆ (∆× Rk), the limiting distribution is given by

Ph[(δ, c) ∈ B] = Eθ01[(δ, c) ∈ B] exp

(
h′A0 −

1

2
h′J0h

)
exp

(
h′A1(δ)− 1

2
h′J(δ)h

)
.

Since the full sequence (δn, cn) also converges under local alternatives by assumption, the expression

above is also the limiting distribution of the full sequence (δn, cn).

Next, we construct a statistic in the limit experiment with this distribution. The construction is

similiar to the proof of Theorem 3 in Hirano and Porter (2023) and uses conditional vector quantile

functions (Carlier, Chernozhukov, and Galichon 2016). Let Ah0 be a Gaussian random variable

with mean J0h and variance J0. Let Ah1(·) be a Gaussian process with mean J(·)h and the same

covariance process as A(·). Let U0, U1 be uniform random variables independent of each other and

of Ah0 , Ah1(·). Note that U0 and U1 can be constructed from a single uniform random variable U .

Our goal is to construct (δh, ch) with distribution Ph under local alternatives, where δh depends

only on Ah0 and U0 and where ch depends only on Ah0 , Ah1(·), and U1. Let qδ|A0
(u | a0) be the

conditional vector quantile function of δ given A0 = a0. Let qc|A0,δ,A1(δ)(u | a0, δ, a1) be the
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conditional vector quantile function of c given A0 = a0, δ = δ, and A1(δ) = a1. Define

δh = qδ|A0
(U0 | Ah0)

ch = qc|A0,δ,A1(δ)(U1 | Ah0 , δh, Ah1(δh)).

Then for h = 0, it follows from the definition of conditional vector quantile functions that

(
δh, ch

)
∼ (δ, c)

and therefore (δn, cn)
θ0 (δ0, c0).

We now verify that the statistic (δh, ch) has the desired distribution under h 6= 0 as well. For

some values of δ in the support of δh, J(δ) may not be invertible, and therefore Ah1(δ) may not

admit a density with respect to Lebesgue measure on R`. However, it admits a density with respect

to Lebesgue measure on the support of Ah1(δ), which is the affine subspace

A(δ) =
{
J(δ)h+ J(δ)1/2a : a ∈ R`

}
.

This density is given by

1√
det−(2πJ(δ))

exp

(
−1

2
(a− J(δ)h)′J(δ)−(a− J(δ)h)

)

where det− denotes the pseudo-determinant and J(δ)− denotes the Moore-Penrose pseudo-inverse

of J(δ).

Let B1, B2 be Borel sets in ∆ and Rk respectively. With abuse of notation, let J(a0, U0) =

J(qδ|A0
(U0 | a0)) and A(a0, U0) = A(qδ|A0

(U0 | a0)). Then

Ph[δh ∈ B1, c
h ∈ B2]

= E
[
1[δh ∈ B1, c

h ∈ B2]
]

= E
[ ∫

∆

∫
A(a0,U0)

1
[
qδ|A0

(U0 | a0) ∈ B1, qc|A0,δ,A1(δ)(U1 | a0, U0, a1) ∈ B2

]
× 1√

det(2πJ0)
exp

(
−1

2
(a0 − J0h)′J−1

0 (a0 − J0h)

)
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× 1√
det−(2πJ(δ))

exp

(
−1

2
(a1 − J(ah0 , U0)h)′J(ah0 , U0)−(a1 − J(ah0 , U0)h)

)
da1da0

]
= E

[ ∫
∆

∫
A(a0,U0)

1
[
qδ|A0

(U0 | a0) ∈ B1, qc|A0,δ,A1(δ)(U1 | a0, U0, a1) ∈ B2

]
× exp

(
h′a0 −

1

2
h′J0h

)
exp

(
h′a1 −

1

2
h′J(a0, U0)h

)
× 1√

det(2πJ0)
exp

(
−1

2
a0J

−1
0 a0

)
1√

det−(2πJ(a0, U0))
exp

(
−1

2
a1J(a0, U0)−a1

)
da1da0

]
= E

[
1[(δ0, c0) ∈ B1 ×B2] exp

(
h′A0 −

1

2
h′J0h

)
exp

(
h′A1(δ0)− 1

2
h′J(δ0)h

)]

where the second equality uses the formula for the density of Ah0 and Ah1(·), the third equality uses

the fact that for any δ in the support of δh, J(δ)J(δ)−a = a for a ∈ A(δ), and the fourth uses the

formula for the density of A0
0 and A0

1(·).

The following lemma ensures that the log-likelihood ratio of the experiment behaves asymp-

totically like a sample average. It generalizes Theorem 7.2 of Van der Vaart (2000) to ensure the

approximation is uniform in δ.

Lemma A.1: Assume ∆ is a compact subset of euclidean space, and maintain the assumptions

of Lemma 4.5. Then for any ε > 0,

P

(
sup
δ∈∆

∣∣∣∣∣log
p1,n,θ0+h/

√
n(δ)

p1,n,θ0(δ)
−

(
1√
n

n∑
i=1

h′ψi(δ)− 1

2
h′J(δ)h

)∣∣∣∣∣ > ε

)
→ 0

Proof. We first note that the likelihood factors so that

log
p1,n,θ0+h/

√
n(δ)

p1,n,θ0(δ)
= log

n∏
i=n0+1

py|z,x(yi | zi, xi;θ0 + h/
√
n)pz|x(zi | xi; δ)

py|z,x(yi | zi, xi;θ0)pz|x(zi | xi; δ)

= log

n∏
i=n0+1

py|z,x(yi | zi, xi;θ0 + h/
√
n)

py|z,x(yi | zi, xi;θ0)

=
n∑

i=n0+1

log
pn(yi | zi, xi)
p(yi | zi, xi)

where in the last line we have used the shorthand pn := py|z,x(· | ·, ·;θ0 + h/
√
n) and p := py|z,x(· |

·, ·;θ0).
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Define the random variable

Sni(δ) := 2

(√
pn
p

(yi | zi, xi)− 1

)

(recall yi and zi depend on δ) which is well-defined P-almost everywhere. We write a Taylor

expansion of the log-likelihood ratio in terms of Sni(δ):

n∑
i=n0+1

log
pn(yi | zi, xi)
p(yi | zi, xi)

= 2
n∑

i=n0+1

log

(
1 +

1

2
Sni(δ)

)

=
n∑

i=n0+1

(
Sni(δ)− 1

4
Sni(δ)2 +

1

2
Sni(δ)2r(Sni(δ))

)
(10)

where r(s) → 0 as s → 0. We will evaluate each term of this expansion in turn to show that the

expression is of the form claimed in the lemma.

We will start by evaluating the expectation of the first term. For a single element in the sum,

we have

E [Sni(δ)] = E [Sni(δ)]

= E [E [Sni(δ) | zi, xi]]

= 2E
[∫ √

pn(yi | zi, xi)
√
p(yi | zi, xi)dλ− 1

]
= −E

[∫
pn(yi | zi, xi)dλ

− 2

∫ √
pn(yi | zi, xi)

√
p(yi | zi, xi)dλ

+

∫
p(yi | zi, xi)dλ

]
= −E

[∫ (√
pn(yi | zi, xi)−

√
p(yi | zi, xi)

)2
dλ

]
= −1

4
E
[∫

(h′ψi(δ))2p(yi | zi, xi)dλ
]

+ o(n−1)

where the last line follows from Assumption 4.2. Summing across i, since the o(n−1) term is uniform
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in zi and xi by Assumption 4.2 and the score is mean zero, we conclude that

sup
δ∈∆

∣∣∣∣∣E
[∑

i

Sni(δ)− 1√
n

∑
i

h′ψi(δ) +
1

4
h′J(δ)h

]∣∣∣∣∣ = o(1).

We now turn to the variance of the term inside this expectation. Again taking one element of

the sum, we have

Var

(
Sni(δ)− 1√

n
h′ψi(δ)

)
≤ E

(
(Sni(δ)− 1√

n
h′ψi(δ))2

)
=

1

n
E
(
E
[
(
√
nSni(δ)− h′ψi(δ))2 | zi, xi

])
=

1

n
E

(
2
√
n

∫ (
√
pn −

√
p− 1

2
h′ψi(δ)

√
p

)2

dλ

)

=
1

n
E
(
2
√
no(n−1)

)

(11)

where the last line is again by differentiability in quadratic mean. Again, since this is uniform in

z, x, we conclude that the variance of the sum is o(1).

To summarize, we have shown that the mean and variance of

∑
Sni(δ)− 1√

n

∑
h′ψi(δ) +

1

4
h′J(δ)h

converge uniformly to zero in δ, and therefore we conclude that

sup
δ∈∆

∣∣∣∣∣∑
i

Sni(δ)−

(
1√
n

∑
i

h′ψi(δ)− 1

4
h′J(δ)h

)∣∣∣∣∣ = op(1).

