Coding Strip: A Pedagogical Tool for Teaching and Learning Programming Concepts through Comics

Sangho Suh, Martinet Lee, Gracie Xia, Edith Law

Table of Contents

- Motivation
- Related Work
- Methodology & Results
- Summary & Future Work

Motivation

Teaching kids to code is the next frontier in 21st century education

By Helena Game O September 15, 2017 Ohelenagame

Japan Makes Coding Mandatory for All Students **Starting in Elementary School**

Posted on March 28, 2019 by Ted

China Pushes Coding for Kids in Effort to Tackle Innovation Gap

A young boy learns to code at the Tarena Learning Center in Beijing. NBC News

A computing revolution in schools

Rory Cellan-Jones Technology correspondent @BBCRoryCJ

() 1 September 2014 月

< Share

Coding at school: a parent's guide to England's new computing curriculum

From the start of the new term, children as young as five will be learning programming skills in the classroom

▲ Coding is on the curriculum for primary and secondary school pupils in the UK. Photograph: Alamy

File photo. AP Photo/Stephan Savoia

provinces measure up? BY ALYSSA JULIE - NEWS TALK 770

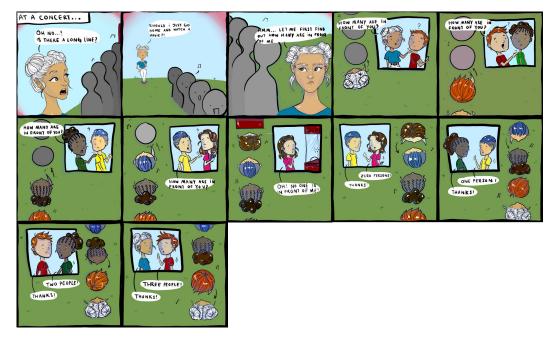
> Posted August 24, 2017 2:23 pm Indated August 28, 2017 12:10 pr

Programming remains difficult to master because it involves <u>concepts</u> and <u>procedures</u> that are **abstract**

Learning <u>Concepts</u> in Programming

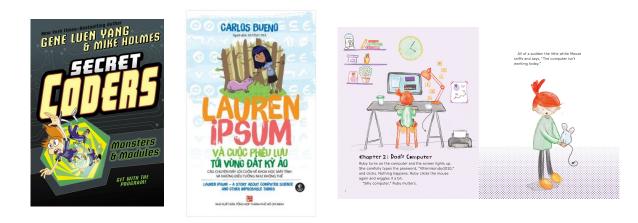
"in learning programming, **[students] need to imagine** ... many **abstract terms** that do not have equivalents in **real life**: how does a variable, a data type, or a memory address relate to a real-life object?"

L. M. Giraffa, M. C. Moraes, and L. Uden, "Teaching object-oriented programming in first-year undergraduate courses supported by virtual classrooms"

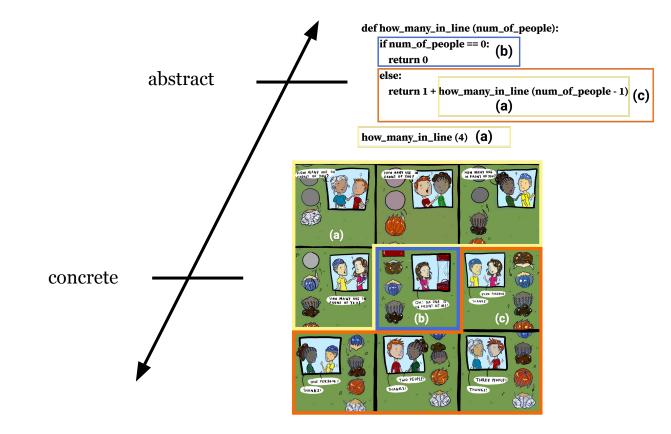

Learning <u>Procedures</u> in Programming

Procedures in computing are often presented as an abstraction (e.g., loop), i.e., without showing the steps and thereby obscuring and making the procedures **abstract** for novice learners