Now we turn to the second term in the Taylor expansion. Define

Bni :=
√
nSni(δ)− h′ψi(δ)

and note that by (11), EB2
ni → 0. We have nSni(δ)2 = (h′ψi(δ))2 +2h′ψi(δ)Bni+B2

ni and therefore

∑
i

Sni(δ)2 =
1

n

∑
i

(h′ψi(δ))2 +
1

n

∑
i

h′ψi(δ)Bni +
1

n

∑
i

B2
ni
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where the second and third terms are op(1) because E[B2
ni] = o(1). Next,

E

(
1

n

∑
i

(h′ψi(δ))2 − h′J(δ)h

)
= 0

Var

(
1

n

∑
i

(h′ψi(δ))2 − h′J(δ)h

)
= o(1)

where the o(1) term is uniform by the Glivenko-Cantelli theorem by Assumption 4.4. Hence

∑
i

Sni(δ)2 =
1

4
h′J(δ)h+ op(1)

and so the second term in (10) is −1
4h
′J(δ)h+op(1), where convergence in probability is in L∞(∆).

For the last term, observe that

∑
i

Sni(δ)2r(Sni(δ)) ≤ max
i
|r(Sni(δ))|

∑
i

Sni(δ)2

and we want to show that maxi |r(Sni(δ))| = op(1). First, we have

P(max
i
|Sni(δ)| > ε) ≤

∑
i

P(|Sni(δ)| > ε).

Examining one term in the sum, we have

P(|Sni(δ)| > ε) ≤ P
(

(h′ψi(δ))2 >
1

2
nε2
)

+ P
(
B2
ni >

1

2
nε2
)

= P
(

(h′ψi(δ))2
1[(h′ψi(δ))2 >

1

2
nε2] >

1

2
nε2
)

+ P(B2
ni >

1

2
nε2)

≤ 2n−1ε−2E
[
(h′ψi(δ))2

1[(h′ψi(δ))2 >
1

2
nε2]

]
+ 2n−1ε−2E

[
B2
ni

]
= o(n−1)

where, in the last line, the first term goes to zero by Assumption 4.3 and the second term is again

by (11). Hence, maxi |r(Snit)| → 0 in probability, and the last term in the Taylor expansion is

op(1)Op(1) = op(1).

We can now prove the main theorem of this section, which justifies the use of the Gaussian
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value function.

Theorem 4.8: Suppose Assumptions 4.1, 4.2, 4.3, and 4.4 hold. Additionally assume that πGn is

continuous in A0 and A1 and that J0 is nonsingular. Then

Eδ∗n [Vn({yi, zi}ni=1)] = EδGn

[
V G
n (µ1,Σ1)

]
+ o(n−1)

Proof. By Fatou’s lemma, since regret is nonnegative,

lim inf
n→∞

∫
nE
[
R

(
θ0 +

h√
n
,π0 +

c∗n√
n

)]
dQ

(
θ0 +

h√
n

)
≥
∫

lim inf
n→∞

(
nE
[
R

(
θ0 +

h√
n
,π0 +

c∗n√
n

)]
q

(
θ0 +

h√
n

))
dh.

Since q is positive and continuous in a neighborhood of θ0, q
(
θ0 + h√

n

)
→ q(θ0) pointwise in h.

Next, we derive the limit of the inner expectation.

There exists a subsequence nj along which the lim inf is attained as a limit. Moreover, since by

assumption (δ∗n, c
∗
n) is bounded in probability, there exists a further subsequence njk along which

(δ∗n, c
∗
n) converges in distribution. By Lemma 4.5, (δ∗n, c

∗
n)

h
 (δ∗, c∗) for some (δ∗, c∗) in the limit

experiment, where the limiting regret along njk is the same as the limiting regret along nj . For

simplicity, convergence in what follows will be along this subsequence.

Since c∗n
h
 c∗ and welfare (and therefore regret) is continuous, the extended continuous mapping

theorem implies

nR

(
θ0 +

h√
n
,π0 +

c∗n√
n

)
− nR

(
θ0 +

h√
n
,π0 +

c∗√
n

)
= op(1)

where we may represent c∗ in the same probability space as c∗n by the Skorohod representation

theorem.

The dominance condition on the regret of π̃Gn ensures R(θ, π̃Gn ) is uniformly integrable. Since π∗n

is optimal in the finite-sample experiment, its regret is bounded by the regret of π̃Gn , and therefore

its regret is also uniformly integrable. Therefore

nE
[
R

(
θ0 +

h√
n
,π0 +

c∗n√
n

)]
− nE

[
R

(
θ0 +

h√
n
,π0 +

c∗√
n

)]
= o(1)
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by Theorem 2.20 of Van der Vaart (2000).

Furthermore, since (δ∗n, c
∗
n) is a statistic in the limit experiment, it is feasible in the Gaussian

problem, and therefore

nE
[
R

(
θ0 +

h√
n
,π0 +

c∗√
n

)]
≥ nE

[
R

(
θ0 +

h√
n
,π0 +

cGn√
n

)]
.

Combining the previous three displays, we have shown

lim inf
n→∞

∫
nE
[
R

(
θ0 +

h√
n
,π0 +

c∗n√
n

)]
dQ(θ0 + h/

√
n)

≥
∫
nE
[
R

(
θ0 +

h√
n
,π0 +

cGn√
n

)]
dh+ o(1).

We now turn to the upper bound. Since regret is dominated by nonnegative, integrable W̄ , we

can use Fatou’s lemma in the other direction to get

lim sup
n→∞

∫
nE
[
R

(
θ0 +

h√
n
,π0 +

c∗n√
n

)]
dQ

(
θ0 +

h√
n

)
≤
∫

lim sup
n→∞

nE
[
R

(
θ0 +

h√
n
,π0 +

c∗n√
n

)]
dh

Let (δ̃Gn , c̃
G
n ) be the finite-sample analog of the optimal policy in the Gaussian problem, where we

observe A0,n and A1,n instead of A0 and A1. Since (δ∗n, c
∗
n) is optimal and (δ̃Gn , c̃

G
n ) is feasible for

the finite-sample problem,

nE
[
R

(
θ0 +

h√
n
,π0 +

c∗n√
n

)]
≤ nE

[
R

(
θ0 +

h√
n
,π0 +

c̃Gn√
n

)]
.

Since cGn is continuous in A0 and A1, and since welfare is continuous, by the continuous mapping

theorem we conclude

nE
[
R

(
θ0 +

h√
n
,π0 +

c̃Gn√
n

)]
− nE

[
R

(
θ0 +

h√
n
,π0 +

cGn√
n

)]
→ 0

as before. As a result,

lim sup
n→∞

∫
nE
[
R

(
θ0 +

h√
n
,π0 +

c∗n√
n

)]
dQ

(
θ0 +

h√
n

)
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≤
∫
nE
[
R

(
θ0 +

h√
n
,π0 +

cGn√
n

)]
dh+ o(1).

Combining our upper and lower bounds and canceling the common recentering term in regret,

we have

∫
nE
[
W

(
θ0 +

h√
n
,π0 +

c∗n√
n

)]
dQ

(
θ0 +

h√
n

)
−
∫
nE
[
W

(
θ0 +

h√
n
,π0 +

cGn√
n

)]
dh

= o(1)

which is the desired result.

A.2 Proof of Theorem 4.13

Lemma 4.12: Suppose Assumptions 4.1, 4.10 and 4.11 hold, and that J0 is nonsingular. Then

V G
n (µ1,Σ1)− V Q

n (Dµ1) = W (θ0,π0) + (µ1 − θ0)′∇θW (θ0,π0)

+
1

2

(
trace(Σ1∇2

θθW (θ0,π0)) + (µ1 − θ0)′∇2
θθW (θ0,π0)(µ1 − θ0)

)
+ op(n

−1)

Proof. We first rewrite the value function V G
n by introducing ξ ∼ N(0, I) and letting ϑ = (µ,Σ1/2)

parameterize this problem. Define the objective function

r(ϑ,π) = E[W (µ+ Σ1/2ξ,π)]

so that we can write the value function in terms of ϑ as

V G
n (ϑ) = max

π
r(ϑ,π) s.t. g(π) ≤ 0.

We will approximate this problem in a neighborhood of ϑ0 = (θ0, 0). By Theorem 3.1 of Shapiro
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(1985) (see Theorem A.6 below) we have that

V G
n (ϑ)− V G

n (ϑ0) = (ϑ− ϑ0)′∇ϑr(ϑ0,π0) +
1

2
ζGn (ϑ− ϑ0) + o(‖ϑ− ϑ0‖2)

where

ζGn (ϑ− ϑ0) = min
π

(ϑ− ϑ0)′∇2
ϑϑr(ϑ0,π0)(ϑ− ϑ0)

+ 2(ϑ− ϑ0)′∇2
ϑπr(ϑ0,π0)(π − π0)

+ (π − π0)′[∇2
ππr(ϑ0,π0) + λ′0∇2

ππg(π0)](π − π0)

s.t.

π′∇gj(π0) = 0, j ∈ J1

π′∇gj(π0) < 0, j ∈ J2

and derivatives with respect to Σ1/2 are understood to be with respect to the vectorized elements

of Σ1/2.

We now calculate the terms appearing in ζGn . To begin, the constant on the left-hand side is

V G
n (ϑ0) = W (θ0,π0).

Next, the first-order term in ϑ is

(ϑ− ϑ0)′∇ϑr(ϑ0,π0) = E[(µ− θ0 + Σ1/2ξ)′∇θW (θ0,π0)]

= (µ− θ0)′∇θW (θ0,π0).

The cross-partial term is

(ϑ− ϑ0)′∇2
ϑπr(ϑ0,π0)(π − π0) = E[(µ− θ0 + Σ1/2ξ)′∇2

θπW (θ0,π0)](π − π0)

= (µ− θ0)′D′(π − π0)
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and the second-order term in ϑ is

(ϑ− ϑ0)′∇2
ϑϑr(ϑ0,π0)(ϑ− ϑ0) = E[(µ− θ0 + Σ1/2ξ)′∇2

θθW (θ0,π0)(µ− θ0 + Σ1/2ξ)]

= trace(Σ∇2
θθW (θ0,π0)) + (µ− θ0)′∇2

θθW (θ0,π0)(µ− θ0)

Finally, the second-order term in π is

(π − π0)′[∇2
ππr(ϑ0,π0) + λ′0∇2

ππg(π0)](π − π0) = (π − π0)′H(π − π0)

Putting these terms together, we have shown that

V G
n (ϑ)− Ṽ Q

n (ϑ) = W (θ0,π0) + (µ− θ0)′∇θW (θ0,π0)

+
1

2

(
trace(Σ∇2

θθW (θ0,π0)) + (µ− θ0)′∇2
θθW (θ0,π0)(µ− θ0)

)
+ o(‖ϑ− ϑ0‖2)

where

Ṽ Q
n (ϑ) = max

π
(π − π0)′D(µ− θ0) +

1

2
(π − π0)′[H + λ′0∇2

ππg(π0)](π − π0)

s.t.

π′∇gj(π0) = 0, j ∈ J1

π′∇gj(π0) < 0, j ∈ J2.

The program Ṽ Q
n is not quite the same as the program V Q

n in the statement of the lemma. The

differences are (i) that Ṽ Q
n uses a linear approximation to the nonlinear constraints g(π) ≤ 0 and

contains a nonlinear constraint term in the objective, (ii) that Ṽ Q
n imposes equality constraints for

indices j where strict complementarity holds in the original problem, and (iii) that Ṽ Q
n does not

contain the term (π − π0)′C appearing in V Q
n . However, another application of Theorem A.6 to

V Q
n shows that

V Q
n (ϑ)− Ṽ Q

n (ϑ) = o(‖ϑ− ϑ0‖2)
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by the same arguments as above.

By Corollary 3.1 of Shapiro (1985), the sequence of functions

n−1
(
V G
n (ϑ0 + n−1/2mn)− V Q

n (ϑ0 + n−1/2mn)
)

converges to zero for every sequence mn → m. Note that

µ1 = (n0J0 + n1J(δ))−1
(
n0J0θ̂0 + n1J(δ)θ̂1

)
Σ1 = (n0J0 + n1J(δ))−1

so that µ1−θ0 = Op(n
−1/2) and Σ

1/2
1 = o(n−1/2). By the continuous mapping theorem we conclude

that

V G
n (µ1,Σ1)− V Q

n (Dµ1) = op(n
−1)

We now state the result from Shapiro (1985) used above. We first state the assumptions, which

are weaker than those we actually made in Assumption 4.11. Consider the following nonlinear

program

v(ϑ) = min
π

r(ϑ,π)

s.t.

g(π) ≤ 0

(12)

for some loss r parameterized by a Euclidean parameter ϑ. Let π be the optimal solution to (12)

under ϑ0. Let λ0 = (λ01, . . . , λ0m) be the optimal Lagrange multiplier corresponding to π0. Let

J1 be the set of indices j such that λ0j > 0. Let J2 be the set of indices j such that gj(π0) = 0

and λ0j = 0.

Assumption A.2: There exists a number α and a compact set S ⊂ Rk such that α > v(ϑ) and

{π : g(π) ≤ 0, r(ϑ,π) ≤ α} ⊆ S
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for all ϑ in a neighborhood of ϑ0.

Assumption A.3: The optimal π under (ϑ0), denoted π0, is unique.

Assumption A.4: The vectors

{∇gj(π0) : j ∈ J1}

are linearly independent, and there exists a vector π such that

π′∇gj(π0) = 0, j ∈ J1

π′∇gj(π0) < 0, j ∈ J2.

The previous assumption is implied by Assumption 4.11.3, that the rows of ∇g(π0) are linearly

independent.

Assumption A.5: Letting

L(ϑ,π,λ) = r(ϑ,π) + λ′g(π)

be the Lagrangian, define

Hϑϑ Hϑπ

Hπϑ Hππ

 =

∇2
ϑϑL(ϑ0,π0,λ0) ∇2

ϑπL(ϑ0,π0,λ0)

∇2
πϑL(ϑ0,π0,λ0) ∇2

ππL(ϑ0,π0,λ0)


as the Hessian of the Lagrangian at the reference values. Then c′Hππc > 0 for every nonzero vector

c such that

c′∇gj(π0) ≤ 0, j ∈ J1

c′∇gj(π0) = 0, j ∈ J2.

Theorem A.6 (Shapiro (1985) Theorem 3.1): Suppose Assumptions A.2, A.3, A.4, and A.5 hold.
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Then

v(ϑ)− v(ϑ0) = (ϑ− ϑ0)′∇ϑr(ϑ0,π0) +
1

2
ζ(ϑ− ϑ0) + o(‖ϑ− ϑ0‖2)

where

ζ(ϑ− ϑ0) = min
π

(ϑ− ϑ0)′Hϑϑ(ϑ− ϑ0) + 2(ϑ− ϑ0)′Hϑπ(π − π0) + (π − π0)′Hππ(π − π0)

s.t.

π′∇gj(π0) = 0, j ∈ J1

π′∇gj(π0) < 0, j ∈ J2.

Moreover, let Φ(ϑ) be the set of optimal solutions to ζ(ϑ− ϑ0) and let π(ϑ) be an optimal solution

to (12). Then

lim
ϑ→ϑ0

dist(π(ϑ)− π0,Φ(ϑ− ϑ0))

‖ϑ− ϑ0‖
= 0.

Corollary A.7 (Shapiro (1985) Corollary 3.1): Under the assumptions of Theorem A.6,

lim
t↓0,m→m0

t−2
(
v(ϑ0 + tm)− v(ϑ0)− tm′∇ϑr(ϑ0,π0)

)
exists and is equal to 1

2ζ(m0) for every m0.

We now prove the main result of this section, which justifies the quadratic approximation to

the value function.

Theorem 4.13: Suppose Assumptions 4.1, 4.7, 4.10, and 4.11 hold. Assume there exists a

function W̄ (θ) such that R(θ, π̃Qn ) ≤ n−1W̄ (θ) and
∫
|W̄ (θ)|1+ιdθ <∞ for some ι > 0. Then

EδGn

[
V G
n (µ1,Σ1)

]
= E

δQn

[
V Q
n (Dµ1) +M(µ0,Σ0)

]
+ o(n−1)

where M(µ0,Σ0) = W (µ0,π0) + 1
2 trace(Σ0∇2

θθW (µ0,π0)). Further,

E
δQn

[
V Q
n (Dµ1)

]
= E

δ̂Qn

[
V̂ Q
n (Dµ1)

]
+ o(n−1)
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Proof. We start with the first claim. By Lemma 4.12, we have that

V G
n (µ1,Σ1)− V Q

n (Dµ1) = W (θ0,π0) + (µ1 − θ0)′∇θW (θ0,π0)

+
1

2

(
trace(Σ1∇2

θθW (θ0,π0)) + (µ1 − θ0)′∇2
θθW (θ0,π0)(µ1 − θ0)

)
+ op(n

−1)

Note that regardless of the chosen design,

E
[
trace(Σ1∇2

θθW (θ0,π0)) + (µ1 − θ0)′∇2
θθW (θ0,π0)(µ1 − θ0) | θ̂0

]
= trace(Σ0∇2

θθW (θ0,π0))

and

E
[
(µ1 − θ0)′∇θW (θ0,π0) | θ̂0

]
= 0.

Since the regret of (πGn ) is uniformly integrable, for any fixed h we have that

E
[
nR

(
θ0 +

h√
n
,π0 +

cGn√
n

)]
− E

[
nRQ

(
θ0 +

h√
n
,π0 +

cQn√
n

)]
= o(1)

where RQ is the regret under the welfare function WQ.

Then we have

lim
n→∞

∫
nE
[
R

(
θ0 +

h√
n
,π0 +

cGn√
n

)]
dh

=

∫
lim
n→∞

E
[
nR

(
θ0 +

h√
n
,π0 +

cGn√
n

)]
dh

=

∫
lim
n→∞

E

[
nRQ

(
θ0 +

h√
n
,π0 +

cQn√
n

)]
dh

= lim
n→∞

∫
nE

[
RQ

(
θ0 +

h√
n
,π0 +

cQn√
n

)]
dh

where the first line is by the dominated convergence theorem, the second by Lemma 4.12, the

third by optimality of δQn for V Q
n , and the fourth again by the dominated convergence theorem.
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Subtracting the first and last lines and canceling the centering term in regret, we have

lim
n→∞

(∫ (
nEδGn

[
V G
n (µ1,Σ1)

]
− nE

δQn

[
V Q
n (Dµ1) +M(µ0,Σ0)

])
dh

)
= 0

and the first claim is proved.