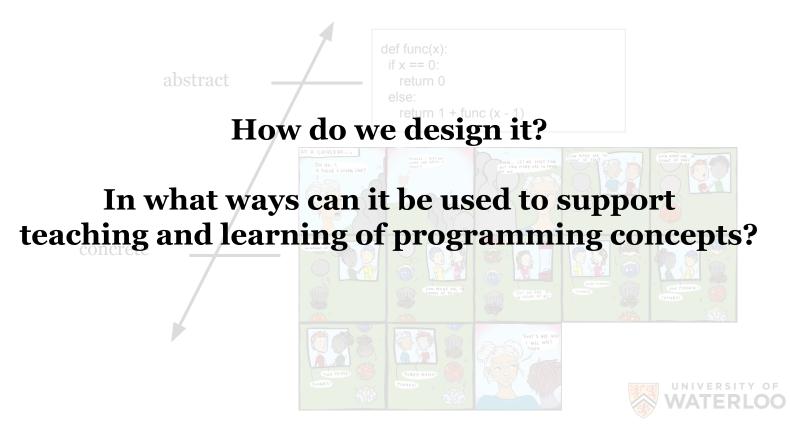
Making Abstract More Concrete with <u>Comics</u>


 The sequential nature of the medium and its ability to express complicated concepts and procedures through visual storytelling provide reasons to

believe that it can be an effective medium

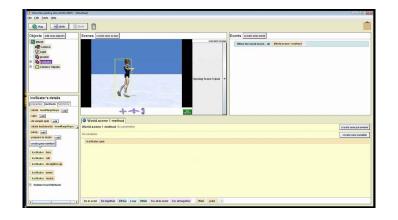


Limitation with Comics for CS Education


- While there have been several comic books for CS education, they are formatted as storybooks without correspondence to code
 - This misses out on the opportunity for students to transfer what they learn to traditional text-based programming

Coding Strip

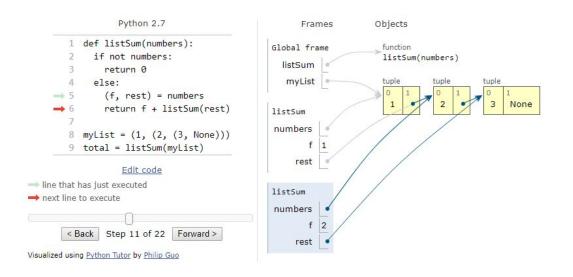
Coding Strip



Related Work

Making Programming More Concrete

- Hands-on activities (e.g., CS Unplugged)
- Block-based / Tangible programming languages
- Storytelling (e.g., Storytelling Alice)



Making Programming More Concrete

Visualization tools (e.g., Python Tutor)

Guo, P., Online Python Tutor: Embeddable Web-Based Program Visualization for CS Education

Making Abstract More Concrete with <u>Comics</u>

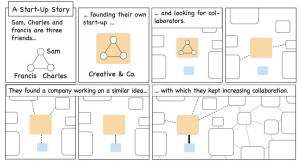
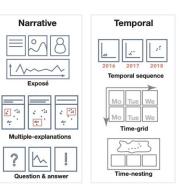



Figure 1. Graph comic: Evolving fictitious business relations.

Data-driven storytelling

Authoring tool for data comics

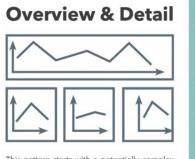
Do Ropel Celected

(een Houred Banal

ild-up Visuali

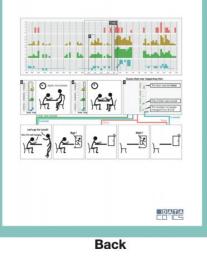
Pan & Zoom

Time Caption In Sync


Bach et al, *Data comics*.

Design Process & Tools

Mora, Simone, Francesco Gianni, and Monica Divitini. Tiles: a card-based ideation toolkit for the internet of things.


Design Process & Tools

This pattern starts with a potentially complex and detailed visualization in a single panel (overview panel). Consequent panels (detail panels) will refer to this visualization and explain details important for the story. This pattern builds a global view of events which helps readers to have an overall picture of events; a general development path or space distribution. However, if the overview visualisation is extremely complex for the audience, it may bring understanding burdens feeling of overwhelming.

Front

Overview & Detail

Bach et al, Design Patterns for Data Comics.