We now move on to the second claim. Conditional on h and scaled by n, the difference in

welfare is

nWQ

(
θ0 +

h√
n
,π0 +

cQn√
n

)
− nŴQ

(
θ0 +

h√
n
,π0 +

ĉQn√
n

)

≥ nWQ

(
θ0 +

h√
n
,π0 +

ĉQn√
n

)
− nŴQ

(
θ0 +

h√
n
,π0 +

ĉQn√
n

)

where the inequality follows because cQn is optimal for the loss WQ over a feasible set which includes

ĉQn . Since ŴQ is constructed from the estimates (θ̂0, π̂0) which are consistent, by the extended

continuous mapping theorem this difference is op(1). Since regret is uniformly integrable, the

expectation is o(1).

For the other direction, we proceed similarly. First, we can write the difference in welfare as

nWQ

(
θ0 +

h√
n
,π0 +

cQn√
n

)
− nŴQ

(
θ0 +

h√
n
,π0 +

ĉQn√
n

)

≤ nWQ

(
θ0 +

h√
n
,π0 +

cQn√
n

)
− nŴQ

(
θ0 +

h√
n
,π0 +

cQn√
n

)

because ĉQn is optimal for the loss ŴQ over a feasible set which includes cQn . Again, since (θ̂0, π̂0)
p→

(θ0,π0), it follows that the difference in welfare is op(1) and by uniform integrability, the expectation

is o(1).

A.3 Proof of Theorem 4.14

Theorem 4.14: Maintain the assumptions of Theorems 4.8 and 4.13. Then V Q
n provides an

asymptotic upper bound on the welfare of any sequence of designs and policies in the finite-sample

experiment. That is, if (δn,πn) is a sequence of feasible designs and policies in the finite-sample
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experiment with cn =
√
n(πn − π0), then

lim sup
n→∞

Eδn [W (θ,πn)] ≤ E
δQn

[
WQ
n

(
Dθ,πQn

)
+M(µ0,Σ0)

]
+ o(n−1)

where M(µ0,Σ0) is as in Theorem 4.13. Moreover, this upper bound is attained by solving V̂ Q
n ,

using δ̂Qn in the main wave and then solving resulting finite-sample policy choice problem:

lim
n→∞

E
δ̂Qn

[Vn({yi, zi, xi}ni=1)] = E
δQn

[
WQ
n (Dθ, c∞) +M(µ0,Σ0)

]
+ o(n−1)

i.e. the design δ̂Qn is asymptotically optimal.

Proof. For the first part, we have

E
[
nW

(
θ0 +

h√
n
,π0 +

cn√
n

)]
≤ Eδ∗n [Vn({yi, zi, xi}ni=1)]

= E
δQn

[
V Q
n (Dµ1) +M(µ0,Σ0)

]
+ o(n−1)

where the first inequality follows from the optimality of (δ∗n, c
∗
n) and the equality from Theorems

4.8 and 4.13. For the second part, let (δ̃Qn , c̃
Q
n ) be the finite-sample analogs of (δ̂Qn , ĉ

Q
n ), where A0

and A1 are replaced by A0,n and A1,n. We have

E
δ̃Qn

[Vn({yi, zi, xi}ni=1)] ≥ E

[
W

(
θ0 +

h√
n
,π0 +

c̃Qn√
n

)]
.

Since V G
n is continuous and regret is uniformly integrable,

E

[
nW

(
θ0 +

h√
n
,π0 +

c̃Qn√
n

)]
− E

[
nW

(
θ0 +

h√
n
,π0 +

ĉQn√
n

)]
→ 0

and

E

[
nW

(
θ0 +

h√
n
,π0 +

ĉQn√
n

)]
− E

[
nŴQ

(
θ0 +

h√
n
,π0 +

ĉQn√
n

)
+ nM(µ0,Σ0)

]
= o(1)
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by the same argument as in the proof of Theorem 4.13. Then by Theorem 4.13,

E

[
nŴQ

(
θ0 +

h√
n
,π0 +

ĉQn√
n

)]
− E

[
nWQ

(
θ0 +

h√
n
,π0 +

ĉQn√
n

)]
= o(1)

and we conclude that

E
δ̃Qn

[Vn({yi, zi, xi}ni=1)] ≥ EδQ
[
V Q
n (Dµ1) +M(µ0,Σ0)

]
+ o(n−1)

B Stochastic equicontinuity

Here we give sufficient conditions for Assumption 4.4. First, we give a definition of stochastic

equicontinuity.

Definition B.1 (Stochastic equicontinuity): Let {An(·), n ≥ 1} be a sequence of stochastic pro-

cesses in a normed metric space ∆. We say {An(·), n ≥ 1} is stochastically equicontinuous if for

every ε > 0 and η > 0 there exists a ι > 0 such that

lim sup
n→∞

P

(
sup

b,c∈∆:‖b−c‖<ι
‖An(b)−An(c)‖ > η

)
< ε.

Using the generative representation of Assumption 4.4, yi and zi are deterministic functions of

xi, νi, and εi for given δ and θ. Let the joint distribution of xi, νi, and εi (equivalently xi, zi, and

yi) be denoted by P. Expectations will be taken with respect to P.

In what follows, we will refer to the following function classes:

Fz = {z(·, ·; δ) : δ ∈ ∆}

Fψ = {ψ(y(z(·, ·; δ), ·, ·;θ0) | z(·, ·; δ)) : δ ∈ ∆}

where

zi = z(xi, νi; δ)
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yi = y(zi, xi, εi;θ)

describe the data-generating process as in Assumption 4.4. For each j ∈ {1, . . . , J}, let F jz be the

set of functions returning the jth element of z ∈ Fz.

For a real-valued function f , an (L2) η-bracket is a pair of functions (fmj , f
e
j ) (mnemonic: mean

and error) such that |f − fmj | ≤ fej and E[(fej )2]1/2 ≤ η2. For a class of real-valued functions F ,

the bracketing number N[](η,F , L2(P)) is the smallest number of η-brackets needed to cover F . A

set of brackets which covers F is called an η-bracketing set.

The bracketing entropy integral of a function class F is defined as

J[](F , L2(P)) =

∫ ∞
0

√
logN[](η,F , L2(P))dη.

B.1 Bracketing conditions for stochastic equicontinuity

Our first lemma controls the the bracketing number of the score under a simplicity condition on

the treatment assignment and a smoothness condition on the score function.

Lemma B.2: Suppose N[](η,F
j
z , L2(P)) ≤ N <∞ j = 1, . . . J . Suppose that for every z ∈ Z and

ι > 0, there exists a constant C such that

(
E sup
z̃:‖z̃−z‖≤ι

∣∣∣∣ψ(y(z, x, ε;θ0) | z, x)− ψ(y(z̃, x, ε;θ0) | z̃, x)

∣∣∣∣2)1/2

≤ Cι (13)

Then N[](JCη,Fψ, L2(P)) ≤ NJ .

Condition (13) is a type of Lipschitz continuity condition on the score function. It is weaker than

a typical Lipschitz condition in that it allows for some discontinuities, such as indicator functions

of the form 1[g(z) ≤ ε] which are common in economic choice models. Andrews (1994) calls this

a type IV class (equation 5.3) and shows how to control its bracketing entropy and gives other

examples of functions satisfying this condition. Moreover, products and sums of these types of

functions also have finite entropy integrals. Later, we will verify that this condition holds for the

model of Section 5.

2This is the definition used by Andrews (1994), which differs slightly from that of Van der Vaart and Wellner
(2013).
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Proof. For each j ∈ {1, . . . , J}, let {zms,j , zes,j}Ns=1 be an η-bracketing set for F jz . Construct {zms , zes}N
J

s=1

by taking combinations of element-wise η-bracketing sets so that for any z(·, ·; δ) ∈ Fz, there is

some s such that |z − zms | ≤ zes element-wise and E[(zes)
2]1/2 ≤ η element-wise.

Define {ψms , ψes}N
J

s=1 by

ψms (x, ν, ε) = ψ(y(zms (ν), x, ε;θ0) | zms (ν), x)

ψes(x, ν, ε) = sup
z̃:‖z̃−zms (x,ν)‖≤‖zes(x,ν)‖

∣∣∣∣ψ(y(z̃, x, ε;θ0) | z̃, x)− ψ(y(zms (ν), x, ε;θ0) | zms (ν), x)

∣∣∣∣.
Let f be an arbitrary element of Fψ. Then f is of the form

f(x, ν, ε; δ) = ψ(y(z(x, ν; δ), x, ε;θ0) | z(x, ν; δ))

for some z(·, ·; δ) ∈ Fz. Let s be the index of the bracket containing z(·, ·; δ). Then |z(x, ν; δ) −

zms (x, ν)| ≤ zes(x, ν) element-wise. This implies ‖z(x, ν; δ)− zms (x, ν)‖ ≤ ‖zes(x, ν)‖ and therefore

|f(x, ν, ε; δ)− ψms (x, ν, ε)| =
∣∣∣∣ψ(y(z(x, ν; δ), x, ε;θ0) | z(x, ν; δ))− ψ(y(zms (x, ν), x, ε,θ0) | zms (x, ν), x)

∣∣∣∣
≤ ψes(x, ν, ε)

where the inequality follows from the definition of ψes. Further,

E[|ψes(x, ν, ε)|2]1/2

= E
[

sup
z̃:‖z̃−zms (x,ν)‖≤‖zes(x,ν)‖

∣∣∣∣ψ(y(zms (x, ν), x, ε;θ0) | zms (x, ν))− ψ(y(z̃, x, ε;θ0) | z̃, x)

∣∣∣∣2]1/2

≤ E
[
C2‖zes(x, ν)‖2

]1/2

= C

( J∑
j=1

E|zes,j(ν)|2
)1/2

≤ C
J∑
j=1

(
E|zes,j(ν)|2

)1/2

≤ CJη

where the second line follows from the definition of ψes, the third follows from the Lipschitz condition
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(13), the fourth is a simple algebraic manipulation, the fifth follows from convexity of the square root

function, and the last follows from the fact that {zes,j}Ns=1 is an η-bracketing set for F jz . Therefore,

{ψms , ψes}N
K

s=1 is a JCη-bracketing of Fψ.

We can now show that J[](Fψ, L2(P)) is finite and therefore An(·) is stochastically equicontin-

uous.

Theorem B.3: Suppose J[](F
j
z , L2(P)) is finite for each j. Moreover, suppose ψ satisfies the

Lipschitz condition (13). Then J[](Fψ, L2(P)) is finite. Suppose further that Fz has envelope Fz

and EF 2+ι
z <∞ for some ι > 0. Then An(·) is stochastically equicontinuous.

Proof. The first part is straightforward consequence of Lemma B.2. Specifically,

J[](F , L2(P)) =

∫ ∞
0

√
logN[](η,F , L2(P))dη

≤
∫ ∞

0

√√√√log

J∏
j=1

N[]

(
η

JC
,F jz , L2(P)

)
dη

=

∫ ∞
0

√√√√ J∑
j=1

logN[](η,F
j
z , L2(P))dη

≤
J∑
j=1

J[](F jz , L2(P))

<∞.

The second part of the proposition follows from Andrews (1994) Theorem 4.

B.2 Verifying conditions for stochastic equicontinuity

While the bracketing conditions of Theorem B.3 are lower-level than stochastic equicontinuity, they

are not immediately interpretable. Here we show that simple policy classes such as those used in

the Progresa application satisfy these conditions.

Proposition B.4: Suppose each element of z(·, ·; δ) is of the form

z(x, ν, δ) = δ′1x+ δ′2x× 1[ρ(δ′3x) ≥ ν]
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where δj are subvectors of δ, and ρ : R 7→ [0, 1] is a strictly increasing Lipschitz-continuous function,

and ν has a uniform distribution on [0, 1] independent of x. If E‖x‖4 < ∞ and ∆ is a bounded

subset of Euclidean space, then Fz has finite bracketing entropy.

Proof. We first establish that the simple functions used to construct z satisfy an L4 Lipschitz

condition similar to (13). Let F1 be the class of functions of the form z(x; δ) = δ′x. Then for

z ∈ F1,

E sup
δ̃:‖δ̃−δ‖≤ι

∣∣∣∣z(x; δ)− z(x; δ̃)

∣∣∣∣4 = E sup
δ̃:‖δ̃−δ‖≤ι

∣∣∣∣δ′x− δ̃′x

∣∣∣∣4
≤ E(ι2‖x‖2)2

= ι4E‖x‖4

and therefore by Theorem 5 of Andrews (1994), F1 has finite L4 bracketing entropy.

Now consider the class of functions F2 of the form z(x, ν; δ) = 1[ρ(δ′x) ≥ ν]. Without loss of

generality we will let ρ have Lipschitz constant 1. Then for z ∈ F2,

E sup
δ̃:‖δ̃−δ‖≤ι

∣∣∣∣z(x, ν; δ)− z(x, ν; δ̃)

∣∣∣∣4
= E sup

δ̃:‖δ̃−δ‖≤ι

∣∣∣∣1[ρ(δ′x) ≥ ν]− 1[ρ(δ̃′x) ≥ ν]

∣∣∣∣4
= E sup

δ̃:‖δ̃−δ‖≤ι

∣∣∣∣1[ρ(δ′x) ≥ ν > ρ(δ̃′x)] + 1[ρ(δ̃′x) ≥ ν > ρ(δ′x)]

∣∣∣∣4
= E sup

δ̃:‖δ̃−δ‖≤ι
1[ρ(δ′x) ≥ ν > ρ(δ̃′x)] + 1[ρ(δ̃′x) ≥ ν > ρ(δ′x)]

≤ E sup
ρ̃:‖ρ̃−ρ(δ′x)‖≤ι‖x‖

1[ρ(δ′x) ≥ ν > ρ̃] + 1[ρ̃ ≥ ν > ρ(δ′x)]

≤ E1[|ρ(δ′x)− ν| ≤ ι‖x‖]

= E[P(|ρ(δ′x)− ν| ≤ ι‖x‖ | x)]

≤ E[2ι‖x‖]

and therefore by Theorem 5 of Andrews (1994), F2 has finite L4 bracketing entropy.

We may now follow Theorem 6 of Andrews (1994) to show that the form of z under consideration
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has finite L2 bracketing entropy. Having established that these simple functions have finite L4

bracketing entropy, we first show that the product of these functions has finite L2 bracketing

entropy.

Suppose z(x, ν; δ) = δ′1x × 1[ρ(δ′2x) ≥ ν]. Let zm1 , z
e
1 and zm2 , z

e
2 be η-brackets for δ′1x and

1[ρ(δ′2x) ≥ ν] respectively. Then

|z − zm1 zm2 | ≤ |δ′1x1[ρ(δ′2x) ≥ ν]− zm1 1[ρ(δ′2x) ≥ ν]|

+ |zm1 1[ρ(δ′2x) ≥ ν]− zm1 zm2 |

≤ |ze1|F2 + F1|ze2|

where F1 and F2 are L4-integrable envelopes for F1 and F2 (which exist becase ∆ is bounded and

the indicator is bounded by 1). Therefore

E[|z − zm1 zm2 |2]1/2 ≤ E[|ze1|2F 2
2 ]1/2 + E[F 2

1 |ze2|2]1/2

≤ E[|ze1|4]1/4E[F 4
2 ]1/4 + E[F 4

1 ]1/4E[|ze2|4]1/4

≤ 2Cη

for some constant C. In particular, this means that a 2Cη-bracketing set for the product of functions

in F1 and F2 can be constructed by taking combinations of η-brackets for functions in F1 and F2.

That is,

N[](2Cη,F1 ×F2, L2(P )) ≤ N[](η,F1, L2(P ))N[](η,F2, L2(P )).

Next, we show that sums of functions with finite bracketing entropy have finite bracketing

entropy. Let G1 and G2 be classes of functions with finite bracketing entropy. Let f1 and f2 be

functions in G1 and G2. If fm1 , f
e
1 and fm2 , f

e
2 are η-brackets for f1 and f2 respectively, then

|f1 + f2 − fm1 − fm2 | ≤ fe1 + fe2
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and

E[(fe1 + fe2 )2]1/2 ≤ E[(fe1 )2]1/2 + E[(fe2 )2]1/2 ≤ 2η

so

N[](2η,F1 + F2, L2(P )) ≤ N[](η,F1, L2(P ))N[](η,F2, L2(P )).

Together, we have

J[](F1 + F1 ×F2, L2(P )) =

∫ ∞
0

√
logN[](η,F1 + F1 ×F2, L2(P ))dη

=

∫ ∞
0

√
logN[](2η,F1 + F1 ×F2, L2(P ))dη

≤
∫ ∞

0

√
logN[](η,F1, L2(P )) + logN[](η,F1 ×F2, L2(P ))dη

≤
∫ ∞

0

√
logN[](η,F1, L2(P )) + logN[](η,F1 ×F2, L2(P ))dη

≤ J[](F1, L2(P )) +

∫ ∞
0

√
logN[](2Cη,F1 ×F2, L2(P ))dη

≤ J[](F1, L2(P )) +

∫ ∞
0

√
logN[](η,F1, L2(P )) + logN[](η,F2, L2(P ))dη

≤ 2J[](F1, L2(P )) + J[](F2, L2(P ))

<∞

and any z of the form given in the proposition is in F1 + F1 ×F2.

The class of policies described in Proposition B.4 contains the Progresa treatment function as

a special case, which we now recall.

Example B.5 (Progresa treatment): In our school subsidy application, the subsidy is of the form

z(x, ν; δ) = δ′1x× 1[δ2 ≥ ν]

which is a special case of this proposition. The proposition also allows for the “control” group

to recieve a baseline subsidy amount which differs from that of the treatment group and for the
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probability of treatment to depend on covariates. Moreover, the distinction between x and ν is not

important for this proposition, allowing for additive random variation in the subsidy value. ♦

By Theorem B.3, it remains to verify that the score of the model used in Section 5 satisfies the

Lipschitz condition (13).

Example B.6 (Progresa score): In the school choice model we use, the score is

ψ(y | z, x) = (y(z, x, ε)− q(z, x))
∇θq(z, x)

q(z, x)(1− q(z, x))

where q(z, x) = P [y = 1 | z, x] is the probability of attending school. In our dynamic model q(z, x)

is defined recursively so it is difficult to verify the Lipschitz condition, but it can be verified for

functions like logit and probit where we let ε be uniform and

y(z, x, ε) = 1[ε ≤ q(z, x)]

♦

C Approximating nonlinear constraints

In this section we present a method for approximating the value function in the presence of nonlinear

constraints. In the proof of Lemma 4.12, we showed that

V Q
n (Dµ1) = Ṽ Q

n (Dµ1) + o(n−1)

where

Ṽ Q
n (Dµ1) = max

π
(π − π0)′D(µ1 − θ0) +

1

2
(π − π0)′[H + λ′0∇2

ππg(π0)](π − π0)

s.t.