Figure 8. Data-Comics workshop: (left) designing with pattern cards, (right) storyboarding with post-its.

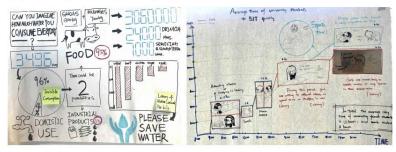


Figure 9. Data-Comic from the workshop: (left) annual water consumption (©Xudong Jiang, Yi He), (right) how long students sit (©Yuchen Ye, Wenqi Cai).

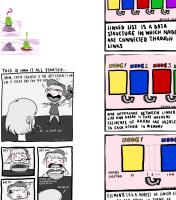
Methodology

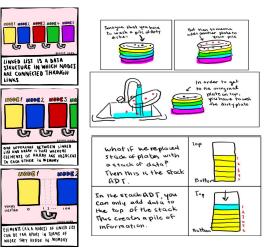
Methodology

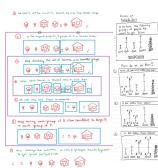
- Phase I. Develop Design Process & Tools
- Phase II. Evaluate through Design Workshops

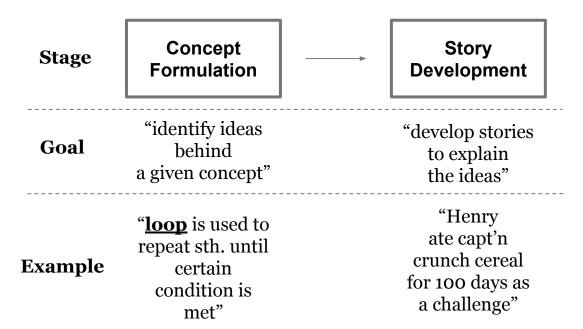
Step 1. Identify main programming concepts

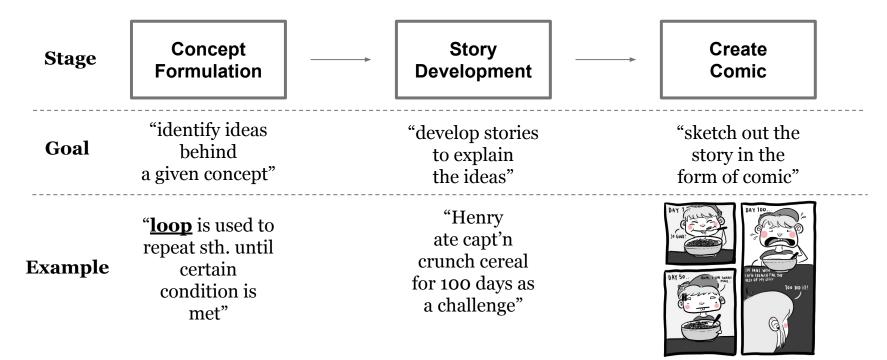
TABLE I: Concepts used in our study. Bolded are the concepts that workshop participants chose for their coding strips.

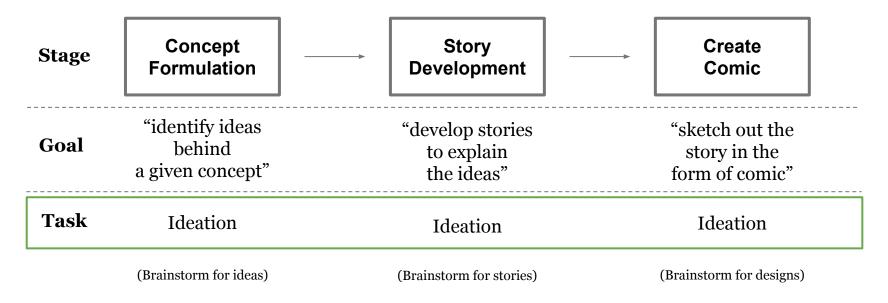

Constructs	Data Structures	Algorithms	Problem Solving Techniques Greedy	
Variable	Array	Selection Sort		
Boolean	Linked List	Insertion Sort	Divide & Conquer	
Condition	Queue	Merge Sort	Recursion	
Counted Loop	Stack	Bubble Sort		
Conditional Loop	Tree	Linear Search		
Function	Graph	Binary Search		
	Dictionary			