π′∇gj(π0) = 0, j ∈ J1

π′∇gj(π0) < 0, j ∈ J2.
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In particular, Ṽ Q
n characterizes the second-order directional Hadamard derivative of the Gaussian

value function at θ0 in the sense that

V G
n (µ1,Σ1)− V G

n (µ0,Σ0)

It is tempting to approximate Ṽ Q
n by plugging in (θ̂0, π̂0, λ̂0) in place of (θ0,π0,λ0). However,

this in general may not be a consistent estimate of Ṽ Q
n . This is because Ṽ Q

n may not be twice (fully)

differentiable at θ0, and so
√
n-consistency of (θ̂0, π̂0, λ̂0) does not imply that the corresponding

estimate of the second-order directional derivative is consistent. This problem is clearly articulated

in Fang and Santos (2018), which studies properties of the delta method and bootstrap under failure

of first-order full differentiability.

We propose an alternative estimator for Ṽ Q
n that retains the computational convenience of the

quadratic programming formulation, but remains consistent even when Ṽ Q
n is not twice differen-

tiable at θ0. For this section, will make the dependence of Ṽ Q
n on the reference parameter θ0

explicit by writing

Ṽ Q
n (Dµ1;θ0)

and keep in mind that π0 and λ0 are determined by θ0.

Let Θ∨ be the set of θ0 such that Ṽ Q
n (Dµ1;θ0) is not twice differentiable. Let ωn be a sequence

of positive numbers satisfying

ωn → 0 and ωn
√
n→∞

Define θ̂∨ as the point in Θ∨ that is closest to θ̂0; that is,

θ̂∨ ∈ argminθ∈Θ∨‖θ̂0 − θ‖.
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Define the estimator of the value function as

V̂ Q
n (Dµ1; θ̂0) =


Ṽ Q
n (Dµ1; θ̂∨) if ‖θ̂0 − θ̂∨‖ ≤ ωn

Ṽ Q
n (Dµ1; θ̂0) otherwise

To interpret, we are conducting a pre-test for whether θ0 is a point of nondifferentiability. If we

cannot reject, we use the directional derivative Ṽ Q
n at θ̂∨. If we can reject, we use the derivative

at θ̂0. The rate conditions on ωn ensure that the type 1 error rate tends to zero. If θ0 is a point of

nondifferentiability, then the probability of using the correct derivative tends to one. If θ0 is not a

point of nondifferentiability, then as n grows, we correctly identify this situation with probability

tending to one, allowing us to use the correct derivative. This reasoning follows that of Example

2.1 in Fang and Santos (2018).

We now make this reasoning precise.

Theorem C.1: Suppose V̂ Q
n is constructed as above. Otherwise, maintain the assumptions of

Theorem 4.14. Then

E
δQn

[
V Q
n (Dµ1;θ0)

]
− E

δ̂Qn

[
V̂ Q
n (Dµ1; θ̂0)

]
= o(n−1)

Proof. Conditional on h and scaled by n, the difference in welfare is given by

nW

(
θ0 +

h√
n
,π0 +

cQn√
n

)
− nŴ

(
θ̂0 +

h√
n
, π̂0 +

ĉQn√
n

)

We cannot immediately bound this from below as in the proof of Theorem 4.13 because the feasible

sets of the two optimization problems are different. Instead, we show consistency in cases.

Case 1: Suppose θ0 is a point of nondifferentiability. Then for any ε > 0,

P
(
‖V̂ Q

n (Dh)− V Q
n (Dh)‖ > ε

)
≤ P

(
‖θ̂0 − θ0‖ > ωn

)
= P

(
‖
√
n(θ̂0 − θ0)‖ > ωn

√
n
)
→ 0

because
√
n(θ̂0 − θ0) is tight and ωn

√
n→∞.

Case 2: Suppose θ0 is not a point of nondifferentiability. Without loss of generality assume n
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large enough that ‖θ̂∨ − θ0‖ ≥ ωn For any ε > 0,

P
(
‖V̂ Q

n (Dh)− V Q
n (Dh)‖ > ε

)
≤ P

(
‖θ̂0 − θ0‖ > ωn

)
+ P

(
‖V̂ (Dh)− V (Dh)‖ > ε and ‖θ̂0 − θ0‖ ≤ ωn

)

The first term goes to zero by consistency of θ̂0. To show that the second term goes to zero,

note that for n large enough, ‖θ̂0 − θ0‖ ≤ ωn implies that V̂ Q
n (Dh; θ̂0) has the correct set of

active constraints, which all hold with strict complementary slackness. This means V̂ Q
n (Dh) is

characterized by first-order conditions, and consistency follows from the implicit function theorem.

We have thus established that

nW

(
θ0 +

h√
n
,π0 +

cQn√
n

)
− nŴ

(
θ̂0 +

h√
n
, π̂0 +

ĉQn√
n

)
= op(1)

and the expectation is o(n−1) because regret is uniformly integrable.

D Robust Bayes

D.1 Kullback-Leibler sets of priors

For the robust Bayes procedure of Section 6.2, we propose solving the value function

Ṽkl

(
Dµ1, DΣ1D

′) = max
π

logE
[
exp

(
−1

κ
W∞(Dθ,π)

)
| θ̂1

]
s.t. g∞(π) ≤ 0

(14a)

where θ ∼ N(Dµ1, DΣ1D
′) given θ̂1. The optimal design solves

max
δ

logE
[
exp

(
−1

κ
Ṽkl

(
Dµ1, DΣ1D

′))]
s.t.

f(δ) ≤ 0

(14b)

where θ ∼ N(µ0,Σ0). This problem is similar to (6a)-(6b) with a modified objective function, and

can be solved by similar methods.

87



Proposition D.1: The solution to (8a)-(8b) is given by (14a)-(14b).

Proof. We begin with the terminal decision problem

min
π

max
q

E [R∞ (Dθ,π)] + κ

∫
log

q(θ)

p(θ | θ̂, J(δ))
q(θ)dθ

s.t.

g∞(π) ≤ 0

θ ∼ q(θ)

and consider the inner minimzation over q. Let p1(θ) = p(θ | θ̂, J(δ)) be the posterior under the

reference prior. We define q∗1 by its likelihood ratio

q∗1(θ)

p1(θ)
=

exp
(
− 1
κR∞(Dθ,π)

)∫
exp

(
− 1
κR∞(Dθ,π)

)
p1(θ)dθ

and observe that for any q, the objective function can be written

E [R∞ (Dθ,π)] + κ

∫
log

q(θ)

p(θ | θ̂, J(δ))
q(θ)dθ

=

∫
R∞ (Dθ,π) q(θ)dθ + κ

∫
log

q(θ)

p1(θ))
q(θ)dθ

=

∫
R∞ (Dθ,π) q(θ)dθ + κ

∫
log

q(θ)

q∗1(θ)
q(θ)dθ + κ

∫
log

q∗1(θ)

p1(θ)
q(θ)dθ

=

∫
R∞ (Dθ,π) q(θ)dθ + κ

∫
log

q(θ)

q∗1(θ)
q(θ)dθ + κ

∫
log

exp
(
− 1
κR∞(Dθ,π)

)∫
exp

(
− 1
κR∞(Dθ,π)

)
p1(θ)dθ

q(θ)dθ

= κ

∫
log

q(θ)

q∗1(θ)
q(θ)dθ − κ log

∫
exp

(
−1

κ
R∞(Dθ,π)

)
p1(θ)dθ

The first term is nonnegative and zero if and only if q = q∗1. The second term does not depend on q.

We conclude that the optimal q is q∗1, and therefore the optimal value function is characterized by

the posterior under the reference prior, which is Gaussian with mean µ1 and covariance Σ1. Thus

the terminal decision problem is equivalent to

min
π

− κ logE
[
exp

(
−1

κ
R∞(Dθ,π)

)]
s.t.
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g∞(π) ≤ 0

Dθ ∼ N(Dµ1, DΣ1D
′)

The optimal value of which we denote Ṽkl(Dµ1, DΣ1D
′).

We now consider the decision problem in the first period, which is

min
δ

max
q

E
[
Ṽkl(Dµ1, DΣ1D

′)
]

+ κ

∫
log

q(θ)

p(θ)
q(θ)dθ

s.t.

f(δ) ≤ 0

θ̂ ∼ dN(θ̂;θ, J(δ))q(θ)

and µ1,Σ1 are given by Bayesian updating under the Gaussian reference prior p. As before, we

define

q∗(θ)

p(θ)
=

exp
(
− 1
κ Ṽkl(Dµ1, DΣ1D

′)
)

∫
exp

(
− 1
κ Ṽkl(Dµ1, DΣ1D′)

)
p(θ)dθ

and perform the same calculations as above to show that the optimal q is q∗ and the objective is

min
δ

− κ logE
[
exp

(
−1

κ
Ṽkl(Dµ1, DΣ1D

′)

)]
s.t.

f(δ) ≤ 0

θ̂ ∼ N(µ0,Σ0 + J(δ)−1)

where again the law of motion is given by Bayesian updating under the reference prior.

D.2 Robustness to nuisance parameters

We propose an alternative value function which ignores both estimates of the nuisance parameter

and the prior on the nuisance parameter. We use (µ̃1, Σ̃1) to denote values of the posterior mean and

covariance of Dθ. We imagine an experimenter who observes only Dθ̂, and updates the posterior
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mean and covariance of Dθ according to

µ̃1 =
(
(DΣ0D)−1 + nDJ(δ)D′

)−1
(

(DΣ0D)−1Dµ0 + nDJ(δ)D′Dθ̂
)

Σ̃1 =
(
(DΣ0D)−1 + nDJ(δ)D′

)−1
.

(15)

That is, the experimenter updates the posterior mean and covariance as if the nuisance parameter

were not present. For any particular prior q on the full vector θ, this update will not generally

coincide with the correct Bayesian updating formula for the full posterior. However, Theorem D.2

shows that this updating formula coincides with that of the least favorable prior in Q.

We therefore propose the following value function:

Ṽ⊥

(
µ̃1, Σ̃1

)
= max

π
E[W∞(Dθ,π) | Dθ̂1] s.t. g∞(π) ≤ 0 (16a)

where Dθ ∼ N(µ̃0, Σ̃0) given θ̂1. The optimal design solves

max
δ

E
[
Ṽ⊥

(
µ̃1, Σ̃1

)]
s.t. f(δ) ≤ 0 (16b)

where Dθ ∼ N(Dµ0, DΣ0D
′) and the law of motion is described by (15). This problem is just as

easy to solve as (6a)-(6b). In fact, the terminal value function Ṽ⊥ is exactly the same as the value

function in the limit experiment V∞. The difference is that when optimizing over the design δ, the

experimenter ignores possible realizations of the nuisance parameter and need only observe Dθ̂1.

Proposition D.2: The solution to (9a)-(9b) is given by (16a)-(16b).

Before proving the theorem, we establish some notation. We will write any q ∈ P as

q(θ) = qD(Dθ)q⊥(D⊥θ | Dθ).

Define

D =

 D
D⊥
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and let Ω be

Ω = DJ(δ)−1D
′
=

Ω11 Ω12

Ω21 Ω22


Where Ω11 = DJ(δ)−1D′, etc. We likewise define the prior mean and variance on Dθ as

m = Dµ0

S = DΣ0D
′

We also partition S conformably as

S =

S11 S12

S21 S22


and to avoid confusion use m+ and S+ to denote the posterior. We define the orthogonalization

matrix M as follows, and also give its inverse for convenience.

M =

 I 0

−Ω21Ω−1
11 I

 M−1 =

 I 0

Ω21Ω−1
11 I

 .
Our first result gives a particular prior that factors the same way as the likelihood.

Lemma D.3: If S21 = Ω21Ω−1
11 S11, then the posterior on Dθ does not depend on D⊥θ̂ or the

prior on D⊥θ. That is,

m+ = (S−1
11 + Ω−1

11 )−1Ω−1
11 Dθ̂ + (S−1

11 + Ω−1
11 )−1S−1

11 m1

S+
11 = (S−1

11 + Ω−1
11 )−1

Proof. Consider a prior of the form

Dθ ∼ N


 Dµ0

D⊥µ0

 ,
 S11 S11Ω−1

11 Ω12

Ω21Ω−1
11 S11 S22
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which is in P. Consider the posterior variance on MDθ:

MS+M ′ = M(S−1 + Ω−1)−1M ′

= [(MSM ′)−1 + (MΩM ′)−1]−1

Then

MS =

S11 S11Ω−1
11 Ω12

0 S22 − Ω21Ω−1
11 S11Ω−1

11 Ω12

 MΩ =

Ω11 Ω12

0 Ω22 − Ω21Ω−1
11 Ω12


MSM ′ =

S11 0

0 S22 − Ω21Ω−1
11 S11Ω−1

11 Ω12

 MΩM ′ =

Ω11 0

0 Ω22 − Ω21Ω−1
11 Ω12


and

(MSM ′)−1 + (MΩM ′)−1 =

S−1
11 + Ω−1

11 0

0 (S22 − Ω21Ω−1
11 S11Ω−1

11 Ω12)−1 + (Ω22 − Ω21Ω−1
11 Ω12)−1


MS+M ′ =

(S−1
11 + Ω−1

11 )−1 0

0 [(S22 − Ω21Ω−1
11 S11Ω−1

11 Ω12)−1 + (Ω22 − Ω21Ω−1
11 Ω12)−1]−1


is the posterior variance on MDθ. Next, we calculate S+, the posterior variance on Dθ.

M−1MS+M ′ =

 (S−1
11 + Ω−1

11 )−1 0

Ω21Ω−1
11 (S−1

11 + Ω−1
11 )−1 [(S22 − Ω21Ω−1

11 S11Ω−1
11 Ω12)−1 + (Ω22 − Ω21Ω−1

11 Ω12)−1]−1


M−1MS+M ′M ′−1 =

 (S−1
11 + Ω−1

11 )−1 (S−1
11 + Ω−1

11 )−1Ω−1
11 Ω12

Ω21Ω−1
11 (S−1

11 + Ω−1
11 )−1 [(S22 − Ω21Ω−1

11 S11Ω−1
11 Ω12)−1 + (Ω22 − Ω21Ω−1

11 Ω12)−1]−1


We now compute m+, the posterior mean on Dθ. This is given by

m+ = S+Ω−1Dθ̂ + S+S−1m
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where

S+Ω−1 = S+M ′(MΩM ′)−1

=

(S−1
11 + Ω−1

11 )−1Ω−1
11 0

S+
21Ω−1

11 S+
22(Ω22 − Ω21Ω−1

11 Ω12)−1


and

S+S−1 =

(S−1
11 + Ω−1

11 )−1S−1
11 0

S+
21S
−1
11 S+

22(S22 − Ω21Ω−1
11 S11Ω−1

11 Ω12)−1


Since the top right entry of both S+Ω−1 and S+S−1 is zero,

m+
1 = (S−1

11 + Ω−1
11 )−1Ω−1

11 Dθ̂ + (S−1
11 + Ω−1

11 )−1S−1
11 m1

S+
11 = (S−1

11 + Ω−1
11 )−1

which does not depend on D⊥θ̂ or the prior on D⊥θ.

We use the above result to characterize the least favorable prior in the terminal period.

Lemma D.4:

min
π

max
q∈P

E [R∞ (Dθ,π)]

Proof. Consider a prior q∗ where Dθ ∼ N(m,S) where S is of the form specified in Lemma D.3.

Let π∗ solve the terminal value function when the prior is q∗,

min
π

Eq∗ [R∞ (Dθ,π)]

s.t.

g∞(π) ≤ 0

Dθ ∼ N(m+, S+)

where m+ and S+ are calculated in the proof of Lemma D.3.
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Because q∗ ∈ P, we have for any π

min
π

sup
q∈P

Eq [R∞ (Dθ,π)] ≥ min
π

Eq∗ [R∞ (Dθ,π)]

= Eq∗ [R∞ (Dθ,π∗)]

where in the first line we have left the constraints implicit. Likewise,

min
π

sup
q∈P

Eq [R∞ (Dθ,π)] ≤ sup
q∈P

Eq [R∞ (Dθ,π∗)]

We defined π∗ so that it only depends on m+ and S+, which by Lemma D.3 only depend on the

prior on Dθ and the observed Dθ̂. Therefore, for any q ∈ P,

Eq [R∞ (Dθ,π∗)] =

∫ ∫
R∞ (Dθ,π∗) dN(θ̂;θ, J(δ))q(θ)dθ

=

∫ ∫ ∫ ∫
R∞ (Dθ,π∗)×

dN(MD⊥θ̂;MD⊥θ, (MΩM ′)22)×

dN(MDθ̂;MDθ, (MΩM ′)11)×

q⊥(D⊥θ | Dθ)d(D⊥θ)×

qD(Dθ)d(Dθ)

=

∫
R∞ (Dθ,π∗) dN(MDθ̂;MDθ, (MΩM ′)11)qD(Dθ)d(Dθ)

=

∫
R∞ (Dθ,π∗) dN(Dθ̂;Dθ,Ω11)qD(Dθ)d(Dθ)

= Eq∗ [R∞ (Dθ,π∗)]

where the second line follows from the fact that (MΩM ′) is diagonal and so MDθ and MD⊥θ are

independent, the third line is due to π∗ not depending on D⊥θ or D⊥θ̂, the fourth uses properties

of M shown above, and the last is because all q ∈ P, including q∗, have the same marginal over

Dθ. Combining the two previous displays, we have

sup
q∈P

Eq [R∞ (Dθ,π∗)] = Eq∗ [R∞ (Dθ,π∗)]
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We have shown that

min
π

max
q∈P

E [R∞ (Dθ,π)] = Eq∗ [R∞ (Dθ,π∗)]

and therefore q∗ is the least favorable prior and π∗ is the minimax policy.

Now we prove Proposition D.2.