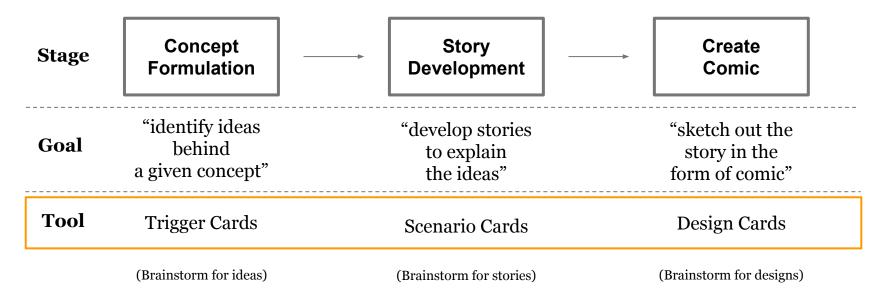

Step 2. Design coding strips for concepts

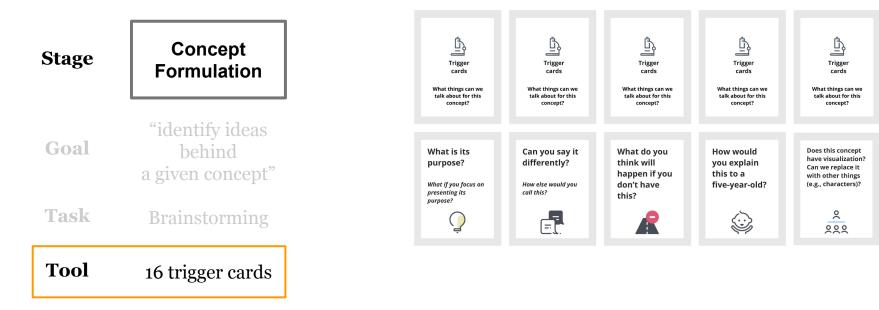


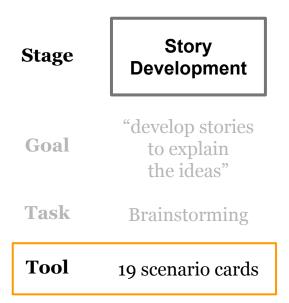




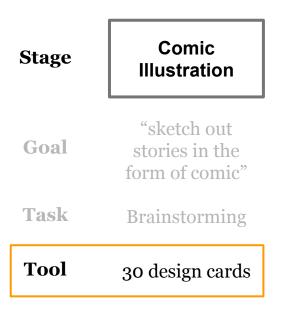

The call and the fighter than the


Stage	Concept Formulation		
Goal	"identify ideas behind a given concept"		
Example	" <u>loop</u> is used to repeat sth. until certain condition is met"		

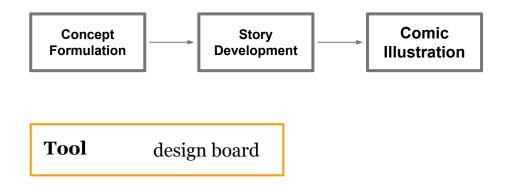


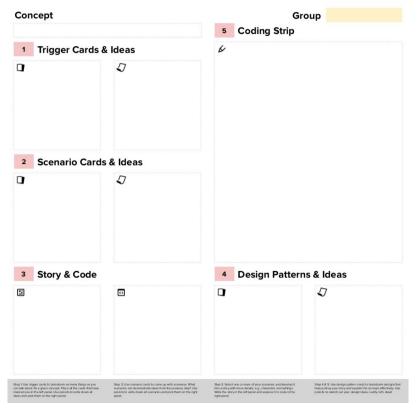


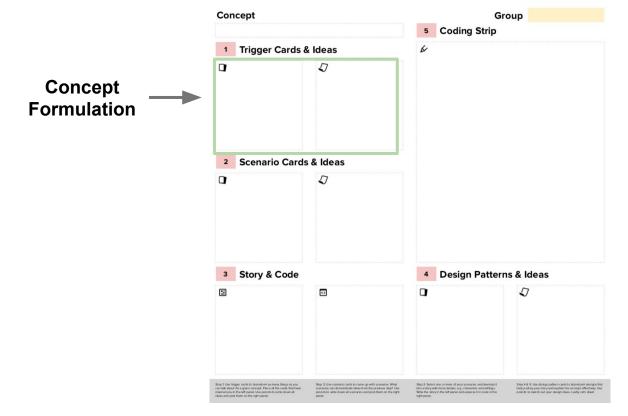
Ideation Cards

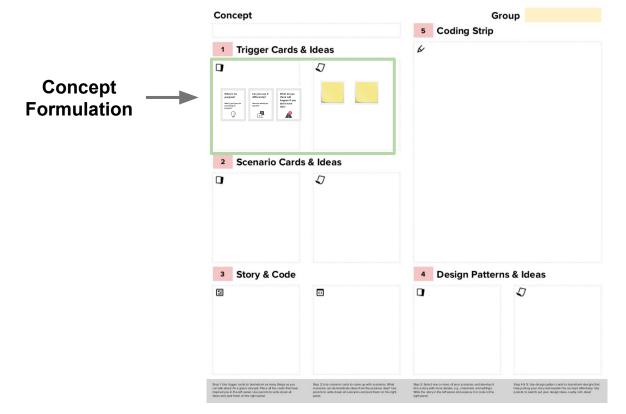


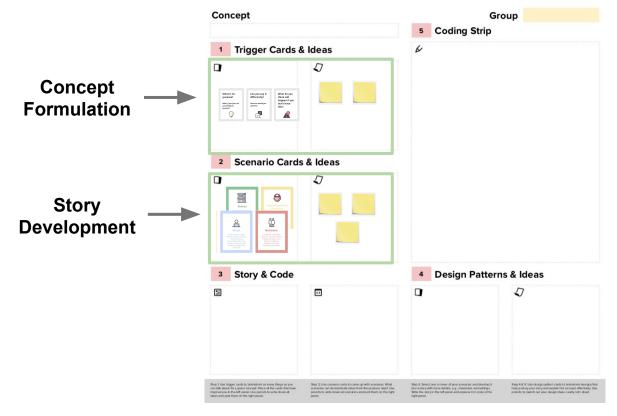
Ideation Cards



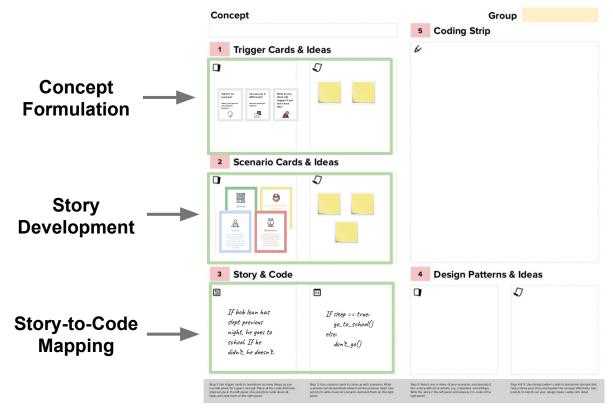

Ideation Cards

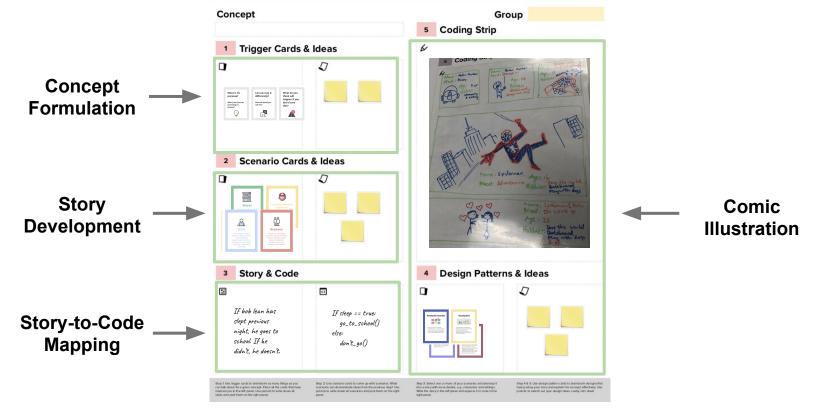






Concept			Gr	oup
		5	Coding Strip	
1 Trigger Cards & Ideas		6		
	Ð			
2 Scen	nario Cards & Ideas 🗸			
3 Story	y & Code	4	Design Pattern	ns & Ideas
			Design Fatteri	
				IJ
Step 1 Use sligger cards to breits	alove as many tings as you R Place at the cash that have exervise an dynamic as leases that have exervise an dynamic as leases that the previous possibility while deal as learnable and post them on	os What Ship 3. Selec	tone or more of your scenarios and develop it th more details, e.g., characters and settings you the left geatest and experies it in orde inthe	Ship 4.8.5. Use design pattern cards to balantom design the help participate your story and explain the energit affectively. Use profile to select our gran design ideas. Larity fund and

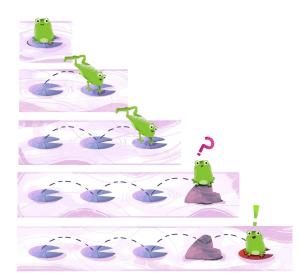



Design Board

Design Board

Design Board

Methodology

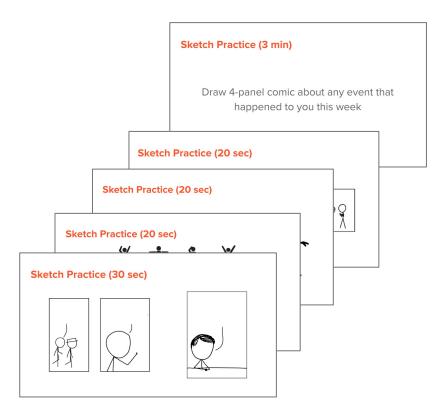

- Phase I. Develop Design Process & Tools
- Phase II. Evaluate through Design Workshops

Methodology

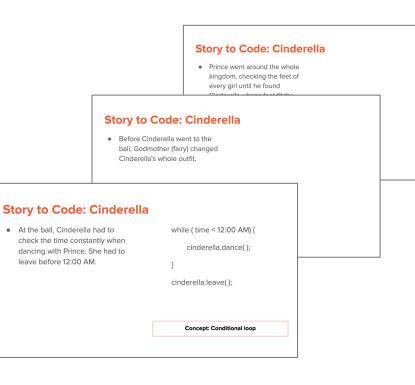