Proof. In the terminal period, the experimenter solves

min
π

max
q∈P

E [R∞ (Dθ,π)]

s.t.

g∞(π) ≤ 0

θ ∼ q(θ | θ̂, J(δ))

which, by Lemma D.4, is equivalent to

Ṽkl(Dµ1, DΣ1D
′) = min

π
E [R∞ (Dθ,π)]

s.t.

g∞(π) ≤ 0

Dθ ∼ N(Dµ1, DΣ1D
′)

In the first period, the experimenter solves

min
δ

max
q∈P

E
[
Ṽkl(Dµ1, DΣ1D

′)
]

s.t.

f(δ) ≤ 0

Dµ1 = ((DΣ1D
′)−1 + (DJ(δ)D′)−1)−1(DJ(δ)D′)−1Dθ̂

+ ((DΣ1D
′)−1 + (DJ(δ)D′)−1)−1(DΣ1D

′)−1Dµ0

DΣ1D
′ = ((DΣ1D

′)−1 + (DJ(δ)D′)−1)−1
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θ̂ ∼ N(µ0,Σ0 + J(δ)−1)

Since the evolution of Dµ1 and DΣ1D
′ does not depend on the prior on D⊥θ or D⊥θ̂, the maxi-

mization over q and may be dropped and only Dθ̂ need be observed.

E Multi-wave experiments

The restriction to the Gaussian estimate θ̂t is justified by the following extension of Theorem 4.8.

As in the single-period case, we say (δ1, . . . , δT , c) is an adaptive design and policy in the limit

experiment if

δt = δt(δ1, . . . , δt−1, A1(δ1), . . . , At(δt−1), U)

c = c(δ1, . . . , δT , A1(δ1), . . . , At(δT ), U)

where At is the limit of the score process in wave t and U is a uniform random variable independent

of At for all t.

Lemma E.1: Suppose Assumptions 4.2 and 4.4 hold. Assume that 0 < limn→∞ nt/n < 1 for all

t. For any convergent sequence of designs and policies (δn1, . . . , δnT ,πn) such that the vector

(
δn1, . . . , δnT ,

√
n(πn − π0)

)

converges in distribution under θ0, there exists an adaptive design and policy (δ1, . . . , δT , c) in the

limit experiment such that

(
δn1, . . . , δnT ,

√
n(πn − π0)

)
h
 

(
δ1, . . . , δT , c

)

where
h
 denotes convergence in distribution under the sequence θ = θ0 + h/

√
n.

Proof. This proof is similar to the proof of Theorem 4.8. Let

pn,θ(δ) =

T∏
t=1

∏
i∈It

py|z,x(yi | zi, xi;θ)pz|x(zi | xi; δt)px(xi)
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be the density of the data generated by the dynamic experiment. We first note that the likelihood

ratio factors so that

log
pn,θ0+h/

√
n(δ1, . . . , δT )

pn,θ0(δ1, . . . , δT )
=

T∑
t=1

∑
i∈It

log
py|z,x(yi | zi, xi;θ0 + h/

√
n)

py|z,x(yi | zi, xi;θ0)

By Lemma A.1, each element of the sum over t converges in probability (as a process in ∆) to

1√
n

∑
i∈It

h′ψi(·)−
1

2
h′J(·)h

As shown in the proof of Theorem 4.8, the weak limit of

Ant(·) =
1√
n

∑
i∈It

ψi(·)

under θ0 is a Gaussian process At with mean zero and covariance

Cov (At(b), At(c)) = Cov (ψi(b), ψi(c))

for all b, c ∈ ∆.

By assumption, (δn1, . . . , δnT ,πn) all converge marginally in distribution under θ0. This implies

that there exists a subsequence along which

(
δn1, . . . , δnT ,

√
n(πn − π0), An1(·), . . . , AnT (·)

)
θ0 

(
δ1, . . . , δT , c, A1(·), . . . , AT (·)

)

and therefore

(
δn1, . . . , δnT ,

√
n(πn − π0) log

p1,n,θ0+h/
√
n(δn1)

p1,n,θ0(δn1)
, . . . , log

pT,n,θ0+h/
√
n(δnT )

pT,n,θ0(δnT )

)
θ0 

(
δ1, . . . , δT , c, h

′A1(δ1)− 1

2
h′J(δ1)h, . . . , h′AT (δT )− 1

2
h′J(δT )h

)

By Le Cam’s third lemma, we obtain the limiting distribution of (δn1, . . . , δnT ,πn) under local

alternatives along the subsequence. Since the full sequence converges in distribution under local
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alternatives, this is also the limiting distribution of the full sequence. For any Borel set B, the

limiting distribution is given by

Lh(B) = Eθ01 [δ1, . . . , δT , c] exp

(∑
t

h′At(δt)−
1

2
h′J(δt)h

)

The construction of (δh1 , . . . , δ
h
T , c

h) in the limit experiment with this distribution follows the same

steps as in the proof of Theorem 4.8.

The quadratic approximation of the terminal value function is justified by Theorem 4.13. This

leads to the same optimality guarantees as in the single-period case.

Theorem E.2: In addition to the assumptions of Lemma E.1, suppose Assumptions 4.7, 4.10,

and 4.11 hold. If cn =
√
n(πn−π0)) is a sequence of feasible policies in the finite-sample experiment

which is uniformly bounded in probability under θ0, then

lim sup
n→∞

E
[
nW

(
θ0 +

h√
n
,π0 +

cn√
n

)]
≤ E

[
nWQ

(
θ0 +

h√
n
,π0 +

cQn√
n

)
+M(µ0,Σ0)

]

Moreover, this upper bound is attained by implemnting the feasible analog (δ̂Qn,1, . . . , δ̂
Q
n,T , ĉ

Q
n ) as in

Theorem 4.14.

The proof follows that of Theorem 4.14 and is omitted.

F Details of the Progresa application

Table 2 shows the values of the pilot estimates θ̂0 for the Progresa application. The pilot estimate

of ˆbmπ0 is obtained using the Ipopt nonlinear solver which uses an interior point algorithm. The

estimates (Ĉ, D̂, Ĥ) are then be computed by automatic differentiation to define WQ
n . Algorithm

1 describes the optimization algorithm used to construct the estimate of V GQ
n . After computing

V GQ
n , we compute

Eδ

[
V GQ
n (D̂µ1) | θ̂0

]
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Table 2: Preliminary estimates θ0 from pilot data

Estimate Standard Error
Constant 1.74 1.77

Fem 1.45 2.61
Grade 1.39 0.21

Grade × Fem -0.06 0.3
Age -0.59 0.15

Age × Fem -0.03 0.22
Secondary School -6.96 1.82

Fem × Secondary School -1.72 2.68
Wage -6.53 2.56

Wage × Fem -4.27 5.0
Wage × Secondary School 5.01 3.01

Wage × Fem × Secondary School 6.52 5.47
Subsidy -1.81 5.8

Subsidy × Fem 11.82 9.33
Subsidy × Secondary School 5.07 6.14

Subsidy × Fem × Secondary School -11.16 9.86
Terminal value primary -0.57 1.24

Terminal value secondary 0.56 1.38
β 0.95
N 500

Note: Standard errors are conditional on β, which is calibrated to match Attanasio, Meghir, and Santiago
(2012).

for any δ by Monte Carlo integration over the distribution of µ1 conditional on θ̂0. This is a

differentiable function of δ, and so we can solve for the optimal δ again using Ipopt.

Results for various levels of κ are shown in Figure F. In addition to the designs shown in Figure

3, we also show the performance of the design which maximizes the precision of the average effect

of the original Progresa subsidy schedule. In Figure F, we show how the increase in welfare is

driven by the increase in graduation rates versus the reduction in the gender gap. In fact, the

improvement in the gender gap entirely drives the increase in welfare for κ = 0.5, and graduation

rates actually decrease very slightly with the sample size. However, if we were to set κ = 1, then

the welfare function is not strictly concave, violating Assumption 4.11.
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Figure 5: Welfare comparison for different values of κ

Note: The expected welfare from the optimal experiment for different values of κ and a variety of values of
n1. “Oracle” refers to the expected welfare from the infeasible, optimal policy given the true parameter
values. “Optimal” refers to the expected welfare from running the optimal experiment. “ATE” refers to
the expected welfare from running an experiment which maximizes the precision of the estimated average
treatment effect of the original Progresa subsidy schedule. “Progresa” refers to the expected welfare from
running the original Progresa experiment. “No Exp” refers to the expected welfare from using the pilot
data only.

100



Figure 6: Decomposition of welfare differences for κ = 0.5

Note: The expected welfare from the optimal experiment when κ = 0.5 is shown for a variety of values of
n1, broken down into the contributions from the increase in average graduation rates and the decrease in
gender disparities in graduation rates. “Oracle” refers to the expected welfare from the infeasible, optimal
policy given the true parameter values. “Optimal” refers to the expected welfare from running the optimal
experiment. “ATE” refers to the expected welfare from running an experiment which maximizes the
precision of the estimated average treatment effect of the original Progresa subsidy schedule. “Progresa”
refers to the expected welfare from running the original Progresa experiment. “No Exp” refers to the
expected welfare from using the pilot data only.
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Algorithm 1: Optimization Algorithm with ADAM

Input: Initial parameters of V , prior (µ0,Σ0), learning rate, number of epochs, tolerance
Output: Trained model V , final r2 value
Initialize opt state using ADAM with learning rate 0.01;
Set nepoch to 10000;
Set tolerance tol to 0.999;
for i = 1 to nepoch do

if i mod 100 = 0 then
Draw sample Dµ from N(Dµ0, DΣ0D

′) ;
Solve QP(Dµ) to get v ;
Compute predicted values V fit from model V (Dµ);
Compute r = cor(v, V fit);
if r > tol then

break;

Compute gradients grads of V ;
Update parameters V with opt state and grads;
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