- Phase I. Develop Design Process & Tools
- Phase II. Evaluate through Design Workshops

- W1: Undergraduate and graduate students
 - 13 participants (5M, 8F; age: 17-29, mean 21)
- W2: High school computer science teachers
 - 6 participants (2M, 4F)
- 2 artists

	Description	Duration
	Consent form	5 min
	Pre-study survey	5 min
Session 1	Presentation	10 min
(90 min)	Warm-up: sketch	10 min
	Warm-up: story to code	10 min
	Design session #1	50 min
	Break	15 min
Session 2 (90 min)	Design session #2	50 min
	Discussion	35 min
	Post-study survey	5 min

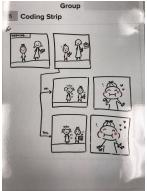


String[] lilypad = ["green", "green", "green", "rock", "green", "red"];

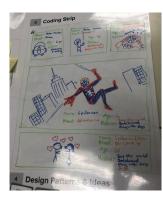

While (lilypad [i] != red) {
 frog.jump();
 if (lilypad[i] == "rock") {
 frog.confused();
 frog.jump();
 }

i++;

	Description	Duration
	Consent form	5 min
	Pre-study survey	5 min
Session 1	Presentation	10 min
(90 min)	Warm-up: sketch	10 min
	Warm-up: story to code	10 min
	Design session #1	50 min
	Break	15 min
Session 2 (90 min)	Design session #2	50 min
	Discussion	35 min
	Post-study survey	5 min


	Description	Duration
	Consent form	5 min
	Pre-study survey	5 min
Session 1	Presentation	10 min
(90 min)	Warm-up: sketch	10 min
	Warm-up: story to code	10 min
	Design session #1	50 min
	Break	15 min
Session 2 (90 min)	Design session #2	50 min
	Discussion	35 min
	Post-study survey	5 min


	Description	Duration
	Consent form	5 min
	Pre-study survey	5 min
Session 1	Presentation	10 min
(90 min)	Warm-up: sketch	10 min
	Warm-up: story to code	10 min
	Design session #1	50 min
	Break	15 min
Session 2 (90 min)	Design session #2	50 min
	Discussion	35 min
	Post-study survey	5 min



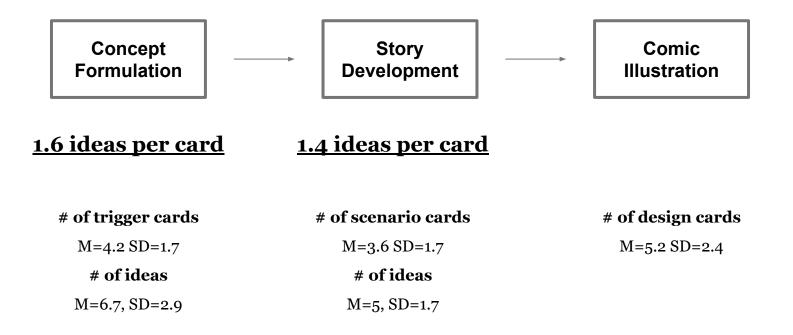
	Description	Duration
	Consent form	5 min
	Pre-study survey	5 min
Session 1	Presentation	10 min
(90 min)	Warm-up: sketch	10 min
	Warm-up: story to code	10 min
	Design session #1	50 min
	Break	15 min
Session 2 (90 min)	Design session #2	50 min
	Discussion	35 min
	Post-study survey	5 min

	Description	Duration
	Consent form	5 min
	Pre-study survey	5 min
Session 1	Presentation	10 min
(90 min)	Warm-up: sketch	10 min
	Warm-up: story to code	10 min
	Design session #1	50 min
	Break	15 min
	Design session #2	50 min
Session 2 (90 min)	Discussion	35 min
	Post-study survey	5 min

- Discussion
 - Use case scenarios for learning & teaching
 - Suggestions for design process & tools
- Post-study survey
 - Effectiveness of design process & tools
 - Perceived usefulness of coding strip

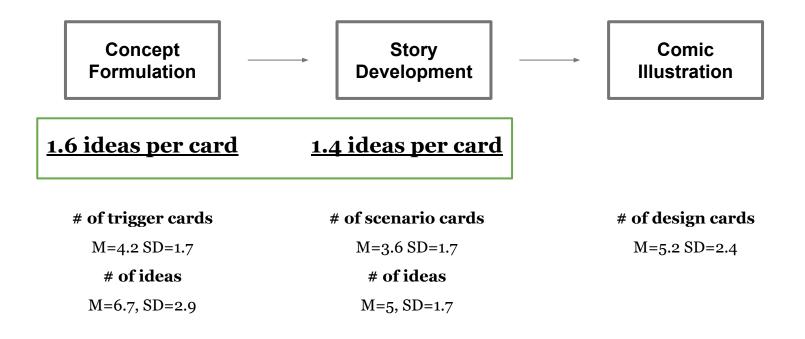
	Description	Duration
	Consent form	5 min
	Pre-study survey	5 min
Session 1	Presentation	10 min
(90 min)	Warm-up: sketch	10 min
	Warm-up: story to code	10 min
	Design session #1	50 min
	Break	15 min
	Design session #2	50 min
Session 2 (90 min)	Discussion	35 min
	Post-study survey	5 min

Results

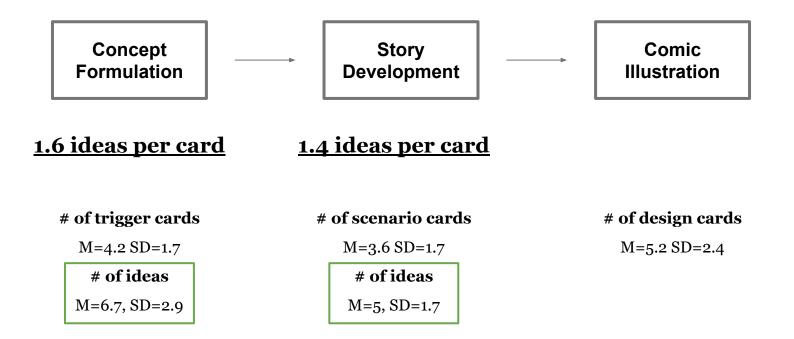

Effectiveness of Design Process

- Participants found the design process and tools <u>useful</u> (M=4.1, SD=0.8 for W1, and M=4.2, S=0.8 for W2)
- Participants found designing coding strip <u>engaging</u> (M=4.2, SD=1 for W1 | M=4.3, SD=1 for W2)
- Participants did not need much help from the artists

	Description	Duration
	Consent form	5 min
	Pre-study survey	5 min
Session 1	Presentation	10 min
(90 min)	Warm-up: sketch	10 min
	Warm-up: story to code	10 min
	Design session #1	50 min
	Break	15 min
Session 2 (90 min)	Design session #2	50 min
	Discussion	35 min
	Post-study survey	5 min


Effectiveness of Ideation Cards

• "How many ideas was each card able to help generate?"


Effectiveness of Ideation Cards

• "How many ideas was each card able to help generate?"

Effectiveness of Ideation Cards

• "How many ideas was each card able to help generate?"

Perceived Utility for Learning & Teaching

Both teachers and students want to <u>learn</u> with coding strip

(5 "yes", 1 "not sure" for teachers; 10 "yes", 2 "no" for students)

 While teachers want to <u>teach</u> with coding strip, students are divided

(5 "yes", 1 "not sure" for teachers; 6 "yes"; 7 "not sure" for students)

	Description	Duration
	Consent form	5 min
	Pre-study survey	5 min
Session 1	Presentation	10 min
(90 min)	Warm-up: sketch	10 min
	Warm-up: story to code	10 min
	Design session #1	50 min
	Break	15 min
Session 2 (90 min)	Design session #2	50 min
	Discussion	35 min
	Post-study survey	5 min

Panel-to-Execution Mapping

• Analysis of 18 coding strips revealed 3 *panel*-to-*execution* mapping patterns

1-to-1

NODE 1 NODE. NODE 1 NODE 2 NODE 3 NODE1 NODE2 NODE3 NODE4 NODE 6 6 6 MEMORY LOCATION CU7 1 2 ... 100 0 C U CU7 U LINKED LIST IS A DATA STRUCTURE IN WHICH NODES ONE DIFFERENCE BETWEEN LINKED LIST AND ARRAY IS THAT WHEREAS ELEMENTS (A.K.A. NODES) OF LINKED LIST ARE CONNECTED THROUGH CAN BE FAR APART IN TERMS OF ELEMENTS OF ARRAY ARE ADJACENT WHERE THEY RESIDE IN MEMORY LINKS TO EACH OTHER IN MEMORY

1-to-many

many-to-1

Use Case Scenarios

- Design activity
- Instruction
- Complementary resource in textbooks
- Coding exercise
 - write code based on the presented comics

	Description	Duration
	Consent form	5 min
	Pre-study survey	5 min
Session 1	Presentation	10 min
(90 min)	Warm-up: sketch	10 min
	Warm-up: story to code	10 min
	Design session #1	50 min
	Break	15 min
	Design session #2	50 min
Session 2 (90 min)	Discussion	35 min
	Post-study survey	5 min

Summary

- The proposed design process and tool appear to be effective at supporting the design of coding strip
- Teachers and students are interested in using coding strip for learning and teaching

Future Work

- Develop authoring tool to facilitate the production of coding strips
- Explore how our design process and tools can generalize to work with concepts from other domains (e.g., machine learning, data science, etc.)

Acknowledgements

LITE Grant, Center for Teaching Excellence

Edith Law

Martinet Lee

Gracie Xia

Bernadette Cheng

Image References

- https://www.studyinternational.com/news/coding-kids/
- https://www.bbc.com/news/technology-29010511
- <u>https://www.nbcnews.com/news/china/china-pushes-coding-kids-effort-tack</u>
 <u>le-innovation-gap-n641966</u>
- <u>https://globalnews.ca/news/3693932/teaching-coding-in-canadian-schools-how-do-the-provinces-measure-up/</u>
- <u>https://www.strata-gee.com/japan-makes-coding-mandatory-for-all-students</u>
 <u>-starting-in-elementary-school/</u